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IS COMPUTER ETHICS COMPUTABLE?

Gaetano Aurelio Lanzarone and Federico Gobbo

Abstract

We discuss aims and difficulties of formalizing ethical knowledge and reasoning by using
either ‘axiomatic’ or ‘situated’ methods. We then present an approach, based on Machine
Learning and Computational Logic techniques, to combine abstract ethical rules with
empirical knowledge acquired by concrete experience, and to represent reasoning with rules
that allow exceptions. A provisional conclusion of the paper is that, while computer ethics
hardly seems to be computable in general, at least part of it may be amenable to a suitable
computational formalization, so that the nature of the un-computable ‘residue’ might appear
more clearly.

1. Introduction

Attempting to formalize ethical knowledge and reasoning serves two purposes: understanding
human ethics and designing computer ethics. While the former is descriptive, subject to the
intricacies of human behavior and scarcely prone to systematic experimentation, the latter is
prescriptive, can be experimented with few limitations and has to do with ‘ideal’ ethical
behavior, which restricts the class of models we are interested in. The need to instill ethical
guidance into artificial agents, besides its speculative interest, is related to the practical
problems arising from the building of (semi-)autonomous intelligent robots, to be deployed
not only in special environments inaccessible to humans but also living within the human
environment. Logical and computational formalization of ethics could be useful both for
artificial agents and for the human agents designing them.

Roughly, two main approaches are possible. In the ‘axiomatic’ approach, a set of rules is
established, from which an agent derives ethical behavior. In the ‘situated’ approach, the
agent is immersed within an environment from which it informally absorbs good behavior.
Both approaches have advantages and pitfalls. In the former, the human desiderata can be
expressed, but their context-dependent application is far from guaranteed; the dangers of hard
coding behavioral rules are well known (and will be recalled in the following). In the latter
approach, creating ethical robots that learn from scratch is difficult, since such learning does
not scale up from simple to more complex capabilities; ethical rules cannot be entirely
dispensed with, otherwise un-principled behaviors might emerge.

It is often understood, however, that the two approaches can usefully coexist, and it may be
useful to adopt a mixed approach. In fact, this would correspond to an epistemological stance
advanced by several relevant authors; to mention one: Thus truly ethical behaviour does not
arise from mere habit or from obedience to patterns or rule. Truly expert people act from
extended inclinations, not from precepts, and thus transcend the limitations inherent in a
repertoire of purely habitual responses (Varela, 1999 ) (pp. 30-31).

Isaac Asimov's Laws of Robotics are celebrated as the first and full-fledged attempts at

defining rules of robot ethics. Among several authors, Roger Clarke (Clarke, 1993-94 ) has
discussed, in guise of a thought experiment, how Asimov’s robot stories, started in 1940 and
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continued over the following 45 years, explore the implications of these laws, which are
appealing for their simplicity but whose application encounters several difficulties. Clarke’s
conclusion is that serious doubts arise about the possibility of devising a set of rules that
provide reliable control over machines.

Two main problems have been evidenced. The first is related to ambiguities in the language
used, so that the robot does what it was told, but not what was intended. To abide by the First
Law: “A robot may not injure a human being, or, through inaction, allow a human being to
come to harm”, the robot has to interpret the vague term ‘injure’ in a given circumstance to
the extent that, for example, it has to take into account psychological injury as well as
physical.

The second problem has to do with conflicts among the laws and even within a single law.
The prioritization of the ethical rules may lead to exceptions being invoked because one value
is deemed more important than another. For a single rule, while it has to be followed prima
facie, exceptions need to be considered in practical circumstances. For example, telling the
truth is right and deception is wrong, except when lying is acceptable behavior, e.g. lying to
avoid causing another person damage. Exceptions to exceptions can also arise; for example,
hurting other people is wrong, except when acting in self-defense, but only unless the self-
defensive reaction is not disproportioned.

Artificial Intelligence has developed a rich set of methods of knowledge representation and
reasoning, which can be considered to be adopted in ethics. In this paper, we examine some of
them and discuss their application to mitigate the problems encountered in the axiomatic
approach.

