
02 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

QPCF: Higher-Order Languages and Quantum Circuits

Published version:

DOI:10.1007/s10817-019-09518-y

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1715460 since 2019-11-14T09:47:42Z

Noname manuscript No.
(will be inserted by the editor)

QPCF: higher-order languages and quantum circuits

Luca Paolini · Mauro Piccolo · Margherita Zorzi

Received: 2017 / Accepted: 2018 / Published online: November 18, 2019

Abstract qPCF is a paradigmatic quantum programming language that ex-
tends PCF with quantum circuits and a quantum co-processor. Quantum cir-
cuits are treated as classical data that can be duplicated and manipulated in
flexible ways by means of a dependent type system. The co-processor is essen-
tially a standard QRAM device, albeit we avoid to store permanently quantum
states in between two co-processor’s calls. Despite its quantum features, qPCF
retains the classic programming approach of PCF. We introduce qPCF syntax,
typing rules, and its operational semantics. We prove fundamental syntactic
properties of the system. Moreover, we provide some higher-order examples of
circuit encoding.

Keywords PCF · Quantum Computing · Quantum Programming Languages

1 Introduction

Quantum computing is an intriguing trend in computer science research. The
interest about quantum computing is due to R. Feynman. In [8], the first
relationships between the quantum mechanical model and a formal computa-
tional model such as Turing machines is stated. The first concrete proposal for
a quantum abstract computer is due to D. Deutsch, who introduced quantum
Turing machines [16]. Later, a number of results about computational com-
plexity [64,65,29,32] showed quantum computing is not only a challenging
theoretical subject, but also a promising paradigm for the concrete realization
of powerful machines.

L. Paolini · M. Piccolo
Department of Computer Science, University of Torino (Italy)
E-mail: paolini@di.unito.it,piccolo@di.unito.it

M. Zorzi
Department of Computer Science, University of Verona (Italy)
E-mail: margherita.zorzi@univr.it

 Published with DOI: 10.1007/s10817-019-09518-y

Download from:
https://link.springer.com/article/10.1007/s10817-019-09518-y

2 Luca Paolini et al.

Nowadays, quantum computers are a long term industrial goal and a tangible
reality in term of prototypes. Even if physicists and engineers have to face
tricky problems in the realization of quantum devices, the advance of these
innovative technologies is ceaseless. As a consequence, to fully understand how
to program quantum devices is become an urgent need.

Typically, calculi for quantum computable functions present two different
computational features. On the first hand, there is the unitary aspect of the
calculus, that captures the essence of quantum computing as algebraic trans-
formations. On the other hand, it should be possible to control the quantum
steps, “embedding” the pure quantum evolution in a classical computation. Be-
hind this second point, we have the usual idea of computation as a sequence of
discrete steps on (the mathematical description of) an abstract machine. The
relationship between these different aspects gives rise to different approaches
to quantum functional calculi (as observed in [4]). If we divide the two fea-
tures, i.e. we separate data from control, we adopt the so called quantum data
& classical control (qd&cc) approach. This means that quantum computation
is hierarchically dependent from the classical part: a classical program (ideally
in execution on a classical machine) computes some “directives” and, these
directives are sent to a hypothetical device which applies them to quantum
data. Therefore quantum data are manipulated by the classical program or,
in other words, classical computational steps control the unitary part of the
calculus.

This idea is inspired to an architectural model called Quantum Random
Access Machine (QRAM). The QRAM has been defined in [36] and can be
viewed as a classically controlled machine enriched with a quantum device.
On the grounds of the QRAM model, P. Selinger defined the first functional
language based on the quantum data-classical control paradigm [62]. This work
represents a milestone in the development of quantum functional calculi and
inspired a number of different investigations. Many quantum programming
languages implementing the qd&cc approach can be found in literature [62,63,
55,60]. Details about related works are in Section 7.

In this paper we propose some new contributions to the research on the
qd&cc paradigm by formalizing the quantum language qPCF, based on a sim-
plified version of the QRAM model restricted to total measurements (cf. Sec-
tion 2.1). qPCF extends PCF, namely the prototype of typed functional lan-
guage. Some qPCF features is listed below.

– Absence of explicit linear typing constraints: the management of linear re-
sources is radically different from the mainstream in languages inspired
to Linear Logic such as [62,13,10,11,37,77,60,38]; so, we do not use lin-
ear/exponential modalities.

– Use of dependent types : we decouple the classical control from the quantum
computation and we use dependent types to manage quantum circuits.
Dependent types allow to write not only individual quantum circuits, but
also parametric programs.

qPCF 3

– Emphasis on the Circuit Construction: In accord with the recent trends
in quantum programming theory [69,55,59], qPCF focuses on the quantum
circuit description aspects. This idea already considered in [36] aims to
ease the programming of quantum algorithms.

– No permanent quantum states. Differently from other proposals (e.g. [62,13,
77]), qPCF does not need types for quantum states (and its linear manage-
ment). This is possible, since the interaction with the quantum co-processor
is neatly decoupled by means of the operator dmeas. It offloads a quantum
circuit to a co-processor for the evaluation which is immediately followed
by a (von Neumann) Total Measurement [46]. This means that partial
measures are forbidden. Luckily, the deferred measurement principle [46]
says us that this restriction does not represent a theoretical limitation (cf.
Section 8).

qPCF is an higher-order programming language that retains the standard
classic programming approach. Potentially, this can ease the transition to com-
puters endowed with quantum co-processors.

A preliminary version of qPCF has been proposed in [54]. With respect to
the first version, we extended our proposal following several directions.

– We slightly reformulate syntax and heavily improve the type system, that
is radically more refined.

– We carefully provide details of proofs (just stated in the first version).
Proofs are non trivial, since one has to consider infinite ground types and
to unravel the mutual relationships that holds between syntactic classes.

– We extend the semantic in order to take into account the probabilities of
quantum measurements.

– We add many examples.
– We provide a deep discussion about related works by focusing on classical

control quantum languages.
– We define a restricted version of the general QRAM (cf. Section 2) that

represents the architecture required by qPCF.

Summing up, we propose a new, stand-alone quantum programming lan-
guage that aims to combine classical programming style, parametric circuit
programming, higher-order and quantum features in a unified setting.

Synopsis

In Section 2 we describe the idealized quantum programming environment (a
restricted version of the QRAMmachine) behind qPCF. Section 3 and Section 4
introduce the syntax and typing rules of qPCF respectively. The operational
semantic of qPCF and main properties of the system are in Section 5. In
Section 6 we discuss the implementation of some quantum algorithms. A
detailed overview about the state of art of classical control quantum languages
is in Section 7. In Section 8 we propose some conclusive considerations with
special care for the language expressivity.

4 Luca Paolini et al.

2 Background: the QRAM model

We assume some familiarity with notions as quantum bits (or qubits the
quantum equivalent of classical data), quantum states [46,39,72,73] (systems
of n quantum bits), quantum circuit and quantum circuit families [47]. In
Section 2.1 we introduce a simplified version of the QRAM (the architec-
tural model behind the quantum data and classical control approach) called
rQRAM. The rQRAM represents the idealized hardware to execute qPCF.

2.1 Introducing an idealized co-processor

The physical realization of basic components necessary for universal quantum
computation has gathered much attention in recent years, and many realistic
technologies have emerged (see [41] for a survey): trapped ions, quantum dots,
polar molecules, and superconductors among others. It is commonly accepted
that a physical quantum computer has to fulfill the following five criteria which
were proposed by Di Vincenzo at IBM in [20]: (i) a scalable physical system
of qubits; (ii) the ability to initialize the state of the qubits; (iii) long rele-
vant decoherence times (qubits lose their quantum properties exponentially
quickly); (iv) a universal set of quantum gates; and (v) a measurement capa-
bility. These criteria correspond quite directly to various engineering hurdles
that implementations have to face. In particular, in the last years many ef-
forts have been supplied to increase the decoherence times and to overcome
adjacency/neighboring constraints on qubits (see [9,20,41]).

It is clear that future quantum hardware may differ in many details, so
we have to look for some abstract model of quantum computations. qPCF is
designed to be executed on the QRAM programming environment (see [36,61,
42]) which is commonly accepted as a reasonable model of computation for
describing quantum computing devices. However, qPCF rests on a restricted
QRAM model that relaxes two crucial issues: (i) bounded dechoerence times
are sufficient because the decoherence-care is needed only during the evaluation
of a single circuit and, (ii) free-rewiring hardware ability is not required, since
we strictly rest on the basic gates provided by the co-processor.

We quote the QRAM introduction provided in [36].

It is increasingly clear that practical quantum computing will take place on a clas-
sical machine with access to quantum registers. The classical machine performs
off-line classical computations and controls the evolution of the quantum registers
by initializing them to certain states, operating on them with elementary unitary
operations and measuring them when needed.

We also quote some concise remarks done by Selinger in [61].

Typically, the quantum device will implement a fixed, finite set of unitary transfor-
mations that operate on one or two quantum bits at a time. The classical controller
communicates with the quantum device by sending a sequence of instructions, spec-
ifying which fundamental operations are to be performed. The only output from the
quantum device consists of the results of measurements, which are sent back to the
classical controller.

qPCF 5

It is worthwhile to note that the QRAM model is sometimes considered too
restrictive to support proposed quantum programming languages; therefore,
it is enhanced to include more possible interactions between the classical and
the quantum devices. (see [68][p.3])

qPCF is designed to operate in a restricted QRAM programming environ-
ment named rQRAM, that corresponds, quite well, to an idealized co-processor
for a classical computer. The idea is that our classical computers compute
circuits (i.e. a sequences of gates) that are classical data. A circuit can be
offloaded to the quantum device in order to be applied to a quantum register
suitably initialized. The co-processor has to be able: (i) to initialize a register
to a given classic value; (ii) to apply a given sequence of gates on the state
stored in the register; (iii) to perform a final quantum measurement of the
whole register. It is worthwhile to remark some peculiarities of our rQRAM.
It neatly isolates the application of non-unitary transformations from unitary
ones; the set of available quantum gates (hopefully, a universal set of quantum
gates) determines the possible permutations of qubits; and, more interestingly,
the register is not assumed to be able to store permanently qubits (with their
unbounded decoherence time issues). Indeed, the rQRAM co-processor has to
support a bounded decoherence time (the maximal of times needed to the
application of gates in the device) and it is even possible to imagine how to
include several classical controllers to share the access to the same single quan-
tum device. However, qPCF can be easily executed on standard QRAMmodels.
We are convinced that its realization can be easier that the standard QRAM
models and interesting for implementation. In Section 8.1 we explain why our
model does not cause any theoretical limitation, albeit some algorithms cannot
be directly executed on it.

3 qPCF

qPCF is quantum programming language based on the lambda-calculus, like
many other quantum calculi (see, for instance, [62,13,77]). In accord with the
recent trend in the development of quantum programming languages [28,54,
55,59,60], qPCF focuses on the abilities to generate and manipulate quantum
circuits.

No permanent quantum state can be stored in qPCF, thus linear types
are avoided: this distinguishes qPCF from other typed quantum programming
languages. The linearity for quantum control is completely confined to atomic
datatypes by using a simplified form of dependent types as that suggested
in [56]: a dependent type picks up a family of types that bring in the type
auxiliary information (just the arity of a circuit, in our case).

