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Generalized B-splines in Isogeometric Analysis

Carla Manni, Fabio Roman and Hendrik Speleers

Abstract In this paper we survey the use of generalized B-splines in isogeomet-

ric Galerkin and collocation methods. Generalized B-splines are a special class of

Tchebycheffian B-splines, and form an attractive alternative to standard polynomial

B-splines and NURBS in both modeling and simulation. We summarize their def-

inition and main properties, and we illustrate their use in a selection of numerical

examples in the context of isogeometric analysis. For their interest in practical ap-

plications, we mainly focus on trigonometric and hyperbolic generalized B-splines.

1 Introduction

Isogeometric Analysis (IgA) is a technology introduced nearly a decade ago in a

seminal paper by Hughes et al. [25] that unifies Computer Aided Design (CAD) and

Finite Element Analysis (FEA). CAD software, used in industry for geometric mod-

eling, typically describes physical domains by means of tensor-product B-splines or

Non-Uniform Rational B-Splines (NURBS). Such geometries are then further pro-

cessed in the analysis phase. One of the key concepts in IgA is to use the same

discretization and representation tools for the design as well as for the analysis (in

an isoparametric environment), providing a true design-through-analysis method-

ology [14, 25]. The isogeometric approach based on B-splines/NURBS shows im-
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portant advantages over standard finite element approaches. The geometry of the

physical domain is exactly described, so the interaction with the CAD system dur-

ing any further refinement process in the analysis phase is eliminated. In addition,

B-spline and NURBS spaces possess an inherent higher smoothness than those in

standard FEA, leading to a higher accuracy per degree of freedom. The concept of

IgA leads to improved convergence and smoothness properties of the PDE solu-

tions and faster overall simulations. Thanks to the successful application in various

engineering fields (from structural mechanics to fluid–structure interaction), IgA is

rapidly becoming a mainstream analysis methodology and a new paradigm for geo-

metric design.

Even though NURBS are the de facto standard in CAD systems [39], they suffer

from a few major drawbacks. For example, they lack an exact description of tran-

scendental curves of interest in applications, and their parameterization of conics

does not correspond to the arc length. In addition, NURBS behave poorly with re-

spect to differentiation and integration, which are crucial operators in analysis. On

the other hand, in the literature there exist alternatives to overcome such problems

as we will briefly review in the following.

Standard polynomial splines of degree p are smooth functions belonging piece-

wisely to the space Pp of algebraic polynomials of degree less than or equal to

p. This concept can be generalized in two directions, see [44, Chapter 11]: (a) the

spaces the functions belong to piecewisely can be more general than algebraic poly-

nomials, and (b) the derivative conditions defining smoothness at each knot can be

replaced by more general linear functionals. Some special cases of this wide gener-

alizations have been independently studied by several authors primarily as tools in

Computer Aided Geometric Design (CAGD).

Extended Tchebycheff (ET-) spaces of dimension p + 1 on a given interval J

are spaces such that any non-trivial element has at most p zeros (counting mul-

tiplicity) in J; these are a natural generalization of algebraic polynomial spaces.

Similarly, Tchebycheffian splines, i.e., smooth functions belonging piecewisely to

ET-spaces, are a natural and elegant generalization of polynomial splines, see

[44, Chapter 9]. They offer several advantages over standard (algebraic) poly-

nomial splines, mainly due to the wide variety of ET-spaces. Despite this flex-

ibility, many results of the polynomial framework extend in an elegant way to

the broader Tchebycheff framework. As it is difficult to trace all the works on

Tchebycheffian splines, we limit ourselves to mention [26] for locally supported

bases, [37] for a blossoming approach and [30] for a knot insertion procedure. We

refer the reader to [44] for an extended bibliography on the topic.

In this paper we focus on a special class of Tchebycheffian splines, the so-called

generalized splines. According to [28], with this term we denote smooth functions

belonging piecewisely to spaces of the form 〈1,x,. . . ,xp−2,U (x),V (x)〉, with suit-

able assumptions on the functions U,V and usual derivative conditions defining

smoothness at each knot. Therefore, the generalized splines considered here are less

general than those described in [44, Chapter 11]. They can be seen as the minimal

extension of standard polynomial splines still offering a wide variety of additional

flexibility in geometric modeling (see, e.g., [11, 12, 27, 28, 31, 38]) and numerical
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simulation (see, e.g., [32, 33, 35]). This good compromise between “minimal dis-

tance” from the polynomial case and flexibility is the motivation of our choice. Gen-

eralized splines possess many fundamental features of standard polynomial splines.

In particular, they admit a representation in terms of basis functions with similar

properties to polynomial B-splines. Such basis functions are referred to as General-

ized B-splines (GB-splines).

GB-splines with a suitable selection of their section spaces — typically including

polynomial and hyperbolic/trigonometric functions — allow for an exact representa-

tion of polynomial curves, conics, helices and other profiles of salient interest in ap-

plications. In particular, conics are well parameterized by hyperbolic/trigonometric

GB-splines. Moreover, in contrast to NURBS, they behave completely similar to

B-splines with respect to differentiation and integration. Thanks to their structural

similarity to polynomial B-splines, GB-splines are plug-to-plug compatible with B-

splines in modeling and simulation software.

In this paper we survey some recent results on the use of GB-splines as bases

for the discretization spaces in numerical simulation according to the isogeomet-

ric paradigm. The goal of our survey is twofold. First, we want to highlight the

structural similarity between B-splines and GB-splines, and illustrate this by means

of their behavior with respect to local refinement (see [8, 10, 34]) and the spectral

properties of the matrices obtained in Galerkin/collocation discretizations (see [42]).

Second, we show how a fine-tuning of the section spaces — according to a problem-

oriented strategy taking into account the geometrical and/or analytical peculiar is-

sues of the specific addressed problem — generally results in a gain from the accu-

racy point of view, see [32, 33, 34, 35].

The remainder of the paper is divided into 4 sections. Section 2 presents the

definition and main properties of GB-splines. A short summary of isogeometric

Galerkin and collocation methods is provided in Section 3. Section 4 compares nu-

merical discretizations based on B-splines and GB-splines according to the isoge-

ometric paradigm for three model differential problems taken from the literature.

Finally, Section 5 collects some concluding remarks.

2 Generalized B-splines

In this section we present the definition and main properties of GB-splines. We start

by defining the almost-polynomial spaces we are interested in.