In Section 2 we present a method to combine ethical rules with empirical knowledge acquired
by concrete experience, in order to cope with linguistic ambiguity. Obeying ethical rules
being similar to abiding by laws, we consider an approach developed for the interpretation of
open-textured terms in legal rules, based on precedent cases, and an extension of this method
which includes abstraction through taxonomies and categorization. We also consider
analogical reasoning as a means to interpret an unclear situation by mapping it into a known
situation, related to the first by a certain degree of similarity.

In Section 3 we argue that ethical rules can hardly be considered absolute laws, therefore it is
often necessary to determine to what extent the rules apply to exceptional situations. This
consideration leads us to select the so-called ‘common-sense reasoning’ formalization

as the most correspondent to taking decisions in uncertain real-world circumstances.

Concluding this analysis, in Section 4, after commenting some technical aspects of the
examples shown in the previous sections, we finally propose a provisional answer to the
question raised in the title.

2. Open-textured terms

The notion of open-textured, or vague, terms, rooted in philosophical investigations of
language, was introduced in jurisprudence by Hart (Hart, 1962 ). Hart discusses (Chapter 7)
the open structure of law, where two main devices are employed to communicate criteria of
good behavior: legislation, which makes the maximum use of linguistic terms, and precedent,
which minimizes the use of terms. He exemplifies the two approaches as follows. A parent
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says to his son before entering a church: “All men and boys must take off their hats before
entering church”. Another, as he uncovers his head while entering a church, says: “Look, this
is how one must behave on these occasions™. Hart argues that both ways are uncertain, since
they have an open structure which is unavoidable because we are men, not gods.

Several researchers, concerned with building formal models of law and knowledge-based
legal systems, have addressed the problem of open-textured terms and its importance for
statutory interpretation, i.e. the process of trying to determine the meaning of a legal rule by
analyzing its terms and then applying it to a particular set of facts (Rissland and Skalak,
1989 ). We consider here ethical rules as having similar character as legal rules, and discuss
how approaches developed to formalize legal knowledge can usefully be considered in the
context of the representation and use of ethical rules.

Given the impossibility of defining terms for all possible meanings under all possible
circumstances, a more viable approach is to interpret a vague term by learning from
experience. In a computational setting (machine learning) there are two main approaches:
learning based on explanation (deductive learning) and learning based on similarity (inductive
or analogical learning). We will sketchily consider both in what follows.

2.1 Explanation-Bases Learning

Explanation-Based Learning (EBL) is a machine-learning technique, by which an intelligent
agent can learn through the observation of examples (see (Ellman, 1989 ) for an overview).
Differently from other methods of concept learning, EBL creates generalizations of given
examples on the basis of background domain knowledge (thus it is also called Explanation-
Based Generalization). For our purposes, we consider EBL's domain knowledge as
corresponding to ethical rules, and EBL's training examples as corresponding to precedent
cases. By making the interpretation of vague terms as guided by precedents, we use EBL as
an effective process, capable of creating a link between terms appearing as open-textured
concepts in ethical rules, and terms appearing as ordinary language wording for stating the
facts of a previous expetience.

EBL is usually presented in the literature as follows (Mitchell et al., 1986 ).
Given in input:

1. aTarget Concept (TC): a predicate representing the concept to be learned;

2. a Training Example (TE): a set of facts constituting an example of the target concept;

3. aDomain Theory (DT): a set of facts and rules representing background knowledge about
the domain;

4. an Operationality Criterion (OC): a set of predicates in terms of which TC has to be
defined;

EBL gives in output, using DT, a definition of TC which generalizes TE and satisfies OC.
The EBL algorithm consists of two stages:
1. Construct an explanation in terms of the domain theory that shows how the training

example satisfies the target concept definition. Each branch of the explanation structure
must terminate with an expression that satisfies the operationality criterion.
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2. Determine a set of sufficient conditions under which the explanation holds, stated in terms
that satisfy the operationality criterion.

To explain how the process goes, let us consider the following so-called ‘suicide’ example,
from (DeJong and Mooney, 1986) ). It is represented in Prolog: each rule (Horn clause),
containing first-order predicates, is a logical implication, with the conclusion on the left of the
reversed implication symbol ‘:-¢ and a conjunction (symbol ,’), possibly empty, of conditions
on the right; if the conjunction is empty, the ‘:-* symbol is dropped, and the rule is called a
fact.

