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Abstract

We analyse the classical moduli spaces of supersymmetric vacua of 3d N = 2
Chern-Simons quiver gauge theories. We show quite generally that the moduli
space of the 3d theory always contains a baryonic branch of a parent 4d N = 1
quiver gauge theory, where the 4d baryonic branch is determined by the vector
of 3d Chern-Simons levels. In particular, starting with a 4d quiver theory dual
to a 3-fold singularity, for certain general choices of Chern-Simons levels this
branch of the moduli space of the corresponding 3d theory is a 4-fold singularity.
Our results lead to a simple general method, using existing 4d techniques, for
constructing candidate 3d N = 2 superconformal Chern-Simons quivers with
AdS4 gravity duals. As simple, but non-trivial, examples, we identify a family of
Chern-Simons quiver gauge theories which are candidate AdS4/CFT3 duals to
an infinite class of toric Sasaki-Einstein seven-manifolds with explicit metrics.
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1 Introduction

Three-dimensional Chern-Simons (CS) gauge theories coupled to matter, with N = 2

supersymmetry or higher, have recently attracted considerable attention, as prominent

candidates for field theory duals of AdS4 vacua of string and M-theory [1]. The simplest

examples of these vacua are Freund-Rubin AdS4 × Y7 solutions of eleven-dimensional

supergravity, where Y7 is a Sasaki-Einstein seven-manifold (or orbifold). Such back-

grounds are expected to be AdS/CFT dual to the field theory on a large number of

M2-branes at a Calabi-Yau 4-fold singularity. One would then like to answer the ques-

tion: what are the field theory duals of such solutions? Of course this hinges on the

open problem of what are the degrees of freedom on the M2-branes. Progress in this

direction has been made in the recent work of [2] (ABJM). The authors of the latter

reference have identified the gauge theory duals of a class of AdS4×S7/Zk backgrounds,

showing that these are N = 6 (or N = 8) Chern-Simons quivers with two nodes and

Chern-Simons levels (k,−k). In fact, the quiver itself is precisely the same as the 4d

N = 1 model of [3].

The corresponding situation in type IIB string theory is understood rather better.

Here one can construct large classes of N = 1 AdS5/CFT4 duals by considering N

D3-branes placed at a conical Calabi-Yau 3-fold singularity X . In many cases the

gauge theory may be constructed from the open string degrees of freedom living on

the (fractional) branes. In these examples the dual theory is described by a 4d N = 1

quiver gauge theory. The moduli space of vacua of these theories contains a branch

(the mesonic branch) which is a symmetric product of the Calabi-Yau singularity X

one started with. The gravity dual is then expected to be AdS5 × Y5, where Y5 is the

Sasaki-Einstein base of the Calabi-Yau cone X = C(Y5), thus closing the circle. The

key difference with the M-theory set-up described in the paragraph above is that D-

branes in string theory are currently understood in much greater detail than M-branes

in M-theory.

In this paper we analyse the classical vacuum moduli spaces (VMS) of N = 2 Chern-

Simons quiver gauge theories with arbitrary CS levels. These spaces in general may

be rather complicated, containing several branches (i.e. Coulomb, Higgs, or mixed

branches). However, motivated by the situation in 4d and the CS quiver theory of [2],

we will focus our attention on a particular branch of these theories. If the CS quiver

theories we discuss indeed have an interpretation in terms of M2-branes at a CY 4-fold

singularity, we believe it is this branch that should reproduce the CY 4-fold as the
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moduli space of the transverse M2-branes. For simplicity we will take all ranks of the

gauge groups equal to N and denote this by U(N)k1 × · · · × U(N)kn , although the

results we describe may be easily generalised to the case of arbitrary ranks. We begin

with the Abelian theory N = 1. We show that the VMS contains a branch that is

closely related to the moduli space of a parent 4d N = 1 quiver theory, in a sense that

we shall explain more precisely during the course of the paper. In particular, when

this parent quiver theory arises from a 3-fold singularity, for certain general choices

of Chern-Simons levels the corresponding 3d theory has a branch of the moduli space

which is a 4-fold singularity. The discussion is extended to the non-Abelian theories

with little modification.

Note that, a priori, it is not clear what are the conditions that a Chern-Simons

quiver should satisfy in order to flow to a superconformal fixed point in the infra-red

(IR). The situation ought to be more subtle than is the case in four dimensions, where

anomalies, NSVZ beta-functions, and a-maximisation [4] provide important constraints

on the IR dynamics.

The results of this paper are a first key step towards identifying candidate N = 2

conformal Chern-Simons quiver gauge theories with AdS4 × Y7 gravity duals. In par-

ticular, they suggest a general method for constructing 3d Chern-Simons quiver gauge

theories arising from M2-branes at a given Calabi-Yau 4-fold singularity. As an appli-

cation, we discuss a family of Chern-Simons quiver gauge theories that are candidate

duals to an infinite family of explicit Sasaki-Einstein seven-manifolds, constructed in

[5] and further analysed in [6].

The plan of the rest of the paper is as follows. In section 2 we recall the field

content and Lagrangian of N = 2 Chern-Simons theories, with product gauge group

and bifundamental matter, i.e. Chern-Simons quiver gauge theories. In section 3 we

analyse the VMS of Abelian quivers. Section 4 describes the extension to non-Abelian

gauge groups. In section 5 we discuss the relevance of our results for the construction of

superconformal Chern-Simons quivers with AdS4 duals. Section 6 presents an infinite

family of Chern-Simons quiver gauge theories which are candidate AdS4/CFT3 duals

to a corresponding family of explicit Sasaki-Einstein seven-manifolds.