3.1 Syntax Overview.

qPCF extends PCF [57,23] to manage some additional atomic data structures:
indexes (normalizing number expressions) and circuits. Index expressions are

6 Luca Paolini et al.

essentially built by means of variables, numerals and some total operations on
expressions: ⊙ ∈ {+, ∗} (viz. sum, product). Circuits expressions are obtained
by means of suitable operators combining gates; their evaluation is expected
to produce (when terminating) strings on gates.

The row syntax of qPCF follows:

M, N, P, Q= x | λx.M | MN | n | pred | succ | if | Yσ | set | get
| U | ⦂ | ‖ | iter | reverse | ⊙EE′ | size | dMeas

where E ranges over index expressions, namely terms typed as indexes.
In the first row, we include PCF extended with some syntactic sugar in

order to facilitate the bit-wise access to numerals: get allows us to extract (to
read) the i-th digit of the binary representation of a numeral, i.e. its i-th bit;
set allows to modify the i-th bit of a numeral. They are added to simplify the
initialization and decomposition of states.

qPCF is parameterized by a set of quantum gates that correspond to the
unitary operators made available by the quantum co-processor. We assume U

to range on available gates and, in accord with [55], we can assume that a
universal subset of unitary gates (see [33,35,46]) is available. Let U be the
set of available computable unitary operators, such for each gate U there is a
unique U ∈ U . If k ∈ N then we denote U(k) the gates in U having arity k+1,
so U =

⋃ω
0 U(k). More explicitly, the gates of arity 1 are in U(0) and so on.

The syntax of (evaluated) circuits is generated by ⦂, ‖ and gate-names.
The symbol ⦂ sequentializes two circuits of the same arity, while ‖ denotes
the parallel composition of circuits. We build circuit expressions by means of
iter and reverse. We use iter to produce the parallel composition of a first
circuit with a given number of a second one. We use reverse to transform a
circuit into another one of the same arity.

Indexes are operated by total operations. W.l.o.g. we assume ⊙ ∈ {+, ∗}
(viz. sum, product). Types of circuits include index expressions. We add size

to qPCF to emphasize the gain that dependent type can concretely provide,
although this makes the proofs of the language properties more complex. size
is an operator that applied to a circuit-expression returns the arity of the
corresponding circuit, viz. an index information.

Last, but not least, we use dMeas to evaluate circuits suitably initialized:
dMeas returns a numeral being the binary representation of a quantum measure
executed on all quantum wires (of the circuit) as a whole.

qPCF is indeed conceived to manage circuits that can be freely duplicated
and erased, while quantum states are hidden by means of dMeas. In some
sense, dMeas offloads a quantum circuit to a co-processor, it waits the end of
circuit execution and it returns the final measure of all wires.

3.2 Dependent Types.

Dependent types are widely used in proof-theoretical research. Typically, in
presence of strongly normalizing languages. Unfortunately, the type-checking

qPCF 7

of dependent types requires to decide the equality of terms (that can be in-
cluded in types) and the strong normalization is not realistic for programming
languages [52]. Therefore, the management of terms in types is the crucial
issue that has to be faced in a programming language. This point is discussed
in page 75, Section 2.8 of [7] where different programming approaches are
compared. Following [74,76], qPCF forbids the inclusion of arbitrary terms in
types. A suitable subclass of terms (numeric expressions always normalizing)
is identified to this purpose: these terms are called indexes.

Our approach to dependent types is closely inspired to that mentioned
in [56, §30.5] to manage vector’s types: the decoration carries with it, some
dimensional (i.e. numeric) information. We avoid general dependent types sys-
tems (see [7] for a survey) because their great expressiveness is exceeding our
needs. We prefer to maintain the qPCF type system as simple as possible in
order to show the feasibility of the approach and its concrete benefits.

3.3 Types Overview.

Traditional types of PCF (i.e. integers and arrows) are extended to include 2
new types: a type for indexes (strong normalizing numeric expressions) and a
type for circuits (carrying around indexes). Types of qPCF are formalized as
follows:

σ, τ= Nat | Idx | circ(E) | Πxσ.τ

where E is an index expression (viz. a normalizing numeric expression). As
common in presence of dependent types, we replace arrows by quantified types
that include more information than arrows: they make explicit, in the type,
the variable-name which is bounded. The variable-name can be α-renamed
whenever the standard capture-free proviso is satisfied. We write σ → τ as an
abbreviation for Πxσ.τ whenever, either the variable-name x does not occur
in τ or we are not concerned with x.

3.4 Indexes.

The type Idx picks up a subset of numeric normalizing expressions. In partic-
ular, Idx does not allow to type non-normalizing expressions as Y(λx.x). The
main use of Idx is to type all proper-terms used in dependent types. Indexes
are built on numerals and total operations on them. We limit our operations
to addition and multiplication, but we assume that this set is conveniently
tuned in a concrete case, e.g. by adding the (positive subtraction) −̇, or the
modulus %, or a selection ifx and so on. See Remark 1 for more details.

8 Luca Paolini et al.

4 Typing system

Finite sets of pairs “variable:type” are called bases whenever variable-names
are disjoint: we use B to range over them. We denote dom(B) the finite set
of variable names included in B and we denote ran(B) the finite set of types
that B associates to variables. As usual, we use the notation B ∪ {x : σ} to
extend the base B with the pair x : σ under the proviso that, either we are
adding a fresh variable (i.e. x 6∈ dom(B)) or that x : σ is already in B. We
assume analogous conditions writing B ∪B′, for any B′.

qPCF includes a typing axiom of the shape x : σ ⊢ x : σ for each type σ.
In presence of dependent types, σ can contain terms and, consequently, it is a
valid type only when such terms are well-typed. Luckily we have a unique type
that includes dependencies, namely the type of circuit; moreover, it includes
a term that must be typed as index. We solve this issue by using the notation
� B in order to express the proviso that all types in B are well typed.

Definition 1 We write � B in order to meaning that, for all x : σ in B, if
circ(E) occurs in σ then B\{x:σ} ⊢ E : Idx is a valid typing (cf. Definition 2). ⊓⊔

Example 1 For instance, we write � {x : Idx, z : circ(x⊕ E′)} in order to mean
that x : Idx ⊢ z⊕ E′ : Idx is a valid typing and that {x : Idx} ⊢ E : Idx holds for
all types circ(E) eventually occurring in E′. ⊓⊔

Usually, dependent types are formalized via the introduction of super-types
(named kinds) and super-typing rules (a.k.a. kinding rules) that identify well-
given types, see [7] for instance. To limit the number of kinding rules, depen-
dent type systems introduce formal tricks that allow to re-use the (ground)
typing rules in the kinding system. We taken advantage of our limited use
of dependent types to circumvent the introduction of kinds and kinding rules
aiming at: (i) to avoid the explosion of the number of rules and complex over-
lapping of rules; (ii) to make the extension of PCF as clear as possible; and,
(iii) to avoid further complexity (viz. mutual induction) in proofs. For the sake
of completeness, we remark that it is possible to reformulate the use of � by
adding a unique kind � to identify well-given types, and to add kinding rules
checking that terms in types are well-typed.

Definition 2 The rules of the typing system are given in Table 1. A typ-
ing is valid whenever it is the conclusion of a finite type derivation built on
the given rules. Types are considered up to the congruence ≃, which is the
smallest equivalence including: (i) the α-conversion of bound variables; (ii)
β-inter-convertibility of β-redexes (occurring in terms included in types); (iii)
associativity, commutativity and distributivity of sum and product together
with the properties of neutral elements (viz. 0, 1). ⊓⊔

We consider types up to inter-convertibility of included terms. For the sake
of simplicity, we avoid to formalize the interconvertibility via additional rules.
Moreover, we remark that we introduce the untyped row syntax (cf. Section

qPCF 9

� B ∪ {x : σ}

B ∪ {x : σ} ⊢ x : σ
(P0)

B ∪ {x : σ} ⊢ N : τ

B ⊢ λxσ .N : Πxσ .τ
(P1)

B ⊢ P : Πxσ .τ B ⊢ Q : σ

B ⊢ PQ : τ [Q/x]
(P2)

� B
B ⊢ succ : Nat → Nat

(P3)
� B

B ⊢ pred : Nat → Nat
(P4)

� B
B ⊢ if : Nat → Nat → Nat → Nat

(P5)
B ⊢ E : Idx

B ⊢ if : Nat → circ(E)→ circ(E)→ circ(E)
(P ′

5
)

σ = τ1 → . . . → τn → γ (γ∈{Nat,circ(E)} and n≥0) � B ∪ {x : σ} where x is fresh

B ⊢ Yσ : (σ → σ) → σ
(P6)

� B
B ⊢ get : Nat → Nat → Nat

(B1)
� B

B ⊢ set : Nat → Nat → Nat
(B2)

B ⊢ M : Idx
B ⊢ M : Nat

(I0)
� B

B ⊢ n : Idx
(I1)

B ⊢ E0 : Idx B ⊢ E1 : Idx

B ⊢ ⊙ E0 E1 : Idx
(I2)

B ⊢ M : circ(E)

B ⊢ size M : Idx
(I3)

U ∈ U(k) � B

B ⊢ U : circ(k)
(C1)

B ⊢ E : Idx

B ⊢ ⦂ : circ(E)→ circ(E)→ circ(E)
(C2)

B ⊢ E0 : Idx B ⊢ E1 : Idx

B ⊢‖: circ(E0)→ circ(E1)→ circ(E0 + E1 + 1)
(C3)

B ⊢ E : Idx

B ⊢ reverse : circ(E)→ circ(E)
(C4)

B ⊢ E0 : Idx B ⊢ E1 : Idx

B ⊢ iter : ΠxIdx. circ(E0)→ circ(E1)→ circ(E0 + ((1 + E1) ∗ x))
(C5)

B ⊢ E : Idx

B ⊢ dMeas : Nat → circ(E)→ Nat
(M)

Table 1 Typing Rules.

3) only in order to help the reading. Nevertheless, we are interested only to
explicitly typed terms (à la Church) where all terms are considered together
with their whole typing information.

4.1 Type rules overview

Rules (P0), (P1), (P2), (P3), (P4), (P5), (P
′
5), (P6) are directly inherited from

PCF. We add � constraint in the premises of rules where bases are introduced
in order to ensure that all terms included in (considered) types are well typed.
Rules (P5), (P

′
5), (P6) restrict types allowed for conditional and recursive terms

in order to ensure that the evaluation of terms typed with Idx are strongly
normalizing. Note that the premise of (P ′

5) implies that � B. Rules (P1), (P2)
involve the type binder Π that generalizes standard arrow-type and take care
of possible free variables in types. As expected in dependent type systems, (P2)
substitutes the argument also in types. In rules (P3), (P4), (P5), (P

′
5), (P6) we

use arrows as an abbreviation for Π-types, since the corresponding variable-
names is never typed with Idx. Note that all numerals are typed Nat by means
of rules I0 and I1.