The Domain Theory is given by the following rules:

kill(A,B):-hate(A,B),possess(A,C),weapon(C).
hate(W,W):-depressed(W).

possess(U, V):-buy(U,V).

weapon(Z):-gun(Z).

The Training Example is a set of facts:

depressed(john).
buy(john,obj1).
gun(objl).

The Operational Predicates are defined by means of the following facts:

operational(depressed).
operational(buy).
operational(gun).

The Target Concept is the binary predicate 'kill'. Applying the EBG algorithm to the goal:
kill(john,john), EBG generates the clause:

kill(X,X):-depressed(X),buy(X,Y),gun(Y).

which represents a generalization of the Training Example, usable for further cases. Notice
that the new rule represents the concept of committing suicide, though no such name predicate
is explicitly introduced.

In our context, we interpret non-operational predicates as open-textured terms in rules, and
operational predicates as concrete wording in given situations. The role of the operationality
criterion is crucial for EBL. It requires that the final concept definition be expressed in terms
of the predicates used to describe the training example, or in terms of a selected set of easily
evaluated predicates from the domain theory. This means that learned concept definitions
need not only be correct, but also in a form usable by a particular agent for a specific task.
Which predicates to consider operational is debated in the EBL literature, and EBL systems
usually rely on various operationality heuristics. The simplest one is to consider some
predicates as operational a priori; a more sophisticated approach is to state conditional
operationality in rules, which can therefore be reasoned about themselves. In any case, the
concept of operationality constitutes a link between the abstract terms in which ethical or
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other stipulating rules are expressed, and ordinary language terms in which the facts of a
situation are phrased.

The standard application of EBL, as shown above, is purely deductive, having mainly the
purpose of transforming a chain of inferences into a single rule, to be retrieved and used more
efficiently in similar cases. In the Machine Learning field this procedure is called ‘knowledge
compilation’ (see (Cadoli and Donini, 1998 ) for a survey). As such, it requires a complete,
correct and tractable domain theory. In many real-world situations, however, only an
incomplete domain theory is available. This is the case when a predicate appearing in
conditions of rules is not defined by further rules, leaving the interpretation of some
predicates completely open. In such cases, examples may again be taken as guiding the
interpretation, but this time provided that they are used together with some additional
knowledge.

One simple yet useful heuristics is to abstract single instances provided by cases to higher
classes of an abstraction hierarchy. In the above example, 'gun' is a subclass of the class
‘'weapon', abstracting to which also e.g. 'machine-pistol’ is accommodated. 'sleeping pill’ does
not belong to the class 'weapon' but may be used for suicide; a super-class of both may be
expressed by the predicate 'dangerous object, and so on. The extension dealing with
taxonomies or hierarchy trees allows climbing the hierarchy up to the most abstract node
compatible with the constraints. These are represented by means of assertions that use the
binary predicate 'compatible’, expressing the fact that a class is compatible with its siblings
and therefore with its super-class as a whole. In the suicide example, the taxonomy is
expressed by means of facts with unary predicates:

weapon(gun).
weapon(machine_pistol).
toxic_substance(poison).
toxic_substance(sleeping_pill).
dangerous_object(weapon).
dangerous_object(toxic_substance).

We add the following facts to the Training Example:

belongs_to(gun,weapon).
(*) compatible(weapon,dangerous_object).

In such a situation, an extended EBL process generates the final clause:
kill(X,X):-depressed(X),buy(X,Y),dangerous_object(Y).

which can be used to prove suicide with all the dangerous substances included in the

hierarchy and not only with the gun of the previous Training Example. On the contrary, the

lack of a ‘compatible' assertion means that the abstraction is not possible. For instance, if fact

(*) is not given, the generated clause is simply:

kill(X,X):-depressed(X),buy(X,Y),weapon(Y).

and does not generalize up to 'dangerous_object’, but only to 'weapon'.
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The extended EBL process exemplified above has been formalized within a meta-logic
approach in (Bertarello et al., 1994 ) and applied to the open-textured terms problem in
(Costantini and Lanzarone, 1995 ). This method is viable for taking specific situations into
account, in order to transform general rules possibly containing vague terms into ready-to-use
rules worded in ordinary terms. It recalls a cognitive significance suggested by Varela:
Through appropriate extension and aitention and by training over time we have transformed
these actions into embedded behaviour (Varela 1999 ) (p. 35).

