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Abstract

We study the gravity duals of symmetry-breaking deformations of superconfor-
mal field theories, AdS/CFT dual to Type IIB string theory on AdS5×Y where
Y is a Sasaki-Einstein manifold. In these vacua both conformal invariance and
baryonic symmetries are spontaneously broken. We present a detailed discussion
of the supergravity moduli space, which involves flat form fields on asymptotically
conical Calabi-Yau manifolds, and match this to the gauge theory vacuum mod-
uli space. We discuss certain linearised fluctuations of the moduli, identifying
the Goldstone bosons associated with spontaneous breaking of non-anomalous
baryonic symmetries. The remaining moduli fields are related to spontaneous
breaking of anomalous baryonic symmetries. We also elaborate on the proposal
that computing condensates of baryon operators is equivalent to computing the
partition function of a non-compact Euclidean D3-brane in the background su-
pergravity solution, with fixed boundary conditions at infinity.
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1 Introduction

The AdS/CFT correspondence [1] allows one to understand gauge theory dynamics in

terms of string theory on some background spacetime. Properties of strongly coupled

gauge theories may then be understood geometrically, leading to non-trivial predic-

tions on both sides of the correspondence. In this paper we will be interested in

four-dimensional supersymmetric gauge theories that are dual to Sasaki-Einstein back-

grounds in Type IIB string theory. In the infra-red (IR) these are non-trivial inter-

acting superconformal field theories (SCFTs). A number of remarkable predictions of

AdS/CFT have been confirmed in this case in recent years. For example, the complete

spectrum of mesonic chiral operators may be computed purely geometrically [2, 3, 4, 5]

using the results of [6, 7].

The AdS/CFT correspondence describes deformations of CFTs, as well as the con-

formal fixed points themselves. For instance, one may perturb a CFT in the ultra-violet

(UV) by adding a relevant operator to the Lagrangian. Or one may consider different
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vacua of the theory, leading to spontaneous symmetry-breaking. In either case the field

theory then flows under renormalisation group (RG) flow to the IR, where interesting

dynamics may arise. In this paper we present a study of symmetry-breaking vacua of

N = 1 SCFTs which are dual to Type IIB backgrounds of the form AdS5 × Y , where
Y is a Sasaki-Einstein five-manifold [8, 9, 10, 11]. A particular emphasis will be on the

spontaneous breaking of certain global symmetries in these vacua.

The SCFTs that we discuss may be thought of as IR conformal fixed points of

certain four-dimensional supersymmetric quiver gauge theories. The matter content

and interactions of a quiver gauge theory are determined from combinatorial data,

namely a directed graph (a quiver) together with a set of closed paths in this graph,

encoded in the superpotential. The gauge theories of interest describe the effective

worldvolume theory for D3-branes placed at an isolated conical Calabi-Yau singularity.

The quiver data is then related to the algebraic geometry of this singularity and its

resolutions. There are now many examples in the literature in which both the quiver

gauge theory and the Calabi-Yau cone metric that describes the IR SCFT are known

rather explicitly [9, 12, 13, 14, 15, 16, 17, 18, 19]. However, in the paper we aim to

keep the discussion as general as possible, without resorting to specific examples.

A key point about the quiver gauge theories of interest is that they have rather

large classical vacuum moduli spaces (VMSs). The VMS is obtained by minimising the

classical potential of the theory. Since the gauge theory may be engineered by placing

pointlike D3-branes at a Calabi-Yau singularity, it is expected that the VMS at least

contains the corresponding Calabi-Yau. This is simply because the moduli space of

a pointlike object on some manifold should at least contain that manifold. Similarly,

for N D3-branes one expects to find the Nth symmetric product. In fact the classical

VMS of a superconformal quiver gauge theory, referred to as the “master space” in

[20], has a rather complicated structure. The centre of the gauge group, which is a

torus U(1)χ, dynamically decouples in the IR and becomes a global symmetry group

of the superconformal theory. Here χ ∈ N denotes the number of nodes in the quiver.

A U(1)χ−1 subgroup acts non-trivially on the VMS M . As we shall see, this VMS has

a complicated fibration structure. The fibres are themselves fibrations in which the

base space is a mesonic moduli space and the fibres are generically tori U(1)χ−1. The

U(1)χ−1 global symmetry acts in the obvious way on these fibres, and thus a generic

point in M spontaneously breaks this symmetry. For the gauge theory on N D3-

branes at an isolated Calabi-Yau singularity, the mesonic moduli spaces are expected

to be Nth symmetric products of various Calabi-Yau resolutions of the singularity. For
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example, for a D3-brane at an abelian orbifold singularity it is a rigorous result that

the moduli space M contains all possible Calabi-Yau resolutions of the orbifold [21].

The fibration structure of M contains all of these resolutions, which is why it is so

complicated. Gauge-invariant chiral operators may be interpreted as the holomorphic

functions on M . The operators carrying non-zero charge under U(1)χ−1 may be written

as determinants of bifundamental fields in the quiver gauge theory, and are therefore

often referred to as (di)baryon operators. The global symmetry group is thus a baryonic

symmetry group.

One of the main results of the paper will be the identification of the space M with

a moduli space of certain supergravity backgrounds, as well as the identification of

the U(1)χ−1 symmetry acting on this space. Generically, each of these backgrounds is

the gravity dual of a renormalisation group flow from a SCFT in the UV to another1

SCFT in the IR. Here the “UV theory” is itself the IR conformal fixed point of the

N = 1 quiver theory (which is defined up to Seiberg dualities). One may then think

of the RG flow as proceeding in two steps: first one flows from the far UV to a SCFT

which admits an AdS5× Y dual description. In a vacuum which spontaneously breaks

conformal and baryonic symmetries of this theory, the RG flow proceeds towards a new

theory in the deep IR. The supergravity backgrounds we discuss describe the second

step, generalising the analysis of the resolved conifold in [23].

In fact the IR theory will be richer than just a SCFT – it will also contain ad-

ditional low-energy degrees of freedom arising from the spontaneous breaking of the

global baryonic symmetries. For each of these symmetries we obtain a corresponding

massless Ramond-Ramond (RR) modulus in the supergravity solution, together with

its supersymmetric partner. We interpret these as fluctuations along the flat directions

in the VMS given by acting with a generator of the broken U(1)χ−1 symmetry group.

An important feature of the theories that we describe is that only a subgroup of this

global symmetry group is an exact quantum symmetry. The massless RR modes corre-

sponding to these directions may then be identified as Goldstone bosons. This has been

studied recently in [24] for the conifold theory, where χ = 2 and the unique baryonic

U(1) symmetry is non-anomalous. More generally, the remaining global baryonic sym-

metries are anomalous, and are therefore only approximate symmetries of the theory.

Of course, the directions in the classical moduli space that are related to symmetries

1Although it is possible to flow to a SCFT with a non-trivial dual Sasaki-Einstein geometry, as
discussed in [22] for example, for simplicity we will focus here on the case that the IR theory is N = 4
super-Yang-Mills (SYM).
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which are broken by anomalies might be lifted by possible quantum corrections. It

follows that the associated massless modes discussed above may be lifted in the full

quantum theory. On the other hand, the Goldstone bosons are protected since they

represent motion in directions associated to true symmetries of the quantum theory;

their existence and masslessness is guaranteed by Goldstone’s theorem. As we dis-

cuss, the supergravity realisation of this statement is that the non-anomalous baryonic

symmetries are dual to gauge symmetries in the bulk, which thus cannot possibly be

anomalous. The anomalous symmetries, on the other hand, are dual to global symme-

tries of the supergravity backgrounds that do no come from any gauge symmetry.

An interesting aspect of these vacua is that baryon operators acquire non-zero vac-

uum expectation values (VEVs). As discussed above, classically the baryon operators

may be identified with holomorphic functions on the VMS. In AdS/CFT these are con-

jectured [25, 26, 27] to be dual to D3-branes wrapped on three-submanifolds Σ ⊂ Y .

One cannot therefore apply the standard AdS/CFT prescription [28, 29] to compute

their one-point functions in the dual gravity description. Following a suggestion by E.

Witten, it has been proposed [30] that in order to compute baryon VEVs one should

perform a path integral over Euclidean D3-branes with fixed boundary condition at

infinity. Several features of this idea have been succesfully verified in [22]. In this

paper we will investigate in more detail this prescription for computing condensates of

a reasonably large class of baryon operators. As we will explain, these are the baryon

operators whose string duals are D3-branes wrapped on a smooth2 Σ together with a

flat line bundle. Although this is far from being the complete set of baryon operators,

it is the simplest set of baryons which may be described in terms of classical configu-

rations in the bulk. We will evaluate the D3-brane path integral in the semi-classical

approximation, which will reduce the computation to a sum over worldvolume gauge

instantons. A central issue is that, due to the non-compactness of the D3-brane world-

volume, we will have to pay particular attention to the transformation properties of

the action under gauge transformations in the bulk. We will discuss a prescription to

obtain a gauge-invariant, and thus physically meaningful, function on the supergravity

moduli space. We also discuss the dependence of these baryon condensates on the

Goldstone bosons and other RR moduli.

The outline of the paper is as follows. Section 2 reviews relevant aspects of quiver

gauge theories arising from D3-branes at Calabi-Yau singularities. In particular, we

include a discussion of anomalous U(1)s and a description of quiver gauge theory

2For toric submanifolds Σ of a toric Sasaki-Einstein manifold, these are Lens spaces.
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moduli spaces. In section 3 we describe the supergravity backgrounds and their moduli.

Linearised fluctuations of these supergravity moduli are discussed in section 4. In

section 5 we discuss the holographic interpretation of the results. Section 6 presents

the calculation of baryon condensates using Euclidean D3-branes wrapped on non-

compact four-submanifolds. In section 7 we summarise our results and discuss some

open questions and directions for future work. Certain technical material is relegated

to several appendices.

2 Quiver gauge theories from Calabi-Yau singular-

ities

In this paper we are interested in vacua of field theories that in the UV are described

by superconformal field theories with AdS/CFT duals AdS5 × Y , where (Y, gY ) is a

Sasaki-Einstein five-manifold. There is by now an extremely large class of examples of

such AdS/CFT dualities where both sides of the correspondence are known explicitly.

In these examples, the SCFT conjecturally arises as the IR fixed point of RG flow for

a quiver gauge theory. The latter is an effective worldvolume theory for the D3-branes

at the singular point of the cone C(Y ), describing the interactions of the lightest string

modes. Here the metric cone

gC(Y ) = dr2 + r2gY (2.1)

is Ricci-flat and Kähler i.e. Calabi-Yau.

Throughout the paper we aim for as general a discussion as possible, rather than

focusing on specific examples. We begin in this section by discussing relevant back-

ground material about Calabi-Yau singularities and D-brane quiver gauge theories. In

particular we will be interested in the general structure of the gauge theory vacuum

moduli spaces. Our comments on this will also explain some of the recent results of

[31] on counting gauge-invariant BPS operators. Although many of the results of this

section are known, the arguments we present are somewhat more general than those

typically appearing in the literature. We also hope this section will serve as a useful

introduction to the subject.

2.1 Resolutions of Calabi-Yau cones

A Sasaki-Einstein five-manifold (Y, gY ) may be defined by saying that its cone (2.1) is

Ricci-flat Kähler. Roughly speaking, there are currently four known constructions of
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such Calabi-Yau cones:

• Orbifolds C3/Γ, where Γ ⊂ SU(3) is a finite group. The Sasaki-Einstein link is

then simply a quotient Y = S5/Γ of the round five-sphere (one may also take

orbifolds (quotients) of some of the examples below).

• Complex cones over del Pezzo surfaces dPk, where k = 3, . . . , 8. Recall that a

del Pezzo surface is the blow-up of CP2 at k points in general position. Provided

3 ≤ k ≤ 8 these admit Kähler-Einstein metrics [32, 33]. The complex cone

is obtained by taking the canonical line bundle over the del Pezzo and then

collapsing the zero section.

• Affine toric singularities. Recently a general existence proof has been presented

[34]. These include the explicit Sasaki-Einstein manifolds Y p,q [35, 12] and La,b,c

[36, 16] as links of the singularities.

• Quasi-homogeneous hypersurface singularities. Again these are existence argu-

ments. For a review see [37], or the recent book [38].

Note that some examples fall into more than one of the classes above. In all cases

the cone C(Y ) is an affine variety. When we wish to emphasize the algebro-geometric

nature of the Calabi-Yau cone we will denote it by C(Y ) = Z i.e. Z is the zero set of

a set of polynomials on C
D for some D. C(Y ) has an isolated singularity at the point

p = {r = 0} unless C(Y ) = C3.

In this paper we will be interested in resolutions of such conical singularities. This

requires two steps. First, we need to resolve the underlying singularity of Z, as a

complex variety. Second, we need to find a Ricci-flat Kähler metric on that resolution

that approaches the conical metric at infinity. We now discuss these two steps in more

detail.

Technically, a resolution of Z is a smooth variety X together with a proper birational

map π : X → Z, such that X \E ∼= Z \ p is a biholomorphism for some exceptional set

E ⊂ X . Thus, roughly, the singular point p is resolved by replacing it with E. Singu-

larities may always be resolved by a theorem of Hironaka. However, for our purposes

we require the resolution X to be Calabi-Yau; that is, to have trivial canonical bundle.

For reasons that we will not need to go in to, such a resolution is called crepant. In

the first three examples of Calabi-Yau cones above, the corresponding singularity Z

always admits a crepant resolution. However, the case of quasi-homogeneous hyper-

surface singularities is quite different. For example, the constructions reviewed in [37]
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lead to at least 68 different Sasaki-Einstein metrics on S5. However, as pointed out in

[2], none of the corresponding hypersurface singularities admit a crepant (Calabi-Yau)

resolution. We suspect that the dual SCFTs do not admit a description in terms of a

quiver gauge theory for these examples. Some of these 68 metrics on S5 come in quite

large families, the largest having complex dimension 5. This would mean that the dual

SCFT has (at least) a 6-dimensional space of exactly marginal deformations, including

the constant string coupling and its RR axion partner.

Assuming Z = C(Y ) is such that it admits a crepant resolution X , there are some

immediate topological consequences for X . We begin by noting that the singularity Z

is Gorenstein. By definition this means that it has a holomorphic (3, 0)-form Ω on the

smooth part Z \ p. In fact existence of a Ricci-flat Kähler cone metric on Z implies

that Ω is homogeneous degree 3 under the radial vector r∂/∂r. Thus in particular Ω

is square-integrable

∫

U

Ω ∧ Ω̄ < ∞ (2.2)

in a small neighbourhood U of the singularity p at r = 0, as one sees by writing the

integral in polar coordinates. This implies that the singularity Z is rational, and hence

Z is a canonical singularity, in the sense of Reid. See, for example, [39] for an introduc-

tion to these concepts. It follows that for any crepant3 resolution X the cohomology

groups H∗(X ;Z) of X depend only on Z; that is, any two crepant resolutions X and

X ′ have the same cohomology groups [40, 41]. For the examples listed above there are

often many different choices of crepant resolution. If we denote

bk(X) = dimHk(X ;R) (2.3)

the Betti numbers of X , then it was shown in [42] (Theorem 5.2) that b1(X) = b5(X) =

b6(X) = 0. Moreover, as also proven in [42], H2(X ;Z) is isomorphic to the Picard group

of X , which in turn is generated by holomorphic line bundles. So all of the second

cohomology of X is represented by closed (1, 1)-forms; these may be represented by

curvature forms on the holomorphic line bundles.

Throughout this paper we will also make the additional assumption that

b3(X) = 0 . (2.4)

3This statement fails for non-crepant resolutions. For example, the conifold Z = {x2+y2+z2+w2 =
0} ⊂ C4 has a crepant small resolution X = O(−1) ⊕ O(−1) → CP

1, which has b4(X) = 0, but also
has a non-crepant resolution X = O(−1)→ CP

1 × CP
1 with b4(X) = 1.
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This is satisfied by crepant resolutions of the first three types of Calabi-Yau cones in

the list above. In general we do not know of a proof that this must always hold in the

cases of interest in this paper4. Later in the paper we will give some further physical

justifications for the assumption (2.4).

The assumption (2.4) has the following consequences. Consider the long exact co-

homology sequence5

0 ∼= H1(Y ;R) −→ H2(X, Y ;R) −→ H2(X ;R) −→
H2(Y ;R) −→ H3(X, Y ;R) ∼= 0 . (2.5)

Here we have used b1(Y ) = 0, which follows from Myers’ theorem since (Y, gY ) has

positive Ricci curvature. The last isomorphism follows from Poincaré duality and (2.4).

The exact sequence (2.5) implies, using Poincaré duality and the universal coefficients

theorem, that6

b3(Y ) = b2(X)− b4(X) . (2.6)

This relation will be important throughout the paper. We also note that the Euler

characteristic of X is given by

χ = χ(X) ≡
6
∑

i=0

(−1)i dim Hi(X ;R) = 1 + b2(X) + b4(X) . (2.7)

Having chosen a Calabi-Yau resolution X , we would like to put a Ricci-flat Kähler

metric on it that is asymptotically conical i.e. approaches the cone metric (2.1) near

infinity. If X were compact, Yau’s theorem [44] would imply that X has a unique Ricci-

flat Kähler metric in each Kähler class in H2(X ;R). Unfortunately, there is currently

no general analogue of Yau’s theorem for existence and uniqueness of asymptotically

conical metrics. However, provided the boundary conditions are right, one generally

expects results about compact manifolds to hold also for non-compact manifolds, and

we believe that being asymptotically a cone is precisely such a good boundary condition.

We state this as a conjecture we shall assume:

4We thank B. Szendröi for discussions on this issue.
5Recall that the relative cohomology groups Hp(X,Y ;R), where Y = ∂X , are equivalent to com-

pactly supported cohomology groups Hp
cpt(X ;R).

6For toric X this relation may also be proven using Pick’s theorem, by triangulating the toric
diagram [43]. In fact (2.6) still holds even when b3(X) 6= 0 [42], although the argument is then much
more involved.
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Conjecture: If π : X → Z is a crepant resolution of an isolated singularity Z = C(Y ),

where C(Y ) admits a Ricci-flat Kähler cone metric, then X admits a unique Ricci-flat

Kähler metric in each Kähler class in H2(X ;R) that is asymptotic to a cone over the

Sasaki-Einstein manifold (Y, gY ).

Despite the lack of a general theorem, there are nonetheless several important results

that go some way in this direction7. In [46], Joyce proves that any crepant resolution

X of an orbifold C3/Γ, with Γ ⊂ SU(3), admits a unique asymptotically conical Ricci-

flat Kähler metric that is asymptotic to a cone over S5/Γ. Thus the result we want

is true for the simplest class of Sasaki-Einstein five-manifolds, namely quotients of

the round five-sphere. On the other hand, in [47] (see also [48]) it is proven that,

under certain mild technical assumptions, X = X̄ \ D admits a Ricci-flat Kähler

metric that is asymptotic to a cone, provided that the divisor D ⊂ X̄ in the compact

Kähler manifold (or orbifold) X̄ admits a Kähler-Einstein metric of positive Ricci

curvature. Note here that one is essentially compactifying X to X̄ by adding a divisor

D at infinity. In fact, it is a conjecture of Yau that every complete Ricci-flat Kähler

manifold may be compactified this way. The metrics of [47, 48] are asymptotic to

cones over regular, or quasi-regular, Sasaki-Einstein manifolds. This result has very

recently been extended in [49] to the case that is D toric, but does not necessarily

admit a Kähler-Einstein metric. Thus these are complete Ricci-flat Kähler metrics

that are asymptotic to irregular toric Calabi-Yau cones. There are also a handful of

explicit constructions, including: cohomogeneity one ansätze, including the resolved

conifold metric on O(−1)⊕O(−1)→ CP
1 [50]; the Calabi ansatz [51] and its variants,

for example studied in [52, 53] and more recently extended by Futaki in [54]; and,

finally, constructions using Hamiltonian two-forms [55, 56, 57]. However, all of these

latter explicit constructions are rather special, and rely on the presence of certain

symmetries. In all cases, the Einstein equations reduce to solving ODEs, which is why

it is possible to find explicit solutions.

We regard the above paragraph as rather convincing evidence for the conjecture.

By assuming its validity we shall also obtain a consistent picture of the space of su-

pergravity solutions that are dual to the supersymmetric symmetry-breaking vacua of

interest.

7Since submitting the first draft of this paper to the archive, the paper [45] has appeared giving
a proof of this conjecture in the case that the cohomology class of the Kähler form ω is compactly
supported, i.e. [ω] ∈ H2

cpt(X ;R) ⊂ H2(X ;R). This substantially generalises the results of Joyce and
Tian-Yau mentioned below.
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2.2 Quivers and fractional branes

An interesting problem is to determine the effective worldvolume theory for D-branes

placed at the singular point {r = 0} of the cone C(Y ). In general this is very hard.

However, if the Ricci-flat Kähler cone is either an orbifold C3/Γ, a complex cone over

a del Pezzo surface, or a toric variety, then this worldvolume theory is believed to be a

quiver gauge theory. The orbifold case is understood best [58], where the gauge theory

may be constructed via standard orbifold techniques and leads to the Mckay quiver.

For del Pezzo surfaces the quiver may be constructed from a special type of exceptional

collection of sheaves on the del Pezzo surface – see, for example, [59] and in particular

[60]. For toric varieties the quiver theory is believed to be described by a certain

bipartite tiling of a two-torus called a dimer. For a recent review, see [61], [62]. Note

that in all these cases the singularity Z = C(Y ) indeed admits a crepant resolution X

with b3(X) = 0. In this paper we shall assume our Calabi-Yau cone singularity C(Y )

is such that the worldvolume theory of N D3-branes at the singularity is described by

a quiver gauge theory. This includes all of the above-mentioned cases.

A quiver is simply a directed graph. If V denotes the set of vertices and A the

set of arrows, then we have head and tail maps h, t : A → V . A representation of a

quiver is an assignment of a C-vector space Uv to each vertex v ∈ V and a linear map

φa : Ut(a) → Uh(a) for each arrow a ∈ A. In particular, to specify a representation we

must specify a dimension vector n ∈ N|V |, so dimC Uv = nv. This data also leads to

the notion of a quiver gauge theory. This is an N = 1 gauge theory in four dimensions

specified as follows:

• The gauge group

G =
∏

v∈V
U(nv) (2.8)

is a product of unitary groups.

• To each arrow a ∈ A we associate a chiral superfield Φa transforming in the

fundamental representation of the gauge group U(nh(a)) and the anti-fundamental

representation of the gauge group U(nt(a)). The fields are therefore often called

bifundamental fields.

• In addition one must specify a superpotential

W =
∑

l=a1···ak∈L
λl Tr[Φa1 · · ·Φak ] . (2.9)
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Here L is a set of closed oriented paths in the quiver, so l = a1 · · · ak denotes

such a loop with h(a1) = t(ak). The fact the loop is closed allows one to take a

trace to obtain a gauge-invariant object. The complex numbers λl are coupling

constants.

The relation between the singularity Z and the quiver is a large technical subject

which is still not very well-understood. It is clearly very difficult to attack the problem

of determining the worldvolume theory directly since we cannot quantise strings on

C(Y ). However, one can circumvent this problem to some extent by replacing the

Type IIB string by the topological string. The latter is independent of the Kähler

class, and so does not see any difference between Z = C(Y ) and the crepant resolution

(X, gX). Moreover, the topological string is sufficient for addressing certain questions

which are holomorphic in nature, such as the matter content and superpotential above.

Space-filling D-branes on X are described in terms of the topological string as coherent

sheaves on X , or more precisely its derived category. This is the mathematical way to

understand the problem, which is then defined purely algebro-geometrically. However,

we will not go into the details of this here.

