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26 Abstract

27 Aims: In this study, binding between the immunodominant membrane protein Imp of the 

28 16SrV-D phytoplasma associated with Flavescence dorée disease (FD-Dp) and insect 

29 proteins of vectors and non-vectors of FD-Dp was tested.

30 Methods and Results: Six Auchenorrhyncha species, from distantly related groups were 

31 selected: Scaphoideus titanus, Euscelidius variegatus, Macrosteles quadripunctulatus, 

32 Zyginidia pullula (Cicadomorpha), Ricania speculum and Metcalfa pruinosa 

33 (Fulgoromorpha). The vector status of each species was retrieved from the literature or 

34 determined by transmission trials in this study. A His-tagged partial Imp protein and a rabbit 

35 polyclonal antibody were synthesized and used for Western and Far-Western dot Blot 

36 (FWdB) experiments. Total native and membrane proteins were extracted from entire bodies 

37 and organs (gut and salivary glands) of each insect species. FWdB showed a decreasing 

38 interaction intensities of Imp fusion protein with total proteins from entire bodies of S. 

39 titanus, E. variegatus (competent vectors) and M. quadripunctulatus (non-vector), while no 

40 interaction signal was detected with the other three species (non-vectors). A strong signal 

41 detected upon interaction of FD-D Imp and membrane proteins from guts of closely related 

42 insects supports the role of this organ as the first barrier to ensure successful transmission.

43 Conclusions: Our results showed that specific Imp binding, correlated with vector status, is 

44 involved in interactions between FD-Dp and insect proteins. 

45 Significance and Impact of the Study: Integrating knowledge on host-pathogen protein-

46 protein interactions and on insect phylogeny would help to identify the actual range of 

47 vectors of phytoplasma strains of economic importance.

48
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49 Introduction

50 Phytoplasmas are phloem-limited wall-less plant pathogenic bacteria in the class Mollicutes 

51 causing hundreds of plant diseases worldwide and responsible for severe economic losses to 

52 agriculturally important plants (Strauss 2009; Marcone 2014). Although phytoplasmas 

53 represent a well-defined monophyletic clade in the family Acholeplasmataceae, they are still 

54 treated as indefinite taxa due to severe difficulties hampering in vitro cultivation. 

55 Phytoplasma classification is based on 16S rRNA and ribosomal protein (rp) gene sequences 

56 (Lee et al. 2000) and the ‘Candidatus’ species concept is applied for well characterized 

57 phytoplasmas (Murray and Stackebrandt 1995; IRPCM 2004). The known phytoplasma 

58 vectors are hemipteran insects belonging to the suborder Auchenorrhyncha (Fulgoromorpha 

59 and Cicadomorpha) and the family Psyllidae (suborder Sternorrhyncha) (Weintraub and 

60 Beanland 2006).

61 The 16SrV phytoplasma (16SrVp) phylogenetic group represents the third largest 

62 phytoplasma cluster (Lee et al. 2004) showing more than 98.6% 16S rRNA nucleotide 

63 identity among different strains (Lee et al. 1998a). However, this group is naturally clustered 

64 in several different ecological niches (Lee et al. 1998b) that could contribute to genetic drift. 

65 The 16SrVp group comprises six described phytoplasma subgroups, four of which are 

66 described as ‘Candidatus Phytoplasma (Ca. P.)’ (Bertaccini et al. 2014): 16SrV-A (‘Ca. P. 

67 ulmi’, Lee et al. 2004), 16SrV-B (‘Ca. P. ziziphi’, Jung et al. 2003), 16SrV-E (‘Ca. P. rubi’, 

68 Malembic-Maher et al. 2011), and 16SrV-F (‘Ca. P. balanitae’, Harrison et al. 2014). The 

69 remaining two subgroups, 16SrV-C and -D, are assigned to the not formally described ‘Ca. P. 

70 vitis’ reported as an incidental citation (IRPCM 2004). The latter two genetically 

71 heterogeneous subgroups include well known harmful plant pathogens causing the 

72 Flavescence dorée (FD) disease associated mainly with grapevine, and other diseases 

73 associated with wild host plants. Analyses of single nucleotide polymorphisms (SNPs) in 
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74 ribosomal and non-ribosomal fragments have been carried out to characterize the relationship 

75 between closely related genotypes clustering in the clade of 16SrV-C and -D subgroups (e.g. 

76 Palatinate grapevine yellows, Alder yellows) (Angelini et al. 2001; Martini et al. 2002; 

77 Arnaud et al. 2007; Rossi et al., 2019). An exclusive association between the FD-related 

78 genotypes, plant hosts and their insect vectors has been suggested (EFSA 2014). The 

79 leafhopper Scaphoideus titanus Ball (Cicadellidae: Deltocephalinae) is the only grapevine FD 

80 vector reported to have major epidemiological significance in the field. Other insect species 

81 have been recorded as competent vectors of FD or FD-related genotypes in experimental 

82 conditions but are suspected to play only minor epidemiological roles in spreading FD to 

83 grapevine, and are more likely associated with other epidemiological routes involving 

84 different plants (e.g. clematis and alder). These include Anoplotettix fuscovenosus, 

85 Euscelidius variegatus, Euscelis incisus (Bressan et al. 2006), Orientus ishidae (Lessio et al. 

86 2016), Allygus spp. (Malembic-Maher et al. 2017), Dictyophara europaea (Filippin et al. 

87 2009), and Oncopsis alni (Maixner et al. 2000; Malembic-Maher et al. 2017). The first five 

88 species belong to the same subfamily as S. titanus, whereas O. alni belongs to cicadellid 

89 subfamily Eurymelinae, and D. europaea to the phylogenetically distant planthopper family 

90 Dictyopharidae.

91 The concepts of transmission specificity and efficiency include the existence of constraints 

92 (factors) acting between a specific pathogen and its carrier/s, that determine which species are 

93 capable of being vectors. Such factors can be intrinsic (e.g. species identity and intraspecific 

94 variation; Verbeek et al. 2010) or extrinsic (e.g. environmental constraints and biological 

95 relationships; Daugherty et al. 2009, Lopes et al. 2009), and affect pathogen-vector 

96 interactions at different spatio-temporal scales and biological organization levels. Some 

97 studies suggested the involvement of specific molecular phytoplasma-ligand interactions in 

98 transmission specificity with insect hosts (Suzuki et al. 2006; Galetto et al. 2011a; Arricau-
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99 Bouvery et al. 2018). Different types of phytoplasma membrane proteins are in direct contact 

100 with the host environment and have been recognized to play an important role in promoting 

101 phytoplasma internalization in insect cells.The major membrane proteins of phytoplasmas are 

102 the immunodominant membrane proteins (IDPs), variable membrane proteins (Vmps), 

103 membrane transport proteins (e.g. SecY), adhesins, ATP-dependent proteases, as well as 

104 those encoded by potential mobile units and plasmids. However, a number of studies focused 

105 on the IDPs, since they are the most abundant proteins of the cell surface of phytoplasmas 

106 (for an overview see Konnerth et al. 2016). Previous studies showed that two 

107 (Immunodominant membrane protein [Imp] and Antigenic membrane protein [Amp]) of the 

108 three non-homologous immunodominant membrane proteins are involved in interactions 

109 between the phytoplasma cell surface and insect proteins (Suzuki et al. 2006; Galetto et al. 

