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In Alzheimer’s disease (AD), both cholesterol and glucose dysmetabolism precede
the onset of memory deficit and contribute to the disease’s progression. It is indeed
now believed that oxidized cholesterol in the form of oxysterols and altered glucose
uptake are the main triggers in AD affecting production and clearance of Aβ, and
tau phosphorylation. However, only a few studies highlight the relationship between
them, suggesting the importance of further extensive studies on this topic. Recently,
a molecular link was demonstrated between cholesterol oxidative metabolism and
glucose uptake in the brain. In particular, 27-hydroxycholesterol, a key linker between
hypercholesterolemia and the increased AD risk, is considered a biomarker for reduced
glucose metabolism. In fact, its excess increases the activity of the renin-angiotensin
system in the brain, thus reducing insulin-mediated glucose uptake, which has a major
impact on brain functioning. Despite this important evidence regarding the role of 27-
hydroxycholesterol in regulating glucose uptake by neurons, the involvement of other
cholesterol oxidation products that have been clearly demonstrated to be key players in
AD cannot be ruled out. This review highlights the current understanding of the potential
role of cholesterol and glucose dysmetabolism in AD progression, and the bidirectional
crosstalk between these two phenomena.
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INTRODUCTION

Several events in the brain contribute to AD development,
including neuroinflammation, oxidative stress, Aβ toxicity,
NFT formation, mitochondrial dysfunction, defective insulin
signaling, decreased glucose utilization, and dysregulated
cholesterol homeostasis. Deficiency in insulin signaling and IR,
together with alteration in glucose and cholesterol metabolism,
may lead to the occurrence of neuronal dysfunction and
death and, consequently, to dementia. However, the molecular
mechanisms involved in AD development are not completely
clear, especially as regards the interaction between the different
aspects of this pathology.

Cholesterol is particularly important in the brain since
it is a major component of cell membranes, thus altered
cholesterol metabolism may contribute to AD development
(Gamba et al., 2015). Insulin is another important regulator
of brain function. It affects neuronal synaptic function and
plasticity, and glucose/cholesterol metabolism in the brain
(Najem et al., 2014). Substantial glucose is required during
memory processing especially in the hippocampus (McNay et al.,
2001) and several neurodegenerative diseases are characterized
by glucose hypometabolism (Teune et al., 2010). During AD
progression, glucose dysmetabolism precedes the onset of
memory deficit and it is speculated to predict the disease
progression (Nordberg et al., 2010).

Both brain cholesterol and glucose dysmetabolism are
recognized as important features of AD, affecting the production
and clearance of Aβ and tau phosphorylation, and inducing
neurodegeneration (Sato and Morishita, 2015). Recently, a
connection between these two processes has been highlighted;
however, a more integrated understanding of the interactions
between cholesterol and glucose metabolism is required in
order to develop new therapeutic strategies to counteract AD.
This review provides a brief summary of the rationale on the
bidirectional relationship between two main risk factors in AD
pathogenesis, i.e., brain cholesterol and glucose dysmetabolism
due to insulin signaling deficiency.

THE COMPLEX ROLE OF
CHOLESTEROL IN THE BRAIN

Brain Cholesterol Metabolism
The brain is the most cholesterol-rich organ, since it contains
a quarter of the whole body non-esterified cholesterol pool
(Dietschy, 2009). Cholesterol, as the main lipid component of
neuronal and glial membranes and key constituent of myelin,
plays essential roles in plasma membrane compartmentalization,
signaling, myelination, and formation and maintenance of
synapses (Petrov et al., 2017; Hussain et al., 2019).

Plasma and brain cholesterol pools are separated by
two barriers: (i) the BBB, that prevents lipoprotein-bound
cholesterol uptake from the circulation; (ii) the blood-
CSF barrier, through which plasma is ultrafiltered to form
part of the CSF. In addition, CSF interfaces the brain
interstitial fluid exchanging water, ions, and other molecules

(Johanson et al., 2011). Consequently, brain cholesterol
metabolism is independent from that of peripheral tissues,
and neurons rely on de novo-synthesized cholesterol delivery
from astrocytes.