2.2 Analogical Learning

A second way of learning from experience is analogical learning. In Machine Learning,
several authors (see (Leishman, 1990 ) and (Hall, 1989 ) for surveys) have pointed out that
analogy is mainly concerned with a mapping between two domains. As, for instance, Winston
puts it (Winston 1980 ), analogy is based on the assumption that if two situations are similar
in some respect, then they may be similar in other respects as well. Thus, an analogy is a
mapping of knowledge from a known ‘source’ domain into a novel ‘target’ domain.

The simplest approach to analogy is to transfer properties from source to target by using rules
like “if the source is sufficiently similar to the target and has a property of interest, then
ascribe that property to the target”. (Winston, 1980 ) discusses analogy as a replacement of
the source object with the target object on the basis of the following kind of inference:
knowing that from premises A conclusion B follows, and that A' corresponds to A,
analogically conclude B'. Let’s consider again the ‘suicide’ example, restated as follows.

Source Theory S:

kills(X,Y):-hates(X,Y),has_weapon(X)
hates(john,george)
has_weapon(john)

Target Theory T:

hates(anne,joe)
hates(X,X):-depressed(X)
has_weapon(anne)
has_weapon(bill)
depressed(bill)
hates(marc,bruce)
violent(marc)
beats(john,carl)

Since kills(john,george} can be concluded in S and because of the first two clauses in T, then

kills(anne,joe) can analogically be concluded in T by the correspondences of terms (john,anne)
and (george,joe). Notice that also kills(billbill) can analogically be concluded in T by the

correspondences (john,bill) and (george,bill).

Not only terms but also relations can be transferred. If we add:

analogous(‘kills’,’beats’)
analogous(‘has_weapon,’, violent’)
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beats(marc,bruce) can analogically be concluded.

A formalization of this method, again in computational meta-logic, is described in
(Costantini and Lanzarone, 1991 ), (Costantini et al., 1995 )

Quoting again from (Varela, 1999 ) (p. 27): According to Mencius, people actualize virtue
when they learn to extend knowledge and feelings from situations in which a particular action
is considered correct to analogous situations in which the correct action is unclear.

3. Absolute rules vs. rules with exceptions

The philosophical problems arising from considering absolute (‘categorical’) rules are well
represented by the notorious Emmanuel Kant vs. Benjamin Constant debate. In the brief essay
“On a Supposed Right to Lie Out of Love for Man” (first published in a Berlin magazine in
1797), Kant claimed that it is wrong to tell a lie even to save a friend from possible murder.
The rebuttal by Constant was: The moral principle: it is a duty to speak the truth, if taken
unconditionally and in isolation, would make all society an impossibility, and most later
critics considered untenable Kant’s refusal to admit exceptions to obeying a duty (see e.g.
(Benton, 1982 )).

Artificial Intelligence researchers have developed several approaches to dealing with rules
with exceptions and common-sense (or, more technically, non-monotonic) reasoning (see e.g.
(Ginsberg, 1987 ). When considering rules as propositions expressed in a rigorous language,
logic is involved, but classical logic is inadequate and new logics have been devised.

In classical logic, statements are ‘categorical’, i.e. they are intended to always hold, with no
exception (e.g.: all humans are mortal). Deductive reasoning is monotonic, that is, adding new
axioms, the set of conclusions previously derivable cannot decrease.

In common-sense reasoning, statements are ‘typical’, i.e. they are intended to usually hold,
but there can be exceptions. For example, vehicles are prohibited in a public park; the rule,
however, does not apply to fire trucks, maintenance cars, vehicles for disabled people and so
on. Since it is hardly feasible to specify all the possible exceptions, a default (also called
‘closed-world”) assumption is taken, that is, the typicality conclusion is derived about a case if
it cannot be proved to be an exceptional case. But if information is added about that case
being an exception to the typicality rule, then the conclusion is retracted (hence the term non-
monotonic reasoning: adding new information, the set of previously derivable conclusions can
decrease).