Remark 1 It is worth to notice that the choice of the operators that we admit in
index expressions has a strong impact on the decidability of the type-checking

10 Luca Paolini et al.

of the language because they can occur in types. First, a set of strong normal-
izing expression ensures that the evaluation of closed terms can be decided and
no run-time error can arise. On the other hand, when we build a program we
have to manage open terms and open expressions also in types. More explicitly,
let us assume B ⊢ P : Πxcirc(EP).τ and B ⊢ Q : circ(EQ): then, we can apply the
rule (P2) only whenever EP ≃ EQ. If the language of index expressions is not
endowed with a decidable equality then we can run into unwanted program-
ming awkwardness. The decidability of the identity between index expressions
follows from [17]. Appealing extensions to elementary function or primitive re-
cursive functions are possible, but their impact on the programming practice
should be carefully considered facing decidability issues [58]. ⊓⊔

The rule (B1) types get, that returns 0 or 1 when applied to two integers. More
precisely it returns the bit (in the binary representation) of the first integer in
the position pointed by the second integer. The rule (B2) types set that takes
in input two integers: the second one selects a bit in the binary representation
of the first one and it returns as output the numeral obtained by setting to 1
the selected bit in the binary representation of the first numeral. Their typing
agree with these behaviors.

The rule (I0) allows to use an index expression as a term typed Nat. Rules
(I1), (I2) type our basic index expressions as expected. The rule (I3) brings
back in term the arity information included in the type of a circuit.

Rules (C1), (C2), (C3), (C4), (C5) type circuit expressions. We recall that
the index 0 has to be intended denoting the arity 1. (C1) makes available
the basic gates. (C2) types the sequential composition of circuits having the
same arity. (C3) types the parallel composition of two circuits. (C4) types
an operator that (possibly) transforms a circuit in its adjoint, so the arity is
preserved. (C5) types the parallel composition of some circuits, namely a base
circuit M and some copies of a circuit N.

Finally, (M) types an operator taking in input a state (the binary repre-
sentation of a numeral) and a circuit, that gives back another state.

Example 2 An interesting example of term that provides evidence of the cir-
cularity arising from dependent types follows.

x : ΠzIdx. circ(z) ⊢ x : ΠzIdx. circ(z)
(P0)

....
⊢ M : circ(E)

⊢ size (M) : Idx
(I3)

x : ΠzIdx. circ(z) ⊢ x size(M) : circ(size(M))
(P2)

M can be any closed term of qPCF typed as circuit and E can be any closed
term of qPCF typed Idx.

Since can be M can be any closed term, t his example shows that types can
(possibly) include sub-terms being either non-terminating or open variables,
not typed Idx. However, such terms are always argument of size that looks
only for the index term in the “more external” type: but size throws away
such information (cf. Definition 2 for more details). ⊓⊔

qPCF 11

4.2 Some typing properties.

Many standard properties can be easily adapted to typing system in Table 1.
If B ⊢ M : τ then FV(M),FV(τ) ⊆ dom(B). Bases of typing can be weakened,
viz. if B ⊢ M : τ and dom(B)∪dom(B′) = ∅ then B∪B′ ⊢ M : τ . Moreover, it is
easy to check that B ⊢ M : τ implies that � B. Straightforward adaptation of
standard Generation Lemmas hold too. However our interest is more focused
on dynamic properties of the typing system than on its logical properties.

Lemma 1 (Substitution lemma)
If B ∪ {x : σ} ⊢ M : τ and B′ ⊢ N : σ then B[N/x] ∪B′ ⊢ M[N/x] : τ [N/x].

Proof By induction on the derivation B ∪ {x : σ} ⊢ M : τ . In accordance with
the notation introduced at the beginning of Section 4, dom(B)∪ dom(B′) can
be not empty. ⊓⊔

From Lemma 1 the subject reduction follows easily.

Lemma 2 Let D be a derivation concluding B ⊢ M[N/x] : σ.

1. If x ∈ FV(M) then, D includes a subderivation DN concluding BN ⊢ N : τ ,
for some B ⊆ BN and τ ; and, moreover, B ⊢ λx.M : Πx

τ .σ.
2. If x 6∈ FV(M) and x 6∈ dom(B) then B ⊢ λx.M : Πx

τ .σ for any τ .
3. If DN is a derivation concluding B ⊢ N : τ , for some τ then B ⊢ (λx.M)N : σ.

Proof 1. First, by induction on D we prove that in D there is a subderivation
BN ⊢ N : τ . Second, by induction on D we prove that we can transform D
in a derivation D∗ concluding B ∪ {x : τ} ⊢ M : σ. We conclude by using
the rule (P1).

2. Since M[N/x] = M, it is easy to prove that B ∪ {x : τ} ⊢ M : σ by induction
on D. We conclude by using the rule (P1).

3. By the previous cases of this Lemma and by using the rule (P2) (note that
x does not occur in σ by hypothesis). ⊓⊔

Let C[.] denote a context for qPCF.

Lemma 3 (Typed subject expansion) Let DN be a derivation concluding
B ⊢ N : τ , for some τ . If B ⊢ C[M[N/x]] : σ then B ⊢ C[(λx.M)N] : σ.

Proof W.l.o.g. we can assume that x is fresh, so the proof follows by induction
on B ⊢ C[M[N/x]] : σ and by using the Lemma 2. ⊓⊔

It is worth to remark some peculiarity of this typing system.

Lemma 4 1. If B ⊢ M : Idx then B ⊢ M : Nat.
2. Let B ⊢ M : σ be a typing derivation. If circ(E) occurs in it, then B ⊢ E : Idx.
3. If B ⊢ M : σ then � B ∪ {x : σ} where x is fresh.

Proof 1. By rule (I0). 2,3. The proof can proceed by induction on the deriva-
tion B ⊢ M : σ by using the Substitution Lemma. ⊓⊔

12 Luca Paolini et al.

5 Semantics of qPCF

As for PCF, the evaluation of qPCF focuses on programs, viz. closed terms
of ground types. Nevertheless, PCF has just one (or two) ground types, while
qPCF has denumerable closed ground types, namely Nat, Idx and circ(n).

As for PCF, the evaluation of a term typed Nat can either diverge or give
back a numeral. The evaluation of a term typed Idx should always converge,
and give back a numeral. The evaluation of a term typed circ(E) can either
diverge or give back an evaluated circuit. In the following, we use C to de-
note circuits (resulting from the evaluation of circuit expressions), i.e. strings
built by gate-names, parallel composition and serial composition. Moreover,
numerals and circuit strings are sometimes denoted V.

Definition 3 We formalize the evaluation of qPCF by means of statements of
the shape M ⇓⇓⇓α V obtained as conclusion of a (finite) derivation D built with the
rules in Table 2, such that: (i) M is a closed ground term; and, (ii) 0 < α ≤ 1
is the probability that D is the evaluation. For the sake of simplicity, we write
M ⇓⇓⇓ V to mean that there is a derivation (not necessarily unique) concluding
M ⇓⇓⇓α V for some 0 < α ≤ 1 and, we write M ⇑ to mean that no α > 0 and V

exist, such that M ⇓⇓⇓α V. ⊓⊔

We remark that the semantics of Table 2 rests on an external semantics
via the premise of the rule (m), that executes the circuit in accord with the
laws of quantum mechanics (cf. Definition 4).

Table 2 includes the standard call-by-name semantics of PCF, namely the
first two lines of rules are well-known.

The rules (sz), (op) evaluate some index expressions. In particular, (sz)
uses the typing information of M to recover its arity information. Since types
are preserved during the evaluation (cf. Section 5.2), we can be sure that
the information we extract from types is an index. Moreover, it is strongly
normalizing by Theorem 1.

Example 3 We consider an example that, in some sense, allows us to com-
plement the Example 2. It is easy to see that ⊢ Y(λxcirc(8).x) : circ(8) and
⊢ size (Y(λxcirc(8).x)) : Idx. Although Y(λxcirc(8).x) ⇑, it is interesting to note
that size (Y(λxcirc(8).x)) ⇓⇓⇓1

8. ⊓⊔

Let ⌈m⌉n be notation for (

n
︷ ︸︸ ︷

(m / 2) . . . / 2)%2 where / is the integer division
(neglecting the remainder of the division) and % is the modulo (giving back the
remainder of the division). Thus, ⌈m⌉0 is the rightmost bit of the binary repre-
sentation of m. The rules (gt) and (st) get/set a bit of the first argument (the
one selected by the second argument). For example, the numeral set 0 n+ 1

is the decimal representation of the binary state 1 0 . . . 0
︸ ︷︷ ︸

n

and get 3 0 yields the

bit 1. Clearly, set, get are syntactic sugar to manage input states.

qPCF 13

n ⇓⇓⇓1 n
(n)

M ⇓⇓⇓α n

succ(M) ⇓⇓⇓α n+ 1
(s)

M ⇓⇓⇓α n+ 1

pred(M) ⇓⇓⇓α n
(p)

M[N/x]P1 · · · Pm ⇓⇓⇓α V

(λx.M)NP1 · · · Pm ⇓⇓⇓α V
(β)

M ⇓⇓⇓α 0 L ⇓⇓⇓α
′

V

if M L R ⇓⇓⇓α·α′

V

(ifl)
M ⇓⇓⇓α n+ 1 R ⇓⇓⇓α

′

V

if M L R ⇓⇓⇓α·α′

V

(ifr)
M(YM)P1 · · · Pi ⇓⇓⇓

α V

YMP1 · · · Pi ⇓⇓⇓
α V

(Y)

⊢ M : circ(E) E ⇓⇓⇓α n

size M ⇓⇓⇓α n
(sz)

E0 ⇓⇓⇓α m E1 ⇓⇓⇓α
′

n

⊙ E0 E1 ⇓⇓⇓α·α′

m⊙ n

(op)
M ⇓⇓⇓α m N ⇓⇓⇓α

′

n

get M N ⇓⇓⇓α·α′

⌈m⌉n
(gt)

M ⇓⇓⇓α m N ⇓⇓⇓α
′

n and m′ is such that ⌈m′⌉n = 1 and ∀k 6= n⌈m′⌉k = ⌈m⌉k

set M N ⇓⇓⇓α·α′

m′
(st)

U ⇓⇓⇓α U
(u)

M0 ⇓⇓⇓α C0 M1 ⇓⇓⇓α
′

C1

M0 ⦂ M1 ⇓⇓⇓α·α′

C0 ⦂ C1

(u′)
M0 ⇓⇓⇓α C0 M1 ⇓⇓⇓α

′

C1

M0 ‖ M1 ⇓⇓⇓α·α′

C1 ‖ C0

(u′′)

M ⇓⇓⇓α U (‡U) = U′

reverse M ⇓⇓⇓α U′
(r0)

M ⇓⇓⇓α C0 ⦂ C1 reverse C0 ⇓⇓⇓α
′

C′0 reverse C1 ⇓⇓⇓α
′′

C′1

reverse M ⇓⇓⇓α·α′·α′′

C′1 ⦂ C′0

(r1)

E ⇓⇓⇓α n M0 ⇓⇓⇓α
′

C0 M1 ⇓⇓⇓α
′′

C1

iter E M0 M1 ⇓⇓⇓α·α′·α′′

C1 ‖· · ·‖C1
︸ ︷︷ ︸

n

‖C0
(it)

M ⇓⇓⇓αC0 ‖C1 reverse C0 ⇓⇓⇓α
′

C′0 reverse C1 ⇓⇓⇓α
′′

C′1

reverse M ⇓⇓⇓α·α′·α′′

C′0 ‖ C′1

(r2)

M ⇓⇓⇓α m N ⇓⇓⇓α
′

C N : circ(k) (n, α′′) ∈ circuitEvalk(m↾k, C)

dMeas(M, N) ⇓⇓⇓α·α′·α′′

n

(m)

Table 2 Operational Semantics.