110 2011a; Siampour et al. 2011, 2013; Rashidi et al. 2015). In particular, imp has high genetic 

111 variability among phytoplasmas and is under strong positive selection pressure, a strong 

112 indicator of its role in interactions with the environment and the host (Kakizawa et al. 2009). 

113 Moreover, RNA-Seq studies revealed that imp is one of the most expressed genes in FD 

114 phytoplasma (Abbà et al. 2014).

115 We investigated the transmission specificity mediated by the immunodominant membrane 

116 protein Imp in the pathosystem of 16SrV-Dp and its insect hosts. A specific genotype in the 

117 16SrV-D subgroup (hereafter FD-D), which is known as the most widespread phytoplasma 

118 strain causing the FD disease of grapevine, was selected (Arnaud et al. 2007; Filippin et al. 

119 2009). Since available evidence suggested that related pathogens tend to be associated with 

120 particular lineages of leafhopper vectors (Hogenhout et al. 2008a; Perilla-Henao and Casteel 

121 2016), the protein-protein interactions of vectors and non-vectors of FD-D phytoplasma (FD-

122 Dp) selected from distantly related insect species, were tested. The insect species were 

123 chosen to represent a gradient of vector ability with respect to the acquisition and 
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124 transmission rate of FD-Dp, from highly competent vector to non-vector in two distantly 

125 related Auchenorrhyncha lineages.

126

127 Materials and Methods

128 Insect species selection and specimens’ recruitment

129 The specific protein-protein interaction between Imp of FD-Dp and proteins of putative insect 

130 vectors was tested using six insect species. The selected hemipteran species belong to two 

131 distantly related lineages of Auchenorrhyncha (Johnson et al. 2018). Four species of the 

132 infraorder Cicadomorpha, all in the family Cicadellidae were tested: Scaphoideus titanus, 

133 Euscelidius variegatus, Macrosteles quadripunctulatus (subfamily Deltocephalinae) and 

134 Zyginidia pullula (Typhlocybinae). Additionally, two species of infraorder Fulgoromorpha, 

135 Ricania speculum (family Ricanidae) and Metcalfa pruinosa (family Flatidae) were also 

136 tested. The vector status of the species was defined based on prior evidence of their ability to 

137 acquire and/or transmit FD-Dp. In particular, data on transmission efficiency tested in 

138 experimental conditions, as measured by Acquisition Rate (AR) and Transmission Rate (TR), 

139 were retrieved from the literature. Scaphoideus titanus and E. variegatus, are known as 

140 competent vectors of FDp (Schvester et al. 1963; Caudwell et al. 1972). For S. titanus, AR 

141 was 63% (N=60) using 16SrV-C infected Vicia faba as source plants and TR was 60% 

142 (N=10) on healthy micro-propagated Vitis vinifera (Miliordos et al. 2017). Since S. titanus 

143 was reported as an efficient vector both in the field and in laboratory in many countries (for a 

144 review see Trivellone 2019), it is considered here to be an efficient competent vector of FD-

145 Dp. For E. variegatus AR was 67% (N=69) from FD-infected V. faba and TR was 62% 

146 (N=108) on healthy V. faba in the laboratory (Rashidi et al. 2014), although this species is 

147 not known to be a competent vector under field conditions. Thus, E. variegatus is here treated 

148 as an efficient competent vector of FD-Dp in laboratory conditions only (EFSA 2014). 
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149 Scaphoideus and Euscelidius belong to the same cicadellid subfamily (Deltocephalinae) but 

150 are placed in unrelated tribes. One additional deltocephaline leafhopper species, Macrosteles 

151 quadripunctulatus, which belongs to another unrelated tribe, was selected because it is a 

152 known vector of other phytoplasmas, but not FD-Dp. The competence of M. 

153 quadripunctulatus was already reported in the literature for two phylogenetically related 

154 phytoplasmas, 16Sr-I and 16Sr-XII (for an overview see Trivellone 2019). According to a 

155 recent phylogenetic study of Membracoidea, the subfamily Typhlocybinae is only distantly 

156 related to Deltocephalinae, the group comprising most phytoplasma vectors (Dietrich et al. 

157 2017). Unlike Deltocephalinae, which feed preferentially on phloem, Typhlocybinae are 

158 thought to feed primarily on mesophyll (Backus et al. 2005). Therefore, the typhlocybine 

159 species Zyginidia pullula was selected for testing as a phylogenetically distantly related non-

160 vector leafhopper.

161 Recently, Galetto et al. (2019) reported for the first time the capability of the ricaniid 

162 planthopper R. speculum to acquire FD-Dp from V. faba with AR of 53% (N=15); however, 

163 the inoculation trial resulted in TR of 0% in tests carried out on both V. faba (N=24) and V. 

164 vinifera (N=21). Therefore, with respect to the efficient competent vectors of FD-Dp, R. 

165 speculum was selected as a phylogenetically unrelated non-vector. For the flatid planthopper, 

166 M. pruinosa, FD-Dp infected adults were collected in infected vineyards in the field by 

167 Guadagnini et al. (2000), and further investigations using juveniles collected in the field 

168 reported the capability of M. pruinosa to acquire FDp from V. faba with AR of 54% (mean of 

169 two years; N=95), but not to transmit FDp to V. faba (Clair et al. 2001). 

170 Prior data on AR and TR were not available for M. quadripunctulatus and experiments using 

171 specimens collected in the field were published for M. pruinosa, so these parameters were 

172 evaluated on laboratory-reared specimens in this study with respect to FD-Dp and the vector 

173 status was assigned accordingly (for further details see next section Phytoplasma isolate and 

Page 7 of 88



For Peer Review

8

174 transmission trials). An overview of acquisition and transmission ability is reported in Table 

175 1.

176 All reared specimens were obtained from the healthy colonies at the IPSP-CNR (Turin, Italy). 

177 Laboratory-reared S. titanus and M. pruinosa neonates emerged from two-year-old branches 

178 bearing insect eggs collected in infested vineyards (Piedmont region, Italy) during winter. 