2.1 Almost-polynomial spaces

Let U ,V be two univariate functions in Cp ([a,b]) such that the space spanned by

their (p− 1)-th derivatives 〈D(p−1)U ,D(p−1)V 〉 is an ET-space of dimension 2 on

[a,b], i.e., any non-trivial element in the space has at most one zero (including mul-
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tiplicity) in [a,b]. Then, we consider the following almost-polynomial space:

PU,V
p ([a,b]) := 〈1,x,. . . ,xp−2,U (x),V (x)〉, x ∈ [a,b]. (1)

The functions U ,V can be carefully selected in order to incorporate specific features

in the space (1). Popular choices are:

Pp ([a,b]) := 〈1,x,. . . ,xp−2,xp−1,xp〉, (2)

Hp,α ([a,b]) := 〈1,x,. . . ,xp−2,cosh(αx),sinh(αx)〉, 0 < α ∈ R, (3)

Tp,α ([a,b]) := 〈1,x,. . . ,xp−2,cos(αx),sin(αx)〉, 0 < α(b− a) < π. (4)

We refer to [13] for a detailed analysis of the properties of spaces of the form (1). In

particular, they are ET-spaces of dimension p+1 and admit a basis which is a natural

generalization of standard Bernstein polynomials. Moreover, for fixed values of the

involved parameters, the spaces (3) and (4) have the same approximation power as

the polynomial space in (2), see [13, Section 3]. The spaces (3) and (4) have been

widely used in geometric modeling and constrained interpolation/approximation be-

cause the phase parameters α can be exploited as shape-parameters [27, 31, 48].

In the following we are interested in spaces of smooth piecewise functions with

sections in spaces of the form (1). Therefore, the space (1) will be referred to as

section space. In the next section we describe how to build basis functions for such

piecewise spaces that possess the same nice properties as standard polynomial B-

splines.

2.2 GB-splines: definition and properties

B-splines are the most famous basis for the space of polynomial splines. They can

be defined in different ways, see [5, 44], but probably their most popular definition

is given in terms of a recurrence relation. For n ≥ 1 and p ≥ 0, let Ξ := {ξi }
n+2p+1

i=1

be a non-decreasing sequence of knots. Without loss of generality, we assume Ξ to

be open, i.e., its end knots have a multiplicity p+1,

ξ1 = · · · = ξp+1 < · · · ≤ ξi ≤ ξi+1 ≤ · · · < ξn+p+1 = · · · = ξn+2p+1 . (5)

The i-th B-spline Bi,p,Ξ of degree p over the knot sequence Ξ is defined recursively

as follows. For p = 0,

Bi,0,Ξ(x) :=


1, if x ∈ [ξi ,ξi+1),

0, elsewhere,

and for p ≥ 1,
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Bi,p,Ξ(x) :=
x − ξi

ξi+p − ξi
Bi,p−1,Ξ(x)+

ξi+1+p − x

ξi+1+p − ξi+1

Bi+1,p−1,Ξ (x),

where fractions with zero denominators are considered to be zero. The B-spline

Bi,p,Ξ is a non-negative piecewise polynomial supported on the interval [ξi ,ξi+p+1].

Moreover, it has a very elegant differentiation formula for p ≥ 1,

D+Bi,p,Ξ (x) = p

(
Bi,p−1,Ξ (x)

ξi+p − ξi
−

Bi+1,p−1,Ξ (x)

ξi+p+1 − ξi+1

)

,

and integration formula,

δi,p,Ξ :=

∫ ξi+p+1

ξi

Bi,p,Ξ (s) ds =
ξi+p+1 − ξi

p+1
.

By combining the above formulas we arrive at an alternative recurrence relation for

B-splines of degree p ≥ 1:

Bi,p,Ξ (x) =

∫ x

ξi

Bi,p−1,Ξ (s)

δi,p−1,Ξ

ds−

∫ x

ξi+1

Bi+1,p−1,Ξ (s)

δi+1,p−1,Ξ

ds, (6)

where we use the convention that if δi,k,Ξ = 0 then

∫ x

ξi

Bi,k,Ξ (s)

δi,k,Ξ
ds :=


1, if x ≥ ξi+k+1,

0, otherwise.

A generalization of (6) leads to B-spline-like functions with sections in spaces

of the form (1), see [28, 36] and references therein. They will be called GB-splines

of degree p. Note that the term degree is used here to stress the similarity with the

polynomial case. Given a knot sequence Ξ as in (5), we select for each ξi < ξi+1 an

almost-polynomial space P
U i ,V i
p ([ξi ,ξi+1]) generated by the functions U i ,V i . We

denote by ui ,vi the unique elements in 〈D(p−1)U i ,D
(p−1)V i〉 satisfying

ui (ξi ) = 1, ui (ξi+1) = 0, vi (ξi ) = 0, vi (ξi+1) = 1.

For notational convenience, we also define the piecewise functions U,V by

U (x) :=U i (x), V (x) := V i (x), x ∈ [ξi ,ξi+1).

Due to the structure of spaces of the form (1), it is natural to consider a recurrence

relation starting from GB-splines of degree 1.

Definition 1. Given a knot sequence Ξ and a sequence of almost-polynomial spaces

P
U i ,V i
p ([ξi ,ξi+1]), the i-th GB-spline B

U,V
i,p,Ξ

of degree p over Ξ is defined recursively

as follows. For p = 1,
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Fig. 1 GB-spline of degree 1 with knot sequence Ξ = {0, 1, 2}. Left: The standard polynomial case.

Right: The hyperbolic case with αi = 5.

B
U,V
i,1,Ξ

(x) :=



vi (x), if x ∈ [ξi ,ξi+1),

ui+1(x), if x ∈ [ξi+1,ξi+2),

0, elsewhere,

and for p ≥ 2,

B
U,V
i,p,Ξ

(x) :=

∫ x

ξi

B
U,V
i,p−1,Ξ

(s)

δ
U,V
i,p−1,Ξ

ds−

∫ x

ξi+1

B
U,V
i+1,p−1,Ξ

(s)

δ
U,V
i+1,p−1,Ξ

ds,

where

δ
U,V
i,p,Ξ

:=

∫ ξi+p+1

ξi

B
U,V
i,p,Ξ

(s) ds,

and we use the convention that if δ
U,V

i,k,Ξ
= 0 then

∫ x

ξi

B
U,V

i,k,Ξ
(s)

δ
U,V

i,k,Ξ

ds :=


1, if x ≥ ξi+k+1,

0, otherwise.