The rules (u), (u′), (u′′), (r0), (r1), (r2), (it) evaluate circuit expressions in
circuits, viz. strings on ⦂, ‖ and the gate-names U. Note that (u′) and (u′′)
evaluate sequential and parallel composition of circuit expressions.

Example 4 (Sequential composition of quantum circuits) Let C : circ(k) be a
given circuit. We can use λxcirc(k).x ⦂ x : circ(k)→ circ(k) in order to concatenate
two copies of C. Let k be an arbitrary numeral and let Mseq be

λucirc(k).λxNat.YWux : circ(k)→ Nat → circ(k)

where W = λwσ.λucirc(k).λyNat. if y (u) (⦂ (u) (w u (pred y))) has type σ → σ,
with σ = circ(k) → Nat → circ(k). We can use Mseq applied to C and n to
concatenate n + 1 copies of C. It is straightforward to parameterize Mseq in
order to transform it in a template for a circuit-builder that can be used for any
arity. It suffices to replace k with the variable kIdx and to abstract it; so that
the resulting term MA

seq = λkIdx.λucirc(k).λxNat.YWux has type ΠkIdx. circ(k)→
Nat → circ(k). ⊓⊔

The rule (it) provides a mechanism to compose circuits in parallel. It is
driven by an argument of type Idx in order to ensure that iteration is strong
normalizing and, consequently, that the arity of the generated circuit is always
a numeral.

14 Luca Paolini et al.

Example 5 (Parallel composition of quantum circuit) Let Mpar be

λxIdx.λucirc(k)λwcirc(h). iter x u w : ΠxIdx. circ(k)→ circ(h)→ circ(k+ (x ∗ (h+ 1))) .

Mpar when applied to an n and two unitary gates U1 : circ(k) and U2 : circ(h)
generates a simple circuit built upon a copy of gate U1 in parallel with n copies
of gate U2. It is straightforward to parameterize the above example. It suffices
to replace numerals k and h in the above example by variables and to abstract
to obtain a single parametric term typedΠkIdx.ΠhIdx.ΠxIdx. circ(k)→ circ(h)→
circ(k+ (x ∗ (h+ 1))). ⊓⊔

More recent quantum programming languages [28,54,55,60] include the
possibility to manipulate quantum circuits and, in particular, of reversing cir-
cuits. Likewise, our operator reverse is expected to produce the adjoint circuit
of its input. Its definition rests on the choice of total endo-function (mapping
each gate of arity k in a gate of arity k) that we denote with the symbol ‡, and
that returns the adjoint of each gate. The circuit reversibility is implemented
by rewiring gates in reverse order and, then, by replacing each gate by its
adjoint. Rules (r0), (r1) and (r2) implement this policy.

The evaluation of circuits is characterized by Lemma 5.

Quantum Co-processor. The rule (m) evaluates the dMeas arguments and it
uses the results of these evaluations to feed an external evaluating device: a
quantum co-processor [69]. It is considered as a black-box that receiving a
suitable evaluated circuit for the evaluation and its initialization, gives back
a total measurement executed on the final state. In contrast with the other
quantum programming languages based on the QRAMmodel, the co-processor
of qPCF is not expected to record states between calls to it. Therefore, the
decoherence issues are limited to its internal operations (cf. Section 2.1).

The circuit evaluation is described in the standard way by means of the
Hilbert’s spaces and von Neumann Measurements [31,45,33].

Remark 2 Following the standard axiomatization of quantum mechanics, usu-
ally proposed in terms of some postulates (see [77] for a simple formulation), we
include in the language an explicit operator that represents the so called von
Neumann Total Measurement, a special kind of projective measurements (see
e.g. [31,45,33]). Informally, given a quantum state, total projective measure
destroys superposition and returns a classical state, i.e. a sequence of classical
bits |b1, b2, . . . , bn〉. The restriction to total measurement is not too restrictive
because of the Principle of Deferred Measurement [45, p.186]:

Measurements can always be moved from an intermediate stage of a quantum circuit
to the end of the circuit; if the measurement results are used at any stage of the
circuit then the classically controlled operations can be replaced by conditional
quantum operations.

⊓⊔

In accord with Section 3.1, we recall that C : circ(n) aims to represent a
quantum circuit operating on n+ 1 qubits.

qPCF 15

Definition 4 Let Circn be the set of (evaluated) circuits typed circ(n) and let
N = 2n+1. Let HN be a Hilbert space of finite dimension N , let {|ϕi〉} be a
orthonormal basis on HN and let HN → HN be the set of unitary operators
on HN .

1. Hilbn : Circn → (HN → HN) is a mapping from evaluated circuits into
their corresponding algebraic operators defined as follows: Hilbn(U)= U
whenever U is typed circ(n), so that U : HN → HN ; Hilbn(C0 ‖ C1)=
Hilbn0(C0) ⊗ Hilbn1(C1) whenever Ci is typed circ(ni) and n = n0 + n1;
Hilbn(C0 ⦂ C1)= Hilbn(C0) ◦Hilbn(C1).

2. A von Neumann measurement (see page 49 of [33], for instance) with re-
spect to the basis of HN and a given state

ψ =
∑

i

αi |ϕi〉

outputs the i with probability |αi|2 ∈ (0, 1].
3. circuitEvaln : Nat × Circn → 2N×(0,1] is a mapping from a pair (an initial

state and a circuit) to a powerset of pairs (a vector of the basis and its
probability) defined as follows:

circuitEvaln(x, C) =

{

(i, |αi|2)
∣
∣
∣
∣
∣
Hilbn(C)(|ϕx〉) =

∑

i

αi |ϕi〉
}

.

⊓⊔

The rule (m) describes a call to an external quantum co-processor that has
to be able to evaluate quantum circuits. The co-processor is not assumed to
store any quantum state between calls.

Lemma 5 1. If ⊢ M : circ(n) and M ⇓⇓⇓ N then ⊢ N : circ(n) where N is a circuit.
2. If C is a circuit such that ⊢ C : circ(n) then Hilbn(C) is well-defined.

Proof We recall that circuits are built on U | ⦂ | ‖.

1. M ⇓⇓⇓ N means that there exists a derivation D concluding M ⇓⇓⇓α V where
α > 0. The proof is by induction on the last rule applied in D. Rules (n),
(s), (p),(sz), (op), (gt), (st) and (m) are not possible because of the typ-
ing hypothesis. Rules (β), (if l), (ifr) and (Y) follow immediately by the
induction hypothesis. The rule (u) is immediate. The rule (r0) is straight-
forward, because ‡ (cf. rule (r0)) is a total operator that respects arities.
The rules (u′), (u′′), (r1), (r2), (it) follow immediately by induction.

2. The proof follows by induction on the typing rules. By the previous point
of this lemma, it is sufficient to check the rules (C1), (C2), (C3). ⊓⊔

Let m↾k be the restriction of the binary representation of m to the first k

bits.

16 Luca Paolini et al.

Example 6 (Creating and evaluating the EPR Circuit) Let CNOT : circ(1) be
the cnot gate and let H : circ(0) and I : circ(0) be the (unary) Hadamard
and Identity gates, respectively. The following qPCF-term represents a simple
circuit that generates the well-known EPR state [45]:

EPR = (I ‖ H) ⦂CNOT : circ(1) .

Given a sequence (b1, . . . , bk) of bits, we write n(b1, . . . , bk) to denote the cor-
responding numeral.
The evaluation of dMeas(0, EPR) asks to the quantum co-processor the execu-
tion of the circuit EPR on the initial state n(00). This execution returns a fair
superposition of |00〉 and |11〉 , i.e. the state 1√

2
|00〉+ 1√

2
|11〉. Since

circuitEval(0, EPR) = {(n(00), 1
2
), (n(11),

1

2
)} ,

it follows that both dMeas(0, EPR) ⇓⇓⇓1

2 0 and dMeas(0, EPR) ⇓⇓⇓1

2 3 (note that
0 = n(0, 0) and 3 = n(1, 1)). ⊓⊔

It is well-known that quantum measures break the deterministic evolution
of a quantum system. As a consequence, in presence of a measurement operator
in a quantum language (equipped with an universal basis of quantum gates),
or generally in a language equipped with a choice constructor, one necessarily
loses confluence. For details on this argument see [11,19,5,6].

5.1 On the Probabilistic evaluation

The probabilistic evaluation of formal quantum programming languages is
usually defined by means of a small-step operational semantics (e.g. [62,63,
48]) that formalizes the desired reduction strategy. Each reduction rule is la-
beled with the probability that the reduction fires. This essentially means that
the reduction strategy is associated to a discrete time Markov chain, whose
states are terms and stationary states are evaluated terms. Moreover, various
probabilistic and non-deterministic extensions of PCF have been proposed in
literature, see [14,21,22,25,26]. In order to stress the strict correspondence of
qPCF with PCF, we define the evaluation in terms of a big-step operational
semantics that hides the single-step details (unessential for our purposes): this
is done by following a quite standard approach (see [34,12,53] for instances).

In all the above operational evaluations there might be many evaluations
paths from M to V, so that the probability has to be determined has the sum
of the probabilities of such paths.

Definition 5 Let D(M, V) denote the set of derivations proving M ⇓⇓⇓α V for any
α; let D(M) denote the set of derivations proving M ⇓⇓⇓α V for any α and any V;
and, let prb(D) denotes the probabilityαwhenever D concludes M ⇓⇓⇓α V. ⊓⊔

qPCF 17

It is easy to see that
∑

Di∈D(M,V)

prb(Di) ≤ 1 and
∑

Di∈D(M)

prb(Di) ≤ 1 is the prob-

ability that the evaluation of M stops, while 1−
∑

Di∈D(M)

prb(Di) is the probability

that the evaluation of M diverges.

Example 7 – Let ΩNat be Y(λxNat.x). It is clear that ΩNat is a closed term
typed Nat such that ΩNat ⇑. Therefore, D(ΩNat, n) = ∅ and D(ΩNat) = ∅.

– Let EPR be the term defined in the Example 6.
Let M8 be if (dMeas(0, EPR)) 8 (Y(λxNat.x)) then D(M8) contains only the

derivation concluding M8 ⇓⇓⇓
1

2 8.
– Let M∞8 be Y(λxNat. if (dMeas(0, EPR)) 8 x) then D(M∞8) contains denumer-

able derivations. More precisely, D(M∞8) contains a derivation concluding

M∞8 ⇓⇓⇓(1
2
)k

8 for each k ≥ 1. Thus, the limit of the sum of these probabilities
is 1. ⊓⊔
We can define the observational equivalence of qPCF by following [21].