For our purposes, all that we need to know is that there conjecturally exists a special

set of D-branes, called fractional branes, which form a basis for all other D-branes at the

singularity. Once we have resolved the singularity to a large smooth (X, gX) one may

think of D-branes as submanifolds of spacetime R1,3×X on which open strings may end.

The space-filling D-brane charges on X are then determined by their homology8 class

in H∗(X ;Z). A complete basis therefore requires 1 + b2(X) + b4(X) fractional branes,

corresponding to the charge of a D3-brane, and wrapped D5-branes and D7-branes,

respectively. From (2.7) this is the Euler characteristic χ = χ(X) of X . The nodes of

the quiver are in 1-1 correspondence with these fractional brane basis elements. Thus

|V | = χ . (2.10)

The charges of any D-brane on X may then be used to expand the D-brane in terms

of this basis. The ranks of the gauge groups n ∈ N|V | in the quiver are the coefficients

in this expansion. More precisely, this identifies the unitary group factor U(nv) in

(2.8) as the gauge group on the vth fractional brane. The bifundamental fields Φa

describe the massless strings stretching between the fractional branes. Thus the quiver

gauge theory is essentially a description of a D-brane at the singular point of Z =

8More precisely they are K-theory classes, but we will ignore this subtlety.
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C(Y ) as a marginally bound state of the fractional branes, which should be mutually

supersymmetric at the singular point.

Since a quiver gauge theory is in general chiral, it will typically suffer from various

anomalies. In particular, gauge anomaly cancellation for the gauge group U(nv), cor-

responding to a triangle diagram with three gluons for this gauge group, is equivalent

to

∑

a∈A|h(a)=v

nt(a) −
∑

a∈A|t(a)=v

nh(a) = 0 (2.11)

for all v ∈ V . Note this is |V | equations for |V | variables n ∈ N|V |. A gauge anomaly

would of course lead to an inconsistent quantum theory, so one may wonder where the

condition (2.11) comes from in string theory. As originally pointed out for del Pezzo

surfaces in [59], this condition should be understood simply as charge conservation on

X . In general, a space-filling D-brane wrapped on a (k−3)-submanifold Σk−3 ⊂ X has

a charge in H9−k(X, Y ;R). Here k = 3, 5, 7 are the possible Dk-branes. A Dk-brane is

a magnetic source for the RR flux G8−k, which thus satisfies

dG8−k =
2πM

µk

δ(Σk−3) . (2.12)

Here

µk =
1

(2π)kα′(k+1)/2
(2.13)

is the charge of a Dk-brane, δ(Σk−3) is a delta-function representative of the Poincaré

dual to Σk−3 in X , and M is the number of wrapped branes. Thus [δ(Σk−3)] ∈
H9−k(X, Y ;R) represents the charge of a single space-filling D-brane on Σk−3. The

modified Bianchi identity (2.12) implies that the image of this in H9−k(X ;R) is zero.

There is a long exact cohomology sequence

· · · −→ H8−k(Y ;R)
β−→ H9−k(X, Y ;R) −→ H9−k(X ;R) −→ · · · . (2.14)

Thus the only allowed D-brane charges on X are elements of H9−k(X, Y ;R) that are

images under β of H8−k(Y ;R). The latter group measures the flux of G8−k at infinity.

In the case at hand, we have k = 3, 5, 7. It is easy to show that β(H5(Y ;R)) ∼= R,

β(H3(Y ;R)) ∼= Rb3(Y ), since b3(X) = 0, and β(H1(Y ;R)) ∼= 0. Here the last relation

follows since H1(Y ;R) = 0 by Myers’ theorem.

Thus there is only a (b3(Y ) + 1)-dimensional space of space-filling D-brane charges.

The anomaly cancellation condition (2.11) is identified with this charge conservation
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condition. This implies there is a (b3(Y ) + 1)-dimensional space of solutions to the

|V | = χ = 1 + b2(X) + b4(X) linear equations in (2.11). In other words, the skew part

of the adjacency matrix of the quiver has kernel of dimension (b3(Y ) + 1). We shall

use this later in the paper.

2.3 Anomalous U(1)s

Throughout the paper a crucial role is played by the |V | = χ central U(1) factors in

the gauge group G =
∏

v∈V U(nv). In the quiver gauge theory these are dynamical

U(1) gauge fields. However, there are anomalies in addition to those already discussed

in the previous subsection, namely mixed Tr[SU(nv)
2U(1)v′ ] triangle anomalies. As

is well-known, such anomalies often occur in string theory, and are cancelled via a

form of Green-Schwarz mechanism. The anomalous combinations of U(1) gauge fields

become massive in the process, and are described by the Stückelberg action. This has

recently been discussed in some detail for the case of del Pezzo singularities in [63].

Due to the importance of the anomalous U(1)s in our later discussion of AdS/CFT, we

shall here review the salient features. At the same time this will allow us to generalise

the del Pezzo results of [63] to any asymptotically conical Ricci-flat Kähler (X, gX).

In particular, the Stückelberg scalars are related to certain L2 harmonic forms on

(X, gX), which we show indeed exist by appealing to a recent mathematical result.

More practically, this section will allow us to review various properties of RR fields

and their gauge symmetries, and also introduce notation used later in the paper.

We begin by noting that on the spacetime M = R1,3 × X one is free to turn on

various fields without affecting the background metric. Firstly, there is the constant

dilaton field φ, which determines the string coupling constant gs = exp φ. This is

paired under the SL(2;R) symmetry of Type IIB supergravity with a constant axion

field C0. These combine into the axion-dilaton

τ = C0 + i exp(−φ) . (2.15)

Secondly, we may turn on various flat form fields. In particular, we may turn on a

flat B field, and flat RR fields C2 and C4 on X . The classification of such fields, up to

gauge equivalence, is discussed in appendix C. However, in the presence of a non-trivial

B field the gauge transformations of the RR fields are twisted. Recall that the gauge

symmetries of string theory require that gauge transformations of RR potentials are

also accompanied by transformations of higher rank potentials. Consider, for instance,
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the SL(2;Z), or equivalently large gauge, transformation

C0 → C0 + 1 . (2.16)

This must be accompanied by the transformations

C2 → C2 +B , C4 → C4 +
1

2
B ∧ B . (2.17)

One way to see this is to note that the gauge-invariant RR field strength may be written

as

G̃ = dC −H3 ∧ C = eB d(e−BC) . (2.18)

C is a formal sum of RR form potentials

C =
∑

p≥0

C2p . (2.19)

The combination C e−B, which appears in the Chern-Simons action of D-branes to be

discussed below, transforms as

C e−B → C e−B + dΛ (2.20)

where Λ is a formal sum of odd-degree forms. General gauge transformations may

also be written this way, if one allows dΛ to be any closed form with appropriately

quantised periods9.

In the case at hand,M = R1,3 ×X is contractible to X . Thus we may turn on the

following (non-torsion) flat fields

C2 =
2π

µ1

b2(X)
∑

M=1

cM2 ΥM , B =
2π

µ1

b2(X)
∑

M=1

bMΥM (2.21)

C4 =
2π

µ3

b4(X)
∑

A=1

cA4 ΞA . (2.22)

The factors of µk are related to the normalisation of large gauge transformations, which

are in turn determined by the D-brane Wess-Zumino couplings. The ΥM are closed two-

forms with integer periods, generating the lattice H2
free(X ;Z) ∼= H2(X ;Z)/H2

tors(X ;Z).

9Λ is then roughly instead a formal sum of connection forms on gerbes.
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Similarly, the ΞA are closed four-forms with integer periods, generating the lattice

H4
free(X ;Z). Before taking into account large gauge transformations we may view the

flat RR fields as a vector

(C0, [C2], [C4]) ∈ H0(X ;R)⊕H2(X ;R)⊕H4(X ;R) ∼= R⊕ R
b2(X) ⊕ R

b4(X) ∼= R
χ .(2.23)

The lattice of large gauge transformations is

ΛX
B =

{

(

n,
2π

µ1
σ + nB,

2π

µ3
κ +

2π

µ1
σ ∧ B +

1

2
nB ∧ B

)

| n ∈ Z,

σ ∈ H2
free(X ;Z), κ ∈ H4

free(X ;Z)

}

⊂ R
χ . (2.24)

Thus the flat RR fields, parameterised by the χ constants C0 and cM2 , cA4 in (2.21),

(2.22), respectively, live in the twisted torus

(C0, [C2], [C4]) ∈ R
χ/ΛX

B . (2.25)

Once we have resolved the singularity to a large smooth (X, gX), the χ fractional

branes may be described as certain space-filling D3-D5-D7 bound states. In the re-

mainder of this subsection we study the dynamics of the U(1) gauge fields on R1,3 using

this large-volume description, essentially following [63]. We focus on a single fractional

brane, and assume for simplicity that it has a non-zero D7-brane charge. We shall

denote the compact four-submanifold in X that the brane wraps by Σ4, which gives

rise to a homology class [Σ4] ∈ H4(X ;Z). At large volume the worldvolume theory of

the fractional brane is described by the Born-Infeld and Chern-Simons actions. The

Born-Infeld action is

SBI = −T7
∫

R1,3×Σ4

dσ8Tr
√

− det(h + 2πα′F − B) . (2.26)

Here Tk is the Dk-brane tension, related to the charge (2.13) by

gsTk = µk , (2.27)

and σα, α = 0, . . . , 7 denote worldvolume coordinates. h denotes the induced metric

on the worldvolume from its embedding into spacetime M = R1,3 × X , B is the

pull-back of the NS two-form, and F denotes the curvature of a U(n) gauge field for

a worldvolume gauge bundle E of rank n. The induced metric and the B field are

understood to be multiplied by a unit n×n matrix in these formulae. Recall that B is
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not gauge-invariant, but rather transforms as B → B + dλ where λ is a one-form. In

fact large gauge transformations may also be included if µ1λ is taken to be a connection

one-form on some line bundle over the spacetime M. Thus [µ1dλ/2π] ∈ H2(M;Z).

At the same time the worldvolume gauge field F transforms as

F → F + µ1ι
∗dλ , (2.28)

where ι denotes the embedding. Again, for non-abelian F a unit n × n matrix is

understood in this formula.

The Chern-Simons terms are given by10

SCS = µ7

∫

R1,3×Σ4

C Tr e2πα
′F−B

√

Â(4π2α′RT )

Â(4π2α′RN )
. (2.29)

Here µ7 is the D7-brane charge (2.13) and the curvature terms will play no role in

our discussion, so we shall ignore them. The topology of the gauge bundle E over Σ4

induces D5-brane and D3-brane charges on the D7-brane via (2.29).

The worldvolume gauge field A, with field strength F , dimensionally reduces to a

U(n) gauge field on R1,3. Since we are only interested in the U(1)s we study here only

the abelian part of this gauge field, which we denote A. Its field strength is F . At low
energies this has a standard kinetic term

− 1

4g2

∫

R1,3

F ∧ ∗4F (2.30)

where the gauge coupling g may be related to the Born-Infeld volume of Σ4. The flat

background fields (2.21), (2.22), together with the topology of the gauge bundle E over

Σ4, also induce an effective θ-angle term

1

32π2

∫

R1,3

θF ∧ F (2.31)

where

θ

8π
=

∫

Σ4

{

C0

[

ch2(E)− ch1(E) ∧ bMΥM +
1

2
ch0(E)b

MbNΥM ∧ΥN

]

+ cM2 ΥM ∧
[

ch1(E)− ch0(E)b
NΥN

]

+ cA4 ch0(E)Ξ
A

}

. (2.32)

Summation is understood over repeated indices. ch(E) denote the Chern characters

of the bundle E, so in particular ch0(E) = n is the rank of the gauge bundle, or

10See, for example, [64]. The normal bundle couplings are given in [65].
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equivalently number of D7-branes. Note that the above, slightly technical, discussion

of large gauge transformations in string theory is crucial for seeing that the expression

(2.32) is a well-defined angle.

Now consider fluctuations of the background form fields. If one has a k-form field

Ck on R1,3×X then one will obtain a massless dynamical scalar field ϕ on R1,3 via an

ansätz

Ck = ϕψ (2.33)

provided the k-form ψ is closed, co-closed and L2 normalisable on (X, gX). The last

condition ensures that the kinetic energy of ϕ is finite. Thus in particular ψ is an L2

harmonic k-form on (X, gX). We denote the space of such forms by Hk
L2(X, gX). For

(X, gX) asymptotically conical, the number of such harmonic forms is known [66]. The-

orem 1A of the latter reference says that for a complete asymptotically conical manifold

(X, gX) of real dimension m with boundary ∂X the following natural isomorphisms11

hold:

Hk
L2(X, gX) ∼=











Hk(X, ∂X ;R), k < m/2

f(Hm/2(X, ∂X ;R)) ⊂ Hm/2(X ;R), k = m/2

Hk(X ;R), k > m/2

. (2.34)

Thus the space of L2 harmonic forms is topological. It follows that the only L2 harmonic

forms on (X, gX) are H2
L2(X, gX) ∼= H2(X, ∂X ;R) ∼= H4(X ;R) and H4

L2(X, gX) ∼=
H4(X ;R). There are hence b4(X) L2 harmonic two-forms and four-forms on (X, gX),

respectively. Since X is complete and asymptotically a cone, these forms are also closed

and co-closed.

Thus only b4(X) of the b2(X) constants in (2.21) may be interpreted as VEVs of

massless dynamical axions in R1,3, whereas all of the constants cA4 in (2.22) are VEVs

of massless dynamical axions. We focus in the following only on the RR fields, and

write the dynamical fields

C2 =
2π

µ1
cA2 Υ

A , C4 =
2π

µ3
cA4 ΞA (2.35)

where now cA2 and cA4 are massless scalar fields on R1,3, and ΥA ∈ H2
L2(X, gX), Ξ

A ∈
H4

L2(X, gX). In fact since the Hodge dual of an L2 harmonic form is also an L2 harmonic

11Here f is the forgetful map Hk(X, ∂X ;R)
f−→ Hk(X ;R), that forgets that a class has compact

support.
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form, we may clearly take

ΞA = RAB ∗6 ΥB (2.36)

for some constant matrix R = (RAB) ∈ GL(b4(X);R), where ∗6 denotes the Hodge

operator on (X, gX). Recall that RR fields are self-dual, so we must also turn on

C6 =
2π

µ5

c̃A2 ∧ ΞA (2.37)

and more correctly write

C4 =
2π

µ3

(cA4 ΞA + c̃A4 ∧ΥA) . (2.38)

Here c̃A2 and c̃A4 are dynamical two-form potentials on R1,3. Self-duality then requires

dcA2 =
µ1

µ5
RBA ∗4 dc̃B2 , dc̃A4 = RBA ∗4 dcB4 . (2.39)

Note also that C2 itself describes a two-form on R1,3. Altogether these terms produce

a coupling

∫

R1,3

c ∧ F (2.40)

where

c =
µ1

2π
C2

∫

Σ4

[

ch2(E)− ch1(E) ∧ bMΥM +
1

2
ch0(E)b

MbNΥM ∧ΥN

]

+ c̃A4

∫

Σ4

ΥA ∧
[

ch1(E)− ch0(E)b
M ∧ΥM

]

+ c̃A2

∫

Σ4

ch0(E)Ξ
A . (2.41)

The interesting part of the effective Lagrangian for the U(1) gauge field A on R1,3

is then

L = − 1

4g2
F ∧ ∗4F + c ∧ F +

θ

32π2
F ∧ F (2.42)

where the two-form c and scalar θ are given by (2.41) and (2.32), respectively. The

precise formulae are not particularly important. The important point to notice is that

c is linear in the 1 + b4(X) + b4(X) = χ− b3(Y ) variables C2, c̃
A
2 and c̃A4 , respectively.

The field C2 is non-dynamical since (X, gX) has infinite volume. Thus, for fixed B field

flux bM on X , c depends linearly on 2b4(X) dynamical two-forms. There are χ different

fractional branes, wrapping different cycles in X or with different gauge bundles E,
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each with a gauge field As, s = 1, . . . , χ. By taking linear combinations of fractional

U(1)s with no C2 term in c we obtain generically 2b4(X) linearly independent gauge

fields with an effective Lagrangian of the form (2.42) with c 6= 0, and also a finite

kinetic term for c. Here the kinetic term for c comes from the bulk IIB supergravity

kinetic terms for the RR fields. A standard change of variable then shows that the

dual scalar to c in R1,3 is a Stückelberg field, and thus (2.42) describes the action for

a massive gauge field. Indeed, the equation of motion for c, in the presence of a c ∧ F
coupling, is given by

d ∗4 dc = F . (2.43)

A duality transformation to a scalar field ρ involves interchanging equations of motion

and Bianchi identities. Thus one defines ρ satisfying

dρ = ∗4dc−A (2.44)

so that (2.43) is automatic. The equation of motion for ρ is then

d ∗4 (dρ+ A) = 0 . (2.45)

The definition (2.44) implies that a gauge transformation A → A+dλ must be accom-

panied by a transformation ρ→ ρ− λ. Thus ρ is a Stückelberg scalar, and the gauge

field A is in fact massive. The dual scalar is, from (2.39), a linear combination of the

dynamical scalars cA2 , c
A
4 , which in turn enter the expression for the θ-angle (2.32). Thus

the 2b4(X) Stückelberg fields that give masses to 2b4(X) of the fractional brane U(1)s

are linear combinations of θ-angles. It is precisely this fact that allows the additional

triangle anomalies to be cancelled. On the other hand, the χ − 2b4(X) = 1 + b3(Y )

linear combinations of fractional brane U(1)s with no c̃A2 and c̃A4 fields in c remain

massless. Note that the overall U(1), often referred to as the centre of mass U(1),

should essentially decouple from everything.

We end this section with a comparison to the quiver gauge theory formula for

anomaly cancellation. Let q ∈ Z|V | denote a vector of charges specifying a subgroup

U(1)q ⊂ U(1)|V | ⊂ G. Recall that |V | = χ. Then cancellation of the triangle anomaly

Tr[U(1)qSU(nv)
2] is equivalent to

∑

a∈A|h(a)=v

nt(a)qt(a) −
∑

a∈A|t(a)=v

nh(a)qh(a) = 0 . (2.46)
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The following neat argument is due to [67]. Recall that anomaly cancellation (2.11)

for the gauge group G =
∏

v∈V U(mv) requires

∑

a∈A|h(a)=v

mt(a) −
∑

a∈A|t(a)=v

mh(a) = 0 (2.47)

for all v ∈ V . As explained in the previous subsection, there exist b3(Y ) + 1 linearly

independent solutions to (2.47). We may thus solve (2.46) by setting

qv =
mv

nv

(2.48)

assuming nv 6= 0 for all v ∈ V for the D3-brane worldvolume theory of interest. A

discussion of why this should be the case may be found in [67]. Note, however, that

taking m = n leads to q = (1, 1, . . . , 1). This corresponds to the overall diagonal U(1)

under which nothing is charged. Thus one has b3(Y ) non-anomalous U(1)s, precisely

as we have argued above using a large-volume description of the fractional branes.

2.4 Marginal couplings and superconformal quivers

In the IR all U(1)s dynamically decouple, anomalous or otherwise. The overall diagonal

U(1) completely decouples from everything as nothing is charged under it. The massless

non-anomalous U(1)s decouple since their gauge coupling goes to zero in the IR, while

the massive U(1)s decouple because they are massive. In the IR theory we will therefore

encounter only global U(1) symmetries, and these likewise split as non-anomalous and

anomalous, as global symmetries. The IR gauge group will thus be

SG ≡
∏

v∈V
SU(nv) . (2.49)

A necessary condition for an IR fixed point of the quiver gauge theory is that the β

functions of all coupling constants vanish. For a quiver gauge theory the vanishing of

the NSVZ β functions, which are exact in perturbation theory, is given by12

0 = β̂1/g2v ≡ 2nv +
∑

a∈A|h(a)=v

(Ra − 1)nt(a) +
∑

a∈A|t(a)=v

(Ra − 1)nh(a) (2.50)

0 = β̂λl
≡ −2 +

∑

a∈loop l

Ra . (2.51)

12The expressions β̂ in these formulae are not the actual NSVZ β functions, but are rather propor-
tional to them.

21



Here gv, v ∈ V , are the gauge couplings while λl, l ∈ L, are the superpotential

couplings. Recall that L is a set of oriented loops in the quiver. We have also defined

Ra =
2

3
(1 + γa) (2.52)

where γa = γa({gv}v∈V , {λl}l∈L) is the anomalous dimension of the bifundamental field

Φa. Thus γa, and hence Ra, are functions of |V |+ |L| couplings.
Setting the β functions (2.50) to zero gives |V |+ |L| linear equations in the variables

{Ra}a∈A. However, notice from (2.46) that if {R∗
a} is a zero of the β functions, then

so is {R∗
a + µQa} for any real number µ ∈ R, where

Qa = qt(a) − qh(a) . (2.53)

If we instead regard the β functions as functions of the couplings, then this simple

argument shows that, generically, the space of marginal couplings will be at least

b3(Y )-dimensional. Indeed, the non-anomalous U(1) symmetries are directly related

to the number of marginal couplings via the above argument. We will see how this

happens in the dual AdS description in section 3.1.

For the theory on N D3-branes, we also expect in general a linear relation

N
∑

l∈L
β̂λl

=
∑

v∈V
β̂1/g2v (2.54)

leading to another marginal direction. In particular, we conjecture that the relation

(2.54) should correspond to the constant string coupling in the dual AdS background.

One can show that (2.54) is indeed an identity for toric quiver gauge theories as follows

(for further discussion, see the recent paper [68]). For a toric quiver gauge theory on

N D3-branes at a toric Calabi-Yau singularity one has nv = N for all v ∈ V . Also,

each field Φa appears precisely twice in the superpotential W . These statements imply

N
∑

l∈L
β̂λl

= 2N
∑

a∈A
Ra − 2N |L| (2.55)

∑

v∈V
β̂1/g2v = 2N |V |+ 2

∑

a∈A
(Ra − 1)N . (2.56)

Thus
∑

v∈V
β̂1/g2v −N

∑

l∈L
β̂λl

= 2N(|V | − |A|+ |L|) = 0 , (2.57)

where the last relation follows from Euler’s theorem applied to the brane tiling [69].

Finally, note that coupling constants in N = 1 gauge theories are always complex.

In particular, the gauge couplings gv are paired with θ-angles. Thus one expects at

least a (b3(Y ) + 1)-dimensional space of complex marginal couplings.
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2.5 Classical vacuum moduli space

In this section we review the classical vacuum moduli space M of a quiver gauge theory

with gauge group (2.49). This may be referred to13 as the “master space” [20]. The

main purpose of this subsection is to describe a (singular) fibration structure of M in

which the fibres are constructed from mesonic moduli spaces. We shall see in section 3

that much of the structure of this classical VMS is reproduced in the dual supergravity

solutions. There exist two complementary descriptions of the VMSs of interest, namely

the Kähler quotient description and the GIT quotient description, and we will discuss

both below. The former is perhaps more familiar to physicists and indeed is the most

convenient for the purposes of the paper.

As discussed in the previous subsection, in the IR the gauge group is given by (2.49).

The classical VMS of such a quiver gauge theory is the space of constant matrix-valued

fields Φa minimising the potential. This is equivalent to setting the F-terms to zero

∂W

∂Φa
= 0 , a ∈ A (2.58)

and also the D-terms to zero

µv = 0 , v ∈ V . (2.59)

Here µ denotes the vector of D-terms

µv = −
∑

a∈A| t(a)=v

[

Φ†
aΦa −

1

nv

Tr(Φ†
aΦa)1nv×nv

]

+
∑

a∈A| h(a)=v

[

ΦaΦ
†
a −

1

nv
Tr(ΦaΦ

†
a)1nv×nv

]

. (2.60)

Finally, one must identify configurations related by the action of the gauge group SG

given by (2.49).