2 Field content and Lagrangians

We largely follow the notation and discussion in [1, 2, 7]. A 3d N = 2 vector multiplet

V consists of a gauge field Aµ, a scalar field σ, a two-component Dirac spinor χ, and
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another scalar field D, all transforming in the adjoint representation of the gauge group

G. This is simply the dimensional reduction of the usual 4d N = 1 vector multiplet.

In particular, σ arises from the zero mode of the component of the vector field in the

direction along which we reduce. The matter fields Φa are chiral multiplets, consisting

of a complex scalar φa, a fermion ψa and an auxiliary scalar Fa, which may be in

arbitrary representations Ra of G. An N = 2 Lagrangian then consists of the three

terms

S = SCS + Smatter + Spotential . (2.1)

We describe each of these in turn.

We will be interested in product gauge groups of the form

G =

n
∏

i=1

U(Ni) . (2.2)

It will turn out to be important to allow different Chern-Simons levels ki for each

factor U(Ni). If Vi denotes the projection of V onto the ith gauge group factor, then in

component notation the Chern-Simons Lagrangian, in Wess-Zumino gauge, takes the

form

SCS =

n
∑

i=1

ki
4π

∫

Tr

(

Ai ∧ dAi +
2

3
Ai ∧ Ai ∧ Ai − χ̄iχi + 2Diσi

)

. (2.3)

The Chern-Simons levels ki are quantised. In particular, for U(Ni) or SU(Ni) gauge

group ki ∈ Z are integers if the trace in (2.3) is normalised in the fundamental repre-

sentation.

The matter (kinetic) term takes a simple form in superspace, namely

Smatter =

∫

d3xd4θ
∑

a

Tr Φ̄ae
VΦa

=

∫

d3x
∑

a

Dµφ̄aD
µφa − φ̄aσ

2φa + φ̄aDφa + fermions , (2.4)

where in the second line we have expanded into component fields, and we have not

written the terms involving the fermions ψa. The auxiliary fields σ and D are here

understood to act on φa in the appropriate representation Ra, just as for the covariant

derivatives Dµ which contain the gauge field Aµ.
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The superpotential term is

Spotential =

∫

d3xd2θW (Φ) + c.c.

= −

∫

d3x
∑

a

∣

∣

∣

∣

∂W

∂φa

∣

∣

∣

∣

2

+ fermions . (2.5)

At this stage we take the superpotential to be an arbitrary polynomial in the scalar

fields φa, and we have included the couplings in the definition of W . Notice that the

coupling constants are in general not related to the Chern-Simons levels, as is neces-

sarily the case for N = 3 supersymmetry [7]. In particular, they may be renormalised

in the IR.

The resemblance of these theories to 4d N = 1 theories should be apparent. Notice,

however, that there are no kinetic terms for the gauge fields, which are replaced by the

CS terms. The fields in the vector multiplets are therefore auxiliary fields.

3 Abelian Chern-Simons quivers

Recall that a quiver is a directed graph on n nodes, with arrow set A and head and tail

maps h, t : A → {1, 2, . . . , n}. In general we associate a gauge group factor U(Ni) to

node i ∈ {1, . . . , n}, with the chiral field Φa transforming in the fundamental represen-

tation of the gauge group at node h(a) and the anti-fundamental representation of the

gauge group at node t(a). The gauge group is thus given by (2.2). The superpotential

W is constructed as the trace of a sum of closed oriented paths in the quiver. The

coefficients in this sum are the (classical) superpotential couplings.

We begin by specialising to the Abelian case with Ni = 1 for all i, so that the gauge

group is simply

G = U(1)n . (3.1)

All of the gauge fields Ai are hence Abelian. The labels a ∈ A on the chiral fields Φa

run over arrows in the quiver, and Φa has charge +1 under U(1)h(a) and charge −1

under U(1)t(a). Furthermore, the auxiliary fields σ and D are then n-component fields,

σi and Di.

The potential V for the theory is a sum of a D-term potential and an F-term potential

(given by (2.5)), so that

V = VD + VF . (3.2)

4



Here we have defined

VF =
∑

a∈A

∣

∣

∣

∣

∂W

∂φa

∣

∣

∣

∣

2

, (3.3)

whereas the D-term potential takes the form

VD = −
n
∑

i=1

ki
2π
Diσi +

∑

a∈A

|φa|
2(σh(a) − σt(a))

2 −
∑

a∈A

|φa|
2(Dh(a) −Dt(a)) . (3.4)

Here the first term comes from the CS action (2.3), whereas the second and third terms

come from the matter action (2.4). We may rewrite the last term in (3.4) as

−
∑

a∈A

|φa|
2(Dh(a) −Dt(a)) = −

n
∑

i=1

Di





∑

a|h(a)=i

|φa|
2 −

∑

a|t(a)=i

|φa|
2



 =
∑

i

DiDi (3.5)

where we have defined the usual 4d N = 1 D-term as

Di = −
∑

a|h(a)=i

|φa|
2 +

∑

a|t(a)=i

|φa|
2 . (3.6)

Integrating out the auxiliary fields Di then immediately gives

Di =
kiσi
2π

, (3.7)

where there is no summation on the right hand side. Notice that on summing the

equalities in (3.7) over all the nodes of the quiver, the left hand side vanishes. This

follows from the fact that nothing is charged under the overall diagonal U(1). We thus

find the condition

n
∑

i=1

kiσi = 0 . (3.8)

Substituting (3.7) back into the action the terms involving Di cancel, because the

potential is linear in Di, leaving only the second term in (3.4). Thus

VD =
∑

a∈A

|φa|
2(σh(a) − σt(a))

2 . (3.9)

Supersymmetric vacua

In vacuum the fermions are all set to zero, with the scalar fields taking constant VEVs.

The potential V, since it is manifestly non-negative, then has an absolute minimum at
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zero. In fact since both VD (3.9) and VF (3.3) are both non-negative, each must vanish

separately in a supersymmetric vacuum.

The F-term equations are simply

∂W

∂φa

= 0 . (3.10)

This defines an affine algebraic set

Z = {dW = 0} ⊂ C
M , (3.11)

where in the Abelian case at hand M = |A|. This is exactly as for 4d N = 1 quiver

gauge theories.