Definition 6 Let M and M be closed terms of the same type. They are ob-
servationally equivalent whenever, for each context C[.] it holds that: (i) if
B ⊢ C[M] : Nat then B ⊢ C[N] : Nat; (ii) if B ⊢ C[N] : Nat then B ⊢ C[M] : Nat;
and, (iii)

∑

Di∈D(C[M],0)

prb(Di) =
∑

Di∈D(C[N],0)

prb(Di). ⊓⊔

As noted in [21], the last constraint can be replaced by, for each numeral k,
∑

Di∈D(C[M],k)

prb(Di) =
∑

Di∈D(C[N],k)

prb(Di). The operational equivalence is defined

on closed terms of type Nat because the operational differences in the other
types can be traced back to Nat (while the reverse can be easily proved be
false). Anyway, in this paper we do not plan to further study the observational
equivalence of qPCF, therefore in the following, we sometimes use M ⇓⇓⇓ V (i.e.
M ⇓⇓⇓α V for some 0 < α ≤ 1).

5.2 Evaluation properties

To prove properties about the evaluation mechanisms of qPCF, we have to
consider infinite ground types (viz. Nat, Idx, circ(n)) and we have to unravel
the mutual relationships that hold between syntactic classes (cf. Example 2).
A first goal is to prove that Idx picks up a class of terms which is expected to
be endowed with an always terminating evaluation, i.e. always normalizing.

Simply minded arguments do not work for showing the strong normaliza-
tion property of the typed lambda-calculi: reduction increases the size of terms,
which precludes an induction on their size, and preserves their types, which
seems to preclude an induction on types. We follow the well-known Tait’s idea
for proofs of strong normalizations based on a suitable predicate, see [52] for
instance. More precisely, we prove our property by adapting the computability
predicate given in [23,57,49] for PCF.

18 Luca Paolini et al.

Definition 7 The predicate Comp(B, M, σ) holds whenever B ⊢ M : σ and one
of the following cases is satisfied:

1. B = ∅, σ = Nat;
2. B = ∅, σ = Idx and M ⇓⇓⇓1

n, for some n;
3. B = ∅, σ = circ(E) and Comp(∅, E, Idx);
4. B = ∅, σ = Πxµ.τ and Comp(∅, MN, τ [N/x]), for all Comp(∅, N, µ);
5. B = {x : ν}∪B′ implies Comp(B′[N/x], M[N/x], σ[N/x]) for all Comp(∅, N, ν).

⊓⊔
Let us assume B ⊢ M : σ holds. Focus on ground types: (i) Comp always

holds for Nat; (ii) Comp holds for Idx when the term evaluation is terminating;
(iii)Comp holds for circ(E) independently from the typed term, whenever E is
well typed and its evaluation is terminating. The remaining cases ensure that
Comp hold: (i) for all well-typed closing substitution of M and, (ii) for all
well-typed application.

Notation 1 Let x1, ..., xn be variables, let N1, ..., Nn be terms and let 1 ≤ j ≤
k ≤ n. We write Q

»

[N/x]kj as a shortening for ((Q[Nj/xj]) · · · [Nk/xk]) when Q is

a term. We write σ
»

[N/x]kj as a shortening for ((σ[Nj/xj]) · · · [Nk/xk]) when σ
is a type. As expected k < j means no substitution. ⊓⊔
Lemma 6

1. Let κ = Πz
τ1
1Πzτmm .Nat; Comp(B, M, κ) iff B = {x1 : ν1, ..., xn : νn} im-

plies ⊢ M
»

[N/x]n1P1 . . . Pm : Nat, for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1)

where j ≤ n, for all Pi such that Comp(∅, Pi, τi
»

[N/x]n1
»

[P/z]i−1
1) where i ≤ m.

2. Let κ = Πz
τ1
1Πzτmm .Idx; Comp(B, M, κ) iff B = {x1 : ν1, ..., xn : νn} im-

plies Comp(∅, M # »

[N/x]n1P1 . . . Pm, Idx), for all Nj s.t. Comp(∅, Nj , νj
»

[N/x]j−1
1)

where j ≤ n, for all Pi s.t. Comp(∅, Pi, τi
»

[N/x]n1
»

[P/z]i−1
1) where i ≤ m.

3. Let κ = Πz
τ1
1Πzτmm . circ(E). Comp(B, M, κ) iff B = {x1 : ν1, ..., xn : νn}

implies ⊢ M
»

[N/x]n1P1 . . . Pm : circ(E
»

[N/x]n1
»

[P/z]m1) and Comp(∅, E
»

[N/x]n1
»

[P/z]m1 , Idx),

for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1) where j ≤ n, for all Pi such

that Comp(∅, Pi, τi
»

[N/x]n1
»

[P/z]i−1
1) where i ≤ m.

Proof 1. First, we prove by induction on n that Comp(B, M, κ) if and only if

B = {x1 : ν1, ..., xn : νn} implies Comp(∅, M # »

[N/x]n1 , κ
»

[N/x]n1) for all Nj such

that Comp(∅, Nj , νj
»

[N/x]j−1
1) where j ≤ n. Then, we conclude by induction

on m.
2. The proof is similar to the previous one. It is worth to emphasize that, in

the statement, we write Comp(∅, M # »

[N/x]n1P1 . . . Pm, Idx) as a shortening for

⊢ M
»

[N/x]n1P1 . . . Pm : Idx and ⊢ M
»

[N/x]n1P1 . . . Pm ⇓⇓⇓1
n, for some n.

3. Similar to that of 1. ⊓⊔
Lemma 6 provides an alternative charactrerization of Comp, because it is

easy to check that each type has the shape Πz
τ1
1Πzτmm .γ for a unique m ∈ N

and γ ∈ {Nat, Idx, circ(E)}.

qPCF 19

Theorem 1 If B ⊢ M : κ then Comp(B, M, κ).

Proof The proof is by induction on the derivation D proving B ⊢ M : κ.

– Rule (P0). Let M = xk for some k ≤ n and κ = Πz
τ1
1Πzτmm .γ where

γ ∈ {Nat, Idx, circ(E)}. If B = {x1 : ν1, ..., xn : νn} then we aim to prove

that Comp(∅, xk
»

[N/x]n1 , κ
»

[N/x]n1) for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1)

where j ≤ n. Since Comp(∅, Nj , νj
»

[N/x]j−1
1) implies ⊢ Nj : νj

»

[N/x]j−1
1 , we

are sure that Nj and νj
»

[N/x]j−1
1 do not contain free variables. Therefore

Comp(∅, xk
»

[N/x]n1 , κ
»

[N/x]n1) = Comp(∅, Nk, κ
»

[N/x]n1). Since (P0) is the last
rule used in D, then its final typing has shape B′′∪{xk : νk} ⊢ xk : κ where

νk = κ. Then, Comp(∅, Nk, κ
»

[N/x]n1) = Comp(∅, Nk, νj
»

[N/x]j−1
1) which is

assumed to hold.
– Rule (P1). Let M = λxσ.Q and κ = Πxσ.Πz

τ1
1Πzτmm .γ where γ is a ground

type. By induction, Comp(B ∪ {x : σ}, Q, Πz
τ1
1Πzτmm .γ) holds.

– Let γ = Nat; by applying the Lemma 6 to the induction hypothesis we

know that B∪{x : σ} = {x1 : ν1, ..., xn : νn} implies ⊢ M
»

[N/x]n1P1 . . . Pm :

Nat, for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1) where j ≤ n, for all Pi

such that Comp(∅, Pi, τi
»

[N/x]n1
»

[P/z]i−1
1) where i ≤ m. Let k ≤ n be such

that x : σ is xk : ν :k. So ⊢ (λxσ.Q)
»

[N/x]k−1
1

»

[N/x]nk+1NkP1 . . . Pm : Nat
follows by Lemma 3, since Nk is closed.

– Let γ = Idx; by applying the Lemma 6 to the induction hypothesis
we know that if we assume B ∪ {x : σ} = {x1 : ν1, ..., xn : νn} then

Comp(∅, M # »

[N/x]n1P1 . . . Pm, Idx), for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1)

where j ≤ n, for all Pi such that Comp(∅, Pi, τi
»

[N/x]n1
»

[P/z]i−1
1) where

i ≤ m. More explicitly, ⊢ M
»

[N/x]n1P1 . . . Pm : Idx and M
»

[N/x]n1P1 . . . Pm ⇓⇓⇓1

n, for some n. Let k ≤ n be such that x : σ is xk : ν :k. Since Nk is
closed, we conclude by Lemma 3 and the evaluation rule β.

– Let γ = circ(E); by applying the Lemma 6 to the induction hypoth-
esis we know that B ∪ {x : σ} = {x1 : ν1, ..., xn : νn} implies ⊢
M

»

[N/x]n1P1 . . . Pm : circ(E
»

[N/x]n1
»

[P/z]m1) and Comp(∅, E # »

[N/x]n1
»

[P/z]m1 , Idx),

for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1) where j ≤ n, for all Pi s.t.

Comp(∅, Pi, τi
»

[N/x]n1
»

[P/z]i−1
1) where i ≤ m. Let k ≤ n be such that x : σ

is xk : ν :k. Since Comp(∅, E[P/x, #»

N / #»x , P1/z1, ..., Pm/zm], Idx) already

holds, it remains to prove that ⊢ (λx.Q))
»

[N/x]k−1
1

»

[N/x]nk+1NkP1 . . . Pm :

circ(E
»

[N/x]n1
»

[P/z]m1). This latter follows by Lemma 3 because Nk is closed.
Thus we conclude by Lemma 6.

– Rule (P2). Let M = PQ and κ = Πz
τ1
1Πzτmm .γ where γ is a ground

type. Let σ be the type such that Comp(B, P, Πyσ.κ) and Comp(B, Q, σ)
hold by induction. Thus, if B = {x1 : ν1, ..., xn : νn} then, we have

Comp(∅, P # »

[N/x]n1 , (Πyσ.κ)
»

[N/x]n1) for all Nj s.t. Comp(∅, Nj , νj
»

[N/x]j−1
1) where

j ≤ n. But Comp(∅, Q # »

[N/x]n1 , σ
»

[N/x]n1) holds too. Thus, by Definition 7, we

20 Luca Paolini et al.

have Comp(∅, (P # »

[N/x]n1)Q
»

[N/x]n1 , (κ
»

[N/x]n1)[Q
»

[N/x]n1/y]) that, in it is turn, im-

plies Comp(∅, (PQ) # »

[N/x]n1 , (κ[Q/y])
»

[N/x]n1).
– Rule (P3). By Lemma 6, we have to prove that B = {x1 : ν1, ..., xn : νn}

implies ⊢ (pred
»

[N/x]n1)P : Nat, for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1)

where j ≤ n, and P such that Comp(∅, P,Nat). Namely, ⊢ pred P : Nat has
to hold whenever ⊢ P : Nat holds. This is true by rules (P2) and (P3).

– Rules (P4), (P5), (B1), (B2) are similar to the previous case.