179 Branches were placed in screen houses (100 cm × 100 cm × 100 cm) and kept in a glasshouse 

180 with natural light and temperature ranging from 20 to 30°C. Potted phytoplasma-free 

181 grapevine cuttings together with potted phytoplasma-free broad beans (V. faba) were 

182 introduced in the screen house and replaced every three weeks. Adults started to appear about 

183 two months after the introduction of the branches in the cage. Healthy M. quadripunctulatus 

184 and E. variegatus were reared on oat (Avena sativa) in climatic chambers with 20-25°C and 

185 photoperiod 16:8 h (light:dark, L:D). Healthy R. speculum specimens were obtained from 

186 eggs laid on twigs of Clematis vitalba, Ligustrum lucidum and Rubus spp. collected in 

187 infested areas in Northern and central Italy (Galetto et al. 2019). Eggs were allowed to hatch 

188 under laboratory conditions (21 ± 1°C, 60 ± 10% RH, and a photoperiod of 16:8 h L:D) and 

189 maintained on healthy V. faba. Adults and plants were periodically confirmed to be PCR-

190 negative for phytoplasma presence and collected to be used for the experiments.

191 Adults of Z. pullula were collected on ruderal patches of graminoid species naturally 

192 phytoplasma-free in the city of Turin (Italy).

193

194 Phytoplasma isolate and transmission trials

195 In this study, experimental trials were carried out to measure the ability of M. 

196 quadripunctulatus and M. pruinosa to acquire and/or inoculate the FD-D phytoplasma. The 

197 FD-Dp strain “FD-D CRA AT” was used for acquisition and transmission trials. The isolate 

198 was obtained from infective S. titanus adults that were collected in 2015 from an 
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199 experimental vineyard in Piedmont and allowed to feed on V. faba in the laboratory. This FD 

200 phytoplasma isolate was genetically identified as member of 16SrV-D subgroup based on 

201 DNA sequence analysis (Rossi et al. 2019). FD-Dp was then routinely maintained under 

202 controlled conditions with sequential transmissions from broad beans to broad beans by the 

203 experimental vector E. variegatus, continuously reared under laboratory conditions on oat. 

204 The same FD-D phytoplasma strain was also transmitted to Catharanthus roseus (periwinkle) 

205 by the experimental vector E. variegatus, and then routinely maintained under controlled 

206 conditions with sequential grafting on periwinkle.

207 For FD-Dp acquisition and transmission trials by M. quadripunctulatus and M. pruinosa, 

208 about 100 nymphs (3rd and 4th instar) of the former species and about 50 nymphs of the latter 

209 were separately isolated on FD-D-infected broad beans for an acquisition access period of 

210 two weeks, and transferred to healthy broad beans for a latent period of two weeks. Groups of 

211 five FD-Dp exposed adults per plant were then used to inoculate healthy broad beans for 

212 seven days for an inoculation access period. After the inoculation period, insects were 

213 collected and DNA was extracted and analysed by qPCR for the presence of FD-Dp (see 

214 subsection below). Inoculated plants were inspected for symptom appearance twice a week, 

215 and their DNA was extracted one month after the inoculation period.

216

217 DNA extraction, phytoplasma detection and quantification

218 Total DNA was extracted from single heads and bodies of M. quadripunctulatus and M. 

219 pruinosa, with cethyl-trimethyl-ammonium bromide (CTAB) buffer, as described in Rashidi 

220 et al. (2014). Total DNA was also extracted from plant samples (1 g of leaf tissues) with 

221 CTAB buffer, as described in Pelletier et al. (2009). Insect and plant samples were 

222 resuspended in 50 and 100 l of 0.01 mol l-1 Tris-Cl pH 8.0, respectively. Concentration and 
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223 purity of extracted total DNAs were checked with a Nanodrop 2000 UV-visible 

224 spectrophotometer (Thermofisher).

225 Primers mapFD-F/mapFD-R and TaqMan probe mapFD-FAM (Pelletier et al. 2009) were 

226 used to detect FD-Dp presence in phytoplasma-exposed insects and inoculated plants by 

227 qPCR, using 1x iTaq Universal Probe Supermix (Bio-Rad) in a reaction mix of 10 l volume. 

228 Final concentrations were 300 and 200 nmol l-1 for primers and probe, respectively, and 

229 cycling conditions were as indicated in the original paper (Pelletier et al. 2009). Samples 

230 were run in duplicate in a CFX Connect Real-Time PCR Detection System (Bio-Rad).

231 The concentration of FD-Dp in the unique positive M. pruinosa head sample was quantified 

232 by qPCR using two primer pairs: FdSecyFw/FdSecyRv, targeting FD-Dp secY gene (Roggia 

233 et al. 2014), and MqFw/MqRv, targeting insect 18S ribosomal gene (Marzachí and Bosco 

234 2005). The sample was diluted to 10 ng l-1 and 1 l was added to a qPCR reaction mix of 10 

235 l volume, containing 1x iTaq Universal SYBR Green Supermix (Bio-Rad) and 300 nmol l-1 

236 of each primer. The sample was then run in triplicate in a CFX Connect Real-Time PCR 

237 Detection System (Bio-Rad). Cycling conditions were as detailed in the original paper 

238 (Roggia et al. 2014). For each primer pair a standard curve, based on serial dilutions of either 

239 a plasmid harboring FD-Dp secY gene or total DNA of a healthy insect sample, was run. 

240 Mean starting quantity was automatically calculated by CFX Maestro™ Software (Bio-Rad) 

241 and used to express FD-Dp amount as Genome Unite (GU) ng-1 insect DNA.

242

243 Fusion proteins and antibody production

244 The dnaD-imp-pyrG genomic fragment of FD-D strain was amplified from FD-D infected 

245 vine leaves by nested PCR using primer pair DnaDFDf1/PyrGFDr1 (5’-TAG AGA GAA 

246 TTT TAG GCC ACG-3’ forward primer, 5’-AAT AAT GAA GAA CAA TTA CCT G-3’ 

247 reverse primer), generating a 940 bp amplicon, followed by primer pair 
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248 DnaDFDf2/PyrGFDr2 (5’-ATA GAA AAT AAC GAT AAA GCA G-3’ forward primer, 5’-

249 TCA AGA CCT TTT AAA CCA CAC CC-3 reverse primer), amplifying a 830 bp genomic 

250 region (Italian patent no. 1429213; imp sequence Genbank MK614707). The obtained 

251 sequence was analysed by TMHMM server 2.0 (Sonnhammer et al. 1998; Krogh et al. 2001) 

252 to exclude its transmembrane domain from further cloning.

