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� Abstract
Single-cell sequencing experiments are a new mainstay in biology and have been
advancing science especially in the biomedical field. The high pressure to integrate the
technology into daily laboratory live requires solid knowledge with respect to potential
limitations and precautions to be taken care of before applying it to complex research
questions. In the past, we have identified two issues with quality measures neglected by
the growing community involving SmartSeq and droplet or micro-well-based
scRNASeq methods (1) how to ensure that only single cells are introduced without
biasing on light scattering when handling complex cell mixtures and organ prepara-
tions or (2) how best to control for (pro-)apoptotic cell contaminations in single-cell
sequencing approaches. Sighting of concurrent literature involving single-cell
sequencing technologies revealed that these topics are generally neglected or simply
approached in silico but not at the bench before generating single-cell data sets. We
fear that those important quality aspects are overlooked due to reduced awareness of
their importance for guaranteeing the quality of experiments. In this Cytometry rigor
issue, we provide experimentally supported guidance on how to circumvent those criti-
cal shortcomings in order to promote a better use of the fantastic single-cell sequenc-
ing toolbox in biology. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc.

on behalf of International Society for Advancement of Cytometry.
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THE advent of single-cell sequencing technologies created a very productive and
collaborative environment for genomics and flow cytometric methods in the last
5 years (1). Flow Cytometry by nature was in the past the best method to analyze
quickly thousands, if not millions, of cells for their expression of proteins, peptides,
single, or few mRNAs, or analyzing the metabolic state at single-cell resolution.
Sequencing technologies have closed the gaps improving the quality and general
robustness of sequencing DNA and RNA from single cells (2). This finally led to the
development of multiple different, easy-to-use approaches in single-cell generation
and subsequent sequencing methods. Single-cell sorting by fluorescence assisted cell
sorting (FACS) and/or Fluidigm C1 capture paired with sensitive library preparation
methods paved the way (3,4). Nowadays, complete kit-solutions from 10×Genomics
and their likes have rendered the initial resistance—or better put the initial need for
intense technical skill—to enter this method field to almost zero. Automation of
analysis processes (5,6) and almost kit-like scientific methods are probably the big-
gest driver for the high-pace science that we are currently enjoying (7–9). As core
facilities, we are very avid readers of papers and posters using current methods,
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which we are also supporting in our laboratories and we see a
steep increase in studies that involve to a significant level
single-cell sequencing data. What strikes us is the apparent
lag using known and standardized quality measures in the
experiments at the level of the most basic quality features, like
(1) clearly motivated gating strategies when using FACS to
only introduce true and (2) fully viable single cells into down-
stream scRNAseq studies. The frequent lack in simple quality
assurances is slowly becoming a source of argument with our
own user who select studies that have questionable methodol-
ogy with respect to cell selection criteria for single-cell
sequencing assays and indicate that we are too critical while
suggesting use of proper settings, controls or additional qual-
ity features in their experimental design.

We contacted authors of papers or approached researchers
at their posters when their experimental strategy was missing
quality assurance steps, such as guaranteeing that only single cells
or truly healthy cells were used in their study. It is generally very
confusing to see the large number of publications based on
single-cell sorting of complex tissues for sequencing purposes,
which come without respective cytometry data or at least
Supporting Information figures displaying the results and gating
strategies of the corresponding FACS sorts. Such omissions
deprive the reader of the chance to evaluate the quality of the
material used and reduce the ease to reproduce faithfully interest-
ing findings within our laboratories, because essential informa-
tion is not transparently shared. Some researchers we contacted
were aware of their lapse in designing or reporting their method-
ology within single-cell study, but tried to argue that their clear
gaps in controlling their experiments technically was
intentional—almost selling it as feature of their study and not as
an omission of long standing gold standards in the respective
method. It was apparent that a fear of biasing the input of cells
by gating for cells and singlets from tissue preparations based on
FSC/SSC signals during cell sorts and the question of how and
when to best assess cell health during the single-cell RNAseq
experimental workflow was controversial. As core facilities offer-
ing access to scRNAseq technology, we are worried that ambigu-
ity in method rigor during the wet-lab quality assurance stage
could ultimately lead to complications with reproducibility. We
would therefore like to present and suggest (1) an alternative
strategy for cell and singlet selection from tissue preparations free
of FSC/SSC bias for cell sorting and (2) to promote the removal
of pro- and late-apoptotic cells prior to introducing any samples
into any single-cell RNAseq workflow. The latter is important
due to the here presented observation that pro- and late-
apoptotic cells are very inefficiently removed from single-cell
RNAseq data by purely computational means.