A bifundamental field Φa in vacuum is just an nh(a) × nt(a) matrix. The space of all

such fields may then be thought of as

C
D =

⊕

a∈A
C

nh(a)×nt(a) . (2.61)

Since the superpotential W is a polynomial in the Φa, the F-term equations (2.58) cut

out an affine algebraic set

Z = {dW = 0} ⊂ C
D . (2.62)

13The terminology is apparently due to A. Bertram.
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Since W is invariant under G, and thus also SG ⊂ G, it follows that SG acts on Z.
The process of setting the D-terms to zero and quotienting by the action of the gauge

group is then by definition the Kähler quotient

M = Z//SG . (2.63)

Indeed, the D-terms (2.59) are, up to a factor of i, the moment map for the action of

SG on CD equipped with its standand flat Kähler structure14. Note the subtraction

of the trace terms ensures that µv is traceless, as required for an element of the (dual)

Lie algebra of SU(nv). The vacuum moduli space M inherits a Kähler metric from

the flat metric on CD.

We may alternatively construct M algebro-geometrically. It is useful to introduce

the complexified gauge group

SGC =
∏

v∈V
SL(nv;C) . (2.64)

In Geometric Invariant Theory (GIT) it is natural to define the quotient of Z by SGC

in terms of the ring of invariants of SGC

M = Z//SGC = Spec C[Z]SGC . (2.65)

This is also the ring of semi-invariants of GC. The construction (2.65) realises M as

an affine set. In more detail, the ring of invariants of SGC is finitely generated as the

group SGC is reductive (it is the complexification of a compact Lie group). One may

thus pick a set of d generators, for some d. This realises M as an affine set in C
d,

the relations among the generators being the defining equations. It then follows from

a general theorem that the GIT quotient (2.65) is isomorphic to the Kähler quotient

(2.63), as complex manifolds defined as the complement of the singular points.

Such moduli spaces, for certain examples of simple quiver gauge theories on a D3-

brane at a Calabi-Yau singularity, have recently been investigated in detail in [20].

Very little is known in general about the detailed structure of these moduli spaces. A

notable point is that, in general, M is reducible. Also, so far in the paper we have

ignored the fact that the quiver gauge theory is usually far from unique: the different

quiver theories are valid in different regions of Kähler moduli space. However, they are

all in the same universality class, flowing in the IR to the same superconformal fixed

point. The quivers are then related by a form of Seiberg duality. As first pointed out

14This assumes that one takes canonical kinetic terms for the bifundamental fields.
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for the complex cone over dP3 in [70], the moduli space M is not always invariant under

Seiberg duality. However, it was conjectured in [20] that there is a top-dimensional

irreducible component of M that is invariant. The discussion below should probably

be applied to this irreducible component of M . Having said this, the structure of M

that we wish to describe is so general that these precise details will not be important

for our purposes.

The global symmetry group U(1)χ ⊂ G acts holomorphically on M , preserving its

Kähler structure. In fact, recall that no field is charged under the diagonal U(1)diag ⊂
U(1)χ. The effectively acting group is in fact the torus

T = U(1)χ−1 ∼= U(1)χ/U(1)diag . (2.66)

We may thus in particular take the Kähler quotient of M by T. Since the dual Lie

algebra of U(1)χ is isomorphic to R
χ, we may also pick a non-zero moment map level,

or FI parameter in physics language, ζ ∈ Rχ satisfying

∑

v∈V
ζv = 0 . (2.67)

This is equivalent to quotienting the space of F-term solutions Z by the gauge group

G =
∏

v∈V U(nV ) with moment map

µv(ζ) ≡ −
∑

a∈A| t(a)=v

Φ†
aΦa +

∑

a∈A| h(a)=v

ΦaΦ
†
a +

1

nv
ζv 1nv×nv . (2.68)

We shall denote this quotient by

M (ζ) = Z//ζG . (2.69)

This is usually called the mesonic moduli space with FI parameters given by the vector

ζ .

It is perhaps worth stressing that the above quotient by G (as opposed to that

by SG) is not physically relevant; it may be regarded as a mathematical trick that

is useful for describing the global structure of the physical moduli space, which is

M . Indeed, picking a point p ∈ M determines a vector ζ ∈ Rχ−1 ⊂ Rχ via setting

µv(ζ) = 0 in (2.68). Notice that the sum of quadratic terms in the bifundamental fields

is necessarily proportional to the identity matrix 1nv×nv since any point in M satisfies

µv = 0 in (2.60). This gives a well-defined map

Π : M → R
χ−1 . (2.70)
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The mesonic moduli space M (ζ) is then Π−1(ζ)/U(1)χ−1. For a generic (smooth) point,

the group U(1)χ−1 acts freely and thus Π−1(ζ) is a U(1)χ−1 fibration over M (ζ). Thus

M fibres over Rχ−1 where the fibres are themselves fibrations with base space M (ζ)

and generic fibre U(1)χ−1.

In fact, not all values of ζ ∈ Rχ−1 are realised. The set of ζ for which Π−1(ζ) is

non-empty correspond to points in a convex cone in Rχ−1 ⊂ Rχ [71]. This cone in

Rχ−1 is further subdivided into a set of chambers C, which are the open interiors of

convex rational polyhedral cones, with boundaries between chambers being known as

walls. Mesonic moduli spaces with FI parameters inside the same chamber C are all

isomorphic to the same complex manifold MC , although they have distinct Kähler

forms. The Kähler class locally varies linearly with the FI parameters. As one crosses

a wall from one chamber into another, the mesonic moduli space undergoes a form of

small birational transformation called a flip [71]. The moduli spaces corresponding to

FI parameters on the walls are singular. Thus, strictly speaking, the map Π in (2.70)

is not a fibration, since the fibres are only locally isomorphic. Across the walls in Rχ−1

the fibres change topology.

For applications to AdS/CFT, where the quiver gauge theory describes the theory

on N coincident D3-branes transverse to X , one expects15 that

MN (ζ) ∼= SymNX = XN/SN (2.71)

is the Nth symmetrised product of X . Here the set of dimension vectors n, which

we have suppressed in the notation (2.69), are of course fixed in terms of N . The

space M1(ζ) ≡ X(ζ) = X is naturally the vacuum moduli space of a single pointlike

D3-brane on X . Thus the dual geometry is expected to arise as the classical vacuum

moduli space16 for the gauge theory on a D3-brane. The singular cone geometry C(Y )

corresponds to the zero moment map level ζ = 0. Thus we identify

C(Y ) = M1(0) . (2.72)

From the above discussion regarding convex cones and chambers in FI space, setting ζ 6=
0 in the quiver gauge theory with gauge groupG corresponds to (partially) resolving the

moduli space (2.72). Indeed, in [73] it was proven that for toric quiver gauge theories

15When there is an equivalence of derived categories, there is always an irreducible component of
the vacuum moduli space isomorphic to the original cone – see [72].

16If the singularity {r = 0} is not isolated the situation may be more complicated. In this case the
mesonic moduli space contains the dual geometry, but typically also has other branches.

26



described by dimers the identification (2.72) indeed holds, and moreover M1(ζ) is a

toric crepant resolution of C(Y ) for generic ζ . These results are also known to hold for

orbifolds C(Y ) = C3/Γ with Γ ⊂ SU(3) a finite group [74]. Indeed, for orbifold quiver

gauge theories it is known that all crepant resolutions π : X → C3/Γ arise in this way

[21]. The results of [31] for certain examples of toric theories strongly suggest this is

true in general for toric quivers.

In the preceding discussion we have reviewed the description of M as a certain

fibration over the space of “FI paramaters”. This will be sufficient for comparing with

the dual gravity VMS that we discuss in the next section. In the remainder of this

subsection we will describe in more detail the GIT quotient point of view. Although

this is slightly technical, and will not affect most of the rest of the paper, it provides a

description of baryon operators as holomorphic functions on M which sheds light on

the recent counting results presented in [31].

Thus, consider the GIT quotient by the complexification TC
∼= (C∗)χ−1 of the torus

(2.66). This also acts on M , which we now consider as an affine set. In order to obtain

the analogue of a non-zero moment map level ζ , we need to pick a character of T. The

character lattice Λ ⊂ t∗ is by definition the set of all one-dimensional representations

of T. On picking a basis, this is

Z
χ−1 ∼= Λ ⊂ t

∗ ∼= R
χ−1 . (2.73)

Picking a character q ∈ Λ specifies an action of TC on M × C, namely

M × C ∋ (p, z) 7→ (λ · p, χq(λ)z), λ ∈ TC . (2.74)

In a basis, we may write λ = (λ1, . . . , λχ−1) ∈ (C∗)χ−1, q = (q1, . . . , qχ−1) ∈ Zχ−1 and

then

χq(λ) =

χ−1
∏

i=1

λqii . (2.75)

We may now perform the GIT quotient for the action of TC on M × C, using the

character q (or rather χq). This picks out the set of holomorphic functions on M of

charge kq, with k ∈ Z+ = {0, 1, 2, . . .}. To see this, note that the invariant regular

functions on M × C are spanned by functions17 of the form fkqz
k, where fkq is a

holomorphic function on M of charge kq ∈ Λ. Thus

C[M × C]TC(q) =
⊕

k∈Z+

{fkq} . (2.76)

17The function f(p, z) = z transforms with the opposite weight to the coordinate z.
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This is a graded ring, graded by k, and we may thus take the projective Proj, rather

than the affine Spec, of (2.76). This may be defined concretely as follows. One first

takes a finite set of generators wi, i = 1, . . . , d, of the ring (2.76), which may be taken

to be homogeneous under the grading. From this we could construct the corresponding

affine variety in Cd. However, instead we do something different. Let wa, a = 1, . . . , m,

be the generators of homogeneous degree zero. Then we define Proj of (2.76) to be the

zero set of the relations between the generators in C
m × (Cd−m \ 0) ⊂ C

d, quotiented

by the C∗ action given by the grading on the generators. This produces the quotient

space M //q TC together with an ample line bundle over it. The holomorphic sections

of this line bundle are by definition the charge q holomorphic functions on M , which

is the degree one piece k = 1 of the ring (2.76). It is then a fairly standard result

(see, for example, [71] and references therein) that the Kähler quotient M (q) with FI

parameter q ∈ t∗ is the same as the GIT quotient using the lattice point q:

M (q) ∼= M //q TC
∼= MC . (2.77)

Here q ∈ C ⊂ t∗ lies in the chamber C, and recall that the underlying space MC

depends only on the chamber: the choice of point q ∈ Λ ∩C determines an ample line

bundle over MC in the GIT quotient, and a (quantised) Kähler form in the Kähler

quotient. One also naturally gets a morphism

π : M (q)→M (0) (2.78)

via the inclusion of the invariant functions on M in (2.76). For the gauge theory on a

single D3-brane, M1(0) = C(Y ). For a toric quiver gauge theory, corresponding to a

D3-brane at the singular point of an affine toric singularity, it was proven in [73] that

(2.78) is indeed a toric crepant resolution of C(Y ).

The description of the mesonic moduli spaces in terms of a geometric quotient of M

by the complex torus TC
∼= (C∗)χ−1 is standard [75]. The points of M under the group

action are separated into unstable, semi-stable and stable points, where the stable

points are a subset of the semi-stable points. The unstable points, which we denote Sq,

are thrown away in the quotient. On the other hand for generic q one expects all other

points to be stable – see [73] for a discussion of this for toric quiver moduli spaces.

Then the statement is that M \ Sq is a TC
∼= (C∗)χ−1 fibration over M (q) ∼= MC .

When there are semi-stable but not stable points M \ Sq is no longer a fibration over

the mesonic moduli space. For example, this is certainly true when q = 0.
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In the abstract language above, the gauge-invariant BPS operators are classically just

the holomorphic functions on M . These form the coordinate ring C[M ]. The BPS

meson operators are the subset of these that have zero charge q = 0 under the baryonic

torus T. Alternatively, these are the ring of invariants C[Z]GC of GC, rather than SGC.

On the other hand, the baryon operators are by definition the gauge-invariant BPS

operators with non-zero change q under T. For N = 1, a baryonic operator of charge

q ∈ Λ is, by the above GIT construction, the same thing as an ample divisor of the

mesonic moduli space X = M (q). These statements explain the counting of baryon

operators presented in [31], since an ample divisor may be identified with a quantised

Kähler class on X . Thus counting baryon operators according to their baryonic charge

indeed involves summing over mesonic moduli spaces X that are resolutions of the

Calabi-Yau cone, and on each X summing over quantised Kähler classes (ample line

bundles).

Example: the conifold

Since the discussion above is all rather abstract, we include here a simple example.

The gauge theory on a D3-brane at the singular point of the conifold18 consists of

four chiral fields Ai, Bi, i = 1, 2. The gauge group is G = U(1)2, with the fields

Ai, Bi carrying charges (1,−1) and (−1, 1), respectively. The superpotential is zero,

and thus the classical VMS is simply M = C4, parameterised by the VEVs of the

above bifundamental fields. We introduce standard coordinates z1, z2, z3, z4 on C
4.

The overall U(1) decouples, as always, and the charges under the remaining U(1) are

(1, 1,−1,−1). The moment map is then, up to normalisation,

µ = |z1|2 + |z2|2 − |z3|2 − |z4|2 . (2.79)

Picking a point p ∈ M = C
4 thus determines a real number µ(p) ∈ R. This is the

same as the map Π in (2.70). By a slight abuse of terminology, we refer to µ(p) as the

value of the FI parameter. The mesonic moduli spaces are then given by

M (ζ) = C
4//ζU(1) = {p ∈ C

4 | µ(p) = ζ}/U(1) . (2.80)

The underlying complex variety X of M (ζ) depends on the sign of ζ : for ζ > 0 one

obtains the resolved conifold X+ = O(−1)⊕O(−1)→ CP
1; for ζ = 0 one obtains the

conifold X0 = {u, v, x, y ∈ C
4 | u2+v2+x2+y2 = 0}; whereas for ζ < 0 one obtains the

18Ordinary double point singularity, in mathematical terminology.
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other small resolution of the conifold X−, obtained by flopping the CP
1 in X+. Thus

the space of FI parameters in R is fan consisting of two one-dimensional chambers R±,

together with a point: R = R− ∪ {0} ∪ R+. The Kähler class of M (ζ), equipped with

its induced Kähler metric, depends linearly on ζ . Roughly, one may interpret |ζ | as the
size of the CP

1. Picking a point p ∈ M = C4 hence determines, via (2.80), a point in

a U(1) fibre over a point in one of X0 or X±, together with a Kähler class on X±. The

U(1) fibre is non-degenerate everywhere, except over the singular point of the conifold

X0.

The unstable points, in the GIT quotient description, are S+ = {z1 = z2 = 0} ∼= C2

and S− = {z3 = z4 = 0} ∼= C2. Thus we may define M± = M \ S±. Then M± is a C∗

fibration over X±.

3 Gravity backgrounds

3.1 AdS5 backgrounds

We begin our discussion by recalling the well-known AdS5 × Y solutions of Type IIB

supergravity, where (Y, gY ) is a Sasaki-Einstein five-manifold. In particular we present

a discussion of the various background moduli described by flat form fields. These

will play a crucial role in our subsequent discussion of deformations of the conformal

backgrounds.

Consider placing N D3-branes at the tip of the Ricci-flat Kähler cone (2.1). The

corresponding solution of Type IIB supergravity is given by

g10 = H−1/2gR4 +H1/2gC(Y ) (3.1)

G5 = (1 + ∗10)dH−1 ∧ vol4 (3.2)

where the function H is given by

H = 1 +
L4

r4
. (3.3)

Here gR4 is four-dimensional Euclidean space, with volume form vol4, and L is a con-

stant given by

L4 =
(2π)4gs(α

′)2N

4vol(Y )
. (3.4)

The near-horizon limit of this system of D3-branes may be obtained by simply drop-

ping the additive constant from the function (3.3), which results in the product back-

ground AdS5×Y . Here AdS5, or rather its Euclidean version which is hyperbolic space,
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is realised in horospherical coordinates. Specifically, the metric (3.1) becomes

g10 =
L2

r2
dr2 +

r2

L2
gR4 + L2gY . (3.5)

The AdS/CFT correspondence conjectures that Type IIB string theory on this back-

ground is dual, in the large N limit, to a four-dimensional N = 1 superconformal

field theory. The latter may be regarded as living on the conformal boundary of the

five-dimensional hyperbolic space in (3.5). The conformal compactification of hyper-

bolic space may be described topologically as adding an S4 conformal boundary to a

five-dimensional open ball. In the horospherical coordinates above, this S4 boundary

of AdS5 is the union of r =∞, which is a copy of R4, with the point r = 0.

Actually, more precisely, for fixed spacetime metric (3.5) there will in general be a

family of corresponding AdS backgrounds, obtained by turning on various flat back-

ground fields. These correspond to exactly marginal directions in a family of N = 1

superconformal field theories. In the remainder of the subsection we give a careful

summary of these marginal deformations.

Firstly there is the constant axion-dilaton τ in (2.15). Secondly, we may turn on

a flat RR C2 field and its SL(2;R) partner, a flat NS B field. In the current set-up,

withM = AdS5 × Y , the spacetime is contractible to Y . Note that before taking into

account large gauge transformations, we may view the non-torsion flat RR fields as a

vector (C0, [C2]) ∈ R⊕Rb3(Y ) ∼= Rb3(Y )+1, where [C2] ∈ H2(Y ;R) ∼= Rb3(Y ). The lattice

of large gauge transformations is then given by

ΛY
B =

{(

n,
2π

µ1
σ + nB

)

| n ∈ Z, σ ∈ H2
free(Y ;Z)

}

⊂ R
b3(Y )+1 . (3.6)

The flat RR fields thus live in the torus

([C0], [C2]) ∈ R
b3(Y )+1/ΛY

B
∼= U(1)b3(Y )+1 . (3.7)

The C2 field and B field pair naturally into the complex combination τB − C2. Note

that when H3
tors(Y ;Z) is non-trivial it is possible to turn on torsion G3 and H fields.

These should correspond to discrete parameters labelling the dual SCFTs.

In principle we might also have been able to turn on a flat RR C4 field, in addition

to the background flux (3.2). However, since b1(Y ) = 0 by Poincaré duality we have

H4(Y ;R) = 0. There is hence no room for such a flat field. Such fields will play an

important role once we deform the AdS background geometry in the next subsection.

The above flat fields, including the axion-dilaton, may be identified with the (b3(Y )+

1)-dimensional space of marginal couplings discussed in section 2.4, in the case that
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the dual SCFT has a quiver gauge theory description. Note, however, that both B

and C2 are periodic variables. Although there is some field theory understanding of

this for simple examples, such as the conifold with (Y, gY ) = T 1,1, a general account

seems to be lacking at present. Marginal deformations also arise if there is a non-trivial

moduli space of Sasaki-Einstein metrics on Y , as often occurs in the constructions of

Sasaki-Einstein manifolds as links of hypersurface singularities in [37]. There may also

be metric deformations that take us outside the class of Sasaki-Einstein backgrounds,

notably the β-deformations of [76] for toric Sasaki-Einstein manifolds. We will not

consider either of these possibilities in the present paper.

3.2 Symmetry-breaking backgrounds

The quantum field theories dual to the above backgrounds are in vacua in which all

scalar operators have zero VEVs. Indeed, a non-zero VEV will break conformal invari-

ance, leading to a renormalisation group flow via an associated Higgs effect. The aim

of this paper is to consider more general field theory vacua in which various operators

have non-zero VEVs. This was first discussed for N = 4 Yang-Mills theory in [78], and

for orbifolds and the conifold theory in [23]. Here we wish to extend the discussion to

general Sasaki-Einstein backgrounds with dual field theories described by quiver gauge

theories. We discussed the classical space of such vacua in section 2.5. In the remainder

of the section we would like to construct the corresponding dual supergravity solutions.

At energies well above the highest scale set by the VEVs, one expects the physics

to be well-described by the original N = 1 superconformal field theory. The latter

is thus the UV theory in this set-up. As usual in AdS/CFT, one may describe field

theories that are conformal at high energies by a dual gravitational background that

is asymptotic to an AdS solution. One should therefore look for supergravity solutions

that are asymptotic to AdS5 × Y . However, as emphasized in [23], if the dual field

theory is defined on S4 one does not expect to find vacua of the type discussed in

section 2.5: the conformal coupling of scalar fields to the positive scalar curvature of

S4 prevents them from acquiring a VEV. Instead, one should regard the “boundary”

of AdS5 to be R4, given by r = ∞ in the horospherical coordinates (3.5), so that the

dual field theory is defined on flat R4. We thus seek supergravity solutions that have

an asymptotic region which approaches the large r region of (3.5). The solutions of

interest will also have other asymptotic regions, as we shall describe momentarily.

There are two natural ways of deforming the AdS backgrounds in section 3.1 in this

32



manner:

• Mesonic deformations : where one moves some or all of the stack of N D3-branes

away from the singularity r = 0 of C(Y ).

• Baryonic deformations : where one de-singularizes the Calabi-Yau cone C(Y ),

replacing it by a (possibly still singular) Ricci-flat Kähler manifold (X, gX) that

is asymptotic to a cone over the Sasaki-Einstein manifold (Y, gY ).

Actually these names are slightly misleading, since generically meson and baryon oper-

ators obtain VEVs in both types of vacua. However, the space of mesonic deformations

is naturally isomorphic to the gauge theory mesonic moduli space at zero FI param-

eter. Also, for certain baryonic deformations no meson operator obtains a VEV. To

be more precise, if π : X → Z is a crepant resolution of the singularity Z = C(Y ),

then in backgrounds where all of the D3-branes are located on the exceptional set (the

set of points in X mapping to the singular point r = 0 of C(Y )) one expects that no

meson operator obtains a VEV. Classically this is because the meson operators are the

holomorphic functions C[Z], which, if not constant, vanish at r = 0. For example, the

backgrounds discussed in [22] are all of this form.

For any such (X, gX) above we may construct a family of supersymmetric Type

IIB backgrounds, asymptotic to AdS5 × Y in the above sense, as follows. The ten-

dimensional metric is

g10 = H−1/2gR4 +H1/2gX , (3.8)

with G5-flux still given by (3.2). We pick m points xi, i = 1, . . . , m, and place Ni

D3-branes at the ith point. Thus

m
∑

i=1

Ni = N (3.9)

and the function H , which is sourced by the D3-branes, satisfies

∆xH = −(2π)
4gs(α

′)2N√
det gX

m
∑

i=1

Ni

N
δ6(x− xi) . (3.10)

Here ∆ is the Laplacian on (X, gX). The warp factor H thus satisfies the Laplace

equation on X \ {x1, . . . , xm}. The boundary conditions may be described as follows.

Since (X, gX) is asymptotic to a cone over Y we may require the solution for H to
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approach HAdS = L4/r4 for large r. This, together with the D3-brane charge relation

(3.9), precisely ensures that the Type IIB background is asymptotic to the large r

region of (3.5), with L given by (3.4). Near to the ith stack of D3-branes xi ∈ X , the

function H behaves as

H(x) =
L4
i

ρ(x, xi)4
(1 + o(1)) . (3.11)

Here ρ(x, xi) is the geodesic distance from xi to x, and

L4
i =

(2π)4gs(α
′)2Ni

4vol(S5)
, (3.12)

provided that xi is a smooth point of X . As discussed in [22], if (X, gX) has a coni-

cal singularity at xi, with corresponding Sasaki-Einstein link (Yi, gYi
), then vol(S5) is

replaced by vol(Yi) in (3.12). The singular nature of H at xi implies that the metric

(3.8) develops a “throat” near to this point. In fact it approaches the metric in a

neighbourhood of r = 0 in the AdS background

g10 =
L2
i

r2
dr2 +

r2

L2
i

gR4 + L2
i gS5 . (3.13)

Again, if the point xi is a conical singularity, the round S5 is replaced by (Yi, gYi
).