We next turn to the D-term equations. Again, since (3.9) is a sum of non-negative

terms, the potential is minimised at zero. One set of solutions is clearly given by

σ1 = σ2 = · · · = σn ≡ s . (3.12)

Here s ∈ R is arbitrary. As will become clear, this is an interesting branch of the

moduli space, since the final result when the corresponding 4d quiver theory is dual to

a 3-fold singularity will be a 4-fold singularity. In general there could be other branches,

obtained by instead setting certain φa = 0 and thus allowing for more general σi. It

is simple to write down examples of quivers which have such branches. However, we

believe that for the quivers relevant for the AdS4/CFT3 correspondence, it is the above

branch that should reproduce the CY 4-fold geometry as the moduli space of transverse

M2-branes. In any case, we will not consider the other branches of the VMS, if indeed

there are any, in the present paper.

The conditions (3.7) then become

Di =
kis

2π
. (3.13)

Note then that (3.8) implies

n
∑

i=1

ki = 0 . (3.14)

This is hence a necessary condition on the Chern-Simons levels for a Chern-Simons

quiver theory to admit the above vacua with s 6= 0. If (3.14) does not hold then s

is identically zero and note that we reduce to the usual 4d space of D-term equations

with zero FI parameters. This would usually be called the Higgs branch. Indeed, the
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VMS equations (3.13) may be regarded as promoting a 4d FI parameter to a VEV.

The FI parameter is ζi = kis/2π, and thus the direction is determined by the vector of

CS levels, while the scale is determined by the VEV s of the auxiliary scalars. Thus,

provided the vector k = (k1, . . . , kn) 6= 0 and (3.14) holds, the 3d space of absolute

minima of the potential is always one real dimension higher than the 4d space of minima

for the corresponding quiver theory.

We may conveniently rewrite the 3d D-term equations (3.13) in a 4d language as

follows. We begin by noting that the n-vector k is, more invariantly, an element of the

dual Lie algebra t∗n
∼= Rn of G = U(1)n, so

k ∈ t∗n . (3.15)

There is hence a kernel

ker(k) ⊂ tn ∼= R
n , (3.16)

given by vectors that contracted with k give zero. Provided k 6= 0, this defines a vector

subspace of dimension n− 1. Then the 3d D-term equations (3.13) may be written as

n
∑

i=1

viDi = 0 , v ∈ ker(k) . (3.17)

Note that this gives the correct VMS even when k = 0. Also notice that the vector

v = (1, 1, . . . , 1) ∈ ker(k) if (3.14) holds. Since the D-term for this vector, and only for

this direction, is identically zero, we see that (3.17) imposes (n−2) linearly independent

equations for k 6= 0 satisfying (3.14). In fact from now on we assume the latter

conditions to hold.

Gauge symmetries

In vacuum the gauge fields are set to zero1. Constant gauge transformations therefore

map vacua to vacua, and to compute the space of gauge-equivalent solutions we must

also identify by these gauge transformations. We have already noted that the overall

diagonal U(1) acts trivially, and thus naively it seems one should quotient the space

of F-term and D-term solutions by the action of U(1)n−1 ∼= U(1)n/U(1) to obtain the

VMS. However, there is an immediate problem with this: the VMS would then be

odd-dimensional, which is incompatible with supersymmetry. The resolution of this

1We will modify this statement slightly below.
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apparent puzzle becomes clear on examining the CS action more carefully, precisely as

in [2] (see also [8]).

We define

a =
n
∑

i=1

Ai , b =
1

h

n
∑

i=1

kiAi , (3.18)

where we have introduced

h = gcd{ki} . (3.19)

The Abelian CS action for the gauge fields A = (A1, . . . , An) is

SSC(A) =
1

4π

n
∑

i=1

∫

kiAi ∧ dAi . (3.20)

Now consider making the simultaneous variations

Ai → Ai + λ , i = 1, . . . , n (3.21)

with λ an arbitrary one-form. This induces the variations

δλa = nλ (3.22)

δλb = 0 (3.23)

where the second equation follows from (3.14). The variation of the CS action is hence

δλSCS(A) =
2

4π

n
∑

i=1

∫

λ ∧ kidAi (3.24)

where note there are two terms to vary in each summand, but they give equal contri-

butions after integrating by parts. We may rewrite this as

δλSCS(A) =
2h

4π

∫

λ ∧ db . (3.25)

We thus conclude that

SCS(A) =
h

2πn

∫

b ∧ f + S ′ , (3.26)

where we have defined f = da, and by definition

δλS
′ = 0 . (3.27)
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Since the overall U(1) decouples from the matter, we see that the first “bf” term in

the action (3.26) describes completely the action for the gauge field a. We may thus

introduce a Lagrange multiplier

Sτ = −
1

2π

∫

dτ ∧ f (3.28)

and treat f , rather than a, as the basic variable. Integrating out f then imposes2

b =
n

h
dτ . (3.29)

The gauge invariance of the theory is now

b→ b+ dθ , τ → τ +
h

n
θ , (3.30)

Ai → Ai + dθi ,

n
∑

i=1

kiθi = 0 . (3.31)

The gauge transformations (3.31) are precisely those that do not act on b. The trans-

formation (3.30) of b instead arises from

Ai → Ai + dθi ,

n
∑

i=1

kiθi = hθ . (3.32)

Consider now the character

χk : U(1)n → U(1)

;
(

eiθ1 , . . . , eiθn
)

7→ exp

(

i

n
∑

i=1

kiθi

)

. (3.33)

The gauge transformation of b in (3.30) thus maps to exp(ihθ). This lies in the kernel

of (3.33) if and only if

θ =
2πl

h
(3.34)

where l = 1, . . . , h. On the other hand, if we assume for the moment that τ has period

2π/n, then gauge fixing τ = 0 leaves a residual gauge symmetry in (3.30) that is

precisely the same as (3.34). The transformations (3.31) also lie in the kernel of (3.33)

of course. Thus, assuming that τ has period 2π/n, we see that the group of constant

gauge transformations acting on the VMS is precisely the kernel of (3.33). This defines

