
30 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Axessibility 2.0: creating tagged PDF documents with accessible formulae

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1715026 since 2019-11-05T09:51:43Z

Axessibility 2.0: creating tagged PDF documents
with accessible formulae

D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov, A. Kozlovskiy, N. Murru

Sommario
I documenti PDF contenenti formule generati da
LATEX non sono solitamente accessibili mediante
tecnologie assistive per persone con disabilità vi-
sive (i.e., screen reader e display Braille). Il pac-
chetto LATEX axessibility.sty da noi sviluppato
risolve questo problema, permettendo di creare do-
cumenti PDF in cui le formule vengono lette da
tali tecnologie assistive, tramite l’inserimento di
commenti nascosti. In questo articolo descriviamo
l’evoluzione del pacchetto, che ora genera automati-
camente anche il tagging delle formule. Il pacchetto
non genera PDF/UA.

Abstract
PDF documents containing formulae generated by
LATEX are usually not accessible by assistive tech-
nologies for visually impaired people (i.e., by screen
readers and Braille displays). The LATEX package
axessibility.sty that we developed manages
this issue, allowing to create PDF documents where
the formulae are read by such assistive technolo-
gies, through the insertion of hidden comments. In
this paper we describe the evolution of the package,
that now automatically generates also the tagging
of the formulae. The package does not generate
PDF/UA.

1 Introduction
PDF documents are widely used to digitally pu-
blish scientific content, such as papers or textbooks.
Mathematical formulae, frequently contained wi-
thin such documents, are not accessible by screen
reader users because they are commonly rendered
as bi-dimensional images. The burden of making
digital documents accessible is often left to the do-
cument author, who needs to provide descriptions
for each visual content in the form of alternate text.
This procedure is time consuming, error-prone and
it needs to be done by a sighted person. Additional-
ly, in the case of mathematical formulae, a verbal
description does not provide the same information
as the original mathematical notation. In many
cases no alternate text is even provided because
authors are not aware of the accessibility needs of
screen reader users.
In this paper, we show the features of the pac-

kage axessibility.sty (whose a first version is

also described in ?) that provides the first method
for an automatized production of accessible PDF
documents with mathematical contents through
LATEX. We would like to highlight that this package
does not produce fully tagged PDF, such as the
standard PDF/UA, but it allows to obtain a PDF
where formulae are marked and described using
the /Alt and /ActualText attributes.

2 Related Work
Assistive technologies for people with visual impair-
ments (e.g., screen readers, Braille displays, magni-
fiers) are used effectively and proficiently to read
and edit digital documents containing structured
text. Instead, still many accessibility issues remain
for what concerns documents including mathema-
tical formulae and images (e.g., diagrams, graphs,
technical drawings) ?, ?. A number of studies have
been conducted to improve non-visual access to
scientific content, mainly along two research lines:
to facilitate editing of scientific documents through
non-visual tools, and to enable people with sight
impairments to read scientific documents in digital
formats.
The former research work has led to different

multimodal systems that are now available to au-
thor scientific documents through non-visual tools.
For instance, the LAMBDA editor ? is used mostly
by blind people to write and process text and ma-
thematical formulae through Braille display and
speech output. This sytem adopts a sequential co-
de to represent mathematical notation, specifically
designed for blind people and usable only in this
editor. Hence, it has got widespread only among
some communities of blind people and it cannot
become a mainstream tool to produce accessible
scientific content by sighted people, too. A diffe-
rent approach consists in editing LATEX documents
through speech and Braille support ?, ?, ?, ?, ?, ?.
This approach has the advantage to rely on LATEX,
which is a de facto standard for authoring scien-
tific documents. Unfortunately, since these tools
are produced for a small community, due to the
rapid evolution of technology, they often incur in
maintainance and compliance issues.
For what concerns reading digital scientific do-

cuments, many studies have been undertaken to
create non-visual reading tools for the most wide-
spread digital formats. In particular, research has