Notice that when all N of the D3-branes are placed at the same point, so m =

1 in the above notation, the function H is simply the Green’s function on (X, gX).

Provided (X, gX) is smooth and complete, we argued in [22] that there always exists a

unique positive solution to (3.10) with the required boundary behaviour – this follows

from standard theorems about Green’s functions on manifolds with non-negative Ricci

curvature and appropriate volume growth. For m > 1 stacks of D3-branes we may

then simply take an appropriate linear combination of Green’s functions as solution

to (3.10). More generally, when (X, gX) contains singularities (such as a mesonic

background with X = C(Y )), we do not know of any general theorems that guarantee

existence of a unique solution to (3.10). However, it is very reasonable to conjecture

this to be true, at least when (X, gX) contains only conical singularities. Indeed, for

the homogeneous case of (Y, gY ) = T 1,1 one may construct [30] explicit solutions to

(3.10) on the conifold. We will nevertheless focus on the case that (X, gX) is smooth

in the present paper.

The supergravity backgrounds with m = 1 may be interpreted as a renormalisation

group flow from the initial N = 1 superconformal field theory to N = 4 Yang-Mills
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in the IR, with gauge group SU(N) [23]. As we explain later in the paper, there

may be additional light particles in the IR, namely Goldstone bosons associated to the

spontaneous breaking of non-anomalous baryonic symmetries. When the branes are

separated, m > 1, the interpretation of the background is a little more subtle: there

are m regions in which the supergravity solution approaches a neighbourhood of r = 0

in the AdS solution (3.13). The natural interpretation is thus that the theory flows, in

the extreme IR, to a non-trivial fixed point that is a product of m superconformal field

theories. When the points xi are all smooth, the factors in this product are N = 4

Yang-Mills with gauge groups SU(Ni), as suggested in [23]. More generally it is natural

to conjecture that the IR theory is a product of the N = 1 superconformal field theories

dual to (Yi, gYi
). Such theories have been discussed in [77], where the IR theory itself

was conjectured to be dual to the union of m AdS5 spaces, with conformal boundaries

identified. Note also that the supergravity approximation is valid only when all Ni are

large, or equivalently the AdS radii Li are large compared to the string scale.

Naively ignoring this last point, the space of supergravity metrics for fixed (X, gX)

is naturally given19 by the symmetric product SymNX , describing the positions of

the N D3-branes. Of course, such symmetric products arise in the classical gauge

theory as mesonic moduli spaces, as we reviewed in section 2.5. Fixing a non-zero

FI parmeter ζ ∈ Rχ−1 for the gauge theory on a single D3-brane, the corresponding

mesonic moduli space M1(ζ) = X(ζ) is a resolution π : X(ζ) → Z of the Calabi-Yau

singularity Z = C(Y ). Indeed, this is known to be a crepant resolution for orbifold [74]

and toric [73] quiver gauge theories. We expect this to be true in general. Note also

that the Kähler class in H2(X ;R) of the induced metric on X(ζ) varies linearly with ζ .

Thus, provided X ∼= X(ζ) for some FI parameter ζ , the space of supergravity metrics

obtained by varying the positions of the D3-branes is the same as the corresponding

mesonic moduli space. Of course, the caveat to this statement is that the supergravity

solutions are strictly valid only when the D3-branes are in large “clumps”.

The above discussion raises the question of how to characterise those X which are of

the form X ∼= X(ζ) for some FI parameter ζ . Certainly not all Calabi-Yau’s (X, gX),

asymptotic to a cone over (Y, gY ), are of this form. Firstly X must be a crepant

resolution of Z. For example, the deformed conifold is a de-singularization of the

conifold, but clearly this cannot arise as a mesonic moduli space. The deformed conifold

is therefore, at least for generic couplings, not relevant for the vacua of interest [23].

19In fact an exception to this is when X = C3. In this case the translational symmetry of C3 may be
used to fix the centre of mass of the D3-brane positions at the origin [78, 23], resulting in SymN−1

C
3.
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Note in this example one has b3(X) = 1. Another, more physical, justification for the

assumption (2.4) is that if there are odd-dimensional cycles on X then one may wrap

D-branes over these cycles to obtain topologically stable domain walls in R4 – see, for

exampe, [79, 80]. In particular, if b3(X) 6= 0 one may wrap D5-branes to obtain such

domain walls. These connect different vacua of the theory. Such backgrounds therefore

have qualitatively different physics from those without odd-dimensional cycles. Even

for toric quiver gauge theories it is not known whether all toric crepant resolutions X

of C(Y ) are of the form X(ζ) for some ζ . For abelian orbifolds C(Y ) = C3/Γ this is

true [21], and the baryon counting results of [31] certainly suggest that it is true in

general for toric theories. Thus, at least for orbifold and toric quiver theories, it seems

that all crepant resolutions of the conical singularity should arise as dual descriptions

of the supersymmetric vacua of interest.

3.3 Form field moduli

As discussed in section 3.1, for the AdS background AdS5 × Y one is free to turn on

various flat background fields, corresponding to a choice of marginal couplings in the

dual field theory. The supergravity backgrounds discussed in section 3.2 are asymp-

totic to AdS5 × Y , in the sense that there is an asymptotic region that approaches

a neighbourhood of r = ∞ in (3.5). Thus R4 × Y is a boundary component of the

full spacetimeM. One must extend the fields on this boundary overM, and thus in

particular over X , to obtain a solution to supergravity. Note that the spacetime M,

with metric (3.8), is globally of the form R4× (X \ {x1, . . . , xm}). ThusM also has m

asymptotic regions that look like a neighbourhood of r = 0 in (3.13). Near each such

region the set r = ǫ, with ǫ > 0 small, is a copy of R4 × S5. More generally, when the

ith set of Ni D3-branes are placed at a conical singularity of X with Sasaki-Einstein

link (Yi, gi), this boundary is replaced by R4×Yi. The restriction of form fields onM to

this “internal” boundary thus naturally determines the IR superconformal field theory.

We should therefore regard the spacetimeM as having m+ 1 boundary components:

the UV boundary R4 × Y , and the m components of the IR boundary, which if X is

smooth are all diffeomorphic to R
4 × S5.

The dynamical fields of interest in this section are the RR fields and the NS B field.

Consider a generic p-form field strength G with (p−1)-form potential C on a spacetime

M. This means that locally G = dC. We assume that G is a fixed field strength on

(M, g10), satisfying the relevant equation of motion. We may then pick a particular
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potential C◦, defined locally in coordinate patches, such that G = dC◦. Any other C

field giving rise to the same field strength G is then given by

C = C◦ + C♭ , (3.14)

where C♭ is a flat C field, i.e. it is closed. The small gauge transformations on C are

of the form

C → C + dλ (3.15)

where λ is a (p−2)-form. This immediately leads to the cohomology groupHp−1(M;R),

classifying the space of C fields modulo gauge equivalence. Of course, inclusion of large

gauge transformations typically leads to U(1) coefficients instead, and for RR fields

there is a twisting by the B field, as discussed in section 2.3.

In the present situation Hp−1(M;R) ∼= Hp−1(X ;R) for the cases p = 3, p = 5 of

interest. That is, deleting a finite number of points from a smooth manifold X does

not affect the cohomology in these degrees, as one easily proves using a simple Mayer-

Vietoris sequence. However, we do not want to think of H2(X ;R) as classifying, say,

flat C2 field moduli of the backgrounds. The reason is that the restriction H2(X ;R)→
H2(Y ;R) gives the marginal couplings of the UV theory, which should be regarded as

fixed boundary data. We would like to instead classify fields on X that induce the

same field at infinity. Thus we are interested in the kernel of the map Hp−1(X ;R) →
Hp−1(Y ;R), which is the same as the image of the map Hp−1(X, Y ;R)→ Hp−1(X ;R)

by the long exact cohomology sequence for (X, Y ).

In fact, as we explain further below, and also in section 6, we would like to interpet the

form field moduli as living in Hp−1(X, Y ;R) itself, rather than its image in Hp−1(X ;R).

The elements of Hp−1(X, Y ;R) that map to zero in Hp−1(X ;R) are, again by the long

exact sequence for (X, Y ), images of Hp−2(Y ;R). This may be realised concretely as

follows. Take an element λ ∈ Hp−2(Y ;R). By the Hodge theorem we may represent λ

by a harmonic form. Let f be a smooth function on X that is equal to 1 on Y and is

identically zero outside a tubular neighbouhood of Y in X . Then d(fλ) = df∧λ makes

sense as a closed compactly supported (p−1)-form on X . In fact, such forms precisely

represent the image of Hp−2(Y ;R) in Hp−1(X, Y ;R). Although such an expression is

exact, and thus a pure gauge mode, the gauge generator λ is non-zero on Y . Such

gauge transformations are always associated with global symmetries in gauge theory,

and indeed later we will identify these with the b3(Y ) non-anomalous global U(1)

symmetries associated to the RR four-form (so p = 5 in the above discussion).
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A more refined treatment of the form field moduli thus treats them as compactly

supported cohomology classes. We may describe this explicitly by requiring C♭ in (3.14)

to be zero on Y , and λ in (3.15) to also be zero on Y . The gauge for C |∂M is thus

held fixed. This leads to the relative/compactly supported cohomology group

Hp−1(M, ∂M;R) , (3.16)

modulo large gauge transformations, which will be twisted by B for RR fields. Again,

in the present situation one may replace M by X , since deleting a finite number of

points from a smooth X will not affect the cohomology in the degrees of interest. Note

that the result (3.16) is independent of the choice of C◦.

For the B field and C2 field this leads to the group H2(X, Y ;R)/H2
free(X, Y ;Z),

classifying flat C2 and B fields on X with fixed value on the boundary. The RR

four-form C4 is slightly more involved. This has a non-trivial background flux G5

given by (3.2). This field strength is not exact since the flux of G5 over Y is equal to

N , the number of D3-branes. There is thus no globally defined potential C◦
4 on M

with dC◦
4 = G5. However, this doesn’t change the discussion much: we may instead

define C◦
4 in an open covering of spacetime by coordinate patches, glued by transition

forms across overlaps. Such a choice also fixes a gauge choice C4 |∂M at infinity.

Again, this cannot be a globally defined four-form, either on the UV boundary or

on any connected component of the IR boundary. More importantly, the choice of

background C◦
4 depends on the positions x1, . . . , xm of the D3-branes and also on the

metric gX on X . Recall that the latter is conjecturally fixed by a choice of Kähler class

[ωX ] ∈ H2(X ;R). Thus we should more correctly write C◦
4 ({xi}, [ωX ]), and fix a gauge

choice C◦
4({xi}, [ωX]) |∂M= C4 |∂M at infinity. This shows that the C4 field is naturally

fibred over the mesonic moduli space, whereas the other supergravity gauge fields are

not.

The space of RR field moduli may thus be described as follows. By Poincaré duality

we have

H2
free(X, Y ;Z) ∼= H free

4 (X ;Z) , and H4
free(X, Y ;Z) ∼= H free

2 (X ;Z) . (3.17)

The ranks of these groups are thus b4(X) and b2(X), respectively. Thus, before taking

into account large gauge transformations, the different (non-torsion) RR fields may be

described by a vector

([C♭
2], [C

♭
4]) ∈ R

b4(X) ⊕ R
b2(X) ∼= R

χ−1 (3.18)
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where χ = χ(X) is the Euler number given by (2.7). The lattice of large gauge

transformations is

ΛX,Y
B =

{

(

2π

µ1
σ,

2π

µ1
σ ∧B +

2π

µ3
κ

)

| σ ∈ H2
free(X, Y ;Z),

κ ∈ H4
free(X, Y ;Z)

}

⊂ R
χ−1 . (3.19)

The space of RR field moduli, modulo discrete torsion fields, is then described by the

twisted torus

([C♭
2], [C

♭
4]) ∈ R

χ−1/ΛX,Y
B
∼= U(1)χ−1 . (3.20)

One should compare this to (3.7).

3.4 Comparison: gauge theory and gravity vacua

We conclude this section by comparing the supergravity backgrounds to the classical

vacuum moduli space structure described in section 2.5. In order to construct a gravity

background we must first pick a complex manifold X that resolves Z = C(Y ). Since

there are N units of G5 flux through Y at infinity, to preserve Poincaré symmetry we

must choose where to put N pointlike D3-branes on X . This naturally leads to the

symmetric product SymNX as moduli space, precisely as one expects for a mesonic

moduli space in the gauge theory. Although, as we noted, once one includes the

backreaction of the D3-branes on the geometry, the supergravity approximation breaks

down unless these D3-branes are in large “clumps”. Thus this matching is perhaps

rather better than one might have expected.

As explained in section 2.5, the gauge theory moduli space M may be viewed (2.70)

as a fibration over Rχ−1. The latter is divided into chambers, and over each chamber

C ⊂ Rχ−1 the fibres are all isomorphic. In particular, each fibre is a U(1)χ−1 bundle

over the mesonic moduli space MC . In the case at hand, one expects MC = SymNX

for some crepant resolution X of C(Y ). A point ζ ∈ C in particular determines a

classical Kähler class on MC , with the Kähler class varying linearly with ζ .

It should now be clear how one matches this to the parameters of the supergravity

backgrounds. By our conjecture in section 2.1, there is a b2(X)-dimensional space of

asymptotically conical Ricci-flat Kähler metrics on X , determined by their Kähler class

in the Kähler cone in H2(X ;R). These may be identified with b2(X) of the coordinates
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of ζ ∈ C. We identify the remaining b4(X) “FI parameters” with the B field periods,

which live in H2(X, Y ;R)/H2
free(X, Y ;Z). On the other hand, the periods of B in

H2(Y ;R)/H2
free(Y ;Z) partly determine the marginal couplings of the UV SCFT. One

puzzle here is that B is periodic in string theory, whereas in the classical gauge theory

the FI parameters and marginal gauge couplings are real numbers. However, this is

a somewhat standard issue. Indeed, in some cases the periodicity of B is known to

be related to Seiberg duality – see, in particular, [81] and [82]. Thus one would not

expect to see this periodicity in the classical gauge theory, which in particular involves

choosing a fixed Seiberg phase. The RR field moduli in (3.20), which indeed form a

torus U(1)χ−1 due to large gauge transformations, are then identified with the U(1)χ−1

fibres over MC . Supersymmetry pairs the Kähler class with C4, and the B field with

C2. In the classical VMS, this is reflected by the complexification (C∗)χ−1 of the

global baryonic symmetry group. This appears in the GIT description of obtaining the

mesonic moduli spaces MC as a quotient of M . We thus obtain a surprisingly good

matching between the classical gauge theory moduli space and the space of supergravity

backgrounds described in this section.

Notice also that, for fixed choice of smooth Ricci-flat Kähler background (X, gX),

positions of the N D3-branes on X and B field modulus, the space of RR field moduli

form a group under addition, and that this group is isomorphic to U(1)χ−1. In this way

we obtain an action of U(1)χ−1 on the moduli space of gravity backgrounds. Given

that we are identifying the latter with the symmetry-breaking vacua in the dual field

theory, it is natural to interpet20 this U(1)χ−1 with the group of baryonic symmetries in

the dual field theory, described in section 2. In fact this group has a natural U(1)b3(Y )

subgroup. Specifically, the C4 moduli in H4(X, Y ;R) that are images of H3(Y ;R) are,

as explained in the previous subsection, naturally related to global symmetries on Y .

Since these global symmetries come from gauge symmetries of RR fields, in particular

they cannot be anomalous. This identifies the RR gauge symmetries coming from

H3(Y ;R)/H3
free(Y ;Z)

∼= U(1)b3(Y ) with the non-anomalous baryonic U(1) symmetries

in the field theory. This is a very satisfying check that the picture we have outlined so

far is consistent.

It would be interesting to study the global structure of these supergravity moduli

spaces in more detail. For example, one could try to relate the Chern classes of the

torus bundle U(1)χ−1 over a mesonic moduli space MC in the classical VMS to the

20One may construct gravity backgrounds in which only part of the global symmetry group is
spontaneously broken by taking X to be singular. For simplicity we shall not consider this here.
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number gravity gauge theory

1 τ = C0 + ie−φ marginal coupling

b3(Y ) τB − C2 marginal coupling

b4(X) τB − C2 anomalous U(1)

b4(X) ωX + iC4 anomalous U(1)

b3(Y ) ωX + iC4 non-anomalous U(1)

Table 1: Gravity moduli and their interpretation in the dual quiver gauge theory.

fibration structure of the RR field moduli (3.20) over the corresponding supergravity

moduli space of D3-brane positions, which is naturally isomorphic to MC . As we have

already remarked, the construction of the C4 field certainly depends on position in

this moduli space via (3.2). One approach to this would be to investigate the induced

Kähler metric on the supergravity moduli space. A similar situation was studied in

[83], where a RR modulus field is indeed fibred over a mesonic moduli space, with the

curvature of the corresponding line bundle being a Kähler form on the mesonic moduli

space. For this to make sense globally, the Kähler class should be quantised (although

this point was not addressed in [83]). This is precisely what happens in the classical

GIT description of the mesonic moduli space, where ζ = q is a lattice point and is thus

“quantised”. It would also be interesting to investigate how different resolutions X1

and X2 are glued together across the walls between chambers, and in particular what

happens to the RR fibres in this process.

4 Linearised fluctuations

In this section we consider certain linearised fluctuations of the background fields, by

allowing them to depend on position in R4. We shall argue that the relevant modes

require the existence of certain L2 harmonic forms, with respect to appropriate metrics,

where the L2 condition is required in order for the fluctuations to be normalisable (have

finite kinetic energy). We then appeal to mathematical results on the existence and

asymptotic expansions of such forms. The AdS/CFT interpretation of these modes is

postponed to the next section.

The gauge-invariant form fields of Type IIB supergravity may be obtained by ex-
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panding the RR multi-form (2.18) in forms of definite degree:

G̃3 = G3 −H3C0 , (4.1)

G̃5 = G5 −H3 ∧ C2 , (4.2)

H3 = dB , (4.3)

where

G3 = dC2 , (4.4)

G5 = dC4 . (4.5)

These expressions automatically solve the relevant Bianchi identities. The five-form

field strength G̃5 is required to be self-dual

G̃5 = ∗G̃5 ; (4.6)

the equation of motion is then implied by the Bianchi identity. The equations of motion

for the remaining fields are

∇2φ = e2φ|dC0|2 −
1

2
e−φ|H3|2 +

1

2
eφ|G̃3|2 (4.7)

d†(e2φdC0) = eφ〈H, G̃3〉 (4.8)

d(e−φ ∗H3) = −G̃5 ∧ G̃3 + eφ dC0 ∧ ∗G̃3 (4.9)

d(eφ ∗ G̃3) = G̃5 ∧H3 (4.10)

Rmn =
1

2
∂mφ∂nφ+

1

2
e2φ∂mC0∂nC0 +

1

96
G̃5mpqrsG̃

pqrs
5n (4.11)

+
1

4

(

e−φH3mpqH
pq

3n + eφG̃3mpqG̃
pq

3n

)

− 1

8
gmn

(

e−φ|H3|2 + eφ|G̃3|2
)

.

where recall that φ is the dilaton and C0 is the RR axion. The angle brackets and

modulus signs denote the natural pointwise inner products and norms for p-forms,

respectively. Thus if am1···mp , bm1···mp denote the components of two p-forms a, b then

〈a, b〉 = 1
p!
am1···mpb

m1···mp , and |a|2 = 〈a, a〉. The operator d† = − ∗ d∗ denotes the

codifferential, the formal adjoint to the exterior derivative d.

It will turn out that, for the linearised fluctuations of interest, it is consistent to vary

C2, C4 and B, while keeping the metric, the dilaton and the axion fixed. Noting that

our backgrounds have G3 = H3 = 0, and constant φ, C0, it is straightforward to obtain

the linearised equations of motion. The linearisations of the first two equations of
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motion (4.7), (4.8) are trivially satisfied in our backgrounds. The remaining linearised

equations of motion give

δG̃5 = ∗δG̃5 (4.12)

e−φd ∗ δH3 = −G5 ∧ (δG3 − C0δH3) (4.13)

eφd ∗ (δG3 − C0δH3) = G5 ∧ δH3 (4.14)

0 = G5mpqrsδG̃
pqrs

5n + δG̃5mpqrsG
pqrs

5n (4.15)

where

δG3 = dδC2 (4.16)

δG̃5 = dδC4 − C2 ∧ dδB (4.17)

δH3 = dδB . (4.18)

In section 4.4 we examine the linearised equation of motion for the metric sepa-

rately. The metric modes in warped non-compact backgrounds are considerably more

complicated than for Calabi-Yau compactifications [84], and we shall only give a partial

treatment. In the next three subsections we shall allow C2, B and C4 to fluctuate in

turn, imposing a natural ansatz and then solving the resulting linearised equations of

motion. Having done this, it will be immediately clear that all of these modes may be

turned on simultaneously, and that this leads to the same equations. Thus the modes

are completely decoupled from each other.

4.1 C2 field moduli

We begin with the RR two-form C2, since this is technically the simplest. Let ψA,

A = 1, . . . , b4(X), be representatives for a basis of H2
free(X, Y ;Z). That is, the ψA

are closed two-forms on X which have integral periods and vanish when restricted to

Y = ∂X . Then we may write the C2 moduli in (3.20) as

C♭
2 =

1

µ1

ϕAψA . (4.19)

As in section 2.3, a sum over repeated indices is understood. The ϕA, which are periodic

constants, determine the C2 moduli.

Consider now a fluctuation of C2, where ϕ
A may depend on the coordinates of R4.

Thus we write

δC2 =
1

µ1
δϕAψA (4.20)
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where δϕA are functions on R4. One must check whether such a perturbation satisfies

the linearised Type IIB supergravity equations (4.13), (4.14). The right hand side of

(4.13) is identically zero, as one sees by noting the form of the background G5-flux

given by (3.2). Thus the B field is not sourced by the fluctuation (4.20). The equation

of motion (4.14) for G3, on the other hand, requires

d(∗4dδϕA ∧ ∗6ψA) = 0 (4.21)

where ∗6 denotes the Hodge dual operator on (X, gX). Notice that the warp factor H

has dropped out of the computation. Assuming the δϕA are linearly independent this

equation implies that

d ∗6 ψA = 0 (4.22)

for all A, and the resulting equation for δϕA is the equation of motion for a massless

scalar field on R4. Since ψA is both closed and co-closed on (X, gX), it is a harmonic

two-form ψA ∈ H2(X, gX).

The variation of the ten-dimensional kinetic term is proportional to

1

2

∫

M
δG3 ∧ ∗10δG3 ∝ eAB

∫

R4

dδϕA ∧ ∗4dδϕB , (4.23)

where

eAB =

∫

X

ψA ∧ ∗6ψB . (4.24)

Note that eAB is a symmetric matrix. It may therefore be diagonalised by an orthogonal

change of basis for the ψA, accompanied by a corresponding change of basis for the

fields δϕA. In such a basis one obtains canonical kinetic terms on the right hand side

of (4.23), with

eAB = δAB

∫

X

ψA ∧ ∗6ψA (no sum) . (4.25)

Notice again that the warp factor H has essentially dropped out of the calculation.

The constants eAB are finite precisely when the ψA are L2 normalisable on (X, gX).

Thus ψA ∈ H2
L2(X, gX). Using (2.34) we see that there are indeed precisely b4(X) L2

harmonic two-forms ψA on (X, gX), as required by the analysis above.