2We note a factor of 2 difference with the corresponding equation in [2].
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an Abelian group kerχk ⊂ U(1)n of rank n− 1. Note that due to (3.14) this contains

the overall diagonal U(1), which acts trivially. Thus the effectively acting group of

gauge symmetries is the quotient

Hk = kerχk/U(1) ∼= U(1)n−2 × Zh . (3.35)

It thus remains to justify3 that the period of τ is indeed 2π/n. As is well-known,

the periodicity for τ is related to the flux quantisation condition on f via the coupling

(3.28). In the above vacua we have set all gauge fields to zero, and thus f = 0. However,

since nothing is charged under the overall diagonal U(1) gauge group, one may in fact

turn on a diagonal gauge field in the above vacua. To see this, note that with non-zero

gauge fields but constant φa there is an additional term in the expression for energy

∑

a∈A

|φa|
2(Ah(a) −At(a))

2 . (3.36)

This comes directly from the kinetic term for the φa. Thus, in Euclidean signature,

and on the branch we consider, the total energy of the vacuum vanishes if and only if

A1 = · · · = An, which is a diagonal flux4. Note this is closely related to (3.12). The

quantisation condition on each Fi is the usual Dirac condition

1

2π

∫

Σ

Fi ∈ Z (3.37)

where Σ is any two-cycle. If Σ is a two-sphere in R3, such a flux would signify the

presence of magnetic monopoles inside this two-sphere. Since all Fi are equal, we thus

see that

1

2π

∫

Σ

f ∈ nZ , (3.38)

which then leads to a period of 2π/n for τ . Note that this analysis depends on the

branch of the vacuum moduli space we are considering. On different branches, the

periodicity of τ may a priori be different.

The 3d VMS, or at least the branch satisfying (3.12), is then the Kähler quotient of

the space of F-term solutions Z by Hk at moment map level zero:

M3d(k) = Z //Hk . (3.39)

3We note that in [8] the authors stated explicitly that they did not have a field theory explanation
for this period in their orbifold models.

4Equivalently, this is implied by the equations of motion for the φa.
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Notice this moduli space is acted on by U(1) ∼= U(1)n−1/Hk, and that a further Kähler

quotient by this U(1) would produce the usual mesonic moduli space of the correspond-

ing 4d theory

M4d = M3d(k)//U(1) . (3.40)

Indeed, if one introduces an FI parameter ζ ∈ R for this U(1) quotient, via (3.40) one

obtains a family of mesonic moduli spaces M4d(ζk), labelled by ζ . As reviewed for

example in [9], in general the space of FI parameters for a Kähler quotient is a fan,

which is a set of convex polyhedral cones glued together along their boundary faces.

Inside each cone the quotient spaces are isomorphic as complex manifolds, but have

an induced Kähler class that depends linearly on ζ . As one moves from one cone to

another along a boundary wall, the moduli space undergoes a form of small birational

transformation called a flip. In the case at hand, the CS vector k picks a particular

real line through the origin in the space of FI parameters of the corresponding 4d

N = 1 theory, where we may interpret ζ = s. Thus the mesonic spaces for ζ > 0 are

all isomorphic, with a Kähler class depending linearly on ζ . This will be a (partial)

resolution of the mesonic moduli space with ζ = 0. As one passes to ζ < 0 the moduli

space undergoes a flip, with again the moduli spaces for ζ < 0 being all isomorphic and

the Kähler class depending linearly on ζ . Thus the 3d VMS (3.39) may be obtained

by gluing this one-parameter family of 4d mesonic moduli spaces together, with the

U(1) ∼= U(1)n−1/Hk fibred over each mesonic space in the family.

We also note that (3.39) may be viewed as a (GIT) quotient of Z by the complexified

gauge group

HC

k = (C∗)n−2 × Zh . (3.41)

In fact we may define M3d(k) as an affine variety via

M3d(k) = Z //HC

k ≡ SpecC[Z]H
C

k . (3.42)

The equivalence between the two descriptions is standard – see, for example, [10].

Moduli spaces of quivers with relations were first introduced in [11]. Given a quiver

with relations, the moduli spaces in [11] are defined by first picking a character of the

gauge group, precisely as in (3.33), and then defining the holomorphic (GIT) quotient,

with respect to this character k ∈ Zn, of the set Z satisfying the relations. This is very

closely related5 to the moduli space (3.42).

5The moduli spaces in [11] are projective versions of (3.42).
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Example: the ABJM theory

It is straightforward to recover the results of [2] from the above discussion. The quiver

has n = 2 nodes with four bifundamental fields, which are grouped into two pairs in

conjugate representations of the gauge group G = U(1)2. The vector of CS levels is

(k,−k), in the notation of [2], so h = k. In this Abelian case the superpotential is

identically zero, and thus the space of F-term solutions is Z ∼= C4. Moreover, the

group (3.35) is simply Hk
∼= Zk, and one obtains M3d(k) = C4/Zk as the 3d VMS.

Note in this example that there are certainly no other branches to the VMS. A further

quotient of this space6 by the relative U(1) gives the conifold singularity, which is of

course the mesonic moduli space of the 4d theory [3].

4 Non-Abelian Chern-Simons quivers

We now return to the general case where

G =
n
∏

i=1

U(Ni) . (4.1)

In this case φa is an Nh(a) × Nt(a) matrix, and σi and Di are both Ni × Ni Hermitian

matrices. We denote the gauge indices by α, β, so that for example the matrix elements

of Di are denoted Diαβ . Here α,β = 1, . . . , Ni, so the range of the gauge indices is

understood to depend on i in this notation. Thus

(Dφa)αβ =

h(a)
∑

γ=1

Dh(a)αγφaγβ −

t(a)
∑

δ=1

Dt(a)δβφaαδ , (4.2)

where α = 1, . . . , h(a), β = 1, . . . , t(a). Note carefully the index structure.