MATERIAL AND METHODS

Mouse Lung Cell Preparation and FACS
Mice were deeply anesthetized by intraperitoneal injection of
120 mg/kg ketamine and 16 mg/kg xylazin (Sigma-Aldrich,
Munich, Germany) and exsanguinated. Lungs were perfused
with phosphate-buffered saline (PBS) 1× and injected with
dispase (BD Biosciences) for tissue digestion. After the lysis of

red blood cells with ACK lysing buffer (ThermoFisher Scien-
tific), cells were strained through a 70 μm filter (BD Biosciences)
to obtain single-cell suspension. Cells were suspended in 1%FCS,
2 mM EDTA PBS at pH 7.4, and stained with 5 μM/ml DRAQ5
(ThermoFisher Scientific) and 1 μg/ml 40,6-diamidino-
2-phenylindole (DAPI; ThermoFisher Scientific) for live DNA
staining and live-dead exclusion. Cells were measured on a BD
LSRFortessa™ and BD FACSAria™ Fusion cell sorter
(BD Biosciences).

Bone Marrow Preparation and Apoptosis Staining
Bone marrow (BM) cells were harvested from femurs of
C57BL6/J mice as described in the literature (10). Briefly,
back legs were removed from the mouse, muscle and tissue
removed carefully with forceps, and intact bones were clean
with 70% ethanol for few seconds. Both ends of the bones
were cut and cells were flushed out using a 1 ml syringe filled
with complete RPMI 1640 media (GIBCO, Life Technologies).
Cell clusters were dissolved by pipetting and red blood cells
were lysed with 2 ml of ACK lysing buffer (ThermoFisher Sci-
entific). After cell counting, 1 × 106 cells were resuspended in
2.5 ml of PBS-2% FCS and stained with 2.5 μl of DRAQ5
(ThermoFisher Scientific) for 20 min at 4�C. After incubation,
DAPI (ThermoFisher Scientific) was added at a final concen-
tration of 1 μg/ml and samples were acquired on a BD
LSRFortessa™ (BD Biosciences).

HEK293 Staurosporine Stressing and Cell Sorting
Cell culture and Apoptosis induction
HEK 293 cells were grown in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 2 mM glutamine, 1%
penicillin/streptomycin, and 10% fetal calf serum (GIBCO,
Life Technologies). For apoptosis, induction cells were treated
for 2 h with 1 μM Staurosporine (Sigma-Aldrich).

Annexin V binding
Staining for Annexin V binding was performed using FITC
Annexin V Apoptosis Detection Kit I (BD Biosciences).
Briefly, cells (10 × 106) were washed twice with cold PBS and
resuspended in 1× binding buffer at a concentration of
2 × 106 cells/ml. Cells were stained with 250 μl of FITC-
conjugated Annexin V (BD Biosciences), and DAPI (Thermo
Fisher Scientific) at a final concentration of 1 μg/ml. Cells
were then incubated for 15 min at room temperature in
the dark.

Cell Analysis and Sorting
Cells were analyzed based on Annexin V binding and DAPI
staining and four populations were identified: AnnexinV neg-
ative/DAPI negative (live cells), Annexin V positive/DAPI
negative (early apoptotic), Annexin V positive/DAPI positive
(late apoptotic), and Annexin V positive /DAPI positive
(necrotic). Of these four populations, three (live, early apo-
ptotic and late apoptotic) were sorted in a BD FACSAria™
Fusion cell sorter (BD Biosciences) using a 100 μm nozzle.
Doublets were carefully excluded by plotting FSC-height
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versus FCS-area and SSC-height versus SSC-area, cells with
increased area were not consider.

Single-Cell Sequencing Using 10×Genomics
Library preparation was done with the Chromium Single Cell
3’Reagent Kits v3 from 10× Genomics according to manufac-
turer’s protocol. Briefly, libraries were prepared from three
different cell states; healthy, pro-apoptotic and apoptotic,
which were FACS sorted prior. A fourth library was generated
from a not sorted cell suspension to analyze FACS sorting
effects. The cells from each sample were partitioned into
thousands of nanoliter-scale Gel Beads-in-Emulsion (GEMs).
The targeted cell recovery was 7,000 cells for each cell health
state. After RT the cDNA was amplified in 12 PCR cycles.
Fragmentation, End Repair/A-tailing, and Adapter Ligation
were done according to the protocol. The libraries were final-
ized in 11 PCR cycles using unique Sample Index Primers for
each sample. This allowed equimolar pooling of all four gen-
erated libraries for sequencing. The purity and library size
were validated by capillary electrophoresis using 2,100 Bio-
analyzer (Agilent Technologies). The quantity was measured
fluorometrically using Qubit dsDNA HS Assay Kit from Invi-
trogen. Sequencing was done on Illumina NextSeq500 plat-
form reading 16 bp 10× Cell-Barcode and 12 bp UMI in read
1, 8 bp for the sample index read and 130 bp into the insert
of interest in read2.