253 The His-tagged Imp protein was synthesized via the PCR product of the imp FD-D gene 

254 region encoding the C-terminus external domain of the FD-D Imp protein. This portion was 

255 expressed as a fusion protein with a N-terminal 10x His tag by cloning the corresponding 

256 gene fragment in p2N expression vector (Primm srl, Milano, Italy). The FD-D Imp fusion 

257 protein was solubilized in 6 mol l-1 Urea, 0.02 mol l-1 NaH2PO4, 0.5 mol l-1 NaCl, 0.5 mol l-1 

258 Imidazole. A rabbit polyclonal antibody was produced by using the His tagged FD-D Imp 

259 fusion protein as recombinant antigen (European patent no. 2918685, Italian patent no. 

260 1429213). The affinity chromatography purified IgG were prepared in-house for Western and 

261 Far-Western blot experiments. The IgG were purified on protein A column (r-ProtA 

262 Sepharose Fast Flow; GE Healthcare, 17-1279-01), using Phosphate Buffered Saline (PBS, 

263 0.137 mol l-1 NaCl, 0.10 mol l-1 Na2HPO4/KH2PO4, 0.027 mol l-1 KCl, pH 7.0) as binding 

264 buffer and 0.1 mol l-1 glycine (pH 3.0) as elution buffer, with a flow rate of 2 ml min-1.

265

266 Western blot

267 In order to check the functionality of the polyclonal antibody developed against recombinant 

268 FD-D Imp fusion protein, a Western blot assay was performed on 100 ng of FD-D Imp fusion 

269 protein, as well as on healthy and FD-D infected plants (broad beans and periwinkles) and 

270 insects (E. variegatus). For each sample, proteins were extracted from 200 mg of leaf tissue 

271 crushed with mortar and pestle in 2 ml of Rx Buffer (0.1% Triton-X 100, 0.1 mol l-1 KCl, 3 

272 mmol l-1 NaCl, 3.5 mmol l-1 MgCl2, 1.25 mmol l-1 EGTA, 1.25 mmol l-1 Hepes) and from 
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273 five adult insects crushed in 0.5 ml of the same buffer. The homogenates were sonicated 1 

274 min and centrifuged 1 min at 13,000 g. Twenty l of the supernatant were added to 10 l of 

275 Laemmli sample buffer 3x (Laemmli 1970) and 10 l per lane were loaded onto 15% 

276 polyacrylamide gels, together with prestained molecular weight standards (Sharpmass VII, 

277 Euroclone). Gels were either stained with colloidal Coomassie stain (Candiano et al. 2004) or 

278 blotted on a polyvinylidene difluoride (PVDF) membrane. The membrane was first incubated 

279 under slow agitation for 30 min in blocking solution (3% bovine serum albumin Tris-buffered 

280 saline with 0.1% Tween, BSA-TBST) and then overnight at 4°C with primary polyclonal 

281 antibody diluted 1:1000 in BSA-TBST. The membrane was then washed four times with 

282 BSA-TBST, incubated for 2 h at room temperature with anti-rabbit horseradish peroxidase 

283 (HRP)-conjugated secondary antibody developed in goat (A0545 GAR-HRP Sigma) diluted 

284 1:15000 in BSA-TBST, washed four times with TBST, and finally developed with West Pico 

285 SuperSignal chemiluminescent substrate (Pierce) in a VersaDoc 4000 MP system (Bio-Rad).

286

287 Far-Western dot Blots

288 To test the specific interaction of FD-D Imp fusion peptide with proteins of the tested species, 

289 a Far-Western dot Blot (FWdB) analysis was used. This analysis reveals the interaction 

290 between prey proteins (insect proteins) and a bait protein (His tagged FD-D Imp fusion 

291 peptide). FWdB was applied using six protein extracts for each insect species: total and 

292 membrane proteins from the entire insect bodies, total and membrane proteins from insect 

293 guts and total and membrane proteins extracted from insect salivary glands. Total proteins 

294 were tested to cover all the insect peptides (cytosolic and membrane fractions) potentially 

295 interacting with FD-D Imp. Membrane proteins were further investigated to determine their 

296 actual role at the interface of the pathogen/vector relationship.

297 In total, in the experiments 36 samples were analysed (six species x six sample types).
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298 Protein extraction. For entire body samples, total and membrane proteins were extracted from 

299 batches of all insect species (five S. titanus, five E. variegatus, 10 M. quadripunctulatus, 

300 three R. speculum, three M. pruinosa, and 20 Z. pullula). The number of specimens for each 

301 species pool was defined in a preliminary experiment using Bradford reagent (Bio-Rad) with 

302 the aim to load comparable amounts of total and membrane proteins extracted from entire 

303 bodies and organs respectively. The similar quantities of the extracted total proteins were 

304 verified by spotting the samples onto a membrane stained with Ponceau S (Sigma-Aldrich) 

305 Solution (Fig. S1A). Total Native Proteins (TNP) from the entire insect bodies were extracted 

306 following homogenization in 300 µl of RX buffer (Suzuki et al. 2006), and centrifuged for 1 

307 min at 13,000 g; 250 µl of proteins in the supernatant were transferred in a new tube and 

308 preserved at -80°C until the FWdB procedure. Membrane Proteins (MP) from the entire 

309 insect bodies were extracted according to the protocol described in Galetto et al. (2011a) and 

310 20 µl of collected proteins were added with 6 µl of Base Buffer (0.15 mol l-1 NaCl, 0.01 mol 

311 l-1 Tris, pH 7.4). The correct extraction of TNP and MP fractions were verified by SDS-

312 PAGE on the experimental vector Euscelidius variegatus (Fig. S1B).

313 A series of samples from total and membrane proteins was also extracted from two type of 

314 organs of the selected species, the gut and the salivary glands. For each species, organs were 

315 dissected from freshly euthanized insects (CO2 flushed) on a soft dark support of wax using 

316 handle pins, and then pooled in a tube containing 50 µl of Buffer (Rx or Base for total or 

317 membrane proteins, respectively) added with EDTA-free antiprotease cocktail Complete I 

318 (Roche). After dissection, the proteins were extracted following the same protocol used for 

319 the entire insect bodies.

320 FWdB procedure. FD-D Imp partial fusion protein was used as bait in FWdB experiments 

321 against the 36 insect protein samples. For the entire insect body, 40 µg of total proteins and 

322 10 µg of membrane proteins were spotted onto polyvinyl difluoride (PVDF, Bio-Rad) 
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323 membranes with a 96-well Minifold dot-blotter (model I SRC 96D; Schleicher and Schuell, 

324 Dassel, Germany). For dissected insect organs, total (1.6 µg from gut and 0.8 µg from 

325 salivary glands) as well as membrane proteins were spotted onto PVDF membranes. 