Taking the variation of the scalar potential with respect to Diαβ thus gives the usual

4d D-term equation

kiσi
2π

= −
∑

a|h(a)=i

φaφ
†
a +

∑

a|t(a)=i

φ†
aφa ≡ Di (4.3)

with kiσi playing the role of a moment map level. Note there is no sum on i here.

Also note that σi in (4.3) is indeed Hermitian. Substituting back into the potential,

the terms involving Di again cancel because the potential is linear in Di. Since σi is

6Note the result of this further quotient does not depend on k.
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Hermitian, the potential may be written

VD =
∑

a∈A

h(a)
∑

α=1

t(a)
∑

β=1

(

M †
a

)

βα
(Ma)αβ =

∑

a∈A

h(a)
∑

α=1

t(a)
∑

β=1

|Maαβ |
2 . (4.4)

Here we have defined

Ma = σφa , (4.5)

which in matrix notation is

Ma = σh(a)φa − φaσt(a) , (4.6)

or in components

Maαβ =

h(a)
∑

γ=1

σh(a)αγφaγβ −

t(a)
∑

δ=1

σt(a)δβφaαδ . (4.7)

The potential is thus minimised at

Ma = 0 . (4.8)

Recall now that the gauge group U(Ni) acts on σi by conjugation. So gi ∈ U(Ni)

acts as

σi 7→ giσig
−1
i . (4.9)

Since σi is Hermitian, it is necessarily diagonalisable by an appropriate choice of gi.

The eigenvalues of σi are then of course real, and in this gauge we may write

σiαβ = siαδαβ (4.10)

where there is no sum, and siα ∈ R are the eigenvalues. In such a gauge choice, which

always exists, we have

Maαβ = (sh(a)α − st(a)β)φaαβ . (4.11)

Again, there is no sum in this formula.
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Branches of relative dimension 1

There are various ways of satisfying (4.8). One solution is to take

siα = s (4.12)

independently of i and α. Since the overall diagonal U(1) decouples, the sum of the

traces of the 4d D-terms Di is zero. In fact this may be seen directly in the definition

(4.3) on noting that

Tr(φφ†) = Tr(φ†φ) (4.13)

for any M ×N matrix φ. In summing the traces of the Di the above two terms appear

precisely once each for each bifundamental, with opposite sign, hence the result. Thus

the branch (4.12) exists as a solution to (4.3) for non-zero s only if

n
∑

i=1

kiNi = 0 . (4.14)

In fact precisely this condition arises also in the mathematics literature [11]. Indeed,

notice this branch has one dimension higher than the mesonic moduli space for the

4d theory, precisely as in [11]. Thus when Ni = NÑi this branch, when it exists,

is not obviously interpreted as the moduli space of N M2-branes. To complete the

discussion of these branches we should also analyse the gauge symmetries. Since the

solution space to the D-terms above is one dimension higher than the mesonic moduli

space, the gauge group we divide by should be codimension one in G. Indeed, notice

that picking (4.12) in fact leaves the gauge symmetry group completely unbroken. The

discussion is then very similar to the Abelian case. We may introduce the Abelian

gauge fields

a =

n
∑

i=1

TrAi , b =
1

h

n
∑

i=1

kiTrAi . (4.15)

The Chern-Simons action is

SSC(A) =
1

4π

n
∑

i=1

∫

kiTr

(

Ai ∧ dAi +
2

3
A3

i

)

. (4.16)

Varying

Ai → Ai + λ 1Ni×Ni
(4.17)
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leaves b invariant if (4.14) holds. The variation of the CS action is then

δλSCS(A) =
h

2π

n
∑

i=1

∫

λ ∧ db , (4.18)

precisely as in the Abelian case, and hence

SCS(A) =
h

2π
∑n

i=1Ni

∫

b ∧ f + S ′ . (4.19)

Introducing τ precisely as before, and defining M =
∑n

i=1Ni, the gauge invariance of

the theory is

b→ b+ dθ , τ → τ +
h

M
θ , (4.20)

Ai → giAig
−1
i − i(dgi)g

−1
i ,

n
∏

i=1

(det gi)
ki = 1 . (4.21)

The discussion of monopoles proceeds as before, implying that τ has period 2π/M , and

thus the group of constant gauge symmetries Hk that we quotient by is the kernel of

the character

χ(k) :
n
∏

i=1

U(Ni) → U(1)

: (g1, . . . , gn) 7→
n
∏

i=1

(det gi)
ki . (4.22)

Finally, with end up with a moduli space branch that is precisely analogous to the

quiver moduli spaces in [11]. In particular, this branch has one complex dimension

higher than the mesonic moduli space one obtains by taking a Kähler quotient of the

space of non-Abelian F-term solutions by the full gauge group G. This is what the

terminology “relative dimension one” means at the beginning of this subsection.

Branches of relative dimension N

Suppose now for simplicity7 that Ni = N for all i. Then an alternative way to satisfy

(4.8) is to take

φaαβ = 0, α 6= β (4.23)

siα = sα, ∀i . (4.24)

7The generalisation to arbitrary Ni should be a straightforward extension.

15



This imposes that the bifundamentals φa are all diagonal, and that the N eigenvalues

of σi are independent of i. This leads to N VEVs sα, α = 1, . . . , N . Indeed, note that

provided the σi are invertible (which at a generic point they will be) we may write

(4.8) as

φa = σ−1
h(a)φaσt(a) . (4.25)

On diagonalising each σi this implies that if φaαβ 6= 0 we must have

sh(a)α = st(a)β . (4.26)

Thus generic {φa} reduce us to the branch in the previous subsection, whereas diagonal,

but otherwise generic, φa lead to (4.23), (4.24). Note, however, that just as for the

Abelian case we might allow for even less constrained σ by instead further restricting

certain subsets of the φa to be zero. This branch structure thus in general appears

rather complicated. However, for now we focus on (4.23), (4.24).