1

D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov, A. Kozlovskiy, N. MurruArsTEXnica Nº 0, Dicembre 2099

focused on web publishing Microsoft Word, LATEX
and PDF documents. In recent years, mathemati-
cal content has been published on the web through
images of formulae, by embedding MathML in the
web page or through MathJax, a JavaScript di-
splay engine for mathematical formulae. Images of
formulae are inaccessible to screen readers, hence
they can be adapted to be read by screen readers
only through a proper alternative text (e.g., the
LATEX equivalent). On the contrary, MathML and
MathJax can be used to create accessible web pa-
ges. MathML, especially the content markup, can
be interpreted by most common screen readers
to generate a verbal description of the formula
?, ?. Moreover, MathPlayer, a web browser plug-
in for rendering MathML on the screen, through
speech output and on Braille devices, enables hie-
rarchical navigation of mathematical formulae, in-
cluding bi-dimensional notations such as matrices
?. MathJax can be embedded in web pages ma-
king available adaptable accessibility features for
representing and navigating formulae (e.g., LATEX,
ASCIIMath or CSS representation) ?, ?. Taking
Microsoft Word into account, mathematical formu-
lae can be read by the speech synthesizer or on a
Braille display through MathPlayer. Nonetheless,
due to the visual features of Microsoft Word, inte-
raction with screen readers is often not easy. LATEX
documents can be read by people with sight impair-
ments either reading the source file on the Braille
display or through editors that support speech rea-
ding of LATEX (e.g., ChattyInfty by Science Access
Net) ?, ?, ?, ?. Furthermore, also converters from
LATEX to some national Braille codes for mathema-
tics are available ?. Since national Braille codes
can represent only a limited amount of mathemati-
cal notations, these converters can transform only
a subset of the source LATEX document.

For PDF files, frequently used as a medium for
publishing digital scientific documents, the acces-
sibility of mathematical content has been deve-
loped in the scope of the so-called Tagged PDF,
which embeds the document semantics directly in-
to the visual representation of the page. Both ISO
32000-1:2008 (specifying PDF 1.7) and the recent
ISO 32000-2:2017 (for PDF 2.0) suggest the use
of MathML syntax for describing the semantics
of mathematical formulae. In addition, PDF 2.0
standard opens the door for any alternative syntax
(for example, the original LATEX representation of
the formula), which can be associated with any
structure element in Tagged PDF. However, due
to the novelty of this approach, it is not yet sup-
ported by the screen readers and, thus, may be
considered only in the long-term scope.

Another approach widely supported by the ma-
jority of the screen readers is to add accessibility
features to mathematical content as alternate text.
It can be specified manually using, for example,

a proprietary editor such as Adobe Acrobat. Gui-
delines have been produced to create accessible
PDF according to this procedure ? with a focus
on mathematical content ?, ? and ?.

However, this approach requires the availability
of a suitable editor, and it entails additional labor
from the document author. Furthermore, alternate
text most often does not carry the same semantic
value as the original mathematical content. Yet
another approach consists in transforming PDF
files into LaTeX or HTML+MathML documents
by performing OCR ?, ?. However, the resulting
document has to be proofread because of possible
recognition errors. Proofreading process is usually
time consuming and it has to be done by a sighted
person who can compare the PDF document with
the OCR result.

3 The axessibility LATEX package
We provided a solution to the problem described
above through our package axessibility, see,
e.g., ???. In its most recent version, release 2.0,
which will soon be available in CTAN, we employed
the tagpdf package, created by Ulrike Fisher, re-
placing the accsupp package, on which the 1.x
versions of axessibility package relied. The pac-
kage implements insertion of the original LATEX
formulae as properties of the Span elements con-
taining visual representation of the mathematical
content in the resulting PDF document, by means
of the commands provided by the tagpdf package.
In more detail, each inline or display formula