Finally, let us consider the asymptotics of the forms ψA for large r. By construction

we require the ψA to be closed and co-closed; this of course implies they are harmonic,
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but in general the converse is not true. However, provided (X, gX) is complete and one

considers L2 harmonic forms, harmonic is indeed equivalent to closed and co-closed. On

any asymptotically conical manifold, a closed and co-closed form ψ has an asymptotic

large r expansion21 [85] of the form

ψ = ψ0 + o(rγ) . (4.26)

Here ψ0 is closed and co-closed on the cone C(Y ), and has L2 norm, with respect to

the cone metric,

‖ψ0‖ = rγ . (4.27)

Even more precisely, ψ0 is one of the homogeneous modes listed in appendix A, and

thus γ takes only a countable set of special values. The notation o(rγ) in (4.26) denotes

those forms whose norms are o(rγ) in the limit r →∞.

In the case at hand, we have p = 2, n = 3, in the notation of appendix A. Table 4

implies that the only modes that are L2 (denoted L2
∞ in the appendix) are of type II

and III−. Modes of type II require a harmonic one-form on (Y, gY ), and since b1(Y ) = 0

we see that there are no modes of type II. Thus

ψ0 = r−1−√
1+µdβ(1)

µ − (1 +
√

1 + µ)r−2−√
1+µdr ∧ β(1)

µ (4.28)

where β
(1)
µ is a co-closed one-form on (Y, gY ) which is an eigenfunction of the Laplacian

∆Y with eigenvalue µ > 0. In particular, this gives

γ = −3 −
√

1 + µ . (4.29)

Note also that

ψ |Y = lim
r→∞

ψ |Yr = lim
r→∞

(

r−1−√
1+µdβ(1)

µ + o(rγ)
)

= 0 . (4.30)

This is consistent with the fact that we require the fluctuations to preserve the boundary

conditions at infinity. Of course, this analysis is not sufficient to determine which

particular mode β
(1)
µ is associated to each ψA.

4.2 B field moduli

The fluctuations of the B field are rather similar. One added complication, however,

is that G̃5 is no longer invariant. If we write

δB =
1

µ1
δσAψA (4.31)

21We thank T. Pacini for discussions on the existence of this expansion.
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then we may keep G̃5 invariant, and thus in particular also self-dual, if we also vary

δC4 =
1

µ2
1

ϕAδσ
AψA ∧ ψA . (4.32)

Note that the form ψA∧ψA represents a class in H4(X, Y ;R). Apart from these minor

differences, the analysis is identical to that in the previous subsection, with similar

conclusions. In fact, supersymmetry pairs the C2 field with the B field, and thus this

is expected.

4.3 C4 field moduli

In order to satisfy the self-duality condition (4.12) we take the following ansatz, essen-

tially as in [24]

δG5 =
1

µ3
(1 + ∗10)

(

dδϑM ∧ΨM
)

. (4.33)

The fluctuation of C4 that leads to this will be described below. Here the δϑM ,

M = 1, . . . , b2(X), are b2(X) functions on R4, and the ΨM are representatives of

H4
free(X, Y ;Z). Thus the ΨM are closed four-forms on X with integral periods that

vanish on Y . The linearised Bianchi identity implies that the scalars δϑM satisfy the

equation of motion

d ∗4 dδϑM = 0 , (4.34)

together with the requirement that

d(H−1 ∗6 ΨM) = 0 . (4.35)

Recall that H(xi)
−1 = 0 at the locations xi, i = 1, . . . , m, of the m stacks of D3-branes.

Since the ΨM are closed and co-closed on (X \{x1, . . . , xm}, HgX) they define harmonic

four-forms ΨM ∈ H4(X \ {x1, . . . , xm}, HgX). Equivalently, their duals

ΦM ≡ H−1 ∗6 ΨM (4.36)

define harmonic two-forms ΦM ∈ H2(X \ {x1, . . . , xm}, HgX).
In [24] the equations for such a harmonic form on the warped resolved conifold were

written down, and it was argued that there exists a unique solution such that the

two-form (denoted W in [24]) is L2 normalisable in the warped metric HgX . Below we
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show that the results of [24] may be generalised. After dualising the scalar fields δϑM

to a corresponding set of two-forms δaM on R4,

dδaM = ∗4dδϑM , (4.37)

the fluctuation of C4 that gives rise to (4.33) is

δC4 =
1

µ3

(

δϑMΨM + δaM ∧ ΦM
)

. (4.38)

Since G̃5 is a self-dual five-form its kinetic term vanishes identically. Moreover, since

the fluctuation (4.33) is self-dual it automatically solves (4.12) and (4.15). Following

[24] we impose a normalisablity condition obtained by inserting the variation in C4 due

to δϑM into the ten-dimensional action. This gives the four-dimensional kinetic term

fMN

∫

R4

dδϑM ∧ ∗4dδϑN (4.39)

where the constants fMN are defined by

fMN =

∫

X

H−1ΨM ∧ ∗6ΨN . (4.40)

As before, an orthogonal change of basis leads to

fMN = δMN

∫

X

H−1ΨM ∧ ∗6ΨM (no sum) . (4.41)

The constants fMN are therefore finite when the ΨM are L2 normalisable on (X \
{x1, . . . , xm}, HgX), or equivalently ΦM ∈ H2

L2(X \ {x1, . . . , xm}, HgX).
Remarkably, it turns out that one may argue that precisely b2(X) such L2 harmonic

forms exist on (X \ {x1, . . . , xm}, HgX). Recall that (X, gX) is a complete asymptot-

ically conical manifold, asymptotic to a cone over (Y, gY ). To construct the function

H we pick m points xi ∈ X , i = 1, . . . , m, where near to each point H behaves as in

(3.11). Thus near to xi the metric HgX looks like

L4
i

ρ4i
(dρ2i + ρ2i gS5) . (4.42)

If xi is a singular point with link (Yi, gYi
) then obviously one replaces gS5 with gYi

.

Defining Ri = L2
i /ρi one sees that the metric (4.42) is flat

dR2
i +R2

i gS5 . (4.43)
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The point xi is thus at infinity in (X \ {x1, . . . , xm}, HgX). On the other hand, near

r =∞ the metric HgX approaches

L4

r4
(dr2 + r2gY ) . (4.44)

Setting ρ = L2/r we similarly obtain

dρ2 + ρ2gY (4.45)

where r =∞ is the isolated conical singularity ρ = 0.

The manifold (X \ {x1, . . . , xm}, HgX) thus has an isolated conical singularity, near

which the metric looks like the incomplete cone (4.45), andm asymptotically Euclidean

regions of the form (4.43). In particular, (X \ {x1, . . . , xm}, HgX) is asymptotically

conical near to each xi, which is a point at infinity in the metric HgX. If (Y, gY ) is

the round sphere, (X \ {x1, . . . , xm}, HgX) is smooth and asymptotically conical and

we may apply the results of [66], summarised in (2.34), to determine the L2 harmonic

forms. The UV conformal field theory is N = 4 Yang-Mills, and in this case we find

that there are b2(X) = 0 such harmonic forms. More generally, the space of interest

has an isolated conical singularity at ρ = 0. The L2 harmonic forms on a compact

manifold (X̄, gX̄) with isolated conical singularities were studied by Cheeger in [86]. If

X denotes the smooth part of X̄ , i.e. X̄ with the point ρ = 0 in (4.45) deleted, then

the result for two-forms in dimension six is [86]

H2
L2(X̄, gX̄) ∼= H2(X ;R) . (4.46)

Of course our manifold is not compact, but instead has m asymptotically Euclidean

regions. However, because both types of behaviour – asymptotically Euclidean ends

and isolated conical singularities – lead to topological results for the L2 cohomology,

one may put the analytic and topological results of [86] and [66] together to show22

that the L2 harmonic two-forms on (X \ {x1, . . . , xm}, HgX) are given by

H2
L2(X \ {x1, . . . , xm}, HgX) ∼= H2(X \ {x1, . . . , xm},∪mi=1S

5;R) ∼= H2(X ;R) .(4.47)

Here the copies of S5 are boundaries around the points xi. Thus there are indeed b2(X)

L2 harmonic two-forms ΦM , M = 1, . . . , b2(X), on (X \ {x1, . . . , xm}, HgX).
Finally, we consider the asymptotic behaviour of the forms ΦM as r →∞. Replacing

ρ = L2/r, this becomes ρ→ 0. There is then an asymptotic expansion as ρ→ 0

Φ = Φ0 + o(ργ) (4.48)

22We are extremely grateful to E. Hunsicker and T. Hausel for discussions on this point.
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where Φ0 is a homogeneous closed and co-closed form on the cone C(Y ), gC(Y ) =

dρ2 + ρ2gY , with norm

‖Φ0‖ = ργ . (4.49)

Since we require the ΦM to be L2 with respect to the metric HgX, we are interested

in the case p = 2, n = 3 and L2
0 in Table 4. The two possible modes are thus of type I

and type III+. Thus

(I) : Φ0 = α
(2)
0 (4.50)

γ = −2 (4.51)

(III)+ : Φ0 = ρ−1+
√
1+µdβ(1)

µ + (−1 +
√

1 + µ)ρ−2+
√
1+µdρ ∧ β(1)

µ (4.52)

γ = −3 +
√

1 + µ (4.53)

where α
(2)
0 is a harmonic two-form on (Y, gY ), and β

(1)
µ again denotes a co-closed one-

form on (Y, gY ) which is an eigenfunction of the Laplacian ∆Y with eigenvalue µ > 0.

To determine which type of asymptotic behaviour we have we may use a topological

argument. Consider the long exact sequence

0 ∼= H1(Y ;R) −→ H2(X, Y ;R)
f−→ H2(X ;R) −→

−→ H2(Y ;R) −→ H3(X, Y ;R) ∼= 0 . (4.54)

From (4.47) the b2(X) L2 harmonic two-forms ΦM ,M = 1, . . . , b2(X), define a basis for

H2(X ;R). The sequence (4.54) implies that we may choose this basis such that b3(Y )

restrict to non-trivial classes in H2(Y ;R), while b4(X) = b2(X) − b3(Y ) restrict to

trivial classes in H2(Y ;R). Let us denote these by ΦI , I = 1, . . . , b3(Y ), and Φb3(Y )+A,

A = 1, . . . , b4(X), respectively. We have Y = limρ→0 Yρ. Thus

(I) : Φ |Y= lim
ρ→0

(

α
(2)
0 + o

(

ρ−2
)

)

= α
(2)
0 (4.55)

(III)+ : Φ |Y= lim
ρ→0

(

ρ−1+
√
1+µdβ(1)

µ + o
(

ρ−3+
√
1+µ
))

= 0 . (4.56)

These statements may look slightly odd, given that ρ−2 →∞ as ρ→ 0. However, recall

that the notation o(ργ) refers to forms which have norms of order o(ργ) as ρ→ 0. In

a neighbourhood of ρ = 0 such a form may be written

φ(ρ) = α(ρ) + dρ ∧ β(ρ) (4.57)
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where α(ρ), β(ρ) are forms on Yρ. If φ(ρ) is a p-form, its square norm, to leading order

as ρ→ 0, is

‖φ(ρ)‖2 = ρ−2p
(

‖α(ρ)‖2Y + ρ2‖β(ρ)‖2Y
)

(4.58)

where ‖ · ‖Y denotes the pointwise norm on (Y, gY ). For us p = 2 and thus we see that

‖α(ρ)‖Y is o(1) for modes of type I and o
(

ρ−1+
√
1+µ
)

for modes of type III+. In both

cases

lim
ρ→0
‖α(ρ)‖Y = 0 =⇒ lim

ρ→0
α(ρ) = 0 . (4.59)

In particular note that the harmonic two-forms ΦI , I = 1, . . . , b3(Y ), are asymptotic

to the b3(Y ) harmonic two-forms on (Y, gY ). This generalises the warped resolved

conifold result of [24]. Note also that the dual four-forms ΨM , in either case, satisfy

ΨM |Y= lim
ρ→0

ΨM |Yρ = 0 . (4.60)

We summarise the properties of the fluctuations discussed so far in Table 2.

number fluctuations harmonic mode H2
L2(HgX) H2

L2(gX)

b3(Y ) δC2, δB − I − no

b4(X) δC2, δB ψA III− − yes

b4(X) δC4 Φb3(Y )+A III+ yes −
b3(Y ) δC4 ΦI I yes −

Table 2: Square-integrability of the moduli fluctuations (cf. Table 4). The metric
fluctuations, that must pair with δC4, will be discussed in subsection 4.4.

4.4 Metric moduli

In this section we consider linearised fluctuations of the metric. In principle one should

write the full set of linearised equations for both metric perturbations and also the

form fields C2, B and C4 discussed thus far. As mentioned earlier, although we have

fluctuated the form fields separately in the previous subsections, it is straightforward to

substitute (4.20), (4.31), (4.32), (4.38) into the linearised equations of motion and verify

that these modes are in fact completely decoupled. As we discuss in this section, the

metric modes are rather more involved. The first problem is to identify the linearised

perturbations of asymptotically conical Ricci-flat Kähler metrics on X i.e. the tangent
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space to the latter space. We give a partial treatment of this that will be sufficient to

relate the metric modes to the analysis of form field modes in the previous subsections.

For example, this will allow us to determine the asymptotic eigenvalues µ in (4.28)

for certain examples. The second problem is to understand how to promote these

linearised perturbations of the Ricci-flat Kähler metric on X to an ansatz that allows

these modes to depend on position in R4, as we have done in previous subsections.

This is surprisingly complicated for warped Calabi-Yau geometries – see, for example,

[84] or the very recent paper [87]. From supersymmetry one naively expects to obtain

b2(X) functions on R4 satisfying the equation for massless scalar fields, which pair with

the modes of C4 discussed in the previous subsection. However, to show this rigorously

would require substantially more work, not least since the Calabi-Yau manifolds here

are non-compact. We instead simply summarise some of the issues involved, and refer

to the literature for further details.

Before discussing the metric modes, we note that it is not possible for the massless

fields found in the previous subsections to obtain masses by mixing with additional

modes that we may turn on. Indeed, this is rather a general statement. Suppose one

has scalar fields ϕi, i = 0, . . . , k, with equation of motion of the general form

∇2ϕi = Mij ϕj + higher order (4.61)

where the form of the higher order terms is irrelevant. The physical masses are obtained

by diagonalising the mass matrix Mij . Indeed, we shall encounter precisely such a

phenomenon later in the context of KK theory on AdS5 × Y , where the C4 field mixes

with metric modes producing a non-trivial 2 × 2 mass matrix (see equation (5.31)).

However, in the case at hand we have shown that setting ϕi ≡ 0 for all i = 1, . . . , k,

with ϕ0 a massless scalar in four dimensions, solves the equations of motion. Here

the fields ϕi, i = 1, . . . , k, are any modes that we have not fluctuated in the previous

subsections. This immediately implies that Mj0 = 0 for all j = 0, . . . , k. Thus the

mass matrix necessarily has a zero eigenvalue, although note that in the process of

diagonalising the mass matrix this massless field will typically be a mixture of ϕ0

with the other fields ϕi, i = 1, . . . , k. However, the important point is that there is

necessarily a massless combination of the modes.

Our conjecture in section 2.1 implies that there should be a b2(X)-dimensional Kähler

moduli space for asymptotically conical Ricci-flat Kähler metrics on a crepant resolu-

tion X of a Calabi-Yau cone singularity Z = C(Y ). We may define the b2(X) Kähler
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classes as

ξM =

∫

SM

ωX (4.62)

where SM , M = 1, . . . b2(X), denotes a basis for H free
2 (X ;Z). Note that the exact

sequence

0 ∼= H3(X, Y ;R) −→ H2(Y ;R)−→H2(X ;R) −→
−→ H2(X, Y ;R) −→ H1(Y ;R) ∼= 0 (4.63)

means we may split the SM into SI , I = 1, . . . , b3(Y ), and Sb3(Y )+A, A = 1, . . . , b4(X).

The former are images of H2(Y ;R) in H2(X ;R) i.e. two-cycles on X that arise from

two-cycles on Y .

The tangent space to the space of asymptotically conical Ricci-flat Kähler metrics

on (X, gX) should thus be b2(X)-dimensional. We begin by showing that a b4(X)-

dimensional subspace of these linearised perturbations indeed exist, and may be iden-

tified with the b4(X) L2 harmonic two-forms ψA that enter the C2 field and B field

fluctuations of sections 4.1 and 4.2, respectively.

We may phrase the equations for a Calabi-Yau metric in terms of the Kähler form

ωX and the holomorphic volume form ΩX . These satisfy

1

3!
ω3
X =

i

8
ΩX ∧ Ω̄X (4.64)

ωX ∧ ΩX = 0 (4.65)

dωX = 0 (4.66)

dΩX = 0 . (4.67)

If we fix ΩX , the linearised equations for δωX are then

ω2
X ∧ δωX = 0 (4.68)

δωX ∧ ΩX = 0 (4.69)

dδωX = 0 . (4.70)

We now show that one may solve these equations using the basis of two-forms ψA for

H2
L2(X, gX) ∼= H2(X, Y ;R) ∼= H4(X ;R). That is, we take δωX ∈ H2

L2(X, gX). Note

that the L2 condition on δωX is the same as that for a corresponding change in the

metric δgX , with the natural norm

‖δgX‖2L2 =

∫

X

d6y
√

det gX g
ii′

X g
jj′

X δgX ijδgX i′j′ . (4.71)
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Since (X, gX) is complete and the harmonic forms are L2, they are also both closed

and co-closed, and thus satisfy (4.70). Here the co-closed condition is the standard

gauge-fixing condition ∇iδgXij = 0 – see, for example, [88].

Suppose that α is a two-form on X , α ∈ Ω2(X). Recall that the complex structure

tensor J acts on a two-form α via

(J ◦ α)ij = Jm
i J

n
j αmn . (4.72)

This action squares to the identity. We may thus introduce the projection maps

π± : Ω2(X)→ Ω2
±(X) (4.73)

defined by

π±α =
1

2
(α + J ◦ α) = α± . (4.74)

The splitting of real two-forms into the ±1 eigenspaces corresponds, over C, to the

splitting into forms of type (1, 1), and types (2, 0), (0, 2) respectively. In particular,

a two-form α− with eigenvalue −1 under (4.72) may be written as the real part of a

(2, 0)-form α2,0 ∈ Ω2,0(X); so

α− = α2,0 + α2,0 (4.75)

where α2,0 ∈ Ω0,2(X). By a slight abuse of notation, we will refer to α− as type (2, 0)

(or equivalently type (0, 2)).

On a Kähler manifold, if α is harmonic then it is easy to show that α± are in fact

separately harmonic. One way to see this is as follows. We note that for any two-form

α we have the Weitzenböck formula

(∆α)ij = −∇2αij − 2R mn
ij αmn − 2Rm

[iαj]m (4.76)

where ∇2 = ∇m∇m. It follows that

(∆(J ◦ α))ij = −∇m∇m

(

J p
i J

q
j αpq

)

− 2R mn
ij J p

m J
q

n αpq − 2Rm
[iJ

p
j] J

q
mαpq . (4.77)

On a Kähler manifold we have

∇J = 0 (4.78)

and also the curvature identity

R mn
ij J p

m J
q

n = R pq
ij = J m

i J n
j R pq

mn . (4.79)
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In fact on any Riemannian manifold (X, gX) where the holonomy group is G ⊂ O(n),

the Riemann tensor may be regarded as an element of Sym2Ω2
g
(X), where g is the Lie

algebra of G. Here the symmetric product in Sym2Ω2(X) reflects the algebraic identity

Rijpq = Rpqij . The equation (4.79) is precisely the statement that the Riemann tensor

on a Kähler manifold is in Sym2Ω2
+(X). It follows from (4.77) that when α is harmonic

we have (∆(J ◦ α)) = J ◦ (∆α) = 0, and thus ∆α± = 0.

If we take α ∈ H2
L2(X, gX), then α± are also both L2 since it is straightforward to

show that

‖α‖2 = ‖α+‖2 + ‖α−‖2 . (4.80)

Thus α± ∈ H2
L2(X, gX). As discussed in section 2.1, all the cohomology of X in degree

two is of type (1, 1). Since α− is harmonic and of type (2, 0), it represents a cohomology

class of type (2, 0). But since any such class is trivial, it follows from (2.34) that α− = 0

– in particular, note that (2.34) implies that all non-zero L2 harmonic forms represent

non-trivial cohomology classes. Thus α is necessarily of type (1, 1). Finally, consider

ω2
X ∧ α. This is an L2 harmonic six-form. However, again by (2.34) we see that any

such six-form must be zero, since H6
L2(X, gX) ∼= H6(X ;R) ∼= 0.

This shows that the b4(X) L2 harmonic two-forms ψA satisfy all of the equations

(4.68), (4.69), (4.70). To conclude our proof that these are indeed tangent directions

to the space of asymptotically conical Calabi-Yau metrics on X , we must show that

taking δωX ∈ H2(X, gX) preserves the asymptotically conical condition – that is, the

L2 forms do not grow too fast. To do this we may again appeal to the results of

appendix A. A closed and co-closed form α has an asymptotic expansion

α = α0 + o(rγ) (4.81)

where α0 is one of the closed and co-closed homogeneous modes listed in the appendix,

and ‖α0‖ = rγ where the norm is taken with respect to the cone metric. From Table

4, the only possible modes are of type II (of which there are none since b1(Y ) = 0) and

type III−. We thus have

α0 = r−1−√
1+µdβ(1)

µ − (1 +
√

1 + µ)r−2−√
1+µdr ∧ β(1)

µ (4.82)

with µ > 0. It follows that these perturbations are indeed subleading to the cone

metric near infinity. These are of course the same expansions (4.28) for the harmonic

two-forms entering the fluctuations δB and δC2.
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Thus there is certainly a b4(X)-dimensional space of linearised perturbations of an

asymptotically conical Ricci-flat Kähler manifold, where the perturbations are L2 with

respect to the natural norm (4.71). In fact, this may be understood from supersym-

metry in the case without any background D3-branes. Such fluctuations of the metric

are then paired by supersymmetry to fluctuations of the RR C4 potential on the back-

ground R4 ×X , as in section 2.3. In this case the number of L2 harmonic four-forms

on (X, gX) is given by (2.34), which indeed gives dimH4(X ;R) = b4(X) L2 modes.

The remaining b2(X) − b4(X) = b3(Y ) linearised perturbations are thus not L2-

normalisable. Assuming these exist, their asymptotics may be understood as follows23.

Consider integrating the closed two-form δωX over a two-cycle SI that is homologous

to a two-cycle on Y . This gives a change in the Kähler class

δξI =

∫

SI

δωX . (4.83)

Near infinity we may write

δωX = α(r) + dr ∧ β(r) (4.84)

where α(r), β(r) are forms on Yr. Since δωX is closed, and also co-closed in the usual

gauge ∇iδgXij = 0 which fixes diffeomorphism invariance, the right hand side of (4.84)

will have an asymptotic expansion with leading term given by a closed and co-closed

mode of appendix A. The cycle SI in (4.83) may be represented by a cycle in Yr. The

only mode for which the integral (4.83) is both finite and non-zero is then mode I i.e.

δωX = α
(2)
0 + o(r−2) (4.85)

where α
(2)
0 is a harmonic two-form on Y . In fact we have

δξI =

∫

SI

α
(2)
0 , (4.86)

where SI is regarded as a cycle in Y . Note that such fluctuations are indeed not L2

normalisable, as one sees from Table 4. Notice that the Kähler perturbation of the

resolved conifold, discussed originally in [23], is precisely of this form.