– Rule (P ′
5). Let M = if and κ = ΠzNat1 .Πz

circ(E)
2 .Πz

circ(E)
3 . circ(E). By Lemma 6,

we have to prove that B = {x1 : ν1, ..., xn : νn} implies ⊢ (if
»

[N/x]n1)P1P2P3 :

circ(E
»

[N/x]n1
»

[P/z]31) and Comp(∅, E
»

[N/x]n1
»

[P/z]31, Idx) for Comp(∅, P1,Nat),
Comp(∅, P2, circ(E

»

[N/x]n1 [P1/z1])), Comp(∅, P3, circ(E
»

[N/x]n1
»

[P/z]31)) and for

all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1) where j ≤ n. The typing follows

by rule (P2) and (P ′
5), since the comp-hypothesis implies that ⊢ P1 : Nat,

⊢ P2 : circ(E
»

[N/x]n1 [P1/z1]) and ⊢ P3 : circ(E
»

[N/x]n1 [P1/z1][P2/z2]). More-
over, by induction on B ⊢ E : Idx we have Comp(B, E, Idx), therefore

Comp(∅, E # »

[N/x]n1 [P1/z1][P2/z2][P3/z3], Idx) can be immediately concluded.
– Rule (P6). Let M = Y and κ = Πy(σ→σ).σ such that σ = Πz

τ1
1Πzτmm .γ

where γ ∈ {Nat, circ(E)}.
– The proof of γ = Nat is similar to the proof of the rule (P3). By

Lemma 6, we have to prove that B = {x1 : ν1, ..., xn : νn} implies

⊢ (Y
»

[N/x]n1)QP1 . . . Pm : Nat, for all Nj such that Comp(∅, Nj , νj
»

[N/x]j−1
1)

where j ≤ n, for Q such that Comp(∅, Q, (σ → σ)
»

[N/x]n1), for all Pi such

that Comp(∅, Pi, τi
»

[N/x]n1 [Q/y]
»

[P/z]i−1
1) where i ≤ m. Namely, we have

to prove that ⊢ YQP1 . . . Pm : Nat whenever ⊢ Q : (σ → σ)
»

[N/x]n1 and

⊢ Pi : τi
»

[N/x]n1 [Q/y]
»

[P/z]i−1
1 . This is true by rules (P2) and (P6).

– The proof of γ = circ(E) is similar to the proof of the rule (P ′
5).By

Lemma 6, we have to prove that B = {x1 : ν1, ..., xn : νn} implies

⊢ (Y
»

[N/x]n1)QP1 . . . Pm : circ(E
»

[N/x]n1 [Q/y]
»

[P/z]m1) and

Comp(∅, E # »

[N/x]n1 [Q/y]
»

[P/z]m1 , Idx) for all Nj s.t. Comp(∅, Nj , νj
»

[N/x]j−1
1)

where j ≤ n, for Q such that Comp(∅, Q, (σ → σ)
»

[N/x]n1), for all Pi

such that Comp(∅, Pi, τi
»

[N/x]n1 [Q/y]
»

[P/z]i−1
1) where i ≤ m. The typ-

ing requirement is similar to that of the previous case. Moreover, it
is easy to check that � B ∪ {x : σ} requires that B ⊢ E : Idx is in
the premises of (P6). Thus Comp(B, E, Idx) follows by hypothesis, and

Comp(∅, E # »

[N/x]n1 [Q/y]
»

[P/z]m1 , Idx) can be concluded.
– Rule (I0). The proof follows by induction, it suffices to apply (I0) to obtain

the typing in the induction hypothesis.
– Rule (I1). Immediate by the evaluation rule (n).
– Rule (I2). The proof follows by induction, because we assume that ⊙ is a

(generic) total operator.
– Rule (I3). The proof follows by induction and by the evaluation rule (sz).

qPCF 21

– Rule (C1). Immediately B ⊢ U : circ(k), B ⊢ k : Idx and k ⇓⇓⇓1
k hold, thus

Comp(B, U, circ(k)).
– Rules (C2), (C3), (C4), (C5). The proofs are similar to that of the rule (P ′

5).
– Rule (M). The proof is similar to that of the rule (P5). ⊓⊔
Comp has been defined in order to obtain the next corollary that states

the strong normalization of closed term typed Nat and the that its evaluation
provides a unique result.

Corollary 1 (Idx-normalization) Let ⊢ E : Idx.

1. E ⇓⇓⇓1
n, for some n.

2. If circ(E) occurs in a valid type derivation then E ⇓⇓⇓1
n, for some n.

Proof 1. ⊢ E : Idx implies Comp(∅, E, Idx) by Theorem 1; so E ⇓⇓⇓1
n by Defini-

tion 7.
2. Let D be a valid type derivation. By induction on D we can prove that

if circ(E′) occurs in the conclusion of the derivation then B ⊢ E′ : Idx is
required for some B. Thus, since we assumed ⊢ E : Idx, we conclude by the
previous point. ⊓⊔
We can now focus on standard programming properties (see [56]). A first

property of a paradigmatic programming language as qPCF is preservation,
i.e. if a well-typed term takes a step of evaluation then the resulting term is
also well typed. A second property expected for a programming language is
progress: well-typed terms evaluation does not get stuck. Roughly, a term P

gets stuck whenever the evaluation of P ends in a normal form, which is not a
value. It is easy to see that our evaluation cannot stuck.

Corollary 2 ⊢ M : Idx and M ⇓⇓⇓1
N then ⊢ N : Idx.

⊢ M : Idx and M ⇓⇓⇓1
N then N is a numeral n.

Proof The proof follows by Theorem 1. ⊓⊔
For remaining ground types we prove our properties together.

Theorem 2 1. ⊢ M : Nat and M ⇓⇓⇓ N then ⊢ N : Nat and N is a numeral.
2. If ⊢ M : circ(E) and M ⇓⇓⇓ N then ⊢ N : circ(E) where N is a circuit; moreover,

E ⇓⇓⇓ m for some m.

Proof We recall that M ⇓⇓⇓ N means that there exists a derivation D concluding
M ⇓⇓⇓α V where α > 0. The statements are proved by induction on the derivation
proving M ⇓⇓⇓ N by considering the typing hypothesis.

1. The proof is done by induction on the derivation proving M ⇓⇓⇓ N. (n) is
trivial. If the last applied evaluation rule is one between (s), (p), (β), (if l),
(ifr), (Y), (gt), (st) then the proof follows by induction. We remark that
the last rules can be (sz) or (op) because its result can be typed Nat via
the typing rule (x3): luckily, in both cases the proof is still immediate by
Theorem 1. The cases (u), (u′), (u′′), (r0), (r1), (r2), (it) are not possible,
because the typing hypothesis in the statement excludes them. The case
(m) easily follows by induction and the definition of circuitEval.

2. E ⇓⇓⇓ m follows by Corollary 2. The proof is similar to that of Lemma 5. ⊓⊔

22 Luca Paolini et al.

6 Examples

In this section we propose some examples of quantum circuit families imple-
menting interesting algorithms. As previously done, given a sequence (b1, . . . , bk)
of bits, we write n(b1, . . . , bk) to denote the numeral that represents it.

Example 8 (Deutsch-Jozsa) We aim to program the Deutsch’s algorithm [46]
in qPCF. This can be done by a term that represents the entire (infinite)
quantum circuit family.

The “basic case” of Deutsch’s problem can be formulated as follows. Given
a block box Bf implementing some function f : {0, 1} → {0, 1}, determine
whether f is constant or balanced. The classical computation to determine
whether f is constant or balanced is very simple: one computes f(0) and f(1),
and then check if f(0) = f(1). This requires two different calls to Bf . Deutsch
showed how to achieve this result with a single call to Bf : Deutsch’s algorithm
exploits quantum parallelism phenomenon that allows to evaluate a function
f(x) for different values x at the same time.

The problem can be generalized considering a function f : {0, 1}n → {0, 1}
which acts on many input bits. This yields the n-bit generalization of Deutsch’s
algorithm, known as the Deutsch-Josza algorithm. The following picture rep-
resents the circuit, up to the last, measurement phase.

H H

H H

Bf

H

H H

〉

〉

〉

〉

When fed with a classical input state of the form |0 . . . 01〉, the output mea-
surement of the first n− 1 bits reveals if the function f is constant or not. If
all n − 1 measurement results are 0, we can conclude that the function was
constant. Otherwise, if at least one of the measurement outcomes is 1, we
conclude that the function was balanced. See [45] for more details.

Let H : circ(0) and I : circ(0) be the (unary) Hadamard and Identity gates
respectively. Suppose MBf : circ(n) is given for some n such that MBf ⇓⇓⇓ Uf

where Uf : circ(n) is the qPCF-circuit that represents the the black-box function
f having arity n+ 1.

Observe that λxIdx. iter xHH : ΠxIdx. circ(x) generates x+ 1 parallel copies
of Hadamard gates H, and λxIdx. iter xIH : ΠxIdx. circ(x) concatenates in par-
allel x copies of Hadamard gates H and one copy of the identity gate I. Thus
the parametric measurement-free Deutsch-Jozsa circuit can be defined as

DJ− = λxIdx.λycirc(x).((iter x H H) ⦂ y) ⦂(iter x I H) : σ

where σ = ΠxIdx. circ(x)→ circ(x).

qPCF 23

The last phase is performed by the operator dMeas, suitably fed with the
representation of the classical input state, i.e. n(0 . . . 0

︸ ︷︷ ︸

n

1). The evaluation

yields dMeas(n(0 . . . 0
︸ ︷︷ ︸

n

1),DJ−nMBf) ⇓⇓⇓1 m where m is the result (with probability

1).

It is straightforward to make parametric the above term. It suffices to
replace n with the variable nIdx, to replace the black-box with a variable
bcirc(n) so that, the resulting term is typed ΠnIdx.Πbcirc(n).Nat, or more sim-
ply ΠnIdx. circ(n)→ Nat. ⊓⊔

Example 9 (Grover’s searching algorithm) We provide the qPCF encoding of
the circuit that implements Grover’s searching algorithm [45]. More precisely,
Grover’s algorithm solves the problem of a search in a given a set X =
{x1, x2, . . . , xN} of N = 2n+1 elements. Given a boolean function f : X →
{0, 1}, the target is to find an element x∗ in X such that f(x∗) = 1. With
a classical circuits, one cannot do better than performing a linear number
of queries to find the target element. Grover’s quantum solves algorithm the
search in O(

√
N). The main idea of Grover’s searching algorithm is to make

a fair superposition of input elements and, then, to iterate O(
√
N) time a

subroutine applying an “oracle gate” O∗ that encodes the function f and a
suitable diffusion operator D. After each application of the subroutine, it is
possible to show that the probability to measure the target element x∗ in-
creases: the amplitudes α∗ goes up by more than 1√

N
. This meas that, after

O(
√
N) repetitions, α∗ is very close to 1, and thus a final, total measurement,

yields x∗ with a negligible error.