in the source LATEX document is wrapped into a
marked content sequence (see the documentation
of the tagpdf package for more details on the
difference between structure elements and marked
content sequences in Tagged PDF). In addition, the
original formula is added to this marked content
sequence as /ActualText and /AltText. These
properties are read by screen readers and braille
displays instead of the ASCII representation of the
formula, which is often incorrect. Additionally, the
package adds a minimal Tagged PDF structure
to the output PDF. This includes at the moment
the top level Document structure element to mark
the beginning and the end of the document and
the P (paragraph) tag for each formula. Further
extension of this set of tags (like automatic tagging
of all paragraphs, section headers, etc) is still a
work in progress.

As the tagpdf package, the axessibility 2.0
package is currently experimental and it is aimed
for individual tests and experiments.

3.1 Usage
To create an accessible PDF document for visually
impaired people, the authors just need to include
the axessibility package into the preamble of
their LATEX project. The supported mathematical

2

ArsTEXnica Nº 0, Dicembre 2099Axessibility 2.0: creating tagged PDF documents with accessible formulae

environments will then automatically produce the
/ActualText and /AltText contents and include
them in the produced PDF file. Formulae will also
be automatically tagged, as well as the document
environment. The tagging of other text tokens
(paragraphs, sections, etc.), at the moment, has to
be inserted manually, under the guidelines of the
tagpdf package.
The environments for writing formulae which

are presently supported are \(, \[, equation*,
equation, align*, and align. Hence, any formula
inserted using one of these environments is acces-
sible and tagged in the corresponding PDF docu-
ment. The click-copy of the formula LATEX code
from the PDF reader, to be pasted elsewhere, is
presently not working with this new release.
Inline and displayed mathematical modes acti-

vated by the old sintaxes $. . . $ and $$. . . $$ are
not supported by the axessibility package (as
in the previous versions). However, external scripts
provided as companion software can address, at
some extent, the problem of source files where the
old TEX sintax is used (see Section ?? below).
Below, an example of LATEX code, illustrating

the usage of axessibility, jointly with tagpdf.

\ documentclass { article }
\ usepackage {etoolbox , axessibility }

\begin{ document }

\ tagstructbegin {tag=P}
\ tagmcbegin {tag=P}

A simple displayed formula :
\ tagmcend

\ tagstructend

\begin{ equation *}
x=\ frac {3a^2}{n+m}
\end{ equation *}

\ tagstructbegin {tag=P}
\ tagmcbegin {tag=P}

A multiline formula , aligned ,
with label:

\ tagmcend
\ tagstructend
\begin{align}
70xy ^2+105 x^2y -35 xy7
& = 35\ left (2xy ^2+3x^2y-xy7\ right) =

\\
& = 35x\left (2y^2+3xy -y7\ right) =

\\
& = 35xy\left (2y+3x -7\ right)
\end{align}

\end{ document }

We observe that, in these cases, the author can
write the formulae without adding anything else.
Moreover, inside the source code of the PDF fi-
le, we find /ActualText and /AltText contents,
with the (Hex) LATEX code inside, automatically

generated by the axessibility.sty package, as
well as the equation tags, namely:

/P
<</MCID 1
/Alt <FEFF 002000200078003 D005C

00660072006100630020007 B
00330061005 E 0032007 D007B
006E002B006D007D0020 >

/ ActualText <FEFF 002000200078003 D005C
00660072006100630020007 B
00330061005 E 0032007 D007B
006E002B006D007D0020 >

>>

and

/P
<</MCID 3
/Alt <FEFF 0037003000780079005 E

0032002 B 0031003000350078
005E 00320079002 D 00330035
007800790037002000260020
003D 002000330035005 C006C
006500660074002000280032
00780079005 E 0032002 B0033
0078005 E 00320079002 D0078
00790037005 C 007200690067
00680074002000290020003 D
0020005 C005C 002000260020
003D 0020003300350078005 C
006C 00650066007400200028
00320079005 E 0032002 B0033
00780079002 D 00790037005 C
007200690067006800740020
00290020003 D 0020005 C005C
002000260020003 D 00200033
003500780079005 C006C0065
006600740020002800320079
002B 00330078002 D 0037005 C
007200690067006800740020
0029 >