Single-Cell Sequencing Using SmartSeq2
A modified smart-seq2 protocol (11) and tagmentation proce-
dure(12) were used to prepare single-cell sequencing libraries.
Briefly, HEK293 cells were FACS sorted directly into 96-well
plates containing 4.4 μl of lysis buffer per well at 4�C, and
then snap frozen and stored at −80�C until processing. Ten
cycles of 50�C and 42�C were omitted from the RT thermal
profile and the RT mix was as follows: 2 μl SSRT II 5× buffer;
0.5 μl 100 mM DTT; 2 μl 5 M betaine; 0.1 μl 1 M MgCl2;
0.25 μl 40 U/μl RNAse inhibitor; 0.5 μl SSRT II; 1 μl 10 mM
TSO. In Situ PCR primers were omitted and replaced with
water and 18 PCR cycles were used for cDNA amplification.
The SPRI cleanup (0.6× ratio) was done omitting the ethanol
wash step. After the final elution in 13 μl of H2O, a subset of
samples was quality controlled using Bionalyzer High Sensi-
tivity DNA chip and the median cDNA concentration was
determined to be used for dilution calculation to normalize
the input to 0.2 ng/μl for tagmentation. Before the last
cleanup after tagmentation and PCR 1 μl of each sample was
pooled together and the pool cleaned up using 0.9× SPRI
ratio.

Single-Cell Sequencing Data Analysis
After generating 10×Genomics fastqs and counts tables using
cellranger version 3.0, Seurat R package (version 2.3.4) was
used to generate quality control plots. Expressed genes in at
least three cells and cells expressing at least 200 genes were
selected for plotting. After de-multiplexing counts, tables were
generated using cellRanger version 3.0.0 implemented in
rCASC package (https://github.com/kendomaniac/rCASC,

preprint: https://www.biorxiv.org/content/10.1101/430967v1).
Mapping was done using 10×genomics preassembled refdata-
cellranger-GRCh38-3.0.0 index.

The late-apoptotic (APO), pro-apoptotic (PRO), and
healthy (H) set tables resulted to contain, respectively, 2,261,
6,556 and 5,569 cells. All cells supported by less than
250 detected genes, that is, a gene is called detected is supported
by at least three UMIs, were removed using the rCASC function
scannobyGtf. After filtering APO, PRO and H tables resulted to
contain, respectively, 989, 2081, and 2,260 cells. The 989 APO
cells were combined with 989 cells randomly selected from the
PRO and H set (apohpro set).

This set was further divided in apohpro_ribomito, that is,
containing only ribosomal and mitochondrial protein genes,
apohpro_apoptosis, that is, containing only apoptosis-related
genes derived (QIAGENset https://www.qiagen.com/ch/re
sources/download.aspx?id=e5252c51-7513-44a0-b66d-927c53e0
eeb2&lang=en), apohpro_celcycle, that is, containing only cell
cycle related genes derived (QIAGENset https://www.qiagen.
com/us/resources/resourcedetail?id=0ee18e97-d445-4fd7-9aa4
-0ef4bece124f&lang=en) and the apohpro_sub set, that is,
containing all genes but ribosomal/mitochondrial protein
genes. Clustering of the apohpro_sub, apohpro_ribomito,
and apohpro_apoptosis sets, in log10 format, was done with
tSNE implemented in RtSNE version 0.15, using the follow-
ing parameters pca = TRUE, perplexity = 50 and theta = 0.

tSNE analysis was done in R version 3.5.1, using as
seed 111.

Flow Cytometry and Sequencing Data Deposition
Flow Cytometry files for Figures 1, 2, and 3A can be found at
http://flowrepository.org/id/FR-FCM-Z28E.

Sequencing data from both 10×Genomics and SmartSeq2
experiments were deposited at the ENA repository: https://www.
ebi.ac.uk/ena with the study accession number PRJEB33078.

RESULTS AND DISCUSSION

The two frequently underestimated quality issues during
sample preparation for scRNAseq experiments using com-
plex tissue samples or frozen material are a lack of a clear
strategy to ensure that only single cells are introduced into
scRNAseq assays and making sure that only viable, non-
apoptotic cells enter the downstream workflow—if scientifi-
cally prudent (e.g., when not studying apoptosis or cell
death). Considering the major conclusions drawn from
recent single-cell studies, we think it is necessary to explain
and exemplify with a few experiments why we believe that
researchers and especially core facility personnel should be
conscious about these simple and easy to implement quality
steps as they can raise awareness within their user-
community and provide guidance on how to ensure sample
quality.