Given the above (partial) understanding of linearised perturbations of asymptotically

conical Calabi-Yau manifolds, one would now like to promote these Kähler moduli to

23This is essentially taken from [43], although here we make the argument more rigorous by using
the asymptotic expansion together with the results of appendix A.
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dynamical four-dimensional fields. Recall that the backgrounds of interest are of the

form

g10 = H−1/2ηµνdx
µdxν +H1/2gXijdy

idyj (4.87)

G5 = (1 + ∗10)dH−1 ∧ vol4 . (4.88)

These are a particular class of the backgrounds considered in [84] and [87]. The moduli

may be parametrised by b2(X) constant parameters uM . Note here that a change in

the background Ricci-flat Kähler metric will induce a corresponding change in the warp

factor H , which satisfies (3.10). As emphasised in [84], and in sharp contrast to the

familiar Calabi-Yau compactifications, it is not possible to promote straightforwardly

the moduli to spacetime-dependent scalar fields uM(x) in four dimensions. The lin-

earised Type IIB equations of motion cannot be solved by a simple ansatz. Instead one

must introduce certain off-diagonal modes, called compensator fields, which are pro-

portional to derivatives of the scalar fields uM(x). The resulting equations, and gauge

invariances, are then rather involved. Note that the non-compactness of our geome-

tries will add to these complications. Very recently the paper [87] has appeared, which

claims that the compensator fields may be effectively removed by choosing a certain

ten-dimensional gauge condition. However, we will postpone a more detailed investi-

gation of these metric modes for future work. We conclude the section by nevertheless

noting that the norm of the metric perturbations induced from the ten-dimensional

kinetic terms, as studied in [84], [87], is given by the natural warped norm

‖δgX‖2HgX
=

∫

X

d6y
√

det gX H gii
′

X g
jj′

X δgX ijδgX i′j′ . (4.89)

Compare this with (4.71). In particular, notice that all of the b2(X) linearised met-

ric perturbations are L2 with respect to this warped norm, whereas only a b4(X)-

dimensional subspace is L2 with respect to the unwarped norm (4.71). This implies

that all of the metric modes will be normalisable with respect to the physical metric

(4.89) coming from the kinetic terms. Again, this is expected from supersymmetry,

since all b2(X) modes of C4 in section 4.3 are normalisable.

5 Spontaneous breaking of baryonic symmetries

In this section we discuss the dual field theory interpretation of the linearised fluctua-

tions described in section 4. For the modes corresponding to non-anomalous baryonic
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symmetries our analysis will extend and generalise the resolved conifold result of [30].

The holographic interpretation of the modes corresponding to anomalous baryonic

symmetries is less obvious. We will see how the analysis of these leads us to predict

the existence of certain particular modes in the KK spectrum of AdS5 × Y . We will

also speculate on the possibility that some of these modes correspond to anomalous

baryonic currents.

5.1 Vacuum fluctuations and Goldstone bosons

As discussed in section 2.5, the classical gauge theory has a large VMS M . The

potential of the classical theory is identically zero at any point in this moduli space.

One thus expects to find massless scalar fields associated to these flat directions in

field space. In section 3, and as summarised in section 3.4, we have explained how

this classical vacuum moduli space is realised in the dual gravity description. Roughly,

the mesonic directions correspond to moving the N pointlike D3-braneson X . The

“FI parameters”, which are the image of the map Π in (2.70), may be identified with

the b2(X) Kähler moduli and the b4(X) B field moduli, whereas the U(1)χ−1 fibres

over the mesonic spaces may be identified with the RR torus (3.20). In section 4

we have shown that there do indeed exist massless scalar fields on R4 associated to

linearised deformations of these moduli, at least for the B field and RR field moduli

– as discussed in section 4.4, the metric moduli would require more work to make

this rigorous. Nonetheless, this is clearly a very satisfying result. Notice that we

have not attempted to describe massless fields associated with moving the positions

of the pointlike D3-branes on X . In principle one could study such deformations,

but our main interest in this paper is with the baryonic symmetries and associated

directions in moduli space. As we have alluded to earlier, the IR theory is then not

simply a SCFT, or even a product of SCFTs, but rather will also include massless

particles corresponding to motion along flat directions in the field theory. Notice that

the description of the fluctuations in terms of massless fields on R4 is essentially an

application of KK reduction on the warped Calabi-Yau X to R4. However, one may

also understand the fluctuations by applying more standard holographic arguments, as

we show later in the section. Thus different aspects of the IR theory may be understood

using both holographic and KK techniques. This is a very interesting aspect of these

gravity backgrounds.

Since the global symmetry group U(1)χ−1 acts on the space of supergravity back-
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grounds without fixed points, any choice of vacuum spontaneously breaks this sym-

metry. This precisely happens in the classical field theory also, for a generic point in

the VMS M . A spontaneously broken global symmetry generally leads to Goldstone

bosons. These are the same as the massless fields referred to above of course – they are

flat directions given by acting with a broken symmetry generator. Since the vacua are

supersymmetric, these Goldstone fields will have N = 1 superpartners. The Goldstones

are fluctuations of RR fields, and are hence pseudo-scalars. Their scalar partners come

from metric and B-field fluctuations This is precisely the pairing of the RR fields with

the Kähler moduli and B field moduli. Thus the linearised fluctuations we have found

may be tentatively associated with these Goldstone bosons and their supersymmetric

partners.

However, the above, essentially classical, discussion overlooks an important subtlety:

in the quantum theory only a U(1)b3(Y ) subgroup of the baryonic symmetry group is

non-anomalous, the remaining symmetries being anomalous and thus broken in the

field theory by instantons. Their corresponding classically conserved currents are thus

not conserved in the quantum theory. By Goldstone’s theorem, the massless fields

associated to motion in the non-anomalous directions should be exactly massless in

the quantum theory. Thus the b3(Y ) fluctuations corresponding to modes of C4 of type

I in section 4.3, and the non-normalisable (with respect to (4.71)) Kähler moduli (4.86),

should also be exactly massless. Notice that in both cases these modes are constructed

from forms that are asymptotic to the b3(Y ) harmonic two-forms on (Y, gY ) – see

equations (4.50) and (4.85), respectively. That U(1)b3(Y ) is an exact symmetry of the

quantum theory is simple to understand in our gravity dual, as we alluded to earlier:

these symmetries come from gauge transformations of the RR four-form. A gauge

symmetry is always non-anomalous, otherwise the theory is inconsistent. The relevant

gauge transformations are of the form

C4 → C4 + dK (5.1)

where dK |∂M= 0 but K |∂M 6= 0. Thus K |∂M defines a class in H3(∂M;R). For

smooth X , this is isomorphic to H3(Y ;R). The gauge transformation (5.1) then

changes the compactly supported cohomology class of C4, which recall we are iden-

tifying as part of the background moduli. In fact the group of global symmetries

generated by such gauge transformations is H3(Y ;U(1)). The group of components

H
3
(Y ;U(1)) is, from (C.5), isomorphic to H4(Y ;Z) ∼= H1(Y ;Z) ∼= H3,tor(Y ;Z). These

are discrete non-anomalous baryonic symmetries, and arise only if Y has a non-trivial
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fundamental group.

Another way to see that the symmetry group H3(Y ;R)/H3
free(Y ;Z) ∼= U(1)b3(Y )

is completely broken by a background with smooth X is to note that (2.4) implies

H3(X ;R)/H3
free(X ;Z) = 0. Indeed, baryons are interpreted as D3-branes wrapped on

three-submanifolds in Y , which are thus charged under the group H3(Y ;U(1)). Since

there are no three-cycles on X , such D3-branes may presumably annihilate in the

interior of X , as discussed in [23]. Thus all non-anomalous baryonic symmetries are

broken by a choice of X . So again we expect to find b3(Y ) massless Goldstone bosons,

given by linearised fluctuations of C4, together with their supersymmetric partners,

given by fluctuations of the metric.

The anomalous baryonic symmetries are different, however. The classically conserved

currents are not conserved at quantum level, because of the presence of anomalies, as

we reviewed in section 2.3. Thus Goldstone’s theorem does not apply, and there is

a priori nothing to prevent quantum corrections lifting the classical massless fields.

Correspondingly, in the gravity dual the anomalous baryonic symmetries are not asso-

ciated to gauge transformations. The corresponding massless modes may in particular

be lifted by corrections to the supergravity backgrounds we have been discussing. For

example, there may well be corrections to the gravity backgrounds of section 3 coming

from D-brane instantons wrapped on compact even-dimensional cycles in X . These

presumably couple to the RR moduli in general, but not to the b3(Y ) modes associated

to gauge transformations of C4. We will not pursue this line of thought further here,

but instead postpone some speculative comments on this topic to the discussion section

7.2.

5.2 AdS/CFT interpretation: non-anomalous U(1)s

In this subsection and the next we present a holographic analysis of the fluctuations

of section 4. This requires expanding the fluctuations at large r, which recall involves

an asymptotic expansion of closed and co-closed forms on an asymptotically conical

manifold. We first discuss the interpretation of the b3(Y ) C4 field fluctuations of type

I. The argument generalises the discussion in [24] for the non-anomalous24 baryonic

U(1) of the conifold model.

Equation (4.50) implies that the four-forms ΨI Hodge dual under HgX to the L2

24Recall that the resolved conifold has b2(X) = b3(Y ) = 1.
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harmonic two-forms ΦI ∈ H2
L2(X \ {x1, . . . , xm}, HgX) satisfy

ΨI ∼ r−3dr ∧ α(3)I
0 (5.2)

to leading order as r → ∞. Here α
(3)I
0 ≡ ∗Y α(2)I

0 are the b3(Y ) harmonic three-forms

on (Y, gY ). Making a gauge transformation

δC4 → δC4 +
1

2µ3
dK (5.3)

where K is a three-form with

K ∼ r−2δϑIα
(3)I
0 , (5.4)

the first term in the fluctuation (4.38) may be rewritten

δC4 ∼
1

µ3

r−2dδϑI ∧ α(3)I
0 . (5.5)

Note that the generator of the gauge transformation in (5.3) vanishes at infinity.

The holographic interpretation of this follows from comparing to the situation in an

AdS5 × Y background. Here the harmonic three-forms α
(3)I
0 lead to b3(Y ) massless

gauge fields AI in AdS5, via the ansatz

δC4 =
1

µ3

AI ∧ α(3)I
0 (AdS background) . (5.6)

These are dual to b3(Y ) non-anomalous baryonic currents JI . The linearised pertur-

bations of the non-conformal background we have found therefore induce, near the UV

AdS boundary r →∞, a perturbation of the gauge fields AI which behaves as

δAI ∼ r−2dδϑI . (5.7)

According to the AdS/CFT dictionary, the leading order terms of a perturbation in an

(approximately) AdSd+1 space with metric

ds2EAdSd+1
=

1

r2
dr2 + r2gRd (5.8)

admit different interpretations in the dual field theory [89, 23]. In general, for a massive

p-form field A, obeying

d ∗d+1 dA−m2 ∗d+1 A = 0 , (5.9)
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we have the asymptotic expansion [90, 91]

Ai1...ip ∼ Bi1...ip r
p+∆−d + Ci1...ip r

p−∆ (5.10)

where

∆ =
d

2
+

√

(

d

2
− p
)2

+m2 (5.11)

is the conformal dimension of the dual operator – a formula which is perhaps more

familiar for scalar fields, p = 0. The first term in (5.10) is non-normalisable, and

therefore corresponds to changing the Lagrangian of the CFT. If this term vanishes

and only the second normalisable term appears, then we are in a vacuum of the theory

where the dual operator has a non-zero expectation value.

Notice that (5.7) is only computing the leading perturbation of AI as r →∞ under

the linearised perturbations of the background. In particular we are not25 computing

VEVs in the background itself – this would require a treatment as in [92, 93]. However,

we may nonetheless naively read off conformal dimensions using these results. Setting

d = 4, p = 1 and m2 = 0 in (5.11) we see that the currents JI dual to the vector fields

AI have conformal dimension ∆ = 3, which is of course correct for a conserved current.

Equation (5.10) then implies that

〈δJI〉 = 〈d δϑI〉 . (5.12)

Standard field theory arguments then allow one to interpret the fields δϑI as Goldstone

bosons of the spontaneously broken U(1)b3(Y ) symmetry, as in [30]. Indeed, the classical

Noether current for a complex scalar field φ is

J =
i

2

(

φdφ̄− φ̄dφ
)

. (5.13)

If φ has a classical VEV φ0, then we may write the Goldstone fluctuation as φ = φ0e
iδϑ,

and then

δJ = |φ0|2dδϑ . (5.14)

25Note that computing VEVs in the gravity backgrounds, as opposed to their linearised variations
under a change of vacuum, would presumably involve finding the general solution to certain (non-
linear) ten-dimensional equations with prescribed behaviour at the UV boundary, substituting this
into an appropriately holographically renormalised action, and then differentiating this once with
respect to the boundary data (sources). Such a computation is clearly well beyond the scope of this
paper. For a discussion in the case of AdS5 × S5, we refer the reader to [92, 93].
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As mentioned in the previous subsection, supersymmetry should pair these Goldstone

pseudo-scalars with scalar superpartners. These are clearly the b3(Y ) non-normalisable

Kähler deformations (4.86), although as stressed in section 4.4 we have not shown

rigorously that these lead to modes satisfying massless scalar field equations in R4.

Note that the currents JI are necessarily components of conserved current multi-

plets. The lowest components of these superfields may be identified as follows. If we

follow the arguments in reference [23], a term of order r−∆ in the metric, relative to the

cone metric, indicates a VEV for a scalar operator of conformal dimension ∆. Since

(4.85) is order r−2 relative to the cone metric, we see that these metric deformations

should be dual to operators of conformal dimension ∆ = 2 in the dual field theory.

This is precisely as expected for the scalar component of a massless vector multiplet

in AdS5. This leads one, as in the conifold model [23], to identify the ∆ = 2 scalar

operators with the lowest component of the superfield that contains the non-anomalous

baryonic currents JI . Note these are necessarily axial currents, and thus the associated

Goldstone bosons should be pseudo-scalars, precisely as we have found in the super-

gravity dual. The expression for the b3(Y ) scalar operators follows from our discussion

of quiver gauge theories in section 2:

U I ≡ Tr

[

∑

a∈A
QI

aΦ
†
aΦa

]

. (5.15)

Here QI
a are the baryonic charges (2.53) with q = qI ∈ Zχ being the b3(Y ) linearly

independent solutions to the anomaly cancellation condition (2.46). Recall that Φa

are the bifundamental fields. The superfield version of (5.15) contains the conserved

currents JI as the θθ̄ components.

5.3 AdS/CFT interpretation: anomalous U(1)s

Our aim now is to discuss a possible holographic interpretation of the moduli fields

associated to the remaining U(1)2b4(X) flat directions, which correspond to anomalous

baryonic symmetries. A key ingredient in the arguments of the previous subsection was

the comparison of the asymptotic expansion of the fluctuating modes to a background

AdS5 × Y analysis. In particular, it is well-known that the KK spectrum contains

massless vector multiplets (so-called “Betti” multiplets) for each three-cycle in Y , which

are dual to conserved currents. On the other hand, there is no general understanding

of anomalous baryonic currents in the context of AdS5 × Y backgrounds.
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In order to proceed in analogy with the previous subsection, we will first use the

aymptotic expansions of harmonic forms to describe a set of KK modes in AdS5 to

compare with. As we discuss below, these modes must correspond to the set of lowest

dimension operators in the dual SCFT acquiring non-zero VEVs. Based on super-

symmetry considerations, and in analogy with the non-anomalous U(1)s, we will make

some comments on the specific form of these operators.

Recall that in section 4.1 we have shown the existence of b4(X) harmonic two-forms

ψA ∈ H2
L2(X, gX) with the following asymptotic expansion (of type III−, in the notation

of appendix A) near infinity

ψA ∼ 1

r1+ν(1)A
dβ(1)A − (1 + ν(1)A)

1

r2+ν(1)A
dr ∧ β(1)A , (5.16)

where we have defined ν(1)A =
√

1 + µ(1)A, and β(1)A are co-closed one-forms on Y

obeying

∆Y β
(1)A = µ(1)A β(1)A (no sum) . (5.17)

The L2 harmonic two-forms ψA are invariant under isometries of (Y, gY ) that extend

to isometries of the resolution (X, gX). One can prove this using Theorem 3 of [94].

The latter states that Killing vector fields of linear growth (see [94] for the definition)

leave the L2 cohomology classes of (X, gX) fixed. Killing vector fields on (X, gX)

that are Killing on (Y, gY ) indeed have linear growth (their norms are O(r)), so the

theorem applies. In fact the proof of the theorem shows that the Lie derivative of an

L2 harmonic form ψ is L2 harmonic with L2 cohomology class zero. However, again

using the results of [66] in (2.34), this implies the Lie derivative is zero, and thus ψ is

invariant under such isometries. Since r is also invariant, we see that β(1) is invariant

under the isometries of (Y, gY ) that extend to isometries of (X, gX).

We must be slightly careful when writing expressions such as (5.16). Here we have

picked an arbitrary basis for H2
L2(X, gX) ∼= H2(X, Y ;R). However, we are clearly free

to choose a different basis. The issue is then that the set of asymptotic modes {β(1)A}
in one basis is clearly not necessarily the same as in another basis, since the modes

correspond only to the leading order behaviour of the harmonic forms at infinity. For

example, by adding some multiple of the harmonic form with smallest µ(1) to all the

other forms, the leading asymptotic behaviour of all forms in the new basis will be

the same. On the other hand, one can also clearly take linear combinations in such

a way that the leading terms β(1)A are all different (although the set of eigenvalues
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{µ(1)A} may of course be degenerate). For, if any two harmonic forms have the same

asymptotic β(1), one may simply pick a new basis which uses the difference of these

forms as one of the basis elements; the latter will then have subleading behaviour. In

this way, there exists a set of b4(X) distinct eigenfunctions {β(1)A} on (Y, gY ).

Next, we will show that massive co-closed one-forms on (Y, gY ) are dual to massive

co-closed three-forms, in the sense that given any co-closed one-form β(1), one can

construct a co-closed three-form β(3) with the same eigenvalue. In particular, we will

prove the following:

∗Y β(3) = dβ(1) (5.18)

∗Y β(1) =
1

µ
dβ(3) . (5.19)

The argument is rather simple. Consider a co-closed three-form obeying

∆Y β
(3) = µ β(3) . (5.20)

We have for any two-cycle S ⊂ Y
∫

S

∗Y β(3) =
1

µ

∫

S

d ∗Y dβ(3) = 0 , (5.21)

where in the first equality we used (5.20) and the second is Stokes’ theorem. Thus the

closed form ∗Y β(3) is exact, and we may write (5.18) for some β(1). Note that by the

Hodge decomposition β(1) may be taken to be co-closed. Now define the one-form

σ = ∆Y β
(1) − µβ(1) . (5.22)

It is straightforward to verify that this is closed and co-closed, and so must be harmonic.

However, since b1(Y ) = 0, we have that σ = 0. This shows that

∆Y β
(1) = µβ(1) (5.23)

and also that the relation (5.19) holds. This proves that there exists two sets of b4(X)

one-forms and three-forms {β(1)A, β(3)A} on (Y, gY ), with pairwise equal eigenvalues

{µA}.
Given these forms, we can perform a KK reduction and obtain a corresponding set

of modes in AdS5. Let us describe roughly the types of modes that are obtained from

these massive forms. Consider, for instance, Kaluza-Klein reduction via the ansätze

δC4 = 1
µ3
AA ∧ β(3)A

δC2 = 1
µ1
CA ∧ β(1)A

(AdS background) . (5.24)
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Then, for example, if β(3) is a co-closed massive eigenfunction of ∆Y with eigenvalue

µ, satisfying (5.20), we have

δG5 = dA ∧ β(3) −A∧ dβ(3) . (5.25)

Then the linearised equation of motion implies

d ∗5 dA− µ ∗5 A = 0 (5.26)

d ∗5 A = 0 , (5.27)

where ∗5 is the Hodge operator on AdS5. These are precisely the Proca equations for a

massive vector field. A similar consideration applies for reduction of dδC2 on a massive

one-form; the AA and CA in (5.24) thus obey these equations. Note that the Proca

equations are gauge-fixed. More generally we should write

δC4 = A ∧ β(3) + ̺ dβ(3) (5.28)

so that a gauge transformation

δC4 → δC4 + d(fβ(3)) (5.29)

leads to the transformations

A → A+ df, ̺→ ̺+ f . (5.30)

The ansatz (5.28) then leads to the Stückelberg action in AdS5, where the scalar ̺ is

the Stückelberg field. Of course, by a gauge transformation this scalar may be set to

zero, and one recovers the Proca equations.

However, the above analysis is certainly too naive. The reason for this is that massive

modes in AdS5 mix, leading to a non-trivial mass matrix. The physical masses are then

the eigenvalues of this mass matrix. This occurs even for scalars fields, for example

as discussed in the appendix of [23]. In the case at hand, the RR four-form mixes

with metric modes, which recall we have not analysed in any detail. The relevant mass

matrix has been worked out for the S5 case in [95], although their results are easily

generalised to a general Sasaki-Einstein manifold (Y, gY ). The mixing of metric and

RR C4 modes due to massive co-closed three-forms β(3) on Y of eigenvalue µ gives rise

to a mass matrix (see equation (2.26) of [95])

m2 =

(

µ+ 8 16µ

1 µ

)

. (5.31)
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Here the bottom right hand corner corresponds to the mass in the Proca equation

(5.26), as one sees explicitly from the analysis in [95]. The eigenvalues of this matrix

are given by

m2
± = µ+ 4± 4

√

µ+ 1 . (5.32)

On the other hand, there is no such mixing for the C2 and B field modes. In fact these

combine straightforwardly into complex modes.

The AdS/CFT dictionary maps these 2b4(X) massive vector fields to some vectorial

operators of conformal dimension given by (5.11) in the dual CFT. For the vector fields

AA, picking the positive branch m2
+ gives rise to conformal dimensions

∆(AA) = 4 +
√

1 + µA . (5.33)

Notice that, rather remarkably, the square root for the positive branch factorises, giving

the simple surd in (5.33).

On general grounds, these vector fields must of course fit into some supermultiplets in

AdS5. However, to our knowledge, there is no general understanding of the structure of

the KK spectrum for a Sasaki-Einstein five-manifold, other than S5 and T 1,1. We thus

proceed slightly indirectly to gain some intuition on the structure of these multiplets.

As we discussed earlier, supersymmetry naturally pairs C4 with the metric, and C2

with the B field. Using the argument of [23] one can then show that there are scalar

modes sA associated to the metric with conformal dimensions

∆(sA) = 3 +
√

1 + µA . (5.34)

These may be read off from the asymptotic expansion (4.82). It is satisfying to see that

these conformal dimensions differ precisely by 1 from (5.33). We expect these scalar

metric modes to arise from symmetric tensor harmonics on Y .

Moreover, as we show in appendix B, for each of the one-forms β1(A) one can also

construct a scalar eigenfunction of the Laplacian on (Y, gY ), defined as

fA = β1(A)
y η . (5.35)

Here η is the canonically defined Killing one-form on a Sasaki-Einstein manifold, metric

dual to the Reeb vector field – see, for example, [7]. In particular, we recall that the

cone metric on C(Y ) has Kähler form

ωC(Y ) =
1

2
d(r2η) . (5.36)
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As shown in appendix B, the functions fA obey

∆Y f
A = EA fA (no sum) (5.37)

where the eigenvalues are

EA = µA − 2− 2
√

1 + µA . (5.38)

These may be used in the KK reduction on Y . In particular, they give rise to a set of

b4(X) scalar fields πA, by expanding the trace of the metric on Y . These modes mix

with scalar modes of C4, and the eigenvalues of the 2× 2 mass matrix are [95]

m2
± = E + 16± 8

√
E + 4 . (5.39)

The AdS/CFT mass-dimension formula then gives

∆(πA) = 5 +
√

1 + µA , (5.40)

where, again, picking the positive branch in (5.39), the surds have simplified rather

remarkably. Notice that this value differs precisely by 1 and 2 with respect to ∆(AA)

and ∆(sA).