/ ActualText <FEFF 0037003000780079005 E
0032002 B 0031003000350078
005E 00320079002 D 00330035
007800790037002000260020
003D 002000330035005 C006C
006500660074002000280032
00780079005 E 0032002 B0033
0078005 E 00320079002 D0078
00790037005 C 007200690067
00680074002000290020003 D
0020005 C005C 002000260020
003D 0020003300350078005 C
006C 00650066007400200028
00320079005 E 0032002 B0033
00780079002 D 00790037005 C
007200690067006800740020
00290020003 D 0020005 C005C
002000260020003 D 00200033
003500780079005 C006C0065
006600740020002800320079
002B 00330078002 D 0037005 C
007200690067006800740020
0029 >

>>

3

D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov, A. Kozlovskiy, N. MurruArsTEXnica Nº 0, Dicembre 2099

respectively. Here the /Alt and /ActualtText
keys are followed by the UTF-16 encoded values
in the Hexadecimal format. So, this makes our
solution fully Unicode compliant.

We note that such use of /Alt and /ActualText
keys is not fully aligned with the best practices of
PDF accessibility techniques. But it does open the
door for real world tests and further experiments.
In particular, the screen reader will read correctly
the LATEX commands. Moreover, the JAWS and
NVDA dictionaries that we created provide the
reading in the natural language, in the case that
the user does not know the LATEX commands. It
is strongly recommended to use the most recent
version of tagpdf (available through the GitHub
website), as well as the most updated versions of
the TexLive distribution.

3.2 Technical Overview

In axessibility we first load the requested packa-
ges, configure tagpdf, and define a pair of internal
variables.

\ NeedsTeXFormat {LaTeX2e}
\ ProvidesPackage { axessibility }

\ RequirePackage { tagpdf }
\ tagpdfsetup { tabsorder =structure ,

uncompress ,activate -all ,
interwordspace =true}

\ tagpdfifpdftexT
{

\ pdfcompresslevel =0
%set language / can also be done

with hyperref
\ pdfcatalog {/ Lang (en -US)}
\ usepackage [T1]{ fontenc }
\input glyphtounicode
\ pdfgentounicode =1

}
\ tagpdfifluatexT

{
%set language / can also be done

with hyperref
\ pdfextension catalog {/ Lang (en -US)}
\ RequirePackage { fontspec }
\ RequirePackage { luacode }
\ newfontface \ zerowidthfont { freeserif

}
\ directlua {
pdf. setcompresslevel (0)
pdf. setmajorversion (2)
pdf. setminorversion (0)
}
}

\ RequirePackage { amsmath }
\ RequirePackage { amssymb }
\ RequirePackage { xstring }

\ newtoks \ @mltext
\ newtoks \ @mltexttmp

Then, we redefine the document environment, so
that the PDF file is automatically tagged at the
Document level.
\ makeatletter
\let\ begin@document =\ document
\let\ end@document =\ enddocument
\ renewcommand {\ document }{\

begin@document \ tagstructbegin {tag=
Document }}

\ renewcommand {\ enddocument }{\
tagstructend \ end@document }

\ makeatother

Subsequently, we redefine the inline formula envi-
ronment, to make it accesible, inserting its (hidden)
LATEX code. We also define an internal command
to produce a space (which is useful in passing
parameters to some of our redefined environments).
\ makeatletter
\ newenvironment { temp@env }{%