GB-splines with only section spaces in (2), (3) and (4) will be referred to as

standard B-splines, hyperbolic (or exponential) GB-splines and trigonometric GB-

splines, respectively. Two GB-splines of degree 1 are depicted in Figure 1, and some

sets of cubic GB-splines are illustrated in Figure 2.

GB-splines share many fundamental features with standard B-splines (see, e.g.,

[28, 48]). We collect some properties in the next proposition.

Proposition 1. Let
{

B
U,V
i,p,Ξ

: i = 1,. . . ,n+ p
}

be a set of GB-splines of degree p ≥ 2

over the knot sequence Ξ. The following properties hold:

• Piecewise structure: B
U,V
i,p,Ξ

∈ P
Um,Vm
p ([ξm ,ξm+1));

• Positivity: B
U,V
i,p,Ξ

(x) > 0, x ∈ (ξi ,ξi+p+1);

• Local support: B
U,V
i,p,Ξ

(x) = 0, x < [ξi ,ξi+p+1];
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Fig. 2 Examples of GB-splines of degree 3 defined on the knot sequence Ξ =

{0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}. Top: Trigonometric GB-splines with αi =
2
3
π (left) and αi =

3π (right). Bottom: Hyperbolic GB-splines with αi = 3 (left) and αi = 50 (right).

• Smoothness: B
U,V
i,p,Ξ

is p− µ j times continuously differentiable at ξ j , being µ j the

multiplicity of ξ j in {ξi ,. . . ,ξi+p+1};

• Local partition of unity:
∑m

i=m−p B
U,V
i,p,Ξ

(x) = 1, x ∈ [ξm ,ξm+1);

• Local linear independence:
{

B
U,V
i,p,Ξ

: i = m − p,. . . ,m
}

are linearly independent

on [ξm ,ξm+1);

• Differentiation: D+B
U,V
i,p,Ξ

(x) =
B
U,V

i,p−1,Ξ
(x)

δ
U,V

i,p−1,Ξ

−
B
U,V

i+1,p−1,Ξ
(x)

δ
U,V

i+1,p−1,Ξ

.

In complete analogy with the polynomial case, there is also a knot insertion pro-

cedure available for GB-splines, see [30, 48].

Proposition 2. Let Ξ̂ be the knot sequence obtained by inserting a new knot ξ̂ in the

knot sequence Ξ in the interval (ξp+1,ξn+p+1), and set Û :=U, V̂ := V. For fixed i,

let µ j be the multiplicity of ξ j in {ξi ,. . . ,ξi+p+1}. Then, for p ≥ 2 we have

B
U,V
i,p,Ξ

(x) = ω̂
Û,V̂
i,p

B
Û,V̂

i,p,Ξ̂
(x)+ σ̂

Û,V̂
i,p

B
Û,V̂

i+1,p,Ξ̂
(x), (7)

where

ω̂
Û,V̂
i,p
+ σ̂

Û,V̂
i−1,p

= 1. (8)

Moreover, if µi > 1 then
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ω̂
Û,V̂
i,p

:=



1, if ξi+p ≤ ξ̂,

∏p−1

ℓ=µi−1

δ
Û,V̂

i, ℓ, Ξ̂

δ
U,V

i, ℓ,Ξ

, if ξi < ξ̂ < ξi+p ,

0, if ξ̂ ≤ ξi ,

(9)

while, if µi = 1 then

ω̂
Û,V̂
i,p

:=



1, if ξi+p ≤ ξ̂,

D+Bi,1,Ξ (ξi )

D+Bi,1, Ξ̂
(ξi )

∏p−1

ℓ=1

δ
Û ,V̂

i, ℓ, Ξ̂

δ
U,V

i, ℓ,Ξ

, if ξi < ξ̂ < ξi+p ,

0, if ξ̂ ≤ ξi ,

(10)

with the usual convention that a product is 1 if the lower index exceeds the upper

index.

The expressions in (9) and (10) are obtained by comparing the first non-vanishing

(right) derivative at ξi of the left and the right term in (7). A similar expression

for σ̂
Û,V̂
i,p

can be obtained by comparing the first non-vanishing (left) derivative at

ξi+p+1 of the left and the right term in (7). The equality (8) can be deduced by the

local partition of unity property.

The space spanned by a set of GB-splines defined over a fixed knot sequence will

be referred to as generalized spline space. For notational convenience, we denote

by Sp,Ξ, S
Hα

p,Ξ
and S

Tα
p,Ξ

the spaces spanned by standard B-splines, hyperbolic and

trigonometric GB-splines, respectively.

It is clear that hyperbolic and trigonometric GB-splines allow for an exact rep-

resentation of conics as well as some transcendental curves (helix, cycloid, . . . ).

They are very attractive from the geometrical point of view. Indeed, in contrast to

NURBS, they are able to provide parameterizations of conics close to the arc length

so that equally spaced points in the parameter domain correspond to almost equally

spaced points on the described curve. Since the section spaces (1) may be chosen

differently on each knot interval, GB-splines allow for an exact representation of

profiles composed by a sequence of curve segments of different kind: arcs of el-

lipses, hyperbolas, polynomial curves, etc.

Furthermore, the differential operator acts on trigonometric and hyperbolic gen-

eralized splines in the same way as on standard polynomial splines. More precisely,

D+Sp,Ξ = Sp−1,Ξ, D+S
Hα

p,Ξ
= S
Hα

p−1,Ξ
, D+S

Tα
p,Ξ
= S
Tα
p−1,Ξ

, p ≥ 2. (11)

NURBS do not possess a property like (11). This property makes the structural sim-

ilarity between hyperbolic/trigonometric GB-splines and standard B-splines even

stronger.

Remark 1. Hyperbolic/trigonometric GB-splines approach standard B-splines of the

same degree and over the same knot sequence when the local phase parameters α

approach 0. The same is true if, for fixed values of α, the length of each knot interval

ξi+1 − ξi tends to zero.
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2.3 Uniform GB-splines

In many practical applications uniform knot sequences are of particular interest. As

for the standard polynomial case, GB-splines with uniform knot sequences enjoy

special properties. In this section we summarize some of them.