Let us consider the following rules and facts.

wrong_behavior(Agent):-performs(Agent,Action),
causes(Action,Effect),bad(Effect),
not exceptional(Agent,Action).
exceptional(Agent,Action):-reaction(Agent,Cause),
acceptable_motivation(Cause, Reason),
not disproportioned(Reason, Cause).
performs(agent_1,injurying).
performs(agent_2,injurying).
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performs(agent_3,injurying).

performs(agent_4,lying).

performs(agent_5,lying).

causes(injurying,damage).

causes(lying,damage).

bad(damage).

reaction(agent_1,gentle_invitation).

reaction(agent_2, physical_attack).

reaction(agent_3, verbal_offense).
reaction(agent_4,valid_accusation).
reaction(agent_35,false_accusation_of_friend).
acceptable_motivation(physical_attack,violent_self_defence).
acceptable_motivation(false_accusation_of_friend, save_life_of friend).
disproportioned(violent_self_defence,Verbal_offense).

The connective ‘not’ appearing in rules above is not a classical but a non-monotonic negation,
i.e., according to the default assumption, its argument is considered not to hold if it cannot be
proved (from the given clauses) to hold. Therefore, in the example, the predicate
‘wrong_behavior’ holds for: agent_l, agent_4 (not exceptions), agent_3 (an exception of an
exception), and doesn’t hold for: agent_2 and agent_5 (exceptions).
Notice that, should we for instance add for agent_4 the information:

acceptable_motivation(valid_accusation, save_life_of_friend).

then the previous conclusion would no longer hold, hence the non-monotonicity of this kind
of inference.

4. Concluding remarks

4.1 About formalisms

In summarizing what we have presented in this paper, a remark is in order with respect to the
mentioned techniques. To give a flavour of the approaches involved and at the same time to
avoid technicalities unnecessary in the present context, we have represented examples in
Prolog, as probably the simplest and most understandable logical formalism. It is not,
however, the most appropriate to the treated topics, for reasons whose discussion goes beyond
the purpose of this paper.

On the other hand, more powerful and ‘neat’ formalisms are either too specialized or not
amenable to computational use (the topic of the paper being ‘computability’ of ethics). For
instance, deontic logics could be employed to represent the concepts of ‘permitted’ and
‘prohibited’, central in legal or ethical discourse. But these would not be appropriate to
represent explanation-based and analogical learning. Similarly, other non-monotonic
formalisms (such as those appearing in (Ginsberg, 1987 )) would not be suitable to learning,
not to mention that most of them are computationally intractable.

A general approach that has proved, in the experience of the first author (see an
epistemological account in (Lanzarone 2003 ), better suited to encompass all the different
techniques presented in this paper, is meta-logic programming, developed in (Costantini and
Lanzarone, 1994a ) and applied to EBL and analogy in the previously mentioned papers and
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to non-monotonic reasoning in (Costantini and Lanzarone, 1994b ); the reader is referred to
these papers for the formal details. In fact, most of the involved concepts are meta-theoretical
in nature: analogy is a mapping between different domains, hence logical theories; common-
sense reasoning is based on the meta-level ‘closed world assumption’, and learning in general
implies working with changing axioms (‘theory revision’).

4.2 A provisional conclusion

We have supported the epistemological stance underlying the shown approaches with the
work of two authors (Hart and Varela) that seem to converge to similar positions though
starting, in different times, from very different backgrounds.

The axiomatic and the situated approaches are thus reconciled. On the one hand, without
empirical experience, rule-based ethical systems cannot determine whether open-textured
terms in rule antecedents match the current situation to be decided and acted upon. On the
other hand, without the guidance of general rules, precedent cases are only fragmented
knowledge, unsuitable to being carried on to new situations; analogical reasoning and
abstraction principles are needed to fill in the knowledge gaps, for example, by noting
similarities and considering more general classes encompassing the concepts of both rules and
cases.

A provisional answer to the question raised in the title of this paper is that, while computer
ethics does not seem amenable to finite axiomatizability and therefore is un-computable in
general, at least part of it could be computed by supplementing ethical rules with empirical
experience, gained and employed by learning. Studying how far the frontier of the computable
part of computer ethics can be pushed, the nature might appear more clearly of the un-
computable ‘residue’, as Alan Turing called it in the following passage (where by “discipline’
he means finite rules and by ‘initiative’ he means learning): But discipline is certainly not
enough in itself to produce intelligence. That which is required in addition we call initiative.
This statement will have to serve as a definition. Our task is to discover the nature of this
residue as it occurs in man, and try to copy it in machines (Turing, 1948 ).
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