For generic (pairwise non-equal) eigenvalues in (4.24) the subgroup of the gauge

symmetry group G preserving this diagonal gauge choice for σi is

K =

(

n
∏

i=1

U(1)N

)

× SN
∼= U(1)nN × SN . (4.27)

Here the SN permutes the diagonal elements of all the matrices, so as to preserve

(4.24). When some of the eigenvalues become equal, note that this symmetry group

becomes enhanced to a non-Abelian group. By restricting to diagonal bifundamentals

(4.23), the superpotential clearly reduces to N copies of the N = 1 superpotential,

and thus the space of F-term solutions is simply ZN . Similarly, the CS action for the

gauge group (4.27) is N copies of the Abelian N = 1 CS action, with the overall U(1)

decoupling in each copy separately. Thus one clearly obtains N copies of the N = 1

VMS, with the permutation group SN in (4.27) simply permuting the copies. Thus

this branch of the VMS is the symmetric product

M3d,N(k) = SymN
M3d,1(k) (4.28)

where M3d,1(k) is the Abelian moduli space. Notice this branch is the moduli space

found in [2] for the ABJM theory. Note also that this moduli space is N complex

dimensions higher than the mesonic moduli space, compared to 1 complex dimension

higher for the branch discussed in the previous subsection. It seems reasonable, given

the discussion above, that the various branches that generally exist inbetween these
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two extremes have relative dimensions between 1 and N , and thus the branch (4.28)

is in fact the highest dimensional branch of the full VMS. It has a natural physical

interpretation as the moduli space of N point-like objects on M3d(k) = M3d,1(k). The

full VMS appears to be quite a complicated object in general. It would be interesting

to investigate more carefully the structure we have outlined above. In particular, there

may be a more elegant method for analysing the full moduli space than the simple

discussion above.

5 In search of conformal Chern-Simons quivers

The results we have discussed so far in this paper are rather general: we have discussed

the classical vacuum moduli spaces of N = 2 CS quivers, where the bifundamental

matter and superpotential are arbitrary. When the Chern-Simons quiver arises from a

parent 4d quiver gauge theory dual to a 3-fold singularity, namely the matter content

and interactions of the 3d theory are formally the same as those of the 4d theory,

our results imply that the VMS contains (the symmetric product of) a complex four-

dimensional branch of the corresponding baryonic moduli space. More precicisely, we

have found that a necessary condition for such supersymmetric vacua to exist is that

the sum of the CS levels vanishes

n
∑

i=1

ki = 0 . (5.1)

The space Z of F-term solutions is in general a fairly complicated object, with several

branches of different dimension. For the class of 4d quiver gauge theories arising from

D3-branes at toric Calabi-Yau singularities, this space has recently been studied8 in

[12]. In the latter reference it is shown that in these examples, with N = 1, Z is a

complex (n + 2)-dimensional affine toric variety. Moreover, there exists a particular

branch (the irreducible component), that is argued to be itself an affine Calabi-Yau toric

variety. This may be described as a Kähler quotient at level zero irrZ = Cc//U(1)c−n−2,

where c is a number determined from the data of the quiver. The mesonic moduli space

of the theory is obtained by performing a further Kähler quotient, and results in the

Calabi-Yau 3-fold

M4d = irrZ//U(1)n−1 . (5.2)

8In [12] this is referred to as the master space, and is denoted F ♭.
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Taking the same quiver and replacing the kinetic terms for the gauge fields with Chern-

Simons terms with CS level vector k = (k1, . . . , kn) obeying (5.1), we obtain instead a

branch of the 3d VMS, namely

M3d(k) = irrZ//Hk . (5.3)

This a Calabi-Yau 4-fold. To see this, notice that the group U(1)n−1 necessarily pre-

serves the holomorphic volume form of irrZ, since M4d is Calabi-Yau. Thus, in partic-

ular, the subgroup Hk preserves this volume form also.

Ultimately, we are interested in conformal field theories. These are candidate gauge

theory duals of AdS4 vacua of string or M-theory. Such CFTs, however, will generically

be strongly coupled9, and at present there are no techniques available to perform

independent field theory calculations. Note this is different from four dimensions,

where a-maximisation [4] is an important tool for testing the existence of conjectured

IR fixed points. Using the AdS/CFT correspondence, the issue of conformal invariance

in the IR may be translated into the question of whether the theory has an AdS4 × Y7

gravity dual, where Y7 is a Sasaki-Einstein seven-manifold. These backgrounds arise

as the near-horizon limit of a large number of M2-branes, placed at the singularity

of the Calabi-Yau cone C(Y7). Thus, a necessary condition for this situation to hold

is that the 3d gauge theory contains this Calabi-Yau 4-fold as a (generic) component

of its VMS. This suggests that (5.1) is in fact a necessary condition for conformal

invariance. However, there may be additional conditions, yet to be discovered, that a

Chern-Simons quiver gauge theory should satisfy in order to flow to a dual conformal

fixed point in the IR. Understanding these conditions is clearly an interesting direction

for future research.

Notice that different theories may lead to the same moduli space M3d(k). This may

sound surprising at first, but one should bear in mind that this phenomenon already

exists in 4d. There, Seiberg duality implies that different gauge theories all flow to

the same conformal field theory in the IR. In fact, instead of thinking of gauge theory

duals of some AdS5 solution, we should more precisely think of classes of Seiberg-dual

gauge theories. Similar dualities exist for 3d theories – see [13] for a recent discussion.

However, we are led to consider the possibility that for appropriate values of the Chern-

Simons levels, (infinite) families of 4d quivers (e.g. the Y p,q quivers [14]), may all have

the same AdS4 duals, when viewed as 3d Chern-Simons quivers. It is unclear to us

whether this will actually be the case, or rather further analysis will reveal that these

9The ABJM theory is a notable exception, since it has a weakly coupled limit for large k.
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quivers do not flow to conformal field theories in three dimensions. It will be interesting

to analyse this further.

The results discussed here lead to a simple general method for constructing candi-

date10 3d N = 2 superconformal Chern-Simons quivers with AdS4 gravity duals, using

well-developed 4d techniques. We illustrate this in the following section.