As shown in Figure 1, cholesterol is synthesized from
Acetyl-CoA through reactions catalyzed by over 20 enzymes,
including HMG-CoA reductase. Newly synthesized cholesterol
is loaded into lipoproteins similar to HDLs, containing the
ApoE. Lipidation and secretion of ApoE are mediated by ABC
transporters, such as ABCA1 and ABCG1. Then, lipoproteins
are transported to neurons, where they are taken up by LDLRs
and LRPs. Following receptor-mediated endocytosis, ApoE is
recycled to the plasma membrane and cholesterol is used
for cell membrane turnover and repair, myelin formation,
synaptogenesis, and neurotransmitter release (Gamba et al.,
2015; Petrov et al., 2016; Liao et al., 2017). In order to maintain
brain cholesterol homeostasis, excess cholesterol is converted
into oxysterols, important metabolites deriving from cholesterol
enzymatic oxidation or auto-oxidation. Cholesterol is mainly
converted into 24-OHC by CYP46A1, a cytochrome P-450
enzyme expressed by neurons. 24-OHC flows from the brain
into the circulation across the BBB (∼99%) driven by the
concentration gradient and, then, it is excreted by the liver in
the form of bile acids (Björkhem et al., 2018; Dosch et al.,
2019); less than 1% of 24-OHC flows into the CSF (Lütjohann
et al., 1996). Brain cholesterol is also oxidized into 27-OHC
by the enzyme CYP27A1, expressed by neurons and glial cells.
In contrast to 24-OHC, most of the cerebral 27-OHC derives
from the peripheral circulation since CYP27A1 is expressed in
most of the organs and tissues (Marwarha and Ghribi, 2015). 27-
OHC is indeed one of the major oxysterols in human circulation
and its flux into the brain is likely driven by the concentration
gradient, maintained by the high rate of its brain metabolism
into 7Hoca by CYP7B1 and HSD3B7; subsequently, 7Hoca is
eliminated in the systemic circulation and in the CSF (Meaney
et al., 2007; Saeed et al., 2014; Björkhem et al., 2018). Both 24-
OHC and 27-OHC can, in turn, regulate cholesterol synthesis
and transport from glia to neurons by acting on the nuclear
LXR, that regulates the expression and synthesis of ApoE and
ABCA1/ABCG1 (Czuba et al., 2017). In addition to 24-OHC and
27-OHC, other oxysterols are present in the brain (Testa et al.,
2016). Besides enzymatic oxidation, cholesterol auto-oxidation
can be induced by different compounds, such as lipid peroxides,
free radical species, and metal cations, resulting in the formation
of various oxysterols. Among them, 7α-OHC, 7β-OHC, 7-KC,
25-OHC, α-EPOX, and β-EPOX are the most representative.
Both 7α-OHC and 25-OHC can also derive from cholesterol
enzymatic oxidation, respectively by CYP7A1 and CH25H (Leoni
and Caccia, 2013). These oxysterols flow from the brain into the
systemic circulation and vice versa, crossing the BBB (Figure 1).

The Involvement of Oxysterols in
Alzheimer’s Disease
There has been growing evidence about the involvement of
altered cholesterol metabolism in AD (Wood et al., 2014; Zarrouk
et al., 2014, 2018; Gamba et al., 2015; Testa et al., 2018a).
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FIGURE 1 | Main mechanisms involved in brain cholesterol homeostasis. α-EPOX, 5α,6α-epoxycholesterol; β-EPOX, 5β,6β-epoxycholesterol; 24-OHC,
24-hydroxycholesterol; 25-OHC, 25-hydroxycholesterol; 27-OHC, 27-hydroxycholesterol; 7α-OHC, 7α-hydroxycholesterol; 7β-OHC, 7β-hydroxycholesterol; 7Hoca,
7α-hydroxy-3-oxo-4-cholestenoic acid; 7-KC, 7-ketocholesterol; ABC, ATP-binding cassette; Acetyl-CoA, acetyl coenzyme A; ApoE, apolipoprotein E; BBB,
blood-brain barrier; Chol, cholesterol; CSF, cerebrospinal fluid; HDL, high density lipoprotein; HSD3B7, 3β-hydroxy-C27-steroid dehydrogenase/isomerase; LDLR,
low density lipoprotein receptor; LRP1, LDL receptor-like protein 1; LXR, liver X receptor; and RXR, retinoid X receptor.