326 Undiluted samples of membrane proteins from organs were spotted as these samples were 

327 always below the limit of Bradford detection. All samples were serially diluted 1:10 and 

328 1:100 in PBS (pH 7.4) added with EDTA-free antiprotease cocktail Complete I (Roche) and 

329 spotted onto PVDF membranes as well. One hundred ng of FD-D Imp partial fusion protein 

330 and 40 µg of BSA were spotted as positive and negative controls, respectively. Each sample 

331 spotted onto the PVDF membrane consisted in 20 µl. Each membrane was blocked, incubated 

332 and washed in glass Petri dish (9 cm diameter) with 10 ml of appropriate solution. Two sets 

333 of membranes for each experiment were blocked for 1 h at 4°C with BSA-TBST and then 

334 incubated overnight at 4°C either with the bait recombinant FD-D Imp fusion protein diluted 

335 in BSA-TBST (0.4 µg ml-1) mixed with EDTA-free antiprotease cocktail Complete I (Roche) 

336 or with buffer only (no bait control) as negative control. The PVDF membranes were washed 

337 for 1 h with BSA-TBST and for 10 min with TBST at room temperature, then incubated 4 h 

338 at RT with anti-FD-D Imp polyclonal antibody, washed 3 times in BSA-TBST, incubated 2 h 

339 with goat anti-rabbit HRP-conjugated secondary antibody (A0545, Sigma-Aldrich), and 

340 washed three times with TBST. Primary and secondary antibodies were diluted in BSA-

341 TBST to 1:1000 and 1:15000, respectively. Detection was performed with West Pico 

342 SuperSignal chemiluminescent substrate (Pierce) and a VersaDoc 4000 MP (Bio-Rad). Each 

343 experiment was repeated three times, each with freshly extracted insect proteins.

344 For each sample, the results of the overall interaction were summarized based on the signals 

345 present in the three dilutions (undiluted starting quantity, 1:10, 1:100). Categorical codes 

346 were assigned as follows: +, signal present only in undiluted starting quantity; ++ and +++, 

347 signal present in 1:10 and 1:100 dilutions, respectively.
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348

349 Results

350 Vector status and transmission trials

351 For S. titanus, E. variegatus, and R. speculum detailed data about their acquisition and 

352 transmission ability of the FD-Dp have been already published (Schvester et al. 1963; 

353 Caudwell et al. 1972; Galetto et al. 2019), and here summarized in Table 1.

354 Acquisition and inoculation experiments were also performed in this study to assess the 

355 vector status of two species, M. quadripunctulatus and M. pruinosa, for which no detailed 

356 data on AR and TR were available in the literature. For M. quadripunctulatus, following 

357 isolation on FD-D-infected broad bean plants, all insects (N=19) and all inoculated plants 

358 (N=5) tested PCR negative for the presence of FD-Dp. Following isolation of M. pruinosa on 

359 FD-D-infected broad bean plants, five out of 12 body samples and one out of 11 head 

360 samples tested PCR positive for the presence of FD-Dp. The pathogen amount in the unique 

361 positive head sample was 134 FD GU ng-1 of insect DNA. All plants (N=5) inoculated by M. 

362 pruinosa adults exposed to FD-Dp tested PCR negative for the presence of FD phytoplasma 

363 and were asymptomatic two months after the inoculation. Macrosteles quadripunctulatus and 

364 M. pruinosa were therefore considered here as phylogenetically related and unrelated non-

365 vectors of FD-Dp, respectively, as compared to the primary competent vector, S. titanus.

366

367 Fusion antigen and antibody specificity

368 The predicted number of FD-D Imp amino acids was 162, with a molecular weight of 18052 

369 Dalton and pI is 9.70. TMHMM identified a transmembrane domain corresponding to the N-

370 terminal hydrophobic region between 21th and 43th residues. Residues 44-162 were predicted 

371 to be exposed outside the phytoplasma membrane. Structure and predicted membrane 

372 localization of the native full-length Imp FD-D are depicted in Figs 1A and B. The His-
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373 tagged recombinant fusion Imp FD-D protein, used as an antigen for the production of the 

374 rabbit polyclonal antiserum, contained the complete C-terminus domain predicted to be 

375 exposed out of the phytoplasma cell (Fig. 1C).

376 The FD-D Imp fusion protein was successfully expressed with the expected molecular 

377 weight, purified for antibody production (Fig. S2) and properly detected by the IgG fraction 

378 of the polyclonal antiserum (Fig. 2). In particular, the IgG fraction recognised 100 ng of 

379 purified recombinant Imp FD-D fusion antigen (theoretical mass 15.7 kDa), as well as the 

380 native full-length FD Imp (theoretical mass 18.0 kDa) from infected periwinkle, broad bean 

381 and E. variegatus proteins, comigrating with the 16 kDa prestained molecular mass marker 

382 (Fig. 2). Although very weak signals were detected in plant healthy samples, no signal was 

383 evident in insect healthy samples.

384

385 Analysis of protein-protein binding

386 The total number of specimens and the protein concentration for each sample were estimated 

387 by the Bradford assay (Table S1).

388 The FWdB assays showed an interaction of FD-D Imp fusion protein with TNP extracted 

389 from the entire body of S. titanus, E. variegatus and M. quadripunctulatus, and with MP 

390 extracted from the entire body of R. speculum and M. pruinosa (Fig. 3). No signal was 

391 detected in the other samples.

392 Results for proteins extracted from guts showed a clear gradient of the signal intensities of 

393 the interaction between FD-D Imp fusion protein and insect proteins, both in undiluted TNP 

394 and MP samples. Indeed, in MP fraction the signals varied from strong (S. titanus) to weak 

395 (M. quadripunctulatus), while no signal was observed for R. speculum, M. pruinosa and Z. 

396 pullula samples.
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397 Similarly, a gradient of signal intensities of protein-protein interaction was observed for 

398 salivary gland TNP samples, varying from medium (S. titanus) to weak (E. variegatus) 

399 signals in undiluted samples, and from weak to very weak signal in 1:10 diluted S. titanus and 

400 E. variegatus samples, respectively. No interaction signal was observed for salivary gland 

401 proteins extracted from M. quadripunctulatus, R. speculum, and M. pruinosa in TNP. 

402 However, unexpectedly strong signals in Z. pullula TNP (undiluted and 1:10 diluted) and 

403 weak signals in R. speculum and M. pruinosa MP (undiluted) samples were detected.

404 The results of FWdB assays are summarized in Table 1. The same results were obtained in all 

405 the three replicates of the experiment.