6 Example: Chern-Simons quiver gauge theories

for the Y p,k(CP 2) metrics

In this final section we discuss a simple class of examples of the construction described

in this paper11. These are candidate gauge theory duals of the explicit Sasaki-Einstein

metrics presented in [5]. Other examples may be treated in a similar manner – we

briefly comment on various simple extensions at the end of the paper.

Recall from [5, 6] that the Y p,k(CP 2) metrics enjoy an SU(3)×U(1)2 isometry, and

that the corresponding Calabi-Yau cones are described by a GLSM on C5, with a set

of U(1) charges characterised by two integers. These properties motivate considering a

quiver gauge theory with 3 nodes and SU(3) symmetry. As we shall see, this seemingly

naive hypothesis leads to a consistent picture. We thus begin with the 4d quiver gauge

theory that is AdS5/CFT4 dual to the orbifold S
5/Z3, where the Z3 ⊂ U(1) is embedded

along the Hopf U(1). Equivalently, this is the theory on N D3-branes placed at the

singularity of the canonical complex cone over CP 2, which is the orbifold C3/Z3. The

quiver has 3 nodes, with a U(N) gauge group at each node, and 9 bifundamental fields,

Xi, Yi, Zi, i = 1, 2, 3, going from nodes 1 to 2, 2 to 3, and 3 to 1, respectively. This is

shown in Figure 1.

The superpotential takes the SU(3)-invariant form

W = ǫijkTr (XiYjZk) . (6.1)

The F-term equations dW = 0 are hence

XiYj = XjYi , YiZj = YjZi , ZiXj = ZjXi . (6.2)

10It is only a candidate because it is possible that the 3d theory will have to obey additional
properties in order to flow to a dual conformal field theory in the IR, as discussed above. Our analysis
here is purely classical.

11This section has been added in a revised version (v2) of the paper. In reference [15], which
appeared before the present version but after the first version, the authors also discuss the quiver
below. However, they did not make the connection with the explicit metrics in [5, 6].
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Figure 1: Quiver diagram for the candidate CS gauge theory duals of Y p,k(CP 2).

Notice the equations with i = j are redundant. Henceforth we set N = 1, so that the

bifundamental VEVs are simply coordinates on C
9. Since the equations (6.2) set one

monomial equal to another monomial, it is a standard result that the affine variety

Z = {dW = 0} ⊂ C9 is a toric variety – see, for example, [16].

We may equivalently realise Z as the affine GIT quotient (or equivalently Kähler

quotient by U(1) ⊂ C
∗ at level zero)

Z = C
6 //C∗

(1,1,1,−1,−1,−1) . (6.3)

Here the subscript vector denotes the weights of the C∗ action on C6. Thus, if we

introduce coordinates ui, vi on C6, i = 1, 2, 3, then the ui have charges +1 and the vi

have charges −1 under the C∗ action. The quotient (6.3) is then defined algebraically

as

Z = SpecC[u1, u2, u3, v1, v2, v3]
C∗

. (6.4)

In words, Z is the affine variety whose holomorphic functions are precisely the C∗-

invariant functions on C6. This ring of invariant functions is spanned by

xi = u1vi , yi = u2vi , zi = u3vi . (6.5)

This embeds Z into C9, and one easily sees that the relations between the xi, yi and

zi are indeed precisely the F-term relations (6.2). This proves the equivalence12 of the

two descriptions of Z.

For the 3d CS quiver theory, we introduce a CS vector (k1, k2, k3), where k3 =

−k1 − k2, so that (3.14) holds. In order to obtain the 4d VMS, which is the orbifold

12See also [12].
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C3/Z3, we would quotient Z by (C∗)3/C∗ ∼= (C∗)2. In 4d terms, these are the two

anomalous13 baryonic symmetries of the theory. However, to compute the moduli

space of the 3d CS theory we instead quotient by the kernel of the map

(C∗)3 ∋ (λ1, λ2, λ3) 7→ λk11 λ
k2
2 λ

k3
3 ∈ C

∗ . (6.6)

This kernel, after dividing by the diagonal C∗ which acts trivially, is isomorphic to

C
∗ × Zh, where h = gcd(k1, k2). For simplicity we begin by choosing the CS levels so

that h = 1. The non-trivial C∗ in the kernel of (6.6) is then generated by the weight

vector (−k2, k1, 0). The charges of the bifundamentals Xi, Yi, Zi under a C
∗ action with

weights (q1, q2, q3) ∈ Z3 are q2−q1, q3−q2, q1−q3, respectively. Thus the charges under

the C∗ of interest are k1+k2, −k1, −k2, respectively. This determines a C∗ action on Z,

which we may lift to an action on C6 by assigning charges (k1+ k2,−k1,−k2, 0, 0, 0) to

the coordinates (u1, u2, u3, v1, v2, v3) on C6. Altogether, we thus see that the 3d VMS,

for gcd(k1, k2) = 1, is the affine quotient of C6 by (C∗)2 with charges

Q =

(

1 1 1 −1 −1 −1

k1 + k2 −k1 −k2 0 0 0

)

. (6.7)

Notice that this quotient preserves the SU(3) symmetry. We now make an SL(2,Z)

transformation via
(

1 −k1 − k2

0 1

)

, (6.8)

thus giving an equivalent quotient with charges

Q′ =

(

1 1 1 −1 −1 −1

0 −2k1 − k2 −k1 − 2k2 k1 + k2 k1 + k2 k1 + k2

)

. (6.9)

We then change variables by defining

k1 = 2p− k

k2 = k − p (6.10)

to obtain

Q′ =

(

1 1 1 −1 −1 −1

0 −3p+ k −k p p p

)

. (6.11)

13There is also a discrete non-anomalous baryonic symmetry. A complete discussion of the discrete
symmetries of this theory may be found in [17].
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Thus

M3d(2p− k, k − p,−p) = C
6 // (C∗)2Q′ . (6.12)

This realises the VMS M3d explicitly as a toric CY 4-fold. We may compute the

toric diagram14 in the usual manner, obtaining the normal vectors

w0 = [0, 0, k − p] , w1 = [0, 0, 0] , w2 = [0, 0, p] ,

w3 = [1, 0, 0] , w4 = [0, 1, 0] , w5 = [−1,−1, k] . (6.13)

We now note that the 5 vectors w1, . . . , w5 precisely define the toric diagram obtained

in [6] for the cone over the explicit Sasaki-Einstein manifolds Y p,k(CP 2) of [5]. The

vertices w1, . . . , w5 define a compact convex lattice polytope P in R3, shown in Figure

1 of reference [6]. Of course, in (6.13) we have 6 vectors, after including the vertex w0.