This structure, and the comments we shall make below, are suggestive that the

modes (AA, sA, πA) may be part of massive vector multiplets in AdS5. On the other

hand, the reduction of C2 and B naturally leads to complex massive vector fields in

AdS5, with conformal dimension

∆(CA) = 2 +
√

1 + µA , (5.41)

as there is no mass matrix to diagonalise in this case. These should also be part of

AdS5 multiplets, but presently it is not clear to us of which kind.

We do not know if the eigenvalues µA are computable in practice in general. A priori,

the set of eigenvalues also depends on the resolving Calabi-Yau manifold (X, gX), and

thus on the Kähler class, although we have not shown this dependence in the notation26.

Nevertheless, there is a class of Sasaki-Einstein manifolds where one can determine the

eigenvalues explicitly. Note that on any Sasaki-Einstein manifold (Y, gY ) the contact

26Notice, however, that these eigenvalues are simply related to eigenvalues of the scalar Laplacian
via (5.38). In particular, µA = EA + 4 + 2

√
EA + 4.
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one-form η is a massive one-form with eigenvalue27 µ = 8, and gives rise to a L2-

normalisable harmonic two-form on any Calabi-Yau cone

ψ0 = d(r−4η) . (5.42)

There is a certain class of models for which there is a Kähler perturbation of a Ricci-

flat Kähler metric on X which is exactly the µ = 8 mode (5.42). The corresponding

Calabi-Yau singularities are complex cones over Kähler-Einstein surfaces. For example,

the Fano surfaces F0 = CP
1 × CP

1, dP0 = CP
2 and del Pezzo surfaces with between

3 and 8 blow-ups are of this form. The Calabi-Yau cone singularity may be resolved

using the Calabi ansatz [51]. This is an asymptotically conical Ricci-flat Kähler metric

on the canonical bundle over the Fano surface, and is completely explicit, up to the

Kähler-Einstein metric on the Fano. Thus b4(X) = 1 in these models. The subleading

behaviour to the Kähler form on the cone is given by (5.42), and relative to the cone

metric this is precisely order r−6, which indicates a dual scalar operator of conformal

dimension ∆(s) = 6.

These backgrounds were discussed in an AdS/CFT context in [43]. In fact, in the

latter reference it was shown that in such backgrounds there exist two universal KK

scalar modes, coming from reduction of the metric, which (in our notation) have masses

m2(s) = 12, m2(π) = 32, thus giving ∆(s) = 6, ∆(π) = 8, respectively. In this case

there is one massive mode A and one massive mode C. These are dual to vector

operators with conformal dimensions given by (5.33) and (5.41), which give ∆(A) = 7

and ∆(C) = 5, respectively.

We may now proceed, by analogy with the discussion of the non-anomalous U(1)

symmetries, to give a holographic interpretation of the asymptotic expansions of the

C4 field modes of type III+ and the normalisable Kähler perturbations, and the C2 and

B field modes of type III−. In terms of the coordinate r, the asymptotic expansions of

the harmonic forms used to construct the form field modes take a similar form, namely

δC4 : Ψb3(Y )+A ∼ d(r−1−
√

1+µ̃A

β̃(3)A) (5.43)

δC2 : ψA ∼ d(r−1−
√

1+µA

β(1)A) . (5.44)

27In fact it is straightforward to show that all Killing one-forms are co-closed massive one-forms
with eigenvalue µ = 8, and that this is a strict lower bound on the spectrum of such massive one-forms.
That is, µ ≥ 8 with equality if and only if the eigenvalue is associated to a Killing one-form. This is
similar to the Lichnerowicz bound used in [2], and is proven in [96]. We note in passing that one can
also obtain a strict lower bound on the second smallest eigenvalue µ∗ by using the Lichnerowicz bound
on the smallest non-zero eigenvalue of the scalar Laplacian. In particular, since EA ≥ 5, with equality
only for (Y, gY ) = S5, we have that µ∗ > 15. This gives corresponding bounds on the conformal
dimensions of dual operators. For example, ∆(s∗) > 7.
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Here the three-forms β̃(3)A are a priori unrelated to the one-forms β(1)A. However,

it would certainly be rather natural if β̃(3)A = β(3)A, where β(3)A are the dual set of

forms, in the sense of (5.18), (5.19): if indeed the metric modes sA introduced above

are in the same multiplets as the vectors coming from the asymptotic C4 modes, then

this is necessary by supersymmetry. We do not have a direct geometric proof, but

will formally drop the tildes in any case. Again, like many of the issues raised in this

section, we will leave further study for future work.

We may perform gauge transformations analogous to (5.3) to obtain the following28

leading behaviour at large r:

δC4 ∼ − 1

µ3

r−1−
√

1+µA

dδϑA ∧ β(3)A (5.45)

and a similar expression for C2 and B. Following the logic of the previous subsection,

by comparison with the AdS5 background one concludes that the massive vector modes

have leading behaviour

δAA ∼ −r−1−
√

1+µA

dδϑA , (5.46)

thus indicating VEVs for dual vector operators of conformal dimensions 2 +
√

1 + µA.

However, this is too naive. One may correctly read off the conformal dimension from

the expansion of C2 and B, whereas one obtains the incorrect answer this way from

(5.46). As we have explained, this is because the C4 modes mix with metric modes

that we have not fluctuated in the supergravity solution.

Given the discussion of non-anomalous currents in the previous subsection, it seems

rather natural to speculate that the massive vector fields AA and CA should be dual

to the 2b4(X) anomalous baryonic currents. At least for the C4 modes, this may be

further motivated by the fact that these modes appear to be part of vector multiplets

in AdS5. These, as we discuss below, are natural candidates to be the gravity dual

of anomalous currents [97]. However, the eigenvalues µA are just the leading terms

in the asymptotic expansions. Therefore they correspond to the operators with lowest

anomalous dimensions, in an infinite tower of operators getting VEVs (see e.g. [23] and

[30]). It is then possible that the anomalous baryonic currents are part of vector multi-

plets but might have larger anomalous dimensions, and thus correspond to subleading

terms in the expansions (cf. discussion around equations (A.8), (A.9) in appendix A).

28In the following we ignore the other term in C4, which involves the two-forms δaA. In fact
self-duality of the RR fields requires a similar fluctuation in C6, but this is not important for our
analysis.
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In the quiver gauge theory, the anomalous baryonic currents may be defined in

exactly the same was as the non-anomalous currents, by taking linear combinations of

bifundamental bilinears29 Φ†
aΦa. Recall that there are 2b4(X) such linear combinations

that are anomalous. In particular, the lowest component scalar fields are given by

Uq ≡ Tr

[

∑

a∈A
QaΦ

†
aΦa

]

(5.47)

where Qa = qt(a) − qh(a) is the baryonic charge of Φa under the baryonic U(1)q given

by the charge vector q ∈ Zχ−1. Then, classically, we have the relation

Uq =
∑

v∈V
qvζv . (5.48)

This follows from multiplying (2.68) by qv, taking the trace, and summing over the

nodes in the quiver v ∈ V . Thus we see that, classically, the VEV of Uq is simply

an “FI parameter”. Of course, this is a completely natural extension of the situation

for the non-anomalous currents. However, the operators (5.15) are protected, while a

priori (5.47) are not known to be protected. Let us denote the corresponding Noether

current for U(1)q by Jq. Classically Jq is conserved for all q, but in the quantum theory

we have

∂µJ
µ
q ∝

∑

v∈V
cvq χv ≡ χq (5.49)

where the anomaly coefficient is (as in (2.46))

cvq =
∑

a∈A|h(a)=v

nt(a)qt(a) −
∑

a∈A|t(a)=v

nh(a)qh(a) . (5.50)

Here

χv = ∗4TrFv ∧ Fv (5.51)

is an operator constructed from the curvature of the SU(nv) gauge field Fv correspond-

ing to the node v ∈ V . As we argued in section 2.3, there is a b3(Y )-dimensional space

of charges q for which cvq = 0 for all v.

The currents Jq sit in (non-conserved) current superfields Jq in an N = 1 supersym-

metric theory, while the operators χv are part of chiral superfields Ov = TrWvαW
α
v ,

29We drop the terms eV from the expressions.
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where Wvα is a gauge superfield for the node v ∈ V . In particular, the lowest compo-

nent of Jq is given by (5.47). Then the anomaly equation (5.49) becomes the superfield

equation

D̄2Jq ∝
∑

v∈V
cvq Ov ≡ Oq . (5.52)

In the supergravity dual, this equation may be related to a Higgs mechanism in

the bulk30 [97]. The current Jq is dual to a massive vector field, whose transverse

mode precisely eats the scalar (the Stückelberg ̺ in the previous paragraph) dual to

the anomaly term χq. There are then four independent bosonic scalar operators [98],

namely the lowest component of Jq and three independent components in Oq (the

complex gaugino bilinears and the TrF 2
v terms). Together with the massive vector,

these are the correct number to fill out a massive vector multiplet in AdS5. Notice that

this discussion clarifies that the axions for the anomalous U(1)s are not physical degrees

of freedom, mirroring the familiar situation reviewed in section 2.3. In particular, it

also clarifies that the RR moduli fields have a very different origin in the gravity set-up

and in the large volume worldvolume setting [63] of section 2.3.

One can also heuristically understand current non-conservation from a holographic

point of view. As discussed in [97], and also in [99] in a different context, in the dual

gravity description one introduces an AdS5 gauge field A and a scalar ̺ which couple

to J and χ on the holographic boundary, respectively, via a coupling

∫

R4

(AµJ
µ + ̺χ) vol4 . (5.53)

The AdS5 gauge transformation

A → A+ df, ̺ → ̺+ f (5.54)

then immediately leads to the anomaly equation (5.49) as the associated anomalous

Ward identity for the symmetry (5.54). Of course, the gauge field A here should be

identified with a massive gauge field in (5.24), and the gauge transformation (5.54)

is the same as the Stückelberg transformation (5.30) which results from RR gauge

transformations.

Finally, we return to the interpretation of the fluctuations δθA and δϕA. Assum-

ing that the asympotic expansions contain modes AA and CA which are dual to the

30We are grateful to Y. Tachikawa and F. Yagi for clarifying comments.
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baryonic currents, we may tentatively interpret the 2b4(X) massless (in R4) modes

as “pseudo-Goldstone” bosons. Indeed, classically we precisely expect to find these

modes in the spectrum. However, since the corresponding symmetries are anomalous,

Goldstone’s theorem does not guarantee that these modes exist and are massless in the

quantum theory, which is why we refer to them as “pseudo-Goldstone” bosons. As we

discuss in the concluding section 7.2, there might well be corrections to the supergrav-

ity backgrounds of section 3, namely D-brane instanton corrections, which lift these

massless fields.

6 Baryon condensates

In this section we describe a Euclidean D3-brane calculation that conjecturally deter-

mines the holographic condensates of baryon operators in AdS/CFT. Some basic parts

of this calculation were carried out in [22], extending and generalising31 the warped

resolved conifold example in [30]. Our aim here is to abstract this to a fairly general

prescription for computing baryon condensates in AdS/CFT, and demonstrate that

the result has the features one expects.

Recall that, in the quiver gauge theories of section 2, the gauge-invariant scalar BPS

operators may be divided into two sets: the meson operators and the baryon operators.

Classically these may be identified with the holomorphic functions on the VMS M .

The meson operators are distinguished by being invariant under the baryonic group

U(1)χ−1 which acts on M , whereas by definition a baryon operator is charged under

this group. In the more mathematical language of section 2.5, the baryon operators are

the regular functions on the space of F-term solutions Z that are semi-invariants (but

not invariants) under GC, whereas the meson operators are the invariants under GC.

In fact there are very general theorems that state that the meson operators in quiver

gauge theories may be written in terms of traces of bifundamental fields [102], whereas

the baryon operators may be written in terms of generalised determinants [103]. The

classical VEV of an operator O at the point p ∈M is simply O(p) ∈ C.

Of course, the main interest is in the quantum theory at strong coupling. Using

AdS/CFT we may identify the space of vacua of the strongly coupled theory with the

gravity backgrounds of section 3. In principle, one should be able to compute the

condensate of any operator 〈O〉p in a given vacuum p. It is not clear (to the authors,

at least) how one would compute such a condensate directly in quantum field theory.

31For related work on the conifold, see [100] and [101].
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However, the AdS/CFT correspondence implies that such one-point functions may be

computed in the gravity dual of section 3, essentially as a geometric computation in

the appropriate large N limit.

The method for computing meson condensates in these gravity backgrounds is more

straightforward [23], at least in principle. This is essentially because meson operators

are dual to supergravity modes, for which the AdS/CFT correspondence is very well

developed. See [92, 93] for a discussion of state-of-the-art techniques for computing

holographic VEVs of meson operators in asymptotically AdS5 ten-dimensional geome-

tries. In contrast, baryon operators are dual to D-brane states, and the method for

computing correlation functions of such operators is both conceptually and technically

much harder. In this section we elaborate on a method for computing baryonic con-

densates in the backgrounds described thus far. However, before proceeding to this

proposal, we first recall the AdS/CFT description of baryons as wrapped D3-branes.

6.1 Baryon operators in AdS/CFT

Various properties of SCFTs with Sasaki-Einstein duals may be studied in terms of

the geometry of the dual background. Particularly well-understood are the operators

dual to supergravity modes, where the precise map from geometry to field theory

was outlined in the original papers [28, 29]. In the remainder of the paper we are

interested in baryon operators, which are dual to D-brane states. Consider a compact

three-submanifold Σ ⊂ Y . By wrapping a D3-brane on this submanifold we effectively

obtain a particle in AdS. This particle will be BPS when the wrapped D3-brane is

supersymmetric. In particular, an argument similar to that in section 6.3 implies

that a necessary condition is that the cone C(Σ) ⊂ C(Y ) is a complex submanifold,

or divisor. The D3-brane also carries a worldvolume gauge field with two-form field

strengthM = 2πα′F −B, as described in section 2.3. For a D3-brane wrapping Rt×Σ,
supersymmetry requires this gauge field to be flat, so M = 0. Again, this essentially

follows from the more general discussion in section 6.3. Flat U(1) gauge fields on Σ

are classified, up to gauge equivalence, by the group H1(Σ;U(1)) – see the discussion

in appendix C. Since b1(Σ) = 0 for the three-submanifolds of interest, the long exact

coefficient sequence implies that H1(Σ;U(1)) ∼= H2
tor(Σ;Z)

∼= H1(Σ;Z). Thus, as

originally pointed out in [26], if Σ has non-trivial first homology group, one can turn

on distinct flat connections on the worldvolume of a wrapped D3-brane. These flat

connections are defined on torsion line bundles over Σ, which we generically denote by

73



L. Thus c1(L) ∈ H2
tor(Σ;Z).

In [26, 25, 27] such wrapped D3-branes were interpreted as baryonic particles. The

dual operator that creates such a baryonic particle will be referred to as a baryon

operator. We then have a correspondence

(Σ, L) ←→ B(Σ, L) , (6.1)

where B(Σ, L) denotes the baryon operator associated to the pair (Σ, L). This also

leads one to identify the non-anomalous U(1) baryonic symmetries in the field theory

as arising from the topology of Y . As we recalled in section 5.2, massless fluctuations

of the RR four-form potential C4 in the background AdS5 × Y may be expanded in a

basis of harmonic three-forms on (Y, gY ) via the ansatz (5.6). This gives rise to b3(Y )

massless gauge fields AI in AdS5 which are dual to the non-anomalous baryonic currents

JI . The baryonic charge of a baryonic particle, arising from a three-submanifold Σ,

with respect to the Ith baryonic U(1) is then given by

QI [B(Σ, L)] =

∫

Σ

α
(3)I
0 . (6.2)

For fixed Σ the operators B(Σ, L), where L is a torsion line bundle on Σ, thus all have

equal non-anomalous baryonic charge (6.2). They also have equal R-charge, where the

latter is determined by the volume of Σ via

R[B(Σ, L)] = Nπvol(Σ)

3vol(Y )
. (6.3)

Several comments are now in order. Firstly, note that we have two geometric defini-

tions, or at least identifications, of baryon operators: firstly, as holomorphic functions

on M ; and secondly, as dual objects to a pair (Σ, L). In particular, we have asserted

in this subsection that to every (Σ, L) there is a baryon operator B(Σ, L) which we

may realise classically as a holomorphic function on the classical gauge theory moduli

space M . Although both identifications are geometric, the general relation between

them is completely unobvious. Having said that, the level zero mesonic moduli space

M (0) = SymNC(Y ) is an affine GIT quotient of M by the complexified baryonic group

(C∗)χ−1. Thus the complex geometry of Z = C(Y ) is certainly contained in M . In

fact, for N = 1, a baryon operator of definite charge q ∈ Zχ−1 under (C∗)χ−1 defines an

ample divisor in the mesonic moduli space M (q). This follows from the discussion in

section 2.5. We then know from [21] and [73] that for orbifold gauge theories and toric

quiver gauge theories described by dimers π : M (q)→ Z is a crepant resolution of the
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cone Z = C(Y ). Thus we may take X = M (q) as an underlying complex manifold

for the gravity backgrounds of section 3. Despite recent papers [104, 105, 31] that

count baryonic operators in simple examples, this correspondence is still very poorly

understood geometrically. The main motivations for the identification come from gen-

eral AdS/CFT arguments and the fact that in examples one sees that it works. For

example, the quiver gauge theories in [18] were deduced from the above identification

of certain set of special baryon operators with pairs (Σ, L).

The second comment to make is that the set of baryon operators of the form B(Σ, L)
is very small. Indeed, there are obvious generalisations of the construction outlined

above. For example, rather than wrap a single D3-brane on Σ, we may wrap n D3-

branes. The worldvolume gauge theory is then a U(n) gauge theory, and presumably

supersymmetry again requires the connection to be flat. A flat U(n) connection is

determined by its holonomies, which define a homomorphism

ρ : π1(Σ)→ U(n) . (6.4)

Gauge transformations act by conjugation, and thus the flat U(n) connections are in

1-1 correspondence with

Hom(π1(Σ)→ U(n))/conjugation . (6.5)

For example, if π1(Σ) ∼= Zr then the number of flat U(n) connections on Σ is given by

the number of partitions of n into r non-negative integers:

n =

r
∑

i=1

ki, ki ∈ {0, 1, 2, . . .} . (6.6)

This is easy to see: there are r irreducible representations Ri of Zr, which are all

one-dimensional. If we identify Zr with the group of rth roots of unity then a root

ζ ∈ Zr ⊂ U(1) ⊂ C is sent to

Ri : ζ → ζ i , (6.7)

where we may regard i ∈ {1, . . . , r}. An n-dimensional representation of Zr may then

be constructed from the r-vector k = {ki}ri=1. Specifically,

Rk : ζ → diag(ζ1, . . . , ζ1, ζ2, . . . , ζ2, . . . . . . , ζr, . . . , ζr) ∈ U(n) (6.8)

where ζ i occurs ki times. Notice that all orderings of the entries in (6.8) are equivalent

under conjugation. Indeed, a little thought shows that all flat U(n) connections on Σ,

using the identification (6.5), may be written in the form (6.8).
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These D3-brane states may be interpreted naturally in the field theory as follows.

We have r torsion line bundles Li and thus r BPS baryon operators B(Σ, Li). The

BPS baryon operators form a ring, and thus we may multiply them. n D3-branes

wrapped on Σ have n times the non-anomalous baryonic charge and R-charge of a

single D3-brane wrapped on Σ. The candidate dual baryon operators are thus given

by

B(Σ,k) ≡
r
∏

i=1

B(Σ, Li)
ki . (6.9)

where in order to have the correct non-anomalous charges we precisely require (6.6) to

hold.

We may also consider Σ that have more than one connected component, say Σ =

Σ1 ∪Σ2 ∪ · · · ∪ Σk, where each Σi is connected. If the Σi are all pairwise disjoint then

presumably these may be treated precisely as above. However, we may also consider

self-intersecting D3-branes, where Σi ∩ Σj 6= ∅ for i 6= j. Understanding the effective

theory on such a D3-brane, and thus counting its supersymmetric configuations, seems

quite challenging. For example, there may be massless degrees of freedom, coming from

massless strings between each component, associated to the intersection.

However, even this does not exhaust all baryonic operators that one may construct in

the gauge theory. Presumably, the complete spectrum may be obtained by quantising

the moduli space of all BPS D3-branes [106], which include time-dependent, rather

than static, wrapped D3-branes. In this paper for simplicity we restrict attention to

static singley-wrapped D3-branes on a compact smooth connected Σ. As we shall

see, understanding the one-point functions of such operators in our non-conformal

backgrounds is already quite challenging.

6.2 Baryon condensates: outline of the prescription

In the remainder of the paper we present a prescription for computing the VEVs of

baryon operators which may be represented by a pair of data consisting of a smooth

supersymmetric three-submanifold Σ, and a torsion line bundle L on Σ. The first step in

performing any holographic computation is to extend the data from the boundary (r =

∞ in AdS5×Y ) to the “bulk” (essentially R4×X). One must then identify an object,

depending on the boundary data, that has appropriate transformation properties under

the symmetries of the problem. Given that a baryonic particle is dual to a D3-brane

with worldvolume Rt×Σ, a natural candidate for computing the VEV of the operator
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that creates such a particle is a Euclidean D3-brane that wraps a divisor D ⊂ X with

boundary ∂D = Σ ⊂ Y . More precisely, one should perform a path integral for such a

Euclidean D3-brane, in a given background geometry, with fixed boundary conditions:

〈B(Σ, L)〉 =
∫

∂D=Σ

DΨexp(−SED3) ≈
∑

exp(−Son−shell
ED3 ) . (6.10)

In other words, we compute the partition function for a non-compact D3-brane in the

background supergravity solution, where the boundary conditions for the D3-brane are

held fixed.

An analogous prescription is applied in the case of computing expectation values

of Wilson loop operators [107, 108]. Here one is instructed to compute the on-shell

action of a Euclidean string with worldsheet whose boundary is the loop itself. For

baryon operators, this idea was first proposed32 in the context of a warped resolved

conifold model in [30], in which case the worldvolume gauge field is zero. The purpose

of the remainder of this paper will be to make the rough formula (6.10) more precise.

The calculation that we will describe computes the semi-classical approximation to

the partition function of a Euclidean D3-brane. This leads to the saddle-point sum

on the right hand side of (6.10). In principle one should also compute the one-loop

contributions to this saddle-point approximation. However, our main focus here is on

understanding the worldvolume gauge field instantons, and also the coupling of RR

fields to the D3-brane. In particular the one-loop terms do not involve the RR fields.

Since the D3-brane worldvolume is non-compact, the action is not invariant under

gauge transformations of the RR fields. More precisely, the phase is not a gauge-

invariant object since it will depend on the choice of reference gauge on the boundary

for the background RR fields. However, even in the classical gauge theory the overall

phase of a particular baryon operator is not physical. It clearly makes no sense to

ask what the phase is of some baryon operator O, since by acting with a baryonic

symmetry this operator is equivalent to eiαO for any constant phase α. Physically

there is no way to fix this ambiguity. However, it does make sense to ask what the

relative phase of the VEV of a baryon operator is at different points in the VMS M ,

since the above ambiguity cancels. In the gravity calculation, the condensate in (6.10)

of course depends on the particular gravity background, which is a point in the gravity

moduli space p ∈ M grav; specifying p involves specifying a complex manifold X , a

Kähler class for the asymptotically conical Calabi-Yau metric gX on X , the positions

of the stacks of N D3-branes, and the RR fields and B field. We are then more precisely

32See also [109].
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computing 〈B(Σ, L)〉p. However, since the overall phase is not physical, the object of

interest is really the relative phase

arg〈B(Σ, L)〉p,p0 = arg〈B(Σ, L)〉p − arg〈B(Σ, L)〉p0 , (6.11)

where p0 is any fixed choice of generic (smooth) point p0 ∈ M grav. One of our main

results is that the quantity (6.11) is in fact gauge-invariant. The key point will be to

show that under gauge transformations the “bare” condensate 〈B(Σ, L)〉p transforms

via terms which depend only on the boundary data, which then cancel in (6.11).