The AD brain, in particular the cortex and the hippocampus, is
characterized by synaptic dysfunction, extracellular deposits of
Aβ as senile plaques, and intracellular inclusions consisting of
hyperphosphorylated tau protein as NFTs, all factors contributing
to neuronal loss (Querfurth and LaFerla, 2010).

The presence of oxysterols in the brain could be one of the
factors contributing to AD progression. It has been shown that
some oxysterols (e.g., 27-OHC, 7β-OHC, and 7-KC) significantly
increase in AD brains compared to healthy brains; in contrast,
24-OHC brain levels decrease likely due to neuronal loss
(Hascalovici et al., 2009; Testa et al., 2016).

Concerning 27-OHC, its increased flux into the brain can
be favored by hypercholesterolemia that induces oxidative
stress, thus altering BBB permeability (Heverin et al., 2004;
Dias et al., 2014). Moreover, under oxidative stress and
inflammatory conditions, brain cholesterol metabolism into
27-OHC increases because the enzyme CYP27A1 is highly

expressed by glial cells. Both these mechanisms cause the
increase of 27-OHC/24-OHC brain ratio (Marwarha and
Ghribi, 2015). 27-OHC has been observed to promote
pro-inflammatory molecule release (Testa et al., 2014), to
increase Aβ levels (Prasanthi et al., 2009; Gamba et al.,
2014), in human neuroblastoma cell lines and both Aβ

and hyperphosphorylated tau levels in rabbit organotypic
hippocampal slices (Marwarha et al., 2010). Moreover, 27-
OHC has been recently demonstrated to impact on lysosomal
membrane permeabilization and pyroptosis in co-cultured
SH-SY5Y and C6 cells (Chen et al., 2019). In addition, increased
Aβ plaques were found in the hippocampus of 27-OHC-treated
mice (Zhang et al., 2018), and 27-OHC has been shown to
induce synaptic dysfunction and to impair neuron morphology
(Merino-Serrais et al., 2019).

As regards 24-OHC, contrasting effects have been reported:
on the one hand it promotes neuroinflammation, Aβ peptide
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production, oxidative stress, and cell death in neuronal cell
lines (Gamba et al., 2011, 2014; Yamanaka et al., 2011; Testa
et al., 2014); on the other hand, it has been reported to play
an important role in regulating brain cholesterol metabolism
via LXR, and to exert beneficial effects such as preventing
tau hyperphosphorylation in SK-N-BE cells, suppressing Aβ

production in SH-SY5Y cells, and regulating synaptic function
in rat hippocampal neurons and slices (Paul et al., 2013;
Urano et al., 2013; Testa et al., 2018b). These opposite
effects may depend on 24-OHC concentration, since low
concentrations (1–10 µM) seem to induce adaptive responses
and beneficial effects in neuronal cell lines as discussed by
Testa et al. (2018a).

THE INTERPLAY BETWEEN
CHOLESTEROL AND GLUCOSE
METABOLISM IN THE BRAIN

The Role of Oxysterols in Brain Insulin
Resistance
Insulin is an important regulator of brain cell function and
metabolism: it affects neuronal synaptic function and plasticity
and regulates both glucose and cholesterol metabolism. Like in
peripheral tissues, insulin signaling in the brain is mediated by the
binding of insulin to its receptor. Consequently, insulin receptor
auto-phosphorylation leads to the phosphorylation of the IRS
family, of which IRS1 is the best characterized. IRS1 activates
two important signaling pathways: the PI3K/Akt pathway
and the MAPK cascade (Akter et al., 2011). The activation
of the insulin signaling cascade leads to the translocation
of the insulin-sensitive GLUT4 to the plasma membrane to
favor glucose uptake during memory-related cognitive functions
(McEwen and Reagan, 2004).

However, the insulin-mediated glucose uptake in the brain
is not as significant as in the periphery. Indeed, brain glucose
uptake is also regulated by the cerebral RAS, which is
essential for several brain functions, such as learning, memory,
emotional responses, and processing of sensory information.
A significant reduction of RAS activity has been reported in
the AD brains (Mateos et al., 2008, 2011a,b). The downstream
peptide Ang IV binds to its receptor, known as IRAP, which
is localized in specialized vesicles containing GLUT4 within
hippocampal neurons, as well as throughout other brain
regions. This binding inhibits IRAP activity, thus preventing the
cleavage of memory-enhancing peptides, and activates GLUT4
favoring glucose uptake, thus preserving cognitive functions
(Wright and Harding, 2008).