However, adding this vertex will define the same affine toric variety as P, provided

the vertex lies inside the polytope P. In this case, we simply obtain a non-minimal

presentation of the toric variety, with the additional vertex w0 corresponding to a blow-

up mode of the singularity. One easily sees from [6] that w0 lies inside P provided

p ≤ k ≤ 2p. Thus, provided k lies within this range, the VMS for the CS quiver gauge

theory above with CS levels (2p − k, k − p,−p) is precisely the cone over the explicit

Sasaki-Einstein manifold Y p,k(CP 2).

It was shown in [5, 6] that the metrics Y p,k(CP 2) exist for integers p, k satisfying

the bounds 3
2
p ≤ k ≤ 3p. In fact, the lower bound here is just a convention. From

the explicit analysis in [6], one sees that the range of k may be extended to lie in the

interval

0 ≤ k ≤ 3p . (6.14)

However, notice that the GLSM quotient is manifestly invariant under the exchange of

k with 3p− k. It is satisfying to find that the explicit metrics [5, 6] are also invariant

under this exchange. This may be verified by observing that under this transformation

the roots x1, x2 (recall h = 3 in the notation of [6]) of the equations (2.20) in [6]

are interchanged. Thus solutions with k ∈ [0, 3
2
p] are equivalent to solutions with

k ∈ [3
2
p, 3p], which is the range considered in [5]. Hence, without loss of generality, we

may take k ∈ [3
2
p, 3p].

14We refer to [6] for a review of the relevant toric geometry.
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To conclude, we have thus constructed an infinite family of CS quiver gauge theories

which have explicit candidate Sasaki-Einstein duals, for values of p, k such that15

3

2
p ≤ k ≤ 2p . (6.15)

Notice then that k1 and k2 are non-negative. Given a quiver with CS levels (k1 ≥

0, k2 ≥ 0, k3 ≤ 0), we may easily determine the values of p, k of the corresponding dual

Sasaki-Einstein metric. Using (6.10), we find p = k1 + k2 and k = k1 + 2k2. Of course,

we may equally pick p = k1+k2 and k = 2k1+k2. However, from the discussion above,

the two choices are in fact completely equivalent, both for the VMS and for the explicit

metrics.

It is interesting to examine the two limiting cases of the interval (6.15). At the lower

bound, p = 2r, k = 3r, the CS levels are (r, r,−2r), and the VMS is then a Zr orbifold

of the quotient of C5 by the C
∗ with charges

(2, 2, 2,−3,−3) . (6.16)

Notice this case is symmetric under exchanging k and 3p − k. In fact, this is the

cone over the homogeneous Sasaki-Einstein manifold Y 2,3(CP 2) =M3,2 [6]. The gauge

theory we are proposing here as being dual to this manifold is then different from the

proposal made in [18]. For k = 2p we obtain the CS level vector (0, p,−p), and the

VMS is then a Zp orbifold of the quotient of C5 by the C∗ with charges

(1, 1, 1,−2,−1) . (6.17)

Notice that Y 1,2(CP 2) is in a sense the first non-trivial member of the Y p,k(CP 2) family

of metrics. Numerical values for the volumes of this particular example were given in

[6]. It would be interesting to construct the CS quivers dual to the metrics in [5] with

k ∈ (2p, 3p].

The only check of the conjectured duality we can make at the time of writing is

that the VMSs of the CS quiver theories contain the corresponding Calabi-Yau 4-

fold geometries as a branch16. Combining the geometric discussion above with the

results in [6], it is straightforward17 to give an assignment of R-charges of the nine

15Equivalently, p ≤ k ≤ 3

2
p.

16Notice that the scalar holomorphic Kaluza-Klein spectrum will automatically be in 1-1 correspon-
dence with the holomorphic functions on the Calabi-Yau cone [19], or its N -fold symmetric product
[20, 21]; therefore, this matching does not constitute an independent check.

17Note that in doing so one is ignoring the subtleties involved in constructing baryon-like operators
in 3d Chern-Simons quivers, where the gauge groups of the UV theory are U(N).
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bifundamental fields Xi, Yi, Zi. It would be extremely desirable to check the proposed

duality further by performing a suitable purely field-theoretic calculation, in the spirit

of a-maximisation.

Given the above construction, it is natural to conjecture that the CS quiver gauge

theories dual to the Y p,k(B4) manifolds constructed in [5], where B4 may be any Kähler-

Einstein 4-manifold, are described precisely by the 4d quivers for the corresponding

canonical complex cones over B4. The remaining possibilities for B4 are CP 1 × CP 1,

which was also discussed extensively in [6], and the del Pezzo surfaces dPn, n = 3, . . . , 8.

Notice that the six-dimensional manifolds M6, obtained in the reduction to type IIA

described in [6], are precisely a projective version of these complex cones; these are

obtained by compactifying the C∗ fibers to CP 1, as described in [5]. We leave a fuller

investigation of these models for future work.

Note added

Whilst finalising this paper for submission to the archive we received the preprint [22],

which contains comments related to the results presented here. We are grateful to the

authors of [22] for informing us about the completion of their work. After submitting

the first version of this paper to the archive, the work [15] appeared. This also has

overlap with the results we have presented.
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