Gating cells in a forward- and side-scatter (FSC/SCC)
plot can be a challenge when dealing with complex tissue
homogenates. Cells from tissues generally have a broader
scatter profile compared to PBMCs and are often overlapping.
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Looking at a whole mouse lung digestion, drawing a gate into
the FSC/SSC clouds could potentially induce a bias by exclud-
ing very low or very strongly scattering cells (Fig. 1A). Lung

tissue has a high complexity as it contains a number of differ-
ent cell types with varying cell sizes and autofluorescence
along with considerable debris (13,14). Gating cells and

Figure 1. Alternative to FSC/SSC cell and singlet gating to reduce scatter bias. (A) Mouse lung tissue digested into single cells with

conventional gating strategy using FSC/SSC scattering for cell identification and singlet gating. Red circle indicates a doublet contamination

due to often observed scatter spread in complex tissue samples. (B) Alternative gating of the same sample after DNA staining with DRAQ5 to

provide a precise and FSC/SSC independent singlet gate (DRAQ5 gate set on lower G1 DNA content boundary—see Histogram DNA Stain).

Note that the clear detection of doublets (red circles) and the still complex, but uncut FSC/SSC profile when using the DRAQ5 cell and doublet

identification strategy. Singlet gating based on H/A or H/W give the same results and can be used interchangeable.
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singlets on scatter signals will ultimately result in an arbitrary
cut-off (Fig. 1A). If one were to omit a gate defining “cell-
like” events in the FSC/SSC plot, in order to avoid a bias by
selecting on scatter, one still needs to include a singlet-gating
strategy to ensure that predominantly only single-cells
are sorted for single-cell sequencing approaches. Some
researchers have rightfully argued that gating singlets by FSC
and SSC pulse-shape (A/H or H/W, etc) analysis will again
reintroduce a bias because cells may have different scatter
characteristics and laser-immersion periods due to their size
difference causing a larger area and width signal that could be
wrongly interpreted as doublet event. Indeed, singlet-gating
plots from tissues (Fig. 1A) appear broader and not as defined
as those from PBMCs, for example, making it difficult for an
inexperienced researcher to limit the gate to avoid doublets
and not to introduce a potential bias to larger cells. This argu-
ment has been made in a few studies, which completely
avoided any gating on cellular scatters, including singlet gates.
Those hopefully “single cells” were then sorted for SmartSeq2
sequencing claiming that the cells would be single cells and
that any doublets could be identified by detecting sequences

of two different cell types stemming from the same “single-
cell” event. As for droplet or micro-well-based scRNASeq
based methods, a too high cell-concentration can lead to dou-
ble loading of a droplet or micro-well with two cells, similar
to droplet based cell sorting (15). Yet countering such Poisson
statistic limitation by lowering the input with lower cell-
concentrations will not change the frequency of true doublet
cell–cell events, which are still bound by cell–cell contacts or
extracellular matrix. It is of course possible to call a doublet if
one has a doublet formed of clearly different cell types (15,16)
but not applicable for doublets formed from the same
cell type.

This problem can be addressed by using a suitable
approach available to Flow Cytometry, as one could use a
cell-permeable DNA dye to avoid the whole scattering bias
problem and tackle singlet selection more efficiently. Basing
the cell identification and singlet gating strategy on the DNA
content signal allows to completely avoid FSC/SSC signals—
the DNA content will be the same in all cells from the same
organism, allowing for G1, S, and G2/M cell-cycle progres-
sion. For example, applying a simple DRAQ5 staining (17) to

Figure 2. Complex tissue separations show increased occurrence of pro-apoptotic cells as a source for unwanted contamination for

single-cell sequencing. Mouse Bone Marrow cells were prepared for cell sorting. FACS analysis of the tissue sample showed significant

occurrence of pro-apoptotic cells that would be missed by simple DNA intercalation live-dead staining or relying on a change of FSC/SSC

scatters (Plot inlay in the DAPI vs AnnexinV plot shows AnnexinV unstained bone marrow cells). The overlooked pro-apoptotic cells,

when using only cell-impermeable live-dead stains, would be introduced into sequencing experiments as an unknown contaminant.
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the murine lung tissue homogenate allows for FSC/SSC free
cellular event identification and singlet gating at the same
time (Fig. 1B, circle gates highlight doublets identified by
DRAQ5 pulse-shape analysis; gating DNA content based sin-
glets can be done either by H/A or H/W pulse shape analysis)
and will provide a simple, clear and solid motivation for set-
ting sort gates. In this example, the cutoff between debris and
cells was based on the very clearly defined G1 population,
which ensures that particles with intact nuclei are used as a
base gate in combination with the common singlet gating for
cell-cycle experiments. This strategy was in our hands supe-
rior as it also picked up challenging doublets, using well-
established cell-cycle gating strategies (18), which were
difficult to gate without introducing arbitrary cutoffs in the
FSC/SSC scatter and singlet plots (Fig. 1A,B). Importantly,
several studies observed no adverse effects of DRAQ5 and

DAPI staining on library preparation or sequencing for many
different downstream applications (scRNAseq, ATAC, Hi-C,
SmartSeq2, CI-Seq, etc.) (19–22).