406

407 Discussion

408 Previous studies suggested that in pathosystems with a persistent-propagative transmission 

409 mode the vector-pathogen interaction tends to evolve toward a highly specific relationship 

410 (Robert and Bourdin 2001). It was also suggested that ability of Hemiptera to transmit plant 

411 pathogens varies across phylogenetic lineages, and non-random patterns of transmission 

412 specificity have been detected at different taxonomic levels; e.g. between specific orders of 

413 pathogens and hemipteran superfamilies (Perilla-Henao and Casteel 2016), genera of viruses 

414 and hemipteran families (Nault 1997), species of bacteria and hemipteran subfamilies 

415 (Frazier 1965), and species of bacteria and hemipteran species (Severin 1945; Nielson 1968). 

416 In persistent and propagative transmission, once acquired by the vector a phytoplasma must 

417 cross the midgut membrane, spread in the hemolymph, migrate to the salivary glands and 

418 enter the saliva in order to be transmitted to another plant (Hogenhout et al. 2008b). This 

419 suggests that, like the associations between obligate bacterial endosymbionts and insects 

420 (Hansen and Moran 2014), persistent phytoplasma-vector associations involve a considerable 

421 amount of co-evolution. In our study, Scaphoideus titanus (St) and Euscelidius variegatus 
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422 (Ev), belonging to the Deltocephalinae subfamily, were selected as competent and efficient 

423 FDp vectors. Our tests of the phylogenetically related species Macrosteles quadripunctulatus 

424 (Mq) provided experimental evidence that this species is a non-vector of FD-Dp, despite its 

425 ability to transmit other phytoplasmas as already reported in the literature (for an overview 

426 see Trivellone 2019). In particular, although Mq is a highly efficient vector of 16SrI-B 

427 phytoplasma to daisy (Bosco et al. 2007), this species not only is unable to acquire the same 

428 pathogen from infected Vicia faba but infective specimens, after acquisition on infected 

429 daises, are also unable to transmit 16SrI-B phytoplasma to V. faba (D. Bosco, pers. comm.). 

430 Because an association between Mq and FD-Dp has never been detected in the field 

431 (Trivellone 2019), we speculate that the feeding behavior in Mq is host-plant dependent, 

432 making a tri-trophic relationship with FD-Dp and its host plants unlikely.

433 Originally developed by McLean and Kinsey (1964), the electrical penetration graph (EPG) 

434 technique was a major breakthrough in the investigation of feeding behavior and feeding site 

435 selection of sucking insects. Advanced electronic monitoring systems have been previously 

436 applied to study hopperburning leafhopper species (most belonging Typhlocybinae), 

437 especially the Empoasca-legume model (Backus et al. 2005). Analyses with EPG indicates 

438 that feeding behavior may be affected by the host plant, e.g. Backus (1994) showed that 

439 Emposca fabae switches from phloem to nonvascular tissue when feeding on broad beans. 

440 Galetto and collaborators (2011b) demonstrated that Empoasca decipiens is able to acquire 

441 and transmit 16SrI-B phytoplasmas from daisy to daisy with low efficiency but it cannot 

442 acquire phytoplasmas from broad bean, suggesting a host plant-dependent feeding site shift 

443 from mesophyll to phloem. This evidence was collected on the monophyletic group 

444 Typhlocybinae. Although, similar studies have not been conducted on Deltocephalinae 

445 (which includes Mq), we infer that Mq also switches among tissues when feeding on the non-

446 preferred food plant.
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447 Two distantly related phloem feeding planthopper species, Ricania speculum (Rs) and 

448 Metcalfa pruinosa (Mp), were also considered here as non-vector of FD-Dp, as both are able 

449 to acquire FD-Dp, but not to transmit it to healthy plants (Clair et al. 2001; Galetto et al. 

450 2019; this study). A similar acquisition rate of FD-Dp from V. faba was reported for the two 

451 planthoppers, 53% for Rs (Galetto et al. 2019), 54% (Clair et al. 2001) and 42% (this study) 

452 for Mp, and such results are consistent with their phylogenetic relatedness. In our 

453 experiments with V. faba, FD-Dp was detected in more than 40% of Mp analysed bodies, but 

454 its presence within the salivary glands dropped to less than 10%, and the only infected 

455 salivary gland had a low load of FD-Dp.

456 Finally, the leafhopper Zyginidia pullula (Zp) was considered in this study as a non-vector 

457 belonging to a group of typhlocybines, so called stipplers, which feed preferentially on 

458 mesophyll (Backus et al. 2005). Moreover, other studies reported that specimens of Zp 

459 collected from the field tested negative for the presence of phytoplasmas (Jović et al. 2009; 

460 Drobnjakovic et al. 2010), and there were no interaction signal results from previous 

461 investigations on the ‘Ca. P. asteris’ membrane protein Amp and proteins from Zp samples 

462 (Galetto et al. 2011a).

463 In vector-pathogen associations, it was previously demonstrated that several factors can affect 

464 transmission efficiency. For example, environmental constraints (e.g. temperature) can act at 

465 short-term temporal scale (Daugherty et al. 2009), while synergistic biological interactions 

466 (Heck 2018) and molecular matching can evolve at medium- to long-term temporal scales 

467 (Frago et al. 2012). Host-pathogen interactions occur through different nested levels of 

468 biological organization. Since phytoplasmas are intracellular bacterial pathogens, interactions 

469 at the molecular level represent the crucial stage governing invasion success in phytoplasma-

470 host interplay (Suzuki et al. 2006; Galetto et al. 2011a). 
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471 The phytoplasma membrane protein Imp used in this study as a candidate for interactions 

472 with vector proteins is suspected to be the ancestor of the other immunodominant membrane 

473 proteins (Kakizawa et al. 2009). Moreover, previous studies revealed that Imp may interact 

474 with vector (Siampour et al. 2011) and host plant proteins (Boonrod et al. 2012). Indeed, 

475 evidence for strong positive selection has been provided by sequence analyses of the highly 

476 variable extracellular domain of Imp homologues of 16SrX (Morton et al. 2003) and 16SrII 

477 (Siampour et al. 2013) phytoplasmas. Interestingly, positive selection acting on phytoplasma 

478 membrane proteins has been suggested as a key feature in the adaptation of the pathogen to 

479 different hosts (Fabre et al. 2011). Strong antigenic properties, previously described for 

480 extracellular domains of IDPs (Konnerth et al. 2016), were also confirmed here for FD-D 

481 Imp. Indeed, preliminary unpublished data confirm that the polyclonal serum, raised against 

482 the Imp recombinant domain in this study, resulted in specific recognition of the 

483 corresponding native full-length protein in field samples (E. Angelini, pers. comm.). 