Given the almost-polynomial space P
U,V
p ([0,1]), we denote by u,v the unique

elements in 〈D(p−1)U,D(p−1)V 〉 satisfying

u(0) = 1, u(1) = 0, v(0) = 0, v(1) = 1. (12)

Definition 2. The (normalized) cardinal GB-spline of degree p ≥ 1 over the uni-

form knot sequence {0,1,. . . ,p+1} with sections belonging to integer translations of

P
U,V
p ([0,1]) is denoted by φ

U,V
p and is defined recursively as follows. For p = 1,

φ
U,V
1

(t) :=
1

δ
U,V
1



v(t), if t ∈ [0,1),

u(t −1), if t ∈ [1,2),

0, elsewhere,

where

δ
U,V
1

:=

∫ 1

0

v(s) ds+

∫ 2

1

u(s−1) ds.

For p ≥ 2,

φU,V
p (t) :=

∫ t

0

(

φ
U,V
p−1

(s)− φ
U,V
p−1

(s−1)
)

ds.

If P
U,V
p ([0,1]) = Pp ([0,1]) then the function defined in Definition 2 is the stan-

dard (polynomial) cardinal B-spline of degree p, denoted by φp . In the next propo-

sition we list some properties of cardinal GB-splines (see, e.g., [42, Section 3.1]).

Proposition 3. Let φ
U,V
p be the cardinal GB-spline of degree p ≥ 2. The following

properties hold:

• Smoothness: φ
U,V
p ∈ Cp−1;

• Positivity: φ
U,V
p (t) > 0, t ∈ (0,p+1);

• Local support: φ
U,V
p (t) = 0, t < (0,p+1);

• Partition of unity:
∑p

k=1
φ
U,V
p (k) = 1;

• Differentiation: D φ
U,V
p (t) = φ

U,V
p−1

(t)− φ
U,V
p−1

(t −1);

• Integration:
∫ p+1

0
φ
U,V
p (s) ds = 1;

• Convolution relation: φ
U,V
p (t) =

∫ 1

0
φ
U,V
p−1

(t − s) ds.

The hyperbolic cardinal GB-spline is denoted by φ
Hα
p and is defined by taking

U (t) := cosh(αt) and V (t) := sinh(αt). In this case, we have

u(t) =
sinh(α(1− t))

sinh(α)
, v(t) =

sinh(αt)

sinh(α)
,
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satisfying (12). The trigonometric cardinal GB-spline is denoted by φ
Tα
p and is de-

fined by taking U (t) := cos(αt) and V (t) := sin(αt). In this case, we have

u(t) =
sin(α(1− t))

sin(α)
, v(t) =

sin(αt)

sin(α)
,

satisfying (12).

We now focus on the uniform knot sequence

{ξ1,. . . ,ξn+2p+1} =

{

0,. . . ,0
︸ ︷︷ ︸

p+1

,
1

n
,
2

n
,. . . ,

n−1

n
,1,. . . ,1
︸ ︷︷ ︸

p+1

}

, (13)

and consider the same almost-polynomial space (1) on each knot interval. The cor-

responding GB-splines of degree p according to Definition 1 are compactly denoted

by {
B
U,V
i,p

: i = 1,. . . ,n+ p
}
, (14)

and their space is denoted by S
U,V
n,p . It turns out that

SU,V
n,p =

{

f ∈ Cp−1([0,1]) : f ∈ PU,V
p

([
i

n
,
i+1

n

))

, i = 0,. . . ,n−1

}

. (15)

In particular, let

{
B
Hα

i,p
: i = 1,. . . ,n+ p

}
,

{
B
Tα
i,p

: i = 1,. . . ,n+ p
}

(16)

be the sets of hyperbolic and trigonometric GB-splines of degree p defined over

the knot sequence (13) with sections in (3) and (4), respectively. Then, it is easy to

check that for i = p+1,. . . ,n and p ≥ 2,

B
Hα

i,p
(x) = φ

Hα/n

p (nx − i+ p+1), B
Tα
i,p

(x) = φ
Tα/n

p (nx − i+ p+1), (17)

in a complete analogy with the polynomial case. Their spaces are denoted by S
Hα
n,p

and S
Tα
n,p , respectively, while Sn,p is the standard polynomial spline space over the

knots (13).

Remark 2. A main issue in working with GB-splines is the construction of efficient

algorithms for their evaluation. We refer to [43] for a discussion and the description

of an approximation procedure in case of uniform knots based on cardinal B-splines.

2.4 Tensor-products and beyond

Multivariate versions of GB-splines can be straightforwardly obtained by the usual

tensor-product approach (in d dimensions):
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B
U,V
i,p,Ξ
= B

U1,V1

i1,p1,Ξ1
⊗ B

U2,V2

i2,p2,Ξ2
⊗ · · · ⊗ B

Ud,Vd

id,pd ,Ξd
,

where different knot sequences, degrees and section spaces can be considered in

the different directions. The structural simplicity makes tensor-product splines a

powerful tool for both modeling and simulation.

Adaptive local refinement is important in applications. Unfortunately, a simple

tensor-product spline structure lacks adequate local refinement. This triggered the

interest in alternative spline structures supporting local refinement still retaining a

local tensor-product structure. On this concern, we mention (analysis-suitable) T-

splines [29, 46], hierarchical splines [19, 21, 22], and Locally Refined (LR-) splines

[16]. All of them can be seen as special cases of polynomial splines over T-meshes

[15, 45]. In the more recent literature we also find some specific extensions to the

generalized spline setting. For example, generalized T-splines [6, 7], hierarchical

generalized splines [34] and generalized splines on T-meshes [8, 9, 10] have been

addressed.

In this section we limit ourselves to the simple but effective approach of hier-

archical/multilevel bases, and we outline the construction of hierarchical bases in

terms of a hierarchy of tensor-product GB-splines, see [22, 34, 47].

Let Ω̂ be a hyper-rectangle in Rd . We consider a sequence of nested tensor-

product d-variate generalized spline spaces defined on Ω̂,

W0 ⊂W1 ⊂W2 ⊂ · · · . (18)

Any element ofWℓ is a piecewise function defined over a partition of Ω̂ consisting

of hyper-rectangles, which will be called cells of level ℓ. We denote by

Bℓ :=
{

bi,ℓ : i = 1,. . . ,dim
(

Wℓ )} (19)

the tensor-product GB-spline basis ofWℓ , where the knot sequences are assumed to

be open in each direction. Finally, we consider a nested sequence of closed subsets

of Ω̂,

Ω̂ =:Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ · · · , (20)

where each Ωℓ is the union of a selection of cells of level ℓ. The set

ΩN :=
{

Ω
0,Ω1,. . . ,ΩN−1}, N ≥ 1, (21)

will be referred to as a hierarchy of subsets of Ω̂ of depth N .