\relax\ ifmmode \ @badmath \else $\fi%
\ collect@body \wrap }{%

\relax\ ifmmode \ ifinner $\ else\
@badmath \fi\else \ @badmath \fi}

\ protected \def \(#1\) {\ begin{ temp@env
}#1\ end{ temp@env }}

\ makeatother

\ newcommand {\ auxiliaryspace }{ }

The core of the package is represented by the
wrapping procedures. The first one, \wrap, is used
for both the inline, as well as the displayed single
line, formulae environments (numbered and un-
numbered), which we redefine, to obtain their au-
tomatic tagging and insertion of the corresponding
LATEX code in the /ActualText and /AltText con-
tents. The wrapper receives as parameter the co-
de within the environment, obtained by means of
the \collect@body command (from the amsmath
package), and passes it to the tagging commands
defined in tagpdf.
\ makeatletter
\long\def\wrap #1{
\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {#1} ,
actualtext -o=\ detokenize \
expandafter {#1}}

\ tagmcbegin {tag=P,alttext -o=\
detokenize \ expandafter {#1} ,
actualtext -o=\ detokenize \
expandafter {#1}}

#1
\ tagmcend

\ tagstructend
}
\ makeatother

\ makeatletter
\ renewenvironment { equation }{%

\ incr@eqnum
\ mathdisplay@push
\ st@rredfalse \ global \ @eqnswtrue

4

ArsTEXnica Nº 0, Dicembre 2099Axessibility 2.0: creating tagged PDF documents with accessible formulae

\ mathdisplay { equation }%
\ collect@body \wrap\ auxiliaryspace }{%
\ endmathdisplay { equation }%
\ mathdisplay@pop
\ ignorespacesafterend

}
\ makeatother

\ makeatletter
\ renewenvironment { equation *}{%

\ mathdisplay@push
\ st@rredtrue \ global \ @eqnswfalse
\ mathdisplay { equation *}%
\ collect@body \wrap\ auxiliaryspace }{%
\ endmathdisplay { equation *}%
\ mathdisplay@pop
\ ignorespacesafterend

}
\ makeatother

\ makeatletter
\ protected \def \[#1\]{\ begin{ equation

*}#1\ end{ equation *}}
\ makeatother

The next two, \wrapml and \wrapmlstar, perform
the same task for the multiline environments. We
need a different routine here, due to the more in-
volved typesetting procedure of multiline environ-
ments like align and align*, which are likewise
redefined.
\ makeatletter
\long\def\ wrapml #1{
\def\ @mltext {\ detokenize \ expandafter

{#1}}
\def\ @mltexttmp {}
\ StrBehind [6]{\ @mltext }{ }[\ @mltexttmp

]
\ StrGobbleRight {\ @mltexttmp }{1}[\

@mltext]
\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

\ tagmcbegin {tag=P,alttext -o=\
detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

#1
}
\ makeatother

\ makeatletter
\long\def\ wrapmlstar #1{
\def\ @mltext {\ detokenize \ expandafter

{#1}}
\def\ @mltexttmp {}
\ StrBehind [5]{\ @mltext }{ }[\ @mltexttmp

]
\ StrGobbleRight {\ @mltexttmp }{1}[\

@mltext]
\ tagstructbegin {tag=P,alttext -o=\

detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

\ tagmcbegin {tag=P,alttext -o=\
detokenize \ expandafter {\ @mltext },
actualtext -o=\ detokenize \
expandafter {\ @mltext }}

#1
}
\ makeatother

\ makeatletter
\ renewenvironment {align }{%

\ collect@body \ wrapml \ auxiliaryspace
\ start@align \@ne\ st@rredfalse \m@ne

}{%
\ math@cr \ black@ \ totwidth@
\ egroup

\ ifingather@
\ restorealignstate@
\ egroup
\ nonumber
\ifnum 0= ‘{\ fi\ iffalse }\fi

\else
$$%

\fi
\ ignorespacesafterend
\ tagmcend
\ tagstructend

}

\ renewenvironment {align *}{%
\ collect@body \ wrapmlstar \

auxiliaryspace
\ start@align \@ne\ st@rredtrue \m@ne

}{%
\ endalign

}

\ makeatother

\ endinput

We are presently working to make \wrapml and
\wrapmlstar more flexible, so that they will work
correctly with all the other multiline environments
provided by the amsmath package. This will make
all of them accessible and tagged, as those illu-
strated above. At the moment, the package works
correctly when typesetting with both pdfLaTeX as
well as luaLaTeX.