The second important quality factor, cell viability, came
to our attention because we observed ourselves lower quality
scRNAseq results stemming from complex tissue separations
or tissue cultures treated with cytokines, viruses, or com-
pounds. Because our users lost a significant number of cells
with FACS-coupled single-cell CI-Seq (23) and SmartSeq2
(11) sequencing assays, we took a step back and evaluated our
sorting strategy. Exploring our generally simple live-dead gat-
ing strategy using only DAPI, Hoechst or PI, we noticed that
the pragmatic approach of live-dead staining with cell-
impermeable DNA dyes was insufficient to guarantee a fully
healthy and viable subgating strategy. DNA intercalation
based on cell-impermeable live/dead staining approaches fail

Figure 3. Dead and pro-apoptotic cell exclusion by single-cell sequencing is not efficient enough to guarantee removal from data set—

10×Genomics data. (A) 70% confluent HEK293 cells were treated for 2 h with 1 μM Staurosporine, then harvested from the 10 cm dish,

and stained with AnnexinV-FITC and DAPI to identify healthy, pro-apoptotic, and apoptotic cells. Each population was sorted and from

50.000 cells received approximately 7,500 cells were loaded onto a 10×Genomics cartridge—see Methods for details. (B,C) Quality

analysis of the 10×Genomics and Illumina sequencing run checking overall number of reads and genes detected in the cells—no bias

indicated, display type violin plots. (D) Analysis of %mitochondrial reads shows in general less cells with high %mitochondrial reads in

healthy or non-sorted, but a significant number of cells reporting low %mitochondrial reads in the pro- and apoptotic populations which

would escape this cutoff. (E) Plotting %mitochondrial reads versus number of genes detected per cell reveals that a majority of the

apoptotic cells is clearly identifiable but that a large portion of the cells escapes independent of the total number of genes detected. (F)
tSNE clustering of the fully bio-informatically cleaned sample set demonstrates that pro-apoptotic cells and escaping apoptotic cells

cannot be separated and cluster with the healthy cells. Nonsorted cells cluster all over with the other populations recapitulating the input.

Note that the small cluster of exclusively apoptotic cells might be misleading when analyzing the data.
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to label pro-apoptotic cells, which we observed in treated tis-
sue cultures, brain tissue samples, or bone marrow pre-
parations (Fig. 2). Including an apoptosis staining like
AnnexinV(24) or Caspase3/7 (25) probes, when experimen-
tally possible, overall improved our operations toward single-
cell sequencing. Our omission to suggest additional apoptotic
staining to our users worried us that we were not following
the standards in the field.

Our literature research and active inquiries gave a mixed
picture with a strong tendency to avoid looking at the viabil-
ity/apoptotic state of the sample at the stage of harvest and to
limit the exclusion of potentially apoptotic or dead cells to
bioinformatics after sequencing. This was of course more pre-
dominant with researchers using droplet or micro-well-based
scRNASeq methods, like 10×Genomics. Further literature sea-
rch on studies looking at the identification of pro-apoptotic
and dying cells in single-cell sequencing approaches let us to
a study using the C1-system and describing in essence the
increase of mitochondrial reads paired with the abundance of
ribosomal genes as a potential identifier for challenged
cells(26).

Given the huge amount of single-cell studies currently
undertaken from complex tissues and the rather vague defini-
tion for identifying challenged or dead cells by computational
means, we decided to explore whether FACS-coupled
SmartSeq2 or 10×Genomics and experimentally guided
approaches would actually result in clearly identifiable trans-
criptomic signatures for healthy, pro-apoptotic, and apoptotic
cells stemming from a single, staurosporine-treated HEK293
cell culture(27). We treated HEK293 cells for 2 h with 1 μM
staurosporine and harvested the cells by collecting the media
and still attached cells from the flask. The cells were stained
with AnnexinV-FITC plus DAPI and then sorted into
healthy, pro-apoptotic, and apoptotic fractions using low-
pressure settings and a 100 μm nozzle (Fig. 3A). Approxi-
mately, 7,000 cells were targeted for library preparation from
each fraction for standard 3’ RNA sequencing with a version3
10×Genomics kit and complemented it with an unsorted
sample from the same source. Additionally, we sorted for
each health state 144 cells into 96-well qPCR plates for stan-
dard SmartSeq2 sequencing(11) and each 50,000 cells for bulk
RNA analysis. We induced apoptosis by staurosporine as it
provided us with a fast and global induction of caspase activ-
ity avoiding endogenous cues coming from cell cycle check-
points or other extracellular sources (27).