Given a sequence of spaces and bases as in (18)–(19) and a hierarchy of subsets

as in (21), we can now construct the corresponding set of so-called hierarchical basis

functions as follows. We first take all the basis elements in B0. Then, we apply an

iterative procedure which selects at each level ℓ all the basis functions obtained in

the previous step whose support is not entirely contained in Ωℓ and all the basis

functions in Bℓ whose support is entirely contained in Ωℓ. More precisely, we state

the following definition.
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Fig. 3 Illustration of the construction of hierarchical cubic hyperbolic GB-splines with α = 50,

N = 2, Ω0 = [0, 1], Ω1 = [0.4, 0.9]. The light colored functions are removed in the construction of

the hierarchical basis.

Definition 3. The hierarchical set of basis functionsHΩN
associated with a hierar-

chy of subsets of Ω̂ as in (21) is recursively constructed as follows:

i) H 0 :=
{

bi,0 ∈ B
0 : supp(bi,0) , ∅

}

;

ii) for ℓ = 0,. . . ,N −2:

H ℓ+1 :=H ℓ+1
C ∪H ℓ+1

F ,

where

H ℓ+1
C :=

{

bi, j ∈ H
ℓ : supp(bi, j ) * Ω

ℓ+1},

H ℓ+1
F :=

{

bi,ℓ+1 ∈ B
ℓ+1 : supp(bi,ℓ+1) ⊆ Ωℓ+1};

iii) HΩN
:=H N−1.

The space SΩN
:=

〈

bi, j : bi, j ∈ HΩN

〉

is called the hierarchical space associated

with ΩN . Since the elements in Bℓ are locally linearly independent, Definition 3

provides a set of linearly independent functions [22]. Therefore, the elements in

HΩN
form a basis of SΩN

, which will be referred to as the hierarchical basis of

SΩN
. Figure 3 shows the construction of the hierarchical basis for hierarchical cubic

hyperbolic GB-splines on the interval [0,1] associated with a hierarchy of depth 2.

The elements of the hierarchical basis are obviously non-negative but they do not

form a partition of unity. Nevertheless, it is possible to construct an alternative basis

of SΩN
, the so-called truncated hierarchical basis whose elements form a convex

partition of unity [22].
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Remark 3. The standard definition of hierarchical bases and spaces summarized here

assumes to deal with a sequence of nested linear spaces. However, Definition 3

also makes sense when the spaces Wℓ do not form a nested sequence. Giving up

nestedness allows for more freedom in the construction and leads to the so-called

multilevel bases [34]. Under the hypothesis of local linear independence for the basis

functions considered in each spaceWℓ , the resulting set of multilevel functions are

still linearly independent.

3 Isogeometric Galerkin and collocation methods

In this section we outline the Galerkin and collocation approximation of PDE solu-

tions in the IgA framework. For the sake of simplicity, we illustrate the isogeomet-

ric approaches for second-order elliptic differential problems with homogeneous

Dirichlet boundary conditions. A more comprehensive presentation can be found

in [14].

LetL be a linear second-order elliptic differential operator on the domainΩ ⊂ Rd

with Lipschitz boundary ∂Ω. We consider the differential problem


Lu = f , in Ω,

u = 0, on ∂Ω,
(22)

for the unknown u : Ω→ R. This is the so-called strong form of the problem. The

weak form of (22) is given by

a(u,v) = F (v), (23)

where
a :V×V→ R is a bilinear form depending on L,

F : V→ R is a linear form depending on f ,

and holds for any v in the corresponding (homogeneous) solution space V0 ⊂ V.

Example 1. For the second-order differential problem with constant coefficients,


−κ∆u+ β · ∇u+ γu = f , in Ω,

u = 0, on ∂Ω,

we have V = H1(Ω), V0 = H1
0

(Ω) and

a(u,v) =

∫

Ω

(

κ∇u∇v+ (β · ∇u+ γu)v
)

, F (v) =

∫

Ω

f v.
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3.1 Isogeometric Galerkin methods

The Galerkin approach to approximate the solution of (22) is based on the weak

form (23). First, we select a finite-dimensional approximation space on Ω,

Vh :=
〈

ϕ1,ϕ2,. . . ,ϕmh

〉

⊂ V, dim(Vh ) = mh , (24)

related to a fineness parameter h > 0, and

Vh,0 :=
{

vh ∈ Vh : vh |∂Ω = 0
}

⊂ V0, dim(Vh,0) = nh < mh . (25)

Then, we look for uG
h
∈ Vh,0 as the solution of

a(uG
h
,vh ) = F (vh), ∀vh ∈ Vh,0 . (26)

Assuming Vh,0 =
〈

ϕ1,ϕ2,. . . ,ϕnh

〉

and writing uG
h
=

∑nh

i=1
ciϕi , condition (26) gives

rise to a linear system Ac = F, where

A ∈ Rnh×nh is the stiffness matrix, Ai, j := a(ϕ j ,ϕi ), i, j = 1,. . . ,nh ,

F ∈ Rnh is the load vector, f i := F (ϕi ), i = 1,. . . ,nh .

Different Galerkin methods correspond to different choices of the subspace Vh .

Since the weak form (23) is expressed in terms of integrals (see Example 1), the

construction of the stiffness matrix and load vector requires the use of numerical

integration. Therefore, the efficiency of any Galerkin method deeply depends on

the efficiency of the quadrature rules used in the construction of the corresponding

linear systems.

In the standard formulation of IgA, the physical domain Ω is represented by

means of a global geometry map. We define the geometry map G from the paramet-

ric domain Ω̂ := [0,1]d to the closure of Ω as (see Figure 4)

G(x̂) :=

mh∑

i=1

Pi ϕ̂i (x̂), Pi ∈ R
d , x̂ ∈ Ω̂, (27)

where the basis functions
{

ϕ̂1,. . . ,ϕ̂mh

}

(28)

have to be selected so as to produce an exact representation of the geometry. Fol-

lowing the isoparametric approach, the space Vh in (24) is then defined as

ϕi (x) := ϕ̂i ◦G−1(x) = ϕ̂i (x̂), i = 1,. . . ,mh , x =G(x̂). (29)

Usually, the functions in (28) are chosen to be tensor-product B-splines or NURBS.

In this paper we consider GB-splines whose section spaces will be selected accord-

ing to a problem-oriented strategy.

The Galerkin formulation has been intensively and successfully employed in the

isogeometric context. In contrast to the finite element context, where elementwise
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−→

G

Ω̂ Ω

x̂ x

Fig. 4 Isogeometric Galerkin. Description of the physical domainΩ by means of a global geometry

map G.