Some slightly different circuit implementations have been proposed in lit-
erature [33,43], we follow [45]:

D

|0〉 /n H⊗n

O∗
H⊗n 2 |0n〉 〈0n| − In H⊗n /n· · ·

|1〉 H · · ·

O(
√
N) times

︷ ︸︸ ︷

︸ ︷︷ ︸

Let O∗ be the circuit that represents the function mapping |x, q〉 to |x, q ⊕ f(x)〉.
Look at the figure above: the lower wire (initialized to |1〉) feeds O∗ with the
state (|0〉 − |1〉)/

√
2 while the other ones (initialized to |0 . . . 0〉

︸ ︷︷ ︸

n

) feed O∗ with

the fair superposition of all possible inputs. Therefore, O∗ maps |x〉
∣
∣
∣
|0〉−|1〉√

2

〉

on (−1)f(x) |x〉
∣
∣
∣
|0〉−|1〉√

2

〉

; if we neglect the (bottom) ancillary wire then |x〉 is
mapped on (−1)f(x) |x〉 producing a key flipping behavior.

24 Luca Paolini et al.

Let MO∗

: circ(n) be a qPCF term such that MO∗ ⇓⇓⇓1O∗ (we recall that circ(n)
is the type for n+1 wires.) Let MD : circ(x) be such that (λxIdx.MD)(pred n) ⇓⇓⇓
D where D is the circuit that represents the diffusion operator that magnifies
amplitudes: D maps the superposition

∑N−1
i=0 αiVi in

∑N−1
i=0 (2m−αi)Vi where

m = (1
N
)
∑N−1

i=0 αi is the average of all amplitudes (see [66]). Some interesting
decomposition of D in terms of smaller quantum circuits can be found in [18,
24].

Let
√

: Nat → Nat be a qPCF-term calculating (integer approximation
of) the square root and let Mx

seq : circ(x) → Nat → circ(x) be MA
seq x, i.e. the

application of the term defined in Example 4 to x. The term that implements
the core of Grover’s algorithm is:

MG = λxIdx.zcirc(x).(iter x H H) ⦂(Mx
seq(z ⦂(M

D ‖ I))√x) : σ

where σ = ΠxIdx. circ(x)→ circ(x). A measurement of MG applied to a suitable
arity n and a suitable oracle operator O∗ allows to execute Grover’s algorithm.

For example, we can consider a search in a space of 23 = 8 states looking
for |011〉. Grover’s circuit take as input the (classical) state |0001〉.

It is easy to verify that G3 = dMeas(n(0001),MG(3)(M
O∗

)) solves the search
problem with a bounded error. In particular, D(G3,n(0110)) is a set including
just one derivation, namely the derivation concluding G3 ⇓⇓⇓α n(0110) such that
α = 0, 945. Thus, the evaluation of G3 gives the right results with a 94,5% of
probability. See [67] for the details. ⊓⊔

7 Related Work

In this section, we sketch the state of the art of quantum programming lan-
guages by focusing on calculi related to qPCF.

After a first formal attempt by Maymin [40], Selinger rigorously defined
a first-order quantum functional language [61]. Subsequently the author, in
a joint work with Valiron [62], defined a quantum λ-calculus, (that we dub
λsv in what follows), with classical control and explicitly based on the QRAM
architecture [36]. λsv rests on unitary transformations on quantum states and
an explicit measurement operator which allows the program to observe the
value of one quantum bit. The separation between data and control is explicit.
The type system of λsv avoids run time errors, enjoys good properties such as
subject reduction, progress, and safety and is based on the affine intuitionistic
Linear Logic. This permits a fine control over the linearity of the system, by
distinguishing between duplicable and non-duplicable resources. λsv can be
seen as the departing point of several investigations. On the foundational side,
see for instance [13,10]. On the semantic side, we just cite [63,30,48].

qPCF follows the slogan quantum data&classical control (“qd&cc”) pro-
posed for λsv in [62], albeit its typing system does not explicitly include lin-
ear/exponential types.

qPCF 25

Looking for implementation-oriented proposal, the most interesting reality
is Quipper, an embedded, scalable functional quantum programming language.
Quipper is essentially a circuit description language: circuits can be created,
manipulated, evaluated in a mixture of procedural and declarative program-
ming styles. The most important quantum algorithms can be easily encoded
thanks to a number of programming tools, macros, and extensive libraries of
quantum functions.

Quipper is based on the lambda calculus with classical control proposed
in [62], and this relationship has been partially explained in [60] by means of
the calculus Proto-Quipper. Reduction rules are defined between configura-
tions as in [62,77] and, since the calculus is measurement free, they are totally
deterministic (likewise to [13,10,77]). Proto-Quipper type system is based on
intuitionistic linear logic (with both additive and multiplicative modalities)
plus a type for circuits. A more recent version of Proto-Quipper, called Proto-
QuipperM, has been defined by Selinger and Rios in [59] together with an
interesting categorical semantics.

qPCF follows the trend started by Quipper about the management of
quantum circuits as prominent classical data. However, it differs from Proto-
Quipper formalization, at least, for the absence of quantum states and lin-
ear/exponential types, but also for the presence of dependent types.

Another recent quantum language is QWire introduced in [55]. Also QWire

can be seen as a language for circuit manipulation. It rests on the QRAM
model and aims at separating classical and quantum part of the computa-
tion. QWire is a very simple and manageable linear language for the definition
of quantum circuit that, through a sophisticate interface, can be treated as a
“quantum plugin” for an host classical language. This is reflected by the type
system, inspired to Benton’s LNL Logic that partitions the exponential data
into a purely linear fragment and a purely non-linear fragment connected via
a categorical adjunction. Circuits are treated as classical data in the host lan-
guage through a clever interface based on a box-unbox mechanism. Moreover,
the authors show that QWire is able to deal with a depend-type based host
language via an interesting example. Albeit they have been developed inde-
pendently, QWire and qPCF have a many aspects in common, and both move
the focus from states to circuits. Thus, QWire deserves a direct comparison
with qPCF.
qPCF bans linear typing, while QWire use it to provide a very helpful support
for a quantum circuit language description that borrows the best features from
the “hardware circuit description” languages (Verilog, VHDL, ...). A future ex-
tension of qPCF should include a circuit language inspired to QWire.
Second, QWire is a plug-in quantum extension of a classical language, and
its dependent types are made available from the host language, while qPCF

is a stand-alone language that includes a limited form of dependent types.
Finally, QWire allows partial measurements, thus it supports quantum states
that mutually interact with the classical environment in the frame of the gen-
eral QRAM model; in qPCF we focused on restricted co-processors, as widely

26 Luca Paolini et al.

explained in Section 2.1. Summarizing, QWire and qPCF shares many aspects,
but QWire provides more programming flexibility in the implementation of
quantum algorithms than qPCF, while qPCF is a standalone language with
cheaper hardware requirements than QWire.

For the sake of completeness, we remark that other approches to quantum
programming languages exist in literature. Interesting proposal are, among
the others: the functional quantum language (based on strict Linear Logic)
QML [2,1,27]; the linear algebraic λ-calculi [4,70,71,3]; the measurement cal-
culus [44,15] developed as an efficient rewriting system for measurement
based quantum computation; and, last, the quantum-control quantum-data
paradigm described in [75].

8 Conclusions

8.1 On the expressive power of qPCF

qPCF is a language able to describe parametric quantum circuit families, in
accord with [59], where the difference between the notions of parameter (in-
formally, the information available at the compile time, as e.g. the input di-
mension) and state (the information available at run time, e.g. the effective
value of quantum data) is highlighted. Indeed, Examples 8 and 9 show how
to use dependent types to represent circuit families. The study of the exact
expressive power of qPCF, in terms of a formal notion of uniform quantum
families is left to future work. Since the limitations we assumed on expressions
of type Idx, it is clear that many representations are unsuitable.

A related interesting point is the expressiveness of qPCF w.r.t. quantum
algorithms. Since we restrict measurements to total, deferred ones, in qPCF

one cannot directly represent algorithms that exploit partial measurement
during the computation (see, for example, Shor’s original formulation of the
factorization algorithm [64]).

Of course, it is possible to encode their “deferred versions” exploiting the
deferred measurement principle. See [46] (Section 4.4) for a careful account
about the rewriting of a circuit that allows intermediate partial measurement
into an equivalent deferred form.

Finally, we remark that by endowin qPCF with an universal basis of quan-
tum gates ensures the full expressivity w.r.t. quantum transformations, up to
a definition of gate approximation (see [47] for details). We also argue that
particular choices of gates in qPCF could return interesting instances of the
language. For instance, all reversible circuits are a subset of quantum ones.
See [50,51] for a recent characterization of the reversible computing. In par-
ticular, qPCF appears to be a simple setting where reversible and classical
computation coexists and, potentially, can cooperate.

qPCF 27

8.2 Conclusive Statement

We study qPCF, an extension of PCF for quantum circuit generation and eval-
uation. qPCF pursues seriously the qd&cc paradigm in a restricted QRAM
environment where only total measurements are allowed. First, this makes
quantum programming easy: we can program circuit descriptions by using
only classical data. Second, this approach is cheaper than the usual on hard-
ware requirements.

In this work, we explain qPCF syntax, typing rules and a possible for-
mulation of the evaluation semantics. We prove some basic properties of the
language. We provide some encoding examples of parametric circuit families
that exploit the expressive power of qPCF.

The careful analysis of the exact expressive power of qPCF w.r.t. formal
notion of circuit families is an open question we are currently addressing (fol-
lowing [13], where a two-way correspondence between a formal calculus and
the finitely generated quantum circuit families [47] is proved). Finally, even
if the use of total measurement does not represent a theoretical limitation, a
partial measurement operator can represent a useful programming tool. Re-
cently, we proposed an extension of qPCF in order to integrate the possibility
to perform partial measurements [53].

References

1. T. Altenkirch and J. Grattage. A functional quantum programming language. In
LICS05, 2005.

2. T. Altenkirch, J. Grattage, J. K. Vizzotto, and A. Sabry. An algebra of pure quantum
programming. In QPL05, 2005. ENTCS.

3. P. Arrighi and A. Diaz-Caro. A System F accounting for scalars. Logical Methods in
Computer Science, Volume 8, Issue 1, Feb. 2012.

4. P. Arrighi and G. Dowek. Linear-algebraic lambda-calculus: higher-order, encodings,
and confluence. In A. Voronkov, editor, RTA, volume 5117 of Lecture Notes in Computer
Science, pages 17–31. Springer, 2008.

5. F. Aschieri and M. Zorzi. Non-determinism, non-termination and the strong normal-
ization of system T. In Typed Lambda Calculi and Applications, 11th International
Conference, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013. Proceedings,
volume 7941 of Lecture Notes in Computer Science, pages 31–47, 2013.

6. F. Aschieri and M. Zorzi. On natural deduction in classical first-order logic: Curry-
howard correspondence, strong normalization and herbrand’s theorem. Theoretical
Computer Science, 625:125–146, 2016.

7. D. Aspinall and M. Hofmann. Dependent types. In B. Pierce, editor, Advanced Topics
in Types and Programming Languages, chapter 2, pages 45–86. MIT Press, 2005.

8. P. Benioff. The computer as a physical system: a microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines. J. Statist. Phys.,
22(5):563–591, 1980.