484 Our study showed a specific interaction between FD-D Imp fusion protein and insect 

485 proteins. We also provided evidence for a continuum in interaction with FD-D phytoplasma 

486 varying among phylogenetically unrelated insect species. Indeed, decreasing interaction 

487 intensities with the fusion Imp peptide were evident between total native proteins of efficient 

488 and competent vectors (St and Ev) and those of non-vector insect species. Similarly, the clear 

489 gradient of interaction intensities with the FD-D Imp peptide and both total and membrane 

490 proteins from guts of St, Ev, and Mq, all belonging to the leafhopper subfamily 

491 Deltocephalinae, correlated with their status as ‘natural’, ‘laboratory’ and ‘non -vector’ 

492 species, respectively. No interaction was detected for the non-vectors Rs, Mp (Fulgoroidea) 

493 and Zp (Typhlocybinae) in membrane protein fractions from gut samples. However, the 

494 possibility that insect proteins interacting with FD-D Imp might be expressed at different 

495 levels among vector and non-vector species, resulting therefore in stronger or weaker 
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496 interaction signals, cannot be ruled out. Indeed, the technique used in this study does not 

497 allow the identification of insect putative ligands of FD-D Imp and the previous hypothesis 

498 cannot be further investigated.

499 The strong signal detected upon interaction of FD-D Imp and membrane proteins from vector 

500 guts supports the role of this organ as the first barrier where a specific interaction is required 

501 upon acquisition to ensure successful transmission. Moreover, the weak interaction signals 

502 between total proteins of Rs and Mp guts were absent when the corresponding membrane 

503 protein fractions were analysed, indicating that the FD-D Imp fusion protein interactome 

504 could also include soluble proteins in addition to membrane proteins.

505 A weak gradient of interaction signals was also observed with salivary gland total protein 

506 samples, consistent with the vector status summarized in Table 1.

507 As far as concerns the overall comparison between signals produced by total and membrane 

508 fractions, the total native proteins of entire insect and salivary gland of vector species 

509 interacted with phytoplasma recombinant peptide. On the other hand, except for a weak 

510 signal in S. titanus salivary gland sample, no signal was produced by corresponding 

511 membrane fractions. This might probably indicate that cytosolic vector peptides are more 

512 likely to be involved in interaction with FD-D Imp or that putative interacting membrane 

513 proteins were scarcely represented in these fractions and therefore unable to generate a signal. 

514 Conversely in vector gut samples, both total and membrane portions showed strong signals 

515 suggesting that interaction with FD-D Imp is mediated by membrane proteins. Interestingly, 

516 FD-D Imp interaction signals were obtained with concentrated proteins of Mq (entire insect 

517 and gut), in contrast with its inability to transmit this phytoplasma. As previously discussed, 

518 the non-vector status of this species is probably due to low phloem feeding of Mq on V. faba 

519 (not its preferred host plant). Other discrepancies were observed in samples from Rs and Mp 

520 (membrane fractions of entire insects and salivary glands), as well as in samples from the 
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521 mesophyll feeder Zp (total proteins of salivary glands). The unexpected signals not consistent 

522 with vector status suggest that, beyond the well-supported role for FD-D Imp in molecular 

523 relationship with vector proteins, a complex of other key factors might be involved in 

524 determining phytoplasma-vector specificity. Further discordances emerged when a signal was 

525 present in diluted samples and absent in corresponding undiluted ones (i.e., total protein 

526 fractions from entire bodies of St and Ev, and membrane fractions from entire bodies of Rs 

527 and Mp). Capturing on the blot an excessive amount of secondary antibody HRP-conjugated, 

528 the overloading of insect proteins might have depleted the substrate and caused the signal to 

529 quickly fade (Alegria-Schaffer et al. 2009).

530 Taken together, our results showed that specific Imp binding is involved in interactions 

531 between FD-D phytoplasma and insect vector proteins and that this molecular recognition 

532 probably occurs at the gut barrier level.

533
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791 Table 1. Results of transmission specificity for the six species selected in this study. The first 

792 two columns of the table report two parameters of the vector status (acquisition and 

793 inoculation ability) with respect to the FD phytoplasma, defined using data from literature 

794 and results from our experiments (*). Far Western dot Blot (FWdB) results are summarized 

795 in the last six columns. The results of the overall interaction are based on the signals observed 

796 with three sample dilutions (undiluted starting quantity, 1:10, 1:100, see Fig. 3), and coded as 

797 +, ++, and +++, respectively. -, no signal; TNP, total native proteins; MP, membrane 

798 proteins.

FWdB analyses

Vector status Entire 

body
Gut

Salivary 

gland

Species
Acquisition 

ability

Inoculation

ability
TNP MP TNP MP TNP MP

Scaphoideus 

titanus (St)
yes yes +++ - ++ + ++ +

Euscelidius 

variegatus (Ev)
yes yes +++ - + + + -

Macrosteles 

quadripunctulatus 

(Mq) *

no no ++ - ++ + - -

Ricania speculum 

(Rs)
yes no - ++ + - - +

Metcalfa pruinosa 

(Mp) *
yes no - ++ + - - +
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Zyginidia pullula 

(Zp)
no no - - - - ++ -
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800 Figure Legends

801 Figure 1. Full length native FD-D Imp protein structure (A) and structure of the His-tagged 

802 recombinant fusion FD-D Imp protein used as antigen for the production of the polyclonal 

803 antiserum (B). INd= inner domain; OTd= outer domain; TMd= transmembrane domain; N-

804 ter= N-terminus; C-ter= C-terminus; HisT= histidine tag.

805 Figure 2. SDS-Poly-acrylamide gel (A) and Western blots (B) of total proteins extracted 

806 from healthy (Healthy) and FD-D-infected (FD-D) Euscelidius variegatus (lanes 1), Vicia 

807 faba (broad bean, lanes 2), and Catharanthus roseus (periwinkle, lanes 3). Western blots 

808 were developed with the polyclonal antiserum against recombinant FD-D Imp fusion protein. 

809 M: prestained molecular weight standards (Sharpmass VII, Euroclone); K+: 100 ng of 

810 purified recombinant fusion FD-D Imp (15.7 kDa).

811 Figure 3. In vitro interaction of phytoplasma immunodominant membrane protein with 

812 competent vector and non-vector insect proteins analysed by Far-Western dot blots. Total 

813 native proteins (TNP) and membrane proteins (MP) from vector and non-vector insect 

814 species were blotted onto polyvinyl difluoride membranes with fusion Flavescence dorée 

815 (FD) immunodominant membrane proteins (Imp) as a positive control (IMP test) and 

816 negative control with buffer devoid of protein bait (No Bait Control). St: Scaphoideus titanus, 

817 Ev: Euscelidius variegatus, Mq: Macrosteles quadripunctulatus, Rs: Ricania speculum, Mp: 

818 Metcalfa pruinosa, Zp: Zyginidia pullula. C: Controls (Imp positive control (A) and BSA 

819 negative control (B)). For each species, three serial dilutions were spotted: undiluted starting 

820 quantity sample (1), 1:10 (2) and 1:100 dilutions (3). The Anti-FD-D Imp polyclonal 

821 antibody was used to detect bound phytoplasma recombinant proteins, and horseradish 

822 peroxidase conjugated to goat antirabbit secondary antibody was used for chemiluminescent 

823 detection.