Recently, a molecular link was demonstrated among
cholesterol metabolism, brain glucose uptake, and the brain
RAS, all of which are affected in neurodegenerative diseases.
Besides being a link between hypercholesterolemia and the
increased AD risk, 27-OHC is considered a biomarker for the
reduced brain glucose metabolism in AD since it is able to
increase brain RAS activity, thus impairing neuronal glucose
uptake (Figure 2). In particular, 27-OHC is involved in the

reduction of glucose uptake in the brain by modulating the
activity of IRAP and GLUT4. To do this, 27-OHC increases
the expression of two main factors involved in the cerebral
RAS: AP-A, which transforms Ang II into Ang III, and AP-N,
which degrades Ang IV (Ismail et al., 2017). Since Ang III and
Ang IV have opposite effects (Ang III inhibits GLUT4 and
activates IRAP and, vice versa, Ang IV activates GLUT4 and
inhibits IRAP), it can be assumed that 27-OHC excess in the
brain, as in the case of AD, may reduce brain glucose uptake
which has a major impact on brain functioning (Figure 2).
In this connection, in vivo experiments demonstrated that
intracerebroventricular injection of 10 µM 27-OHC in WT mice
significantly reduces the levels of GLUT4 and increases the levels
of AP-A, AP-N and IRAP in the hippocampus. Moreover, a
decrease in GLUT4 levels and an enhancement in IRAP levels
were observed in cortical and hippocampal primary neurons
treated with 1 µM 27-OHC (Ismail et al., 2017). The activation
of IRAP by 27-OHC causes the cleavage of neuropeptides
and thus contributes to memory deterioration (Lew et al.,
2003). These results are supported by the fact that CYP27A1
overexpressing mice show decreased glucose metabolism and
memory deficit (Ismail et al., 2017). In vitro experiments also
demonstrated that treatments of rat primary neurons, astrocytes,
and human neuroblastoma cells with 1–10 µM 27-OHC
stimulate the production of angiotensinogen, the precursor of
Ang I. Moreover, in AD the activity of ACE correlates with
27-OHC levels both in plasma and CSF (Mateos et al., 2011a),
although ACE levels have been shown to be reduced in the CSF
(Miners et al., 2009).

Several effects exerted by 27-OHC on brain RAS have been
observed to be mediated by LXRβ, since 27-OHC is a good
LXR ligand (Ismail et al., 2017). However, besides 27-OHC,
other oxysterols have been identified as endogenous ligands
for LXR, including 24S-OHC (Nagy et al., 2012). In fact, both
24S-OHC and 27-OHC regulate the brain RAS in primary
neurons and astrocytes through a LXR-dependent mechanism, by
upregulating angiotensinogen, ACE and Ang II type 1 receptors,
all involved in neuronal plasticity, learning, and memory (Mateos
et al., 2011b). In addition to LXRβ, also LXRα regulates glucose
uptake since the LXRα binding site has been found in the GLUT4
promoter (Dalen et al., 2003).

In addition, the expression of GLUT4, together with the
expression of other genes involved in glucose metabolism control,
may be regulated by PPARγ (Komers and Vrána, 1998). This
nuclear receptor is also involved in the increase of LRP1, a
member of the LDL receptor family involved in cholesterol
metabolism but also in AD pathogenesis (Shinohara et al., 2017).
LRP1 participates in Aβ uptake and metabolism, and in amyloid
precursor protein trafficking (Xue-Shan et al., 2016). Moreover,
LRP1 is strongly associated to IR because it is involved in the
insulin receptor trafficking and intracellular signaling, as well
as in glucose uptake in several tissues, but mainly in the brain
(Actis Dato and Chiabrando, 2018). In this regard, neuronal
LRP1 deficiency leads to a reduced insulin receptor localization
in the plasma membrane, an impaired insulin signaling, and
decreased glucose uptake due to the lack of GLUT3 and GLUT4
(Liu C.C. et al., 2015).
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FIGURE 2 | Effects of oxysterols on RAS- and insulin-dependent glucose uptake. 24-OHC, 24-hydroxycholesterol; 27-OHC, 27-hydroxycholesterol; ACE,
angiotensin I-converting enzyme; Ang, angiotensin; AP, aminopeptidase; BBB, blood-brain barrier; Chol, cholesterol; GLUT, glucose transporter; GPR91,
G-protein-coupled receptor 91; IR, insulin resistance; IRAP, insulin-regulated aminopeptidase; IRS, insulin receptor substrate; and PI3K, phosphoinositide 3-kinase.