−→

G

Ω̂ Ω

Fig. 5 Isogeometric collocation. Description of the physical domain Ω by means of a global ge-

ometry map G and related collocation points.

Gauss quadrature is known to be optimal, it is not yet completely clear how to

construct efficient IgA quadrature rules, see [24] and references therein.

The quadrature issue motivated the idea of taking advantage of the high regularity

of IgA basis functions to construct efficient and geometrically flexible collocation

methods, see [2] or the recent survey [41]. They will be discussed in the next section.
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3.2 Isogeometric collocation methods

The collocation approach to approximate the solution of (22) is based on the strong

form of the problem: we look for uC
h
∈ Vh,0 (see (25)) as the solution of

LuC
h

(τi ) = f (τi ), i = 1,. . . ,nh , (30)

where τi ∈Ω are the so-called collocation points. Writing uC
h
=

∑nh

i=1
ciϕi , condition

(30) gives rise to a linear system Ac = F.

Isogeometric collocation emanates from the combination of the isogeometric

technology and the standard collocation method. Following the isoparametric ap-

proach, we consider the approximation spacesVh,0 andVh spanned by the functions

in (29), and we select the collocation points as

τi :=G(τ̂i ), i = 1,. . . ,nh , (31)

where τ̂i are suitable points belonging to the parametric domain Ω̂, see Figure 5.

Usually, in collocation IgA, the functions ϕ̂i in (28) are chosen to be tensor-

product B-splines or NURBS. The major advantage of isogeometric collocation over

Galerkin-type methods is the minimal computational effort with respect to quadra-

ture, since for each degree of freedom only one point evaluation at the collocation

point is required. This property leads to extremely easy and fast constructions of the

corresponding linear systems.

On the other hand, in contrast to isogeometric Galerkin methods, the theoretical

understanding of isogeometric collocation methods is not so mature yet. The op-

timal choice of the collocation points, the unisolvency of the resulting system and

the accuracy performance of the obtained approximate solution are still main open

issues. Some results in this direction are known in the one-dimensional setting for

a special choice of the points τ̂i in (31), the so-called Tchebycheff–Demko points,

see [2]. However, in practical applications, the most popular choice of τ̂i are the

so-called Greville points corresponding to the selected spline space. In case of the

polynomial spline space Sp,Ξ, they can be computed as knot averages,

ξi+1 + · · ·+ ξi+p

p
,

and they are tensor-product variations in case of tensor-product spline spaces.

In this paper we focus on isogeometric collocation methods based on tensor-

product GB-splines. The above-mentioned Greville and Tchebycheff–Demko points

can be defined for generalized spline spaces (if p ≥ 3) in a similar way as for polyno-

mial spline spaces. The latter points can be computed by a similar iterative algorithm

as the one proposed for B-splines in [5, Chapter XIII], see [35]. Nevertheless, in our

numerical experiments we take the collocation points as (the images of) the Greville

points of the standard B-splines of the same degree. This choice greatly simplifies

the computation without sacrificing any accuracy [35].
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4 Examples

In this section we illustrate the use of GB-splines as basis functions (28) in isogeo-

metric Galerkin and collocation methods. We will show that a proper selection of the

section spaces (1) according to a problem-dependent strategy may result in an accu-

racy gain compared with standard B-splines. To this end, we present three examples.

The first one is an eigenvalue problem for the one-dimensional Laplace operator. In

the second example we address an advection-dominated advection–diffusion prob-

lem on the unit square. Finally, in our third example we consider a vector problem

(linear elasticity) on a bivariate domain Ω whose description requires a non-trivial

geometry map. In the first and last example we will use a Galerkin discretization

while for the advection–diffusion problem the isogeometric collocation approach is

considered.

4.1 An eigenvalue problem

In our first example we consider the following eigenvalue problem for the univariate

Laplace operator:

−D2u(x) = ω2u(x), x ∈ (0,1),

u(0) = 0, u(1) = 0,
(32)

whose non-trivial exact solutions are

uk (x) := sin(ωk x), ωk := kπ, k = 1,2,. . . . (33)

The weak form of problem (32) reads as follows: find non-trivial u ∈ H1
0

(0,1) and

ω such that

∫ 1

0

Du(s)Dv(s) ds−ω2

∫ 1

0

u(s)v(s) ds = 0, ∀v ∈ H1
0 (0,1).

Following the Galerkin approach, we choose a subspace Vh,0 of H1
0

(0,1) spanned

by the basis {ϕ1,. . . ,ϕnh
} and we find approximate values ωG

h
to ω by solving

Ku =
(

ωG
h

)2
Mu.

where the matrices K and M consist of the elements

Ki, j :=

∫ 1

0

Dϕ j (s)Dϕi (s) ds, Mi, j :=

∫ 1

0

ϕ j (s)ϕi (s) ds, i, j = 1,. . . ,nh .

This means that each (ωG
h

)2 is an eigenvalue of the matrix L := M−1K . Thus, the nh
eigenvalues of the matrix L are an approximation of the first nh eigenvalues of the

problem (32), namely
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ω2
k = (kπ)2, k = 1,. . . ,nh .

Similarly, an approximation of the eigenfunction uk is obtained by considering

nh∑

i=1

uk,iϕi , (34)

where uk := (uk,1,. . . ,uk,nh
) is the k-th eigenvector of L. Of course, a proper nor-

malization is needed. Taking into account the expression of uk in (33), we normalize

uk so that the infinity-norm of the function in (34) is equal to 1. More information

on this eigenvalue problem can be found in [4].