9. S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum program-
ming. The European Physical Journal D - Atomic, Molecular, Optical and Plasma
Physics, 25(2):181–200, Aug 2003.

10. U. Dal Lago, A. Masini, and M. Zorzi. Quantum implicit computational complexity.
Theor. Comput. Sci., 411(2):377–409, 2010.

11. U. Dal Lago, A. Masini, and M. Zorzi. Confluence results for a quantum lambda calculus
with measurements. Electr. Notes Theor. Comput. Sci., 270(2):251–261, 2011.

28 Luca Paolini et al.

12. U. Dal Lago and M. Zorzi. Probabilistic operational semantics for the lambda calculus.
RAIRO - Theor. Inf. and Applic., 46(3):413–450, 2012.

13. U. d. Dal Lago, A. Masini, and M. Zorzi. On a measurement-free quantum lambda
calculus with classical control. Mathematical. Structures in Comp. Sci., 19(2):297–335,
2009.

14. V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Information and Computation, 209(6):966 – 991, 2011.

15. V. Danos, E. Kashefi, and P. Panangaden. The measurement calculus. J. ACM, 54(2),
Apr. 2007.

16. D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proceedings of the Royal Society of London Ser. A, A400:97–117, 1985.

17. R. Di Cosmo and T. Dufour. The equational theory of 〈N, 0, 1,+,×, ↑〉 is decidable, but
not finitely axiomatisable. In F. Baader and A. Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, pages 240–256, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

18. Z. Diao, M. S. Zubairy, and G. Chen. A quantum circuit design for grover’s algorithm.
Zeitschrift für Naturforschung A, 57(8):701–708, 2002.

19. A. Dı́az-Caro, P. Arrighi, M. Gadella, and J. Grattage. Measurements and confluence
in quantum lambda calculi with explicit qubits. Electr. Notes Theor. Comput. Sci.,
270(1):59–74, 2011.

20. D. P. DiVincenzo. The physical implementation of quantum computation. Fortschritte
der Physik, 48, 2000.

21. T. Ehrhard, M. Pagani, and C. Tasson. Full abstraction for probabilistic pcf. J. ACM,
65(4):23:1–23:44, Apr. 2018.

22. M. Escardó. Semi-decidability of may, must and probabilistic testing in a higher-type
setting. Electronic Notes in Theoretical Computer Science, 249:219 – 242, 2009. Pro-
ceedings of the 25th Conference on Mathematical Foundations of Programming Seman-
tics (MFPS 2009).

23. M. Gaboardi, L. Paolini, and M. Piccolo. On the reification of semantic linearity.
Mathematical Structures in Computer Science, 26(5):829–867, 2016.

24. A. Glos and P. Sadowski. Constructive quantum scaling of unitary matrices. Quantum
Information Processing, 15(12):5145–5154, Dec 2016.

25. J. Goubault-Larrecq. Full abstraction for non-deterministic and probabilistic extensions
of pcf i: The angelic cases. Journal of Logical and Algebraic Methods in Programming,
84(1):155 – 184, 2015. Special Issue: The 23rd Nordic Workshop on Programming
Theory (NWPT 2011) Special Issue: Domains X, International workshop on Domain
Theory and applications, Swansea, 5-7 September, 2011.

26. J. Goubault-Larrecq and D. Varacca. Continuous random variables. In 2011 IEEE 26th
Annual Symposium on Logic in Computer Science, pages 97–106, June 2011.

27. J. Grattage. An overview of QML with a concrete implementation in haskell. Electr.
Notes Theor. Comput. Sci., 270(1):165–174, 2011.

28. A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: A
scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages
333–342, New York, NY, USA, 2013. ACM.

29. L. K. Grover. Quantum search on structured problems. In Quantum computing and
quantum communications (Palm Springs, CA, 1998), volume 1509 of Lecture Notes in
Comput. Sci., pages 126–139. Springer, Berlin, 1999.

30. I. Hasuo and N. Hoshino. Semantics of higher-order quantum computation via geometry
of interaction. In LICS’11, pages 237–246, 2011.

31. C. J. Isham. Lectures on quantum theory. Imperial College Press, London, 1995. Math-
ematical and structural foundations.

32. R. Jain, Z. Ji, S. Upadhyay, and J. Watrous. QIP = PSPACE. J. ACM, 58(6):30, 2011.
33. P. Kaye, R. Laflamme, and M. Mosca. An introduction to quantum computing. Oxford

University Press, Oxford, 2007.
34. S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Algorithmic prob-

abilistic game semantics. Form. Methods Syst. Des., 43(2):285–312, Oct. 2013.
35. A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and quantum computation. AMS,

2002.

qPCF 29

36. E. Knill. Conventions for quantum pseudocode. Technical report, Los Alamos National
Laboratory, 1996. Technical Report.

37. U. D. Lago and M. Zorzi. Wave-style token machines and quantum lambda calculi. In
Proceedings Third International Workshop on Linearity, LINEARITY 2014, Vienna,
Austria, 13th July, 2014, Electronic Proceedings in Theoretical Computer Science 176,
pages 64–78, 2014.

38. M. Mahmoud and A. P. Felty. Formalization of Metatheory of the Quipper Programming
Language in a Linear Logic. University of Ottawa, Canada, 2018.

39. A. Masini, L. Viganò, and M. Zorzi. Modal Deduction Systems for Quantum State
Transformations. Multiple-Valued Logic and Soft Computing, 17(5-6):475–519, 2011.

40. P. Maymin. The lambda-q calculus can efficiently simulate quantum computers. Tech-
nical Report arXiv:quant-ph/9702057, arXiv, 1997.

41. T. S. Metodi, A. I. Faruque, and F. T. Chong. Quantum Computing for Computer
Architects, Second Edition. Morgan & Claypool Publishers, 2nd edition, 2011.

42. J. A. Miszczak. High-level Structures for Quantum Computing. Morgan and Claypool
Publishers, 1st edition, 2014.

43. M. Nakahara and T. Ohmi. Quantum Computing - From Linear Algebra to Physical
Realizations. CRC Press, 2008.

44. M. Nielsen. Universal quantum computation using only projective measurement, quan-
tum memory, and preparation of the 0 state. Physical Letters, 308(2-3):96–100, 2003.

45. M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information.
Cambridge University Press, Cambridge, 2000.

46. M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information, 10h
Anniversary Edition. Cambridge University Press, Cambridge, 2010.

47. H. Nishimura and M. Ozawa. Perfect computational equivalence between quantum
turing machines and finitely generated uniform quantum circuit families. Quantum
Information Processing, 8(1):13–24, 2009.

48. M. Pagani, P. Selinger, and B. Valiron. Applying quantitative semantics to higher-order
quantum computing. In Proceedings of POPL ’14, pages 647–658. ACM, 2014.

49. L. Paolini. A stable programming language. Information and Computation, 204(3):339
– 375, 2006.

50. L. Paolini, M. Piccolo, and L. Roversi. A class of reversible primitive recursive functions.
Electronic Notes in Theoretical Computer Science, 322(18605):227–242, 2016.

51. L. Paolini, M. Piccolo, and L. Roversi. On a class of reversible primitive recursive
functions and its turing-complete extensions. New Generation Computing, 36(3):233–
256, 2018.

52. L. Paolini, E. Pimentel, and S. Ronchi Della Rocca. An operational characterization of
strong normalization. LNCS, 3921:367–381, 2006.

53. L. Paolini, L. Roversi, and M. Zorzi. Quantum programming made easy. In V. d. P.
Thomas Ehrhard, Maribel Fernández and L. T. de Falco, editors, Proceedings Joint
International Workshop on Linearity & Trends in Linear Logic and Applications
(Linearity-TLLA 2018), Oxford, UK, volume 290 of Electronic Proceedings in The-
oretical Computer Science, pages 58–72, 2019.

54. L. Paolini and M. Zorzi. qPCF: a language for quantum circuit computations. In
T. Gopal, G. Jäger, and S. Steila, editors, Theory and Applications of Models of Com-
putation - 14th Annual Conference, TAMC 2017, Bern, Switzerland, April 20-22,
2017, Proceedings, volume 10185 of Lecture Notes in Computer Science, pages 455–
469. Springer, 2017.

55. J. Paykin, R. Rand, and S. Zdancewic. Qwire: A core language for quantum circuits.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, pages 846–858, New York, NY, USA, 2017. ACM.

56. B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
57. G. D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5:223–255, 1977.
58. D. Richardson and J. P. Fitch. The identity problem for elementary functions and

constants. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC ’94, pages 285–290, 1994.

30 Luca Paolini et al.

59. F. Rios and P. Selinger. A categorical model for a quantum circuit description lan-
guage (extended abstract). In B. Coecke and A. Kissinger, editors, Proceedings 14th
International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands,
3-7 July 2017, volume 266 of Electronic Proceedings in Theoretical Computer Science,
pages 164–178. Open Publishing Association, 2018.

60. N. J. Ross. Algebraic and Logical Methods in Quantum Computation. PhD thesis,
Department of Mathematics and Statistics, Dalhousie University, 2015. Available from
arXiv:1510.02198.

61. P. Selinger. Towards a quantum programming language. Mathematical Structures in
Computer Science, 14(4):527–586, Aug. 2004.

62. P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science, 16:527–552, 2006.

63. P. Selinger and B. Valiron. Semantic Techniques in Quantum Computation, chapter
Quantum lambda calculus, pages pp. 135–172. Cambridge University Press, 2009.

64. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994),
pages 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA, 1994.

65. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Rev., 41(2):303–332 (electronic), 1999.

66. P. W. Shor. Introduction to quantum algorithms. In Proceedings of Symposia in Applied
Mathematics, volume 58, pages 143–160, 2002.

67. E. Strubell. An introduction to quantum algorithms, lecture notes, university of mas-
sachusetts. 2011.

68. B. Valiron. Quantum computation: From a programmer’s perspective. New Generation
Computing, 31(1):1–26, Jan 2013.

69. B. Valiron, N. J. Ross, P. Selinger, D. S. Alexander, and J. M. Smith. Programming
the quantum future. Commun. ACM, 58(8):52–61, 2015.

70. L. Vaux. Lambda-calculus in an algebraic setting, 2006.
71. L. Vaux. The algebraic lambda-calculus, 2009.
72. L. Viganò, M. Volpe, and M. Zorzi. Quantum state transformations and branching

distributed temporal logic. In Proceedings of the 21st International Workshop on Logic,
Language, Information, and Computation (WoLLIC), volume 8652 of Lecture Notes in
Computer Science, pages 1–19. Springer, 2014.

73. L. Viganò, M. Volpe, and M. Zorzi. A branching distributed temporal logic for reason-
ing about entanglement-free quantum state transformations. Information and Compu-
tation, 255:311–333, 2017.

74. H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings of the
26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’99, pages 214–227, New York, NY, USA, 1999. ACM.

75. M. Ying. Foundations of Quantum Programming. Morgan Kaufmann, 2016.
76. C. Zenger. Indexed types. Theoretical Computer Science, 187(1):147 – 165, 1997.
77. M. Zorzi. On quantum lambda calculi: a foundational perspective. Mathematical Struc-

tures in Computer Science, 26(7):1107–1195, 2016.