Both the nuclear receptors PPARγ and LXRs are also
implicated in the regulation of lipid metabolism. In this context,
CYP27A1 gene expression, regulated by PPARγ and LXR
signaling, results in increased levels of 27-OHC, which in turn
up-regulates PPARγ and LXR-dependent processes (Szanto et al.,
2004; An et al., 2017). Moreover, an oxysterol mixture compatible
with that detectable in human hypercholesterolemic plasma, but
not unoxidized cholesterol, has been shown to upregulate PPARγ

(Leonarduzzi et al., 2010). In addition, oxidized derivatives of
fatty acids, such as 9- and 13-hydroxyoctadecadienoic acid,
both oxidized LDL components, activate PPARγ in macrophages
(Nagy et al., 2012). Furthermore, macrophage-specific PPARγ

knockout mice easily develop diet-induced obesity, glucose
intolerance and IR (Hevener et al., 2007; Odegaard et al., 2007).

Brain IR is defined as the inadequate response to insulin
by target cells and it has been considered a key feature in AD
development since it is highly related to tau pathology. IR is,
indeed, associated with higher tau levels in the CSF (Starks et al.,
2015), and CSF tau predicts changes in brain glucose metabolism

(Dowling et al., 2015). It has been observed that in the AD
brain there are lower levels of insulin and of insulin receptors,
resulting in reduced PI3K/Akt signaling (Schubert et al., 2003,
2004) and GSK3β activation, responsible for NFT formation
(Doble and Woodgett, 2003).

A direct crosstalk between high glucose levels induced by
IR and RAS has been highlighted in kidneys. In particular,
hyperglycemia induced by IR modulates RAS by leading to
renin release through the binding of succinate to its receptor
GPR91 (Peti-Peterdi et al., 2008); vice versa, RAS contributes
to IR because Ang II impairs insulin signaling through IRS1 or
PI3K/Akt inhibition, as shown in Figure 2 (Andreozzi et al.,
2004). At present there is no evidence that this regulatory
network exists also in the brain, but it has been demonstrated that
27-OHC and 24-OHC interfere in the brain’s insulin-dependent
glucose uptake through RAS.

The role of the HO-1/BVR-A system in the occurrence
of IR in the brain, in particular in AD, is gaining attention
(Barone and Butterfield, 2015).
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The enzyme HO-1 is markedly overexpressed in cortical and
hippocampal neurons and astroglia, and colocalizes with senile
plaques and NFTs (Schipper et al., 1995). The upregulation of
HO-1, in particular by the astrocytic compartment, may confer
cytoprotection by enhancing the break-down of prooxidant heme
to the radical scavenging biliverdin and bilirubin. However,
under certain conditions, heme-derived iron and CO may
exacerbate intracellular oxidative stress by provoking free radical
generation within mitochondria and other subcellular organelles.
The interplay between brain HO-1 and cholesterol homeostasis
may have important implications in the pathogenesis of AD.
In this connection, it has been demonstrated that HO-1 levels
increase in the AD brain in parallel with the increased levels
of oxysterols; indeed, HO-1 overexpression suppresses total
cholesterol levels by favoring LXR-mediated cholesterol efflux,
and enhances oxysterol formation (Vaya and Schipper, 2007;
Hascalovici et al., 2014).

Brain IR may be due to increased phosphorylation of IRS1
on specific residues. In this connection, BVR-A is the kinase
that phosphorylates and inhibits IRS1, consequently inhibiting
the insulin signaling. For this reason, BVR-A is considered a
novel mediator of IR. Interestingly, oxidative stress affects BVR-
A function resulting in the impairment of the insulin signaling in
AD subjects (Barone et al., 2011, 2016).

The Impact of High Fat Diet-Induced
Hypercholesterolemia on Brain Insulin
Resistance
As one of the most cholesterol-rich organs, brain cholesterol
homeostasis is tightly regulated; however, there is growing
evidence that the brain lipid profile may be modified by HFD-
induced hypercholesterolemia (Czuba et al., 2017).