We now choose the approximation space Vh,0 to be a space of smooth general-

ized spline functions vanishing at the two ends of the unit interval. More precisely,

for p ≥ 2, n ≥ 1 we set

Vh,0 :=
{

f ∈ SU,V
n,p : f (0) = f (1) = 0

}
,

where we recall S
U,V
n,p from (15). This space has dimension n+ p−2, and is spanned

by the set of GB-splines
{
B
U,V
2,p
,. . . ,B

U,V
n+p−1,p

}
. Furthermore, we set

nKU,V
n,p :=

[∫ 1

0

DB
U,V
j+1,p

(s) DB
U,V
i+1,p

(s) ds

]n+p−2

i, j=1

, (35)

1

n
MU,V

n,p :=

[∫ 1

0

B
U,V
j+1,p

(s) B
U,V
i+1,p

(s) ds

]n+p−2

i, j=1

. (36)

It is clear that the matrices K
U,V
n,p and M

U,V
n,p are symmetric, and due to the compact

support of the GB-spline basis, they have a (2p+ 1)-band structure. As discussed

before, in view of the eigenvalue problem (32), we need to determine the eigenvalues

of the matrix

LU,V
n,p := n2 (MU,V

n,p

)−1
KU,V
n,p . (37)

Considering the form (33) of the solution, the natural choice of the section spaces for

the GB-splines is (4) with parameter nα. Note that the corresponding spaces S
Tnα
n,p

are not nested for increasing values of n. We denote by K
Tnα
n,p , M

Tnα
n,p the matrices in

(35) and (36) obtained with such a choice. Taking into account (17), we see that the

central part of the matrices K
Tnα
n,p , M

Tnα
n,p has a Toeplitz structure. A Toeplitz matrix

is a square matrix whose entries are constant along each diagonal. More precisely,

for k = 0,1,. . . ,p and i = 2p,. . . ,n− p−1,

(

KTnαn,p

)

i,i±k =

∫ p+1

0

DφTαp (t ∓ k)DφTαp (t) dt,

(

MTnαn,p

)

i,i±k =

∫ p+1

0

φTαp (t ∓ k)φTαp (t) dt.
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These central parts agree with Toeplitz matrices generated by the functions

f Tαp (θ) :=

p∑

k=−p

(∫ p+1

0

DφTαp (t − k) DφTαp (t) dt

)

cos(kθ),

hTαp (θ) :=

p∑

k=−p

(∫ p+1

0

φTαp (t − k) φTαp (t) dt

)

cos(kθ),

respectively, see [42]. These functions are defined on [−π,π], but since they are

symmetric we can restrict them to the range [0,π] for visualization purposes. The

selection of the parameter α is crucial in this approximation strategy, and we refer

to [42] for a discussion of different selection criteria.

For the sake of comparison, we also consider the Galerkin approximation of the

solution of (33) by using standard B-splines of degree p over the same knot se-

quence (13). The resulting matrices (35) and (36) have the same structure as K
Tnα
n,p

and M
Tnα
n,p . In particular, their central parts are Toeplitz matrices generated by the

functions

fp (θ) :=

p∑

k=−p

(∫ p+1

0

Dφp (t − k) Dφp (t) dt

)

cos(kθ),

hp (θ) :=

p∑

k=−p

(∫ p+1

0

φp (t − k) φp (t) dt

)

cos(kθ),

respectively, see [20].

In Figure 6 we plot the relative spectral error values

(

k

n
,

(ω
Tnα
k

kπ

)2

−1

)

, k = 1,. . . ,n, (38)

whereω
Tnα
k

denotes the trigonometric GB-spline approximation forωk . In the same

figure we also show the graph of the function

eTαp (θ) :=
f
Tα
p (θ)

h
Tα
p (θ)

1

θ2
−1,

which gives an asymptotic description of the quantity in (38), see [42]. For compari-

son, we also plot the relative spectral error values and the graph of the corresponding

function ep in case of standard B-splines of the same degree over the same knot se-

quence, i.e.,

ep (θ) :=
fp (θ)

hp (θ)

1

θ2
−1.
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Fig. 6 Eigenvalue problem. Plot of the relative spectral error values in the trigonometric case

(red ∗) and the polynomial case (black ◦) for n = 80, together with the scaled graphs of e
Tα
p (blue

line) and ep (black line). Left: p = 3, α = 7
11
π. Right: p = 4, α = 9

13
π.
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Fig. 7 Eigenvalue problem. Plot of the infinity-norm of the error for all the eigenfunctions in the

trigonometric case (red ∗) and the polynomial case (black ◦) for n = 80. Left: p = 3, α = 7
11
π.

Right: p = 4, α = 9
13
π.

Both the functions are rescaled over the interval [0,1] in the figure. The values of α

are selected according to the heuristic suggestion1 in [35, Eq. (18)]. Figure 7 depicts

the infinity-norm of the error for all the obtained eigenfunctions tabulated at 500

equally spaced points in [0,1].

Two remarks are in order. First, there is a very good match between the func-

tions e
Tα
p obtained by the theoretical spectral analysis of the involved matrices and

the computed relative error in (38) of the Galerkin approximation of the spectrum

based on trigonometric spline spaces S
Tnα
n,p . The same holds for the approximation

based on standard B-splines. Second, trigonometric GB-splines present improve-

ments over standard B-splines in the global approximation of both the eigenvalues

and the eigenfunctions.

1 For polynomial B-splines, a degree p in Galerkin approximation corresponds to a degree 2p+1

in collocation, see [17, Remark 3.2]. We have followed the same rule here.
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Fig. 8 Advection–diffusion problem. Contour plots of the numerical solution. Collocation is per-

formed at standard tensor-product B-spline Greville points, using degree p = 4 in both directions

and standard tensor-product B-splines (top, left: 10× 10 degrees of freedom; top, right: 50× 50;

bottom, left: 100×100; bottom, right: 300×300).

4.2 An advection–diffusion problem with boundary layers

In our second example we consider the following advection–diffusion problem de-

fined on the bivariate domain Ω = (0,1)2:

−κ∆u+ β · ∇u = f , in Ω,

complemented by homogeneous Dirichlet boundary conditions. The parameters are

assumed to be κ = 10−3 and β = [1 0]T , while the right-hand side has a constant

value f = 1. The exact solution of such a problem is a ramp of unit slope along the

x-axis, showing two layers at y = 0 and y = 1, and a third, sharper layer at x = 1.

The solution of the problem is approximated by collocation IgA considering both

tensor-product polynomial B-splines and tensor-product GB-splines. The physical

domain and the parametric domain agree so there is no need of a geometry map.

In both cases we use standard tensor-product B-spline Greville points as collocation

points and we consider uniform knot sequences as in (13). Since the solution possess

strong gradients and thin boundary layers it is natural to use the section spaces for

our GB-splines as in (3), that is to use hyperbolic GB-splines.