Analyzing the 10×Genomics data set, we were able to
recover 3,700 non-sorted, 5,547 healthy sorted, 6,644 pro-
apoptotic sorted, and 2,295 apoptotic sorted cells, which
underwent computational analysis. In a first instance, we
observed no difference in the number of reads obtained from
all four sample sets (Fig. 3B) indicating that our treatment
did not result in a bias of the 10×Genomics protocol. Com-
paring the number of genes detected in all cells, we observed
that our experiment showed a rather large spread from
approximately 250 up to 5,000 genes per cell (Fig. 3C). The
overall spread between low and high gene content cells was
similar between the sorted fractions with healthy cells

showing slight increase of cells with more than 3,000 genes
detected. We then analyzed the whole data set for the per-
centage of mitochondrial reads detected in each cell no matter
the absolute number of genes revealing the expected larger
proportion of mitochondrial reads in the apoptotic popula-
tion (Fig. 3D). The healthy, pro-apoptotic and non-sorted
populations reported in general an overall lower number of
cells with <15% mitochondrial reads, but we observed a simi-
lar spread in apoptotic cells which we would not expect to
detect. Plotting the mitochondrial reads versus the gene con-
tent of each cell revealed that an increase of mitochondrial
reads content is indeed identifying most of the late-apoptotic
cells (Fig. 3E), but there are a significant number of late-
apoptotic cells that report a good gene content and low mito-
chondrial reads. Pro-apoptotic cells have very low number of
mitochondrial reads, similar to healthy cells, and would sub-
stantially escape a harsh mitochondria read cutoff.

tSNE analysis using only apoptosis or cell cycle gene sig-
nature was not sufficiently informative to allow to discrimi-
nate between pro-apoptotic and healthy cells (Fig. 4A,B).
Furthermore, differential expression analysis between pro-
apoptotic and healthy cells do not detected any differential
expressed gene. Thus suggesting that the transcriptome of
pro-apoptotic and healthy cells does not retain sufficient
information to allow a bioinformatic separation of the above-
mentioned groups.

Many researchers are using the popular SEURAT pack-
age (5), which combines a QC matrix using (among other fac-
tors) a low threshold of mitochondrial reads, abundance of
ribosomal genes, the number of total reads per cell, and the
number of genes detected. Applying SEURAT to our data set
removed the majority of potentially called cells from the
10×Genomics run penalizing low quality “droplets.” Con-
firming our initial suspicion that biocomputational methods
would probably be imperfect in removing dying or dead cells
completely from a sequencing-based approach, we observed a
significant number of late-apoptotic (approximately 25%) and
pro-apoptotic cells (60%) escaping the SEURAT QC and clus-
tering with healthy cells on our tSNE plot (Fig. 3F). Although
this indicates that at least healthy and pro-apopotitc cells still
have at large the same expression profile, it also concludes
that generally used bioinformatic QC tools are not the best
choice to remove health-challenged cells from a data set. It is
noted that some of the escaping late-apoptotic cells appear to
form a loose cluster on their own.

Apart from using SEURAT, we also used a tailored
approach to further analyze this data set. Specifically, we used
rCASC package (28) to evaluate, for each cell, the fraction of
total cell counts associated with mitochondrial and ribosomal
genes (Fig. 5A–C). We observed that the apoptotic cells
(Fig. 4C) were characterized by a different distribution of cells
expressing high number of genes, that is, > 250 genes (a gene
is called detected if supported by at least three UMIs), with
respect to healthy (Fig. 6A) and pro-apoptotic (Fig. 5B) cells.
Specifically, apoptotic cells expressing high number of genes
were mainly associated with high fraction of counts associated
with mitochondrial genes and low fraction of counts
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associated with ribosomal genes (Fig. 5C). In healthy
(Fig. 5A) and pro-apoptotic (Fig. 6B) cells instead, cells
expressing high number of genes were associated with low
fraction of counts associated with mitochondrial genes and
high fraction of counts associated with ribosomal genes. The
different distribution of cells in the apoptotic group is even
more evident if cells supported by less than 250 genes are
removed (Fig. 5D–F). We assembled a data set made of
healthy (H), pro-apoptotic (PRO) and apoptotic (APO) cells,
made only of cells supported by more than 250 genes/cell,
that is, 989 cells for each group. We analyzed this data set
using tSNE (https://cran.r-project.org/web/packages/Rtsne/
index.html). tSNE analysis was performed on all genes but
mitochondrial and ribosomal genes (Fig. 6A) and only on
mitochondrial and ribosomal genes (Fig. 6B). The analysis
done on all genes but mitochondrial and ribosomal genes
(Fig. 6A) generated three clusters, one made by 75% of apo-
ptotic cells and a negligible fraction of healthy and pro-
apoptotic cells, respectively, 0.2% and 0.5%. Another cluster
was largely made of heathy and pro-apoptotic cells, respec-
tively, 81.4% and 72%, and a small fraction of apoptotic cells,
3.1%. The third cluster was instead made of a similar fraction
of the three cell populations: 23.3% apoptotic, 27.8% pro-apo-
ptotic, and 18.3% healthy cells (Fig. 6A). tSNE analysis done
on the data set made only of mitochondrial and ribosomal
genes generated two clusters, one made mainly by apoptotic
cells (74% APO, 0.5% PRO, and 0.2% H) and another cluster
containing nearly all pro-apoptotic and healthy cells (99.4%
APO and 99.7% H) and 25.9% of apoptotic cells (Fig. 6B).
tSNE analysis done on a set of apoptotic genes (https://
www.qiagen.com/ch/resources/resourcedetail?id=e5252-
c51-7513-44a0-b66d-927c53e0eeb2&lang=en) produced
results superimposable on those obtained using only