824
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825 Supporting Information

826 Figure S1: Total native proteins from entire insect bodies of the six species (St: Scaphoideus 

827 titanus, Ev: Euscelidius variegatus, Mq: Macrosteles quadripunctulatus, Rs: Ricania 

828 speculum, Mp: Metcalfa pruinosa, Zp: Zyginidia pullula) spotted onto a membrane stained 

829 with Ponceau S Solution (A). SDS-Poly-acrylamide gel of total native (1) and membrane (2) 

830 proteins from guts of Euscelidius variegatus (B); M: prestained molecular weight standards.

831 Figure S2: SDS-Poly-acrylamide gels of (A) Escherichia coli crude cell extract following 

832 recombinant expression of FD-D Imp (FD-D clone #1) and (B) corresponding eluted purified 

833 protein (5 g) after purification procedure (FD-D el.1: elution of FD-D #1). MW: prestained 

834 molecular weight standards.

835 Table S1: Concentration [µg µl-1] of the total (TNP) and membrane (MP) proteins extracted 

836 from pools of entire bodies and organs of the six species (St: Scaphoideus titanus, Ev: 

837 Euscelidius variegatus, Mq: Macrosteles quadripunctulatus, Rs: Ricania speculum, Mp: 

838 Metcalfa pruinosa, Zp: Zyginidia pullula) tested in Far-Western dot Blot analysis. The 

839 amount of proteins was measured with Bradford reagent (Bio-Rad). The amounts of MP 

840 extracted from insect organs were below the limit of detection of Bradford assay, and were 

841 not quantified.

842

843

844

845

846

847

848
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849

850

851 Figure 1. 

852
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855 Figure 2. 
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Figure 2. SDS-Poly-acrylamide gel (A) and Western blots (B) of total proteins extracted from healthy 
(Healthy) and FD-D-infected (FD-D) Euscelidius variegatus (lanes 1), Vicia faba (broad bean, lanes 2), and 

Catharanthus roseus (periwinkle, lanes 3). Western blots were developed with the polyclonal antiserum 
against recombinant FD-D Imp fusion protein. M: prestained molecular weight standards (Sharpmass VII, 

Euroclone); K+: 100 ng of purified recombinant fusion FD-D Imp (15.7 kDa). 
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Figure 3. In vitro interaction of phytoplasma immunodominant membrane protein with competent vector and 
non-vector insect proteins analysed by Far-Western dot blots. Total native proteins (TNP) and membrane 
proteins (MP) from vector and non-vector insect species were blotted onto polyvinyl difluoride membranes 
with fusion Flavescence dorée (FD) immunodominant membrane proteins (Imp) as a positive control (IMP 
test) and negative control with buffer devoid of protein bait (No Bait Control). St: Scaphoideus titanus, Ev: 
Euscelidius variegatus, Mq: Macrosteles quadripunctulatus, Rs: Ricania speculum, Mp: Metcalfa pruinosa, 

Zp: Zyginidia pullula. C: Controls (Imp positive control (A) and BSA negative control (B)). For each species, 
three serial dilutions were spotted: undiluted starting quantity sample (1), 1:10 (2) and 1:100 dilutions (3). 
The Anti-FD-D Imp polyclonal antibody was used to detect bound phytoplasma recombinant proteins, and 
horseradish peroxidase conjugated to goat antirabbit secondary antibody was used for chemiluminescent 

detection. 
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Figure S1: Total native proteins from entire insect bodies of the six species (St: Scaphoideus titanus, Ev: 
Euscelidius variegatus, Mq: Macrosteles quadripunctulatus, Rs: Ricania speculum, Mp: Metcalfa pruinosa, 

Zp: Zyginidia pullula) spotted onto a membrane stained with Ponceau S Solution (A). SDS-Poly-acrylamide 
gel of total native (1) and membrane (2) proteins from guts of Euscelidius variegatus (B); M: prestained 

molecular weight standards. 
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Figure S2: SDS-Poly-acrylamide gels of (A) Escherichia coli crude cell extract following recombinant 
expression of FD-D Imp (FD-D clone #1) and (B) corresponding eluted purified protein (5 μg) after 
purification procedure (FD-D el.1: elution of FD-D #1). MW: prestained molecular weight standards. 
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Supplementary Figure S1: Total native proteins from entire insect bodies of the six 

species (St: Scaphoideus titanus, Ev: Euscelidius variegatus, Mq: Macrosteles 

quadripunctulatus, Rs: Ricania speculum, Mp: Metcalfa pruinosa, Zp: Zyginidia 

pullula) spotted onto a membrane stained with Ponceau S Solution (A). SDS-Poly-

acrylamide gel of total native (1) and membrane (2) proteins from guts of Euscelidius 

variegatus (B); M: prestained molecular weight standards.
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Supplementary Figure S2: SDS-Poly-acrylamide gels of (A) Escherichia coli crude 

cell extract following recombinant expression of FD-D Imp (FD-D clone #1) and (B) 

corresponding eluted purified proteins (5 g) after purification procedure (FD-D el.1: 

elution of FD-D #1). MW: prestained molecular weight standards.
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Supplementary Table S1: Concentration [µg µl-1] of the total (TNP) and membrane (MP) proteins extracted from pools of entire bodies and 

organs of the six species (St: Scaphoideus titanus, Ev: Euscelidius variegatus, Mq: Macrosteles quadripunctulatus, Rs: Ricania speculum, Mp: 

Metcalfa pruinosa, Zp: Zyginidia pullula) tested in Far-Western dot Blot analysis. The amount of proteins was measured with Bradford reagent 

(Bio-Rad). The amounts of MP extracted from insect organs were below the limit of detection of Bradford assay, and were not quantified.

Entire Body Gut Salivary gland

Species Number of 
specimens TNP MP TNP TNP

St 5 4.30 1.68 0.50 0.36
Ev 5 2.70 0.50 0.30 0.30
Mq 10 2.70 0.91 0.08 0.07
Rs 3 6.30 5.18 1.52 0.32
Mp 3 4.60 1.54 0.34 0.23

Zp 20 2.00 1.00 0.11 0.04
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