We choose the parameter α to be equal to the global Péclet number, i.e., α =

‖β‖/κ = 103. In Figures 8 and 9 we present some results for the same degree p= 4 in
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Fig. 9 Advection–diffusion problem. Contour plots of the numerical solution. Collocation is per-

formed at standard tensor-product B-spline Greville points, using degree p = 4 in both directions

and tensor-product hyperbolic B-splines with α = ‖β ‖/κ = 103 (left: 10×10 degrees of freedom;

right: 50×50).

both the directions and different choices of uniform knot sequences. We can see that,

as expected, standard B-splines lead to spurious oscillations until the discretization

is fine enough to resolve the boundary layers. A discretization consisting of 300×

300 degrees of freedom (n = 298) is needed to get a solution where the oscillations

(indeed still present) are negligible. Instead, with hyperbolic GB-splines and the

adopted selection of the parameter α, already a very coarse discretization (10× 10

degrees of freedom) leads to acceptable results. However, we notice that in this case

the two boundary layers at y = 0 and y = 1 appear to be too sharp, as compared with

the behavior of the 300× 300 B-spline case. A less coarse discretization (50× 50

degrees of freedom) gives a solution that, in practice, cannot be distinguished from

the 300×300 B-spline case. Finally, we remark that, in contrast to the 300×300 B-

spline discretization, no oscillations (not even very small) are observed in this case.

Other advection–diffusion problems discretized by isogeometric collocation using

GB-splines can be found in [35].

4.3 A problem in solid mechanics

In our last example we address a model problem in solid mechanics. We consider

an infinite plate with a circular hole of radius r, subject to an in-plane uniform

tension Tx in x-direction, see Figure 10 (left). For a homogeneous and isotropic

material this problem features an exact solution which can be found in [23, Section

7.6]. The infinite plate is modeled by a finite circular domain with radius R. Due to

the symmetry, the computational domain Ω is restricted to a quarter, see Figure 10

(right). We study the linear elastic behavior of the displacement field u : Ω→ R2

described by

divσ(u) = 0, in Ω.
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σ ·n = 0

exact σ
u1 = 0

symmetry

u2 = 0

symmetry

Fig. 10 Elastic plate problem with a circular hole.

The boundary conditions are shown in Figure 10 (right) where we apply the exact

solution as Neumann boundary condition. For the sake of completeness, we recall

that σ(u) := {σi j (u)}i, j=1,2 with

σi j (u) := λdivu δi j +2µǫ i j (u), ǫ i j (u) :=
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

, i, j = 1,2,

and

u := (u1,u2), (x,y) := (x1,x2), λ :=
Eν

(1+ ν)(1−2ν)
, µ :=

E

2(1+ ν)
,

where E denotes the Young modulus and ν the Poisson ratio. In our computed ex-

ample we have taken

r = 1, R = 4, E = 105, ν = 0.3, Tx = 10.

Without the hole, the stress would be uniform

σ1,1 = Tx , σ1,2 = σ2,2 = 0.

This distribution will alter only in the vicinity of the hole. More precisely, we get a

peak stress concentration at the upper side of the hole, that is at the point (0,1), see

[23]. Due to the behavior of the solution, a numerical approximation strategy using

local refinement around this point is preferable.

The solution of the problem is approximated by Galerkin IgA. We refer to [40,

Chapter 3] for the weak form of the problem. Since the physical domainΩ is a quar-

ter of an annulus, see Figure 10 (right), it is natural to use (quadratic) trigonometric

GB-splines for the representation of the circular arcs. Hence, we construct a global

geometry function as in (27) considering the tensor-product space S
Tα
n,2
⊗ Sn,2 with

α = π
2

. The control points Pi = Pk, j , k, j = 1,2,3, are depicted in Table 1 for a coarse

grid consisting of one interval per edge, see Figure 11. Then, we approximate both
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k Pk,1 Pk,2 Pk,3

1 (-1,0) (-2.5,0) (-4,0)

2 (-1,1) (-2.5,2.5) (-4,4)

3 (0,1) (0,2.5) (0,4)

Table 1 Elastic plate problem. Control points of the geometry function.
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Fig. 11 Elastic plate problem. Left: control net of the geometry function. Right: exact σ1,1.

components of the displacement in the bivariate tensor-product spaces S
Tα
n,2
⊗ Sn,2

with α = π
2

and different values of n. Standard quadratic B-splines Sn,2 ⊗ Sn,2 have

also been considered for the sake of comparison. Next, we consider bivariate spaces

spanned by hierarchical bases built from the same tensor-product spaces mentioned

before, defined on the hierarchical meshes shown in Figure 12 (left column) accord-

ing to the construction outlined in Section 2.4. Figure 13 shows the reduction of

the computed error versus the number of degrees of freedom, in the cases of uni-

form and local hierarchical refinements with the different considered spaces. The

presented hierarchical meshes are constructed manually. For automatic refinement

strategies we refer to the literature, see e.g. [3, 18]. Further details on this example

can be found in [34].

5 Conclusions

In this paper we have reviewed the definition and main properties of GB-splines,

and we have illustrated their use in isogeometric Galerkin and collocation methods

as a possible alternative to standard B-splines/NURBS.

GB-splines are a special case of the larger and richer class of Tchebycheffian B-

splines, and they can be seen as the minimal extension of the standard polynomial

B-splines sharing similar properties. In particular, GB-splines support local refine-

ment based on the hierarchical/multilevel approach. The complete structural simi-
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Fig. 12 Elastic plate problem. Hierarchical meshes and corresponding hierarchical quadratic

trigonometric GB-spline approximations of σ1,1 with α = π/2.
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Fig. 13 Elastic plate problem. L2-norm of the error for the displacement using quadratic trigono-

metric GB-splines (red line) and standard quadratic B-splines (blue line) versus the number of

degrees of freedom, computed on locally refined hierarchical meshes (solid) and uniformly refined

meshes (dashed).

larity between B-splines and GB-splines makes them plug-to-plug in isogeometric

Galerkin and collocation methods.

Trigonometric and hyperbolic GB-splines are of particular interest in IgA be-

cause they offer some relevant advantages over NURBS whenever the section spaces

are selected according to a problem-dependent strategy. In particular, trigonomet-

ric/hyperbolic GB-splines

• allow for the exact representation of conics by means of a parameterization which

is close to the arc length, without requiring rational forms;

• behave completely similar to standard B-splines with respect to differentia-

tion/integration;

• give rise to matrices with spectral properties completely analogous to standard

B-splines when used in Galerkin/collocation methods;

• have the same approximation properties as standard B-splines of the same degree,

for fixed values of the local phase parameters α;

• approach standard B-splines of the same degree as the local phase parameters (or

equivalently the knot spacing) approach zero.

Finally, we point out that GB-splines are also a promising tool in the context of

Isogeometric Boundary Element Methods (IBEM), because of the advantages they

offer for representing conics, see [1].
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