mitochondrial and ribosomal genes (not shown). In any case,
there was never an efficient removal of all apoptotic cells from
the data set and very much none for pro-apoptotic cells simi-
lar to the SEURAT approach.

Our results of largely ineffective in silico removal of
(pro-)apoptotic cells from the 10×Genomics data set could be
due to the lower sequencing depth of this approach. We
therefore analyzed in parallel cells from the sample with
SmartSeq2 which allows for deeper sequencing (2,15,29). We
sequenced approximately 144 cells per condition paired with
an independent bulk for each health status. Out of curiosity,
we included a small set of 16 “doublets” made of healthy and
apoptotic cells. SmartSeq2 allows for very deep sequencing
and has a higher chance to resolve changes in low-expressed
genes or possibly apoptosis regulated mRNA instabilities
which might reveal subtle makers for identifying (pro-)apo-
ptotic cells otherwise lost by the shallower sequencing depth
in 10×Genomics runs(15,29). The sequencing run resulted on
average 500,000 sequence reads and roughly 10,000 genes
detected per cell—that is about two to three times as many as
with 10×Genomics, although with a significant reduction in
throughput. This was the same for all health conditions all-
owing us to exclude a bias of the data based on cell health
similar to our 10×Genomics run (Fig. 7A, B). Generally using
filters on the proportion of mitochondrial reads and on the
number of detected genes per cell are even in deep-
sequencing approaches insufficient in separating faithfully
(pro-)apoptotic cells from the sample set (Fig. 7C). This is
also impacting our downstream analysis, namely PCA.
Unsupervised clustering analysis by PCA of any high-quality
cell in the SmartSeq2 run confirms the nonsignificant separa-
tion of pro-apoptotic cells from healthy cells as they co-
cluster extensively (Fig. 7D). We would like to postulate that

Figure 4. tSNE analysis of that data set made of healthy (gold), pro-apoptotic (green), and apoptotic cells (red), 989 cells for each data set

after removal of cells with less than 250 detected genes (A) tSNE plot using all genes but mitochondrial and ribosomal genes using

Qiagen apoptosis gene signature. (B) tSNE plot using all genes but mitochondrial and ribosomal genes using Qiagen cell cycle gene

signature.
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Figure 5. %of UMIs associated with mitochondrial/ribosomal genes (A, D) Healthy cells. (B, E) Pro-apoptotic cells. (C, F) Apoptotic cells.

(A–C) All sequenced cells. (D–F) Cells left after removing cells with less than 250 detected genes, that is, a gene is called detected if

supported by at least three UMIs.

Figure 6. tSNE analysis of that data set made of healthy (gold), pro-apoptotic (green), and apoptotic cells (red), 989 cells for each dataset

after removal of cells with less than 250 detected genes (A) tSNE plot using all genes but mitochondrial and ribosomal genes. (B) tSNE

plot using only ribosomal and mitochondrial genes. % of each cell type in the tSNE clusters are indicated in the pictures.
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the often-used quality filter based on mitochondrial reads,
ribosomal sequences and total detected genes per cell might
actually flag poor reverse transcription (RT) performance
rather than “viability” of single cells (if applied to validated
healthy cells)—this might be good news as it could be a per-
fect tool for deciding when to discard a data set if a high load
of poor RT QC events is detected.

In parallel to the main apoptosis question, we tried to
address doublet detection sensitivity—to this end, we sorted a
healthy and a pro-apoptotic cell together into the same
micro-well. Noteworthy, with regards to this artificial “dou-
blet” subset (Fig. 7), we observed a significantly lower number
of genes detected in those SmartSeq2 reactions (2,000–3,000

genes/cell). Although we cannot explain why two cells in the
same reaction volume gave a lower detected gene count, we
chose to report the data, because they still cluster very well
with all other single cells. Those cells could be included in
analyses where the filters for gene/cell expression are gener-
ally broader, for example, Fig. 3C with 200–7,000 genes/cell.