In this connection, in AD and aging animal models it has
been observed that HFD induces cognitive decline (Pancani
et al., 2013; Knight et al., 2014). Long-term exposure to
HFD results in the increase of plasma cholesterol and, most
importantly, disturbs brain cholesterol homeostasis leading to
Aβ accumulation, hyperphosphorylation of tau, and neuronal
death (Vance, 2006). Moreover, the HFD triggers astrocytic
activation in the murine hippocampi and increases the expression
of proteins involved in cholesterol transport across brain cell
membranes, such as ApoE, thus HFD has a great impact on brain
cholesterol homeostasis (Chen et al., 2016). Reactive astrocytes
release various inflammatory mediators, that can promote senile
plaque and NFT formation that, in turn, contribute to the redox
imbalance and inflammation. Cholesterol fed rabbits exhibit
high levels of both reactive oxygen species and antioxidant
enzyme HO-1 in the brain, and the increment of HO-1 correlates
well with oxysterol levels (Hascalovici et al., 2014). It has
also been shown that the brain levels of 27-OHC, transported
from the systemic circulation, increased in high cholesterol fed
rabbits, thus leading to neurodegeneration in the hippocampus
(Brooks et al., 2017).

Besides the increased risk of AD induced by HFD because
of brain cholesterol dysmetabolism (Stapleton et al., 2008),
it has also been demonstrated that HFD induces hepatic IR

and impairment of synaptic plasticity (Liu Z. et al., 2015).
Additionally, in vivo studies demonstrated that HFD-induced
peripheral IR and apoEε4 gene variant synergistically impair
cerebral insulin signaling (Zhao et al., 2017). The influence of
HFD on the development of brain IR has been demonstrated by
the presence, in the hippocampi of HFD fed mice, of elevated
levels of phospho-IRS1 (Ser616) (Arnold et al., 2014), phospho-
Akt (Ser473), and phospho-GSK3β (Ser9) (Spinelli et al., 2017).
Both short-term diet, with very high fat content, and long-
term diet, with moderate fat, interfere with the insulin signaling
pathways and induce IR in the brain (Arnold et al., 2014).

Furthermore, few studies highlight the importance of serum
cholesterol in brain glucose uptake. Higher midlife serum
total cholesterol levels are associated, in humans, with lower
metabolic glucose rate in brain areas affected by AD, such as
precuneus, parietotemporal, and prefrontal regions, but also
in frontal regions that are commonly affected by normal
aging (Reiman et al., 2010). Moreover, high levels of blood
cholesterol enhance RAS activity in the brain: high cholesterol
fed mice show increased levels of the precursor angiotensinogen
and of ACE (Mateos et al., 2011b). Moreover, HFD fed
mice exhibit increased IRAP catalytic activity in the brain
(Ismail et al., 2017).

Insulin Resistance Regulates Cholesterol
Metabolism in the Brain
The crosstalk between cholesterol dysmetabolism and IR
is bidirectional: not only hypercholesterolemia and altered
cholesterol homeostasis affect IR, but also IR may, conversely,
affect cholesterol metabolism; in fact, insulin can activate the
transcription factors SREBPs involved in cholesterol biosynthesis
(Suzuki et al., 2010). In addition, insulin increases cholesterol
biosynthesis in SH-SY5Y and N2a cells, by upregulating 24-
dehydrocholesterol reductase, and HMG-CoA reductase through
SREBP2, whereas Aβ-induced IR leads to dysregulation of
cholesterol homeostasis (Najem et al., 2016). Moreover, insulin-
deficient diabetes leads to a reduced cholesterol synthesis in
the brain due to lower expression of SREBP2 and of its
downstream genes in the hypothalamus and in other brain
regions, resulting in altered synaptic formation, and function
(Suzuki et al., 2010, 2013). Conversely, cholesterol depletion
in GT1-7 hypothalamic neuron-derived cells contributes to IR,
alters autophagy, and enhances apoptosis induced by cytotoxic
stress (Fukui et al., 2015).

CONCLUSION

Disruption of cholesterol and glucose metabolism are key players
in AD onset and progression, however, the crosstalk between
these two phenomena is not yet clear. Despite the important
evidence regarding the role of certain oxysterols in regulating
glucose uptake by neurons, it would be crucial to deepen their
role in modulating the insulin signaling pathway in the brain
in order to develop new strategies aimed at preventing or
delaying AD development.
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