4 Supporting Software

In addition to the Axessibility package, we deve-
loped additional software to address two use ca-
ses: 1) Preprocessing Scripts for the application of
Axessibility on existing documents, and 2) Screen
Reader Dictionaries for natural language reading
of formulae made accessible with Axessibility. We
are currently working on these supporting soft-
ware, to fix some of the issues we detected through
user’s reports and suggestions, and to expand their
applicability range.

5

D. Ahmetovic, T. Armano, C. Bernareggi, A. Capietto, S. Coriasco, B. Doubrov, A. Kozlovskiy, N. MurruArsTEXnica Nº 0, Dicembre 2099

4.1 Preprocessing Scripts

Axessibility restricts the syntax that can be used
to write mathematical formulae to specific environ-
ments and math mode syntax. Instead, existing
documents may contain unsupported syntax, and
therefore cannot be used with Axessibility without
being first opportunely edited. We provide Axes-
scleaner, an external script written in Python and
Perl, through which it is possible to substitute
unsupported commands and environments with
suitable replacements, thus enabling the use of
Axessibility on existing LATEX documents.

An additional issue lies in the usage of user-
defined macros in the LATEX code. While this is
a common practice to avoid code repetitions and
simplify document authoring, it can limit the ac-
cessibility of formulae with Axessibility. Indeed,
Axessibility is transparent to commands used in
math environments, which means that it will inclu-
de standard LATEX as well as custom macros within
the PDF replacement text. However, custom com-
mands used by an author may bear no meaning
for other readers. Thus, Axesscleaner also replaces
user defined macros with their content, in order to
only contain standard LATEX code within the PDF
replacement text.

4.2 Screen reader dictionaries

Mathematical formulae included as PDF replace-
ment text using Axessibility are easy to read by
LATEX proficient users, using either a screen reader
or a braille display. However, for novice users, the
LATEX code read by a screen reader may be difficult
to comprehend.
To address this problem, we also provide dic-

tionaries for NVDA and JAWS screen readers,
which convert LATEX commands contained within
the PDF replacement text created by Axessibili-
ty into their natural language counterparts (e.g.,
’\frac{2}{3}’ becomes “two thirds”). We are cur-
rently developing additional screen reader scripts
to enable interactive navigation of formulae, and
we are exploring more sophisticated natural lan-
guage processing techniques to personalize formula
reading considering their complexity and context,
as well as user’s proficiency with math.

5 Acknowledgements

The authors wish to thank the several volun-
teers with visual impairment who provided their
fundamental contribution.

. D. Ahmetovic
Dipartimento di Informatica, Univer-
sità degli Studi di Milano
dragan.ahmetovic@unito.it

. T. Armano
Dipartimento di Matematica "G.
Peano", Università degli Studi di
Torino
tiziana.armano@unito.it

. C. Bernareggi
Dipartimento di Informatica, Univer-
sità di Milano
cristian.bernareggi@unimi.it

. A. Capietto
Dipartimento di Matematica "G.
Peano", Università degli Studi di
Torino
anna.capietto@unito.it

. S. Coriasco
Dipartimento di Matematica "G.
Peano", Università degli Studi di
Torino
sandro.coriasco@unito.it

. B. Doubrov
Dual Lab, Belgium
boris.doubrov@duallab.com

. A. Kozlovskiy
Dual Lab Bel, Belarus
k.sasha1994@gmail.com

. N. Murru
Dipartimento di Matematica "G.
Peano", Università degli Studi di
Torino
nadir.murru@unito.it

6