As this Cytometry Part A issue is about rigor in cyto-
metry, we need to look at the results presented in this article
from a couple of different angles: Cytometry is broadly
pushed to new heights by immunological research handling
mostly easily accessible single-cell material, for example,
PBMCs. However, there is a large proportion of researchers
applying single-cell sequencing methodology developed on

Figure 7. Dead and pro-apoptotic cell exclusion by single-cell sequencing is not efficient enough to guarantee removal from data set—

SmartSeq2. (A and B) Violin plots showing the overall number of reads and number of genes detected for each cell and health state. (C)
Quality assessment based on %mitochondrial sequences and gene count per cell is insufficient in completely removing (pro-)apoptotic

cells from the sample set. (D) PCA clustering of the fully bio-informatically cleaned sample set demonstrates that pro-apoptotic cells and

escaping apoptotic cells do not separate and cluster with the healthy cells. The bulk duplicates of the different health states cluster very

closely with each other indicating that there is no underlying visibly different gene-expression profile during the mapped progression of

apoptosis. Note that the overall broader clustering of apoptotic cells in the PCA analysis similar to the observation in the corresponding

10×Genomics experiment.
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almost perfectly single cell and extremely low apoptotic
blood samples to very complex and heterogeneous solid-
tissue samples. Most tissue types require digestion and gaug-
ing to turn them into a potential single-cell suspension with
a variable outcome in quality. Blindly using these prepara-
tions for downstream sequencing approaches without
assessing viability or avoiding singlet gating during sorting,
due to fear of biasing the input, is falling short of available
and standardized quality assurance steps that would allow
for an optimal assay setup. There are ready to use alternative
strategies avoiding a bias based on light scattering when per-
forming cell sorts—we suggest a simple and sequencing
compatible strategy for singlet identification based on viable
DNA staining with DRAQ5. At the same time, viability of
the input material appears to be an area, which requires
more attention in order to assure reasonable quality during
sample preparation. The inability of bio-computational
methods to faithfully remove all late-apoptotic cells from a
single-cell sequencing experiment in silico (or better post
mortem!), with a striking inability to detect a low percentage
of pro-apoptotic cells, calls for a mandatory wet-lab step
prior to loading droplet or micro-well-based scRNASeq
chips or PCR-plates with single cells.

Presenting our data, we noticed that many researchers
using a FACS-coupled SmartSeq2 scRNAseq approach were
arguing that they use 7AAD or Sytox probes to label their
dead cells and believed that they hence circumvent the issue
of pro-apoptotic contaminants—but this is not the case: any
cell membrane-non-impermeable DNA intercalating dye
(like DAPI, Hoechst, PI, 7AAD, DRAQ7) or fixable amine-
reactive live-dead staining will only report “dead cells” if the
cellular membrane is broken up. This is not the case in pro-
apoptotic cells and none of the classic live-dead stains will
resolve the early apoptotic stages, which require alternative
staining methods using Caspase probes or AnnexinV label-
ing (24,25).

There is a potential to argue that pro-apoptotic contami-
nants might not be an issue for single-cell sequencing
approaches as they still cluster predominantly with healthy
cells. Yet we would like to highlight that the more careful and
prudent approach would be to better remove any non-healthy
cells (pro- and apoptotic cells) when applying analysis
methods based on mRNA undergoing constant turnover, like
scRNAseq. This quality argument is especially prominent in
single-cell preparations stemming from solid tissues and also
valid for frozen PBMC samples as they tend to contain
increased levels of (pro-)apoptotic cells(30) contaminating
any following single-cell sequencing analysis that omitted a
quality improving removal step of “apoptotic” cells. In order
to execute a full circle on the subject, pro-apoptotic cells have
been shown to display a fast decay of mRNAs (31). The
reverse-transcription step in any analysis of cDNA-based
experiment (RT-PCR, qPCR, single-cell sequencing, etc) is
known to be rather inefficient and highly variable (32,33),
depending upon single molecule/transcript abundance and
template availability due to a secondary structure formation.
Therefore, we believe that there is a likely possibility for

introducing unnecessary extrinsic noise into the experiment
(34) when using cells that are undergoing random but effi-
cient RNA degradation, like pro−/late-apoptotic cells (31).

We are fully aware that the spike in single-cell sequencing
studies is driven by the excitement of being able to explore hetero-
geneity at high resolution. We are trying to highlight potential pit-
falls to our users in our own institutions, although we fail to
persuade everyone to adopt a more careful strategy toward poten-
tially (pro-)apoptotic contaminants—we are indeed glad to see
that the message is spreading and more researchers are
approaching us with the will to optimize their sampling strategy
with regards to enhancing quality, reproducibility, and compara-
bility. As scientists serving the community in core facilities, we
should embrace our responsibility to apply the best suitable strat-
egy to guarantee that results are based on input material of the
highest possible quality even if it means to introduce an additional
time-consuming step into existing pipelines and continuously
lobby for best practices.
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