In [22] we gathered some preliminary evidence for the validity of the general pre-

scription (6.10). In particular, we showed that the right hand side transforms with the

correct phase under gauge transformations of C4 of the type (5.1), which are dual to

the non-anomalous U(1)b3(Y ) baryonic symmetries. Specifically,

δ 〈B(Σ, L)〉 = exp(iβIQ
I [B(Σ, L)]) 〈B(Σ, L)〉 . (6.12)

We also explained that the logarithmically divergent part of the Born-Infeld action

SBI = T3

∫

D

d4σ
√

det gDH , (6.13)

is in general proportional to the R-charge (6.3), and hence also conformal dimension,

of the baryon operator B(Σ, L), as expected from the AdS/CFT dictionary. This

conformal dimension is given by

∆(Σ) =
Nπvol(Σ)

2vol(Y )
. (6.14)

To obtain a finite contribution from (6.13) one can define the following quantity

Sfinite
BI = lim

rc→∞

[

T3

∫

Drc

d4σ
√

det gDH − T3L4

∫

Σ

dvol[Σ] log rc

]

, (6.15)

where Drc is a cut-off compact four-manifold with boundary, such that limrc→∞Drc =

D and ∂D = Σ. This definition is in the spirit of holographic renormalisation (see

e.g. [110]). Indeed, we have subtracted a “counterterm” that depends only on the

boundary data, and in particular is covariant (it is simply the integral of the volume

form of Σ). In the following we will not discuss (6.15) any further, but instead focus

our attention on the reminding part of the on-shell action. As we shall explain, this is

finite and therefore contributes multiplicatively to the baryon condensate.
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6.3 Supersymmetric wordvolume instantons

In order to compute the on-shell Euclidean action one must solve the equation of motion

for the gauge-invariant two-form M = 2πα′F − B on the D3-brane worldvolume. We

focus on the contribution of supersymmetric D-branes for which one obtains certain

non-linear instanton equations for M . These were investigated in [111] for Euclidean

D-branes in a Calabi-Yau manifold, as well as other special holonomy manifolds.

In the presence of general fluxes and warp factors, the analysis becomes significantly

more complicated. However, it was shown in [112] that the resulting equations are a

rather natural extension of the flux-less equations, when expressed in terms of gener-

alised calibrations. In the present paper, we are interested in Type IIB backgrounds

that are warped Calabi-Yau geometries (3.8). In this case the κ-symmetry analysis for

Euclidean D-branes essentially carries over [113] from the original treatment in [111].

The equations (for a general Euclidean D(2n− 1)-brane) may be written as

eiω−M |2n = eiθ
√

det(h+M)√
det h

dvol2n (6.16)

ikΩX ∧ eiω−M = 0 k = 1, 2, 3 . (6.17)

Here

ω = H1/2ωX (6.18)

where H is the warp factor in (3.8), and ωX , ΩX are the Kähler form and holomorphic

three-form of the Calabi-Yau (X, gX), respectively. The symbol ik denotes contraction

with a complex vector field ∂/∂zk .

Moreover, it is shown in [113] that in the presence of a non-trivial warp factor H

the phase θ takes the fixed value eiθ = −1. When n = 2, the case in which we are

interested, D must be a divisor, holomorphically embedded in X , and the equations

for M read

M− = 0 , ω ∧M = 0 ,

where recall that M− is the real part of a type (2, 0)-form. These are in fact the usual

instanton equations. M is a primitive (1, 1)-form, which on a Kähler four-manifold

(D, gD) is equivalent to being anti-self-dual on D

∗4 M = −M . (6.19)
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The metric h induced on D via its embedding into the spacetime (3.8) is conformal to

the Kähler metric gD on D induced via the embedding of D into (X, gX). Specifically,

h = H1/2gD . (6.20)

However, the Hodge star operator is conformally invariant when acting on middle-

dimensional forms. Thus the above equations may be viewed as saying that M is

harmonic anti-self-dual on (D, gD).

6.4 The worldvolume gauge field

Let us now discuss in more detail the worldvolume gauge field M . As explained in

section 6.2, given a three-submanifold Σ we first need to pick an asymptotically conical

divisor D, such that ∂D = Σ. We will impose the following topological conditions on

Σ and D:

b1(Σ) = 0 , H1(D;Z) = 0 , H2(D;C) ∼= H1,1(D) . (6.21)

These assumptions will simplify our computations later. In fact these conditions are

not too restrictive, since they hold for any toric divisor D, with boundary Σ, in a

smooth toric 3-fold variety X . For example, in this case Σ is necessarily a Lens space.

We also assume that

D is a spin manifold .

This is certainly more restrictive. We impose it simply so that the worldvolume gauge

field is related to a genuine line bundle33 L on D, rather than a Spinc structure. Having

made such a choice of D, one needs to extend the torsion line bundle L on Σ to a line

bundle L over D, whilst also solving the instanton equations (6.19) described in the

previous subsection. In the remainder of this subsection we explain how to solve this

problem.

The supersymmetry conditions imply that M |Σ = 0, and thus the worldvolume line

bundle L is indeed a torsion line bundle on Σ. Notice this implies that

2πα′F |Σ = B |Σ . (6.22)

In section 3.3 we made a fixed choice of background B field on Y , and thus B |Σ is

also a fixed closed two-form. The curvature two-form F |Σ of L is thus not flat, but is

33This assumption may presumably be lifted without altering our overall conclusions.
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rather related to the B field via (6.22). In fact, we shall argue momentarily that M

must be a harmonic two-form that is L2-normalisable on (D, gD). It then follows from

the asymptotic expansion at large radius (cf. appendix A) that indeed M = 0 on Σ.

More precisely, this may be rephrased as the statement limrc→∞M |∂Drc
= 0.

The first problem is whether or not we may extend, topologically, the line bundle L on

Σ = ∂D over D itself; if it does not, the instanton does not exist. The extendability of

the line bundle is determined by the long exact cohomology sequence for (D, ∂D = Σ):

· · · −→ H1(Σ;Z) −→ H2(D,Σ;Z)
f−→ H2(D;Z)

i∗−→
−→ H2(Σ;Z) −→ H3(D,Σ;Z) −→ · · · . (6.23)

Here f is the forgetful map that forgets that a class is relative, and i : Σ →֒ D is the

inclusion map. Since b1(Σ) = 0 by assumption (6.21), the universal coefficients theorem

implies that H1(Σ;Z) = 0. By Poincaré duality, H3(D,Σ;Z) ∼= H1(D;Z) = 0, where

the latter is again by assumption (6.21). Exactness of the sequence (6.23) then implies

that every element of H2(Σ;Z) lifts to an element of H2(D;Z). In fact,

H2(Σ;Z) ∼= H2(D;Z)/f(H2(D,Σ;Z)) . (6.24)

Concretely, this means that the line bundle L over Σ always extends over D to a line

bundle L with first Chern class c1(L) ∈ H2(D;Z). Moreover, the extension is unique up

to adding to c1(L) an element f(c), where c is any element in H2(D,Σ;Z). In fact, even

more is true. Since H1(D;Z) is trivial, again the universal coefficients theorem says

that H2(D;Z) is torsion-free, and is thus a lattice. Similarly, H2(D,Σ,Z) ∼= H2
cpt(D;Z)

is also a lattice. The pairing

H2
cpt(D;Z)×H2(D;Z)→ H4

cpt(D;Z) ∼= Z (6.25)

given by cup product and integral over D says that

Λ = H2
cpt(D;Z) , Λ∗ = H2(D;Z) (6.26)

are dual lattices.

Having chosen an extension of L to a line bundle L over D, we have now fixed

uniquely the cohomology class of M , namely

[M ] = ι∗[B] + (2π)2α′c1(L) ∈ H2(D;R) . (6.27)
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Recall that the background B field is flat and that different B field moduli are described

by the group H2(X, Y ;R). More precisely, we pick any flat extension B◦ of B |Y over

X , and then any other flat B field with the same gauge at infinity is

B = B◦ +B♭ (6.28)

where B♭ represents a class in H2(X, Y ;R). In particular, [B] ∈ H2(X ;R), and thus

also ι∗[B] ∈ H2(D;R), are determined by the moduli.

We must now solve the instanton equations (6.19) for M in the cohomology class

(6.27). Furthermore, M must be chosen to be square-integrable, M ∈ H2
L2(D, gD).

To see this, notice that for κ-symmetric configurations, the BI part of the on-shell

Euclidean D3-brane action

SBI = T3

∫

D

d4σ
√

det(h+M) , (6.29)

may be simplified upon using equation (6.16) [111]. In particular, using the relation

(6.18) and specialising to linear instantons (6.19), the action (6.29) becomes

SBI = T3

∫

D

d4σ
√

det gD

(

H +
1

4
TrgD M

2

)

, (6.30)

where we used anti-self-duality ofM to rewrite theM∧M term as the pointwise square

norm on (D, gD)

‖M‖2gD =
1

2
TrgD M

2 . (6.31)

As we recalled earlier, the first term in (6.30) is logarithmically divergent at infinity.

This divergence is physical, as it gives information on the conformal dimension of

a baryon operator in the dual CFT [22]. Therefore, it is natural to require that the

integral of TrgD M
2 does not affect this conformal dimension, justifying the requirement

that M is L2-normalisable.

We may now easily argue that [M ] may indeed be represented by an L2 harmonic

two-form M ∈ H2
L2(D, gD). We apply once again the results (2.34) of [66] to an

asymptotically conical divisor (D, gD), of real dimension four. In particular, in the

case at hand the long exact sequence (6.23), when tensored with the reals R, implies

that

H2(D;R)
f−1

∼= H2(D,Σ;R) ∼= H2
cpt(D;R) (6.32)
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is an isomorphism of vector spaces. Concretely, this means that every de Rham coho-

mology class on D is represented by a compactly supported cohomology class. That

is, given [M ] ∈ H2(D;R) there is a compactly supported class [M ]cpt ∈ H2
cpt(D;R)

such that f([M ]cpt) = [M ]. The middle isomorphism in (2.34) then shows that every

element of H2(D;R) is represented by a unique L2 harmonic two-form.

To conclude, we need to show that M ∈ H2
L2(D, gD) is type (1, 1) and primitive in

order to satisfy the instanton equations (6.19), and that moreoverM |Σ = 0 (notice that

L2-normalisability does not a priori imply this). The arguments are analogous to those

presented in subsection 4.4. Firstly, note that if M is harmonic and L2-normalisable,

then M ∧ ωD is an L2 harmonic four-form on D. However, from (2.34) we see that

H4
L2(D, gD) ∼= H4(D;R) = 0, which implies that any such four-form must be zero.

This proves that M must be primitive. We then also require that M be of Hodge type

(1, 1). This follows from a similar argument to that presented in subsection 4.4: on a

Kähler manifold M± are separately harmonic if M is. Since all the H2 cohomology of

D is of type (1, 1) by assumption in (6.21) i.e. H2(D;C) ∼= H1,1(D), it follows from

(2.34) that M− = 0 and thus M is of type (1, 1). Thus we have proven that there

always exists a unique solution to the instanton equations.

Finally, looking at Table 4 in appendix A in the case that p = n = 2, one learns that

the leading term in the large r expansion of M is a closed and co-closed mode of type

III−, namely

M0 = r−
√
µdβµ −

√
µr−1−√

µdr ∧ βµ (6.33)

where βµ is a one-form on Σ obeying

∆Σ βµ = µ βµ (6.34)

with µ > 0. This shows that M = 0 on Σ.

6.5 A topological action for M

Having explained how to solve for a supersymmetric gauge field M in a given coho-

mology class [M ] ∈ H2(D;R), we now begin our discussion of the on-shell D3-brane

action, evaluated on such solutions. Let us consider the combined Born-Infeld and

Chern-Simons parts of the action that depend on M . These pair naturally to con-

struct the complex action

S[M ] = iµ3

[

τ

2

∫

D

M ∧M +

∫

D

M ∧ C2

]

, (6.35)
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where τ = C0 + i exp(−φ) is the axion-dilaton. Recall also from section 3.3 that the

background C2 field is flat, of the form

C2 = C◦
2 + C♭

2 (6.36)

where C◦
2 is a fixed flat C2 field onX inducing a fixed gauge choice C◦

2 |Y= CY
2 on Y , and

C♭
2 represents a class in H2(X, Y ;R). In particular, CY

2 determines a choice of marginal

coupling in H2(Y ;R)/H2
free(Y ;Z), and a background C2 determines a cohomology class

[C2] ∈ H2(X ;R).

In this section we will show that the action (6.35) is a topological invariant: that

is, it depends only on the topological classes [M ], ι∗[C2] ∈ H2(D;R). In the following

subsection we will investigate more fully the dependence of the on-shell action on the

various background fields.

More precisely, let [M ]cpt = f−1[M ] ∈ H2
cpt(D;R) denote the compactly supported

version of [M ], and similarly [C2]cpt = f−1[C2] ∈ H2
cpt(D;R). Then we will show that

for M the L2 harmonic form constructed above we have
∫

D

M ∧M = [M ]cpt ∪ [M ] (6.37)

∫

D

C2 ∧M =
1

2
[M ]cpt ∪ [C2] +

1

2
[C2]cpt ∪ [M ] , (6.38)

where the right hand side of these formulas denote the cup product

H2
cpt(D;R)×H2(D;R) → H4

cpt(D;R) ∼= R . (6.39)

Consider (6.37) first. Let α denote any closed two-form representing [M ], and let

αcpt denote any closed compactly supported two-form representing [M ]cpt. Consider

the integral
∫

D

M ∧M −
∫

D

αcpt ∧ α =

∫

D

(M + αcpt) ∧ (M − α) +
∫

D

M ∧ (α− αcpt) . (6.40)

Now

α−M = dλ , α− αcpt = dσ (6.41)

since [M ] = [α] and [α] = f([α]cpt) by assumption. Since αcpt is zero in a neighbourhood

of infinity we have α = dσ in this neighbourhood. More precisely, we may define

U = (r0,∞)× Σ; then for large enough r0 we have (dσ − α) |U= 0. We also have

d(σ − λ) |U = M |U . (6.42)
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Recalling the asymptotic expansion (6.33), (6.34), we may thus take

(σ − λ)|Σrc
= r

−√
µ

c βµ , (6.43)

to leading order in rc as rc →∞. Note that we may also add df to (6.43), where f is

any function on U (not necessarily bounded as rc → ∞) – however, this drops out of

the integral below since M is closed. Indeed, we then have
∫

D

M ∧M −
∫

D

αcpt ∧ α = lim
rc→∞

∫

Σrc

(σ − λ) ∧M = 0 , (6.44)

where the last equality follows since both M |Σrc
→ 0 and (σ − λ)|Σrc

→ 0, as rc →∞.

Now conisder (6.38). The discussion is analogous to that above. Given any [C2] ∈
H2(D;R), there is a unique compactly supported class [C2]cpt ∈ H2

cpt(D;R) such that

f([C2]cpt) = [C2]. Let γ and γcpt be two-forms representing [C2] and [C2]cpt, respectively,

and consider the integrals
∫

D

M ∧ C2 −
∫

D

αcpt ∧ γ =

=

∫

D

(M + αcpt) ∧ (C2 − γ) +
∫

D

M ∧ γ −
∫

D

C2 ∧ αcpt (6.45)

∫

D

C2 ∧M −
∫

D

γcpt ∧ α =

=

∫

D

(C2 + γcpt) ∧ (M − α) +
∫

D

C2 ∧ α−
∫

D

γcpt ∧M . (6.46)

Now we have

γ − C2 = dν , (6.47)

thus the first terms on the right hand side may be evaluated by parts, giving
∫

D

(M + αcpt) ∧ (C2 − γ) = −
∫

Σ

M ∧ ν
∫

D

(C2 + γcpt) ∧ (M − α) = −
∫

Σ

C2 ∧ λ . (6.48)

As usual, we should understand the integrals on the right hand side of these expressions

as a limit of integrals over Σrc . Summing (6.45) and (6.46) we obtain

2

∫

D

C2 ∧M −
∫

D

γcpt ∧ α−
∫

D

αcpt ∧ γ =

=

∫

D

M ∧ (γ − γcpt)−
∫

Σ

M ∧ ν +
∫

D

C2 ∧ (α− αcpt)−
∫

Σ

C2 ∧ λ . (6.49)
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Now we have

γ − γcpt = dζ , (6.50)

thus integrating again by parts, the second line in (6.49) reduces to
∫

Σ

M ∧ (ζ − ν) +
∫

Σ

C2 ∧ (σ − λ) . (6.51)

We then use the fact that

M − αcpt = d(σ − λ) , C2 − γcpt = d(ζ − ν) . (6.52)

The argument for each term in (6.51) being zero is slightly different. Firstly, d(ζ−ν) is
a well-defined smooth two-form on Σ, and thus ζ−ν may be taken to be a smooth one-

form; any exact part, divergent or otherwise, drops out of the integral. Since M = 0

on Σ, then the first integral in (6.51) is zero. Secondly, (σ− λ) vanishes on Σ, proving

that also the second integral in (6.51) is zero. In conclusion, we have shown that

∫

D

C2 ∧M =
1

2

∫

D

γcpt ∧ α +
1

2

∫

D

αcpt ∧ γ . (6.53)

which is (6.38).

6.6 Gauge transformations of the action

We will now discuss the effect of various gauge transformations on the D3-brane action,

extending the exposition in [22]. Because the worldvolume D is non-compact the

discussion of gauge invariance is slightly subtle. Since the Born-Infeld part of the

action is manifestly gauge-invariant, in the following we will focus on the Chern-Simons

action:

SCS = iµ3

∫

D

[

C4 +M ∧ C2 + C0
1

2
M ∧M

]

+
2πi

48

∫

D

C0 [p1(RTD)− p1(RND)](6.54)

where C2p are the RR potentials. Recall that µ3 is given by (2.13). The second term in

(6.54) contains the curvature couplings in (2.29), where p1(RTD) and p1(RND) denote

Pontryagin curvature forms for the tangent bundle TD of D and its normal bundle

ND inM. We will postpone a discussion of this term until section 6.6.5.

Recall the discussion of background RR fields from section 3.3. We fix a gauge

choice for the RR potentials on Y , which we may pull back to the UV boundary

R4 × Y . In particular this determines certain marginal couplings of the UV theory.
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These RR potentials are then extended over X , or more precisely over spacetimeM =

R4 × (X \ {x1, . . . , xm}), to potentials C◦
∗ satisfying the relevant equations of motion.

Here the subscript ∗ may take any of the values 0, 2 or 4, so C∗ denotes any of C0,

C2 or C4. One may then add to these background fields any compactly supported flat

RR field. These determine the flat form-field moduli discussed in section 3.3. We thus

generally write

C∗ = C◦
∗ + C♭

∗ . (6.55)

We first show that, for fixed gauge at infinity, the on-shell D3-brane action is a well-

defined function of the flat RR field moduli in (3.20). That is, the action is invariant

under compactly supported small and large gauge transformations. It nevertheless

certainly depends on C◦
∗ , and in particular on the gauge choice this induces at infinity.

However, we will then show that under any gauge transformation

C◦
∗ → C◦

∗ + dλ , (6.56)

where dλ is unrestricted at infinity, the on-shell action changes by terms that depend

only on the boundary data. The prescription for computing the relative phase of

the condensate in (6.11) is then that the two terms on the right hand side should be

computed with the same fixed background C◦
∗ , inducing a fixed gauge choice at infinity.

The two terms then certainly depend on this choice, as well as on the compactly

supported cohomology classes of the flat fields C♭
∗ in (6.55). However, if we change

the choice of C◦
∗ via a general gauge transformation (6.56), or similarly by large gauge

transformations, the two terms will transform in the same way, since the change in the

action depends only on the boundary data. This way the relative phase computed in

(6.11) is independent of the background gauge choice of C◦
∗ , and is also gauge invariant

under compactly supported gauge transformations. Thus the relative phases, computed

in this manner, depend only on the moduli that we described in section 3. We discuss

small and large gauge transformations in turn.

6.6.1 Moduli: small gauge transformations

Consider the small gauge transformation

C2 → C2 +
2π

µ1

dλ (6.57)

where λ is any one-form on M that vanishes on the UV boundary R4 × Y . We will

refer to such gauge transformations throughout as compactly supported. As explained
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in section 3.3, this transformation must be accompanied by a shift of the four-form

potential

C4 → C4 +
2π

µ1
B ∧ dλ (6.58)

leading to the change in the action

δSCS = iµ3

∫

D

2π

µ1
dλ ∧ e2πα

′F = i

∫

Σ

λΣ ∧ F = 0 . (6.59)

Here λΣ ≡ λ |Σ= 0 follows since Σ ⊂ R4 × Y and λ vanishes on the latter.

Now consider compactly supported small gauge transformations of C4 i.e. such that

the gauge generators vanish at infinity. A shift

C4 → C4 +
2π

µ3

dK . (6.60)

leads to a change in the action

δSCS = 2πi

∫

D

dK = 2πi

∫

Σ

KΣ . (6.61)

But this integral vanishes since KR4×Y = 0 and so in particular KΣ = 0.

6.6.2 Moduli: large gauge transformations

Now consider the large gauge transformation

C2 → C2 +
2π

µ1
σ (6.62)

where σ represents a class in H2
free(M, ∂M;Z) ∼= H2

free(X, Y ;Z). The net effect is the

shift in the action

δSCS = iµ3

∫

D

2π

µ1
σ ∧ e2πα

′F = 2πi

∫

D

σ ∧ F

2π
. (6.63)

However, since [F ]/2π ∈ H2(D;Z) is quantised, the last expression may be understood

as the cup product

H2(D,Σ;Z)×H2(D;Z) → Z
(

ι∗σ ,
[F ]

2π

)

7→
∫

D

σ ∧ F

2π
. (6.64)

Here ι∗ : H2(X, Y ;Z)→ H2(D,Σ;Z). Hence the action is invariant modulo 2πiZ.
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Finally, consider large gauge transformations of C4 that are compactly supported:

C4 → C4 +
2π

µ3
κ . (6.65)

Here κ is a closed compactly supported four-form with integral periods; that is, it rep-

resents a class in H4
free(X, Y ;Z). Thus the exponentiated action is manifestly invariant

since

δSCS = 2πi

∫

D

κ = 2πin ∼= 0 mod 2πiZ . (6.66)

We have thus shown that the exponentiated on-shell D3-brane action is invariant

under compactly supported gauge transformations of the RR fields.

6.6.3 Background choice: small gauge transformations

We now analyse the transformation properties of the D3-brane action under general

small gauge transformations. This is completely straightforward. Consider the small

gauge transformation

C2 → C2 +
2π

µ1

dλ . (6.67)

Taking into account the corresponding transformation of C4, the D3-brane action

changes by

δSCS = iµ3

∫

D

2π

µ1
dλ ∧ e2πα

′F = i

∫

Σ

λΣ ∧ FΣ . (6.68)

This of course depends only on the boundary data on Σ ⊂ Y . Note that 2πα′FΣ = BΣ.

Similarly,

C4 → C4 +
2π

µ3
dK . (6.69)

leads to a change in the action

δSCS = 2πi

∫

D

dK = 2πi

∫

Σ

KΣ , (6.70)

which again trivially depends only on data at the boundary.
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6.6.4 Background choice: large gauge transformations

We conclude by analysing the transformation properties of the D3-brane action under

general large gauge transformations. This is less straightforward. Only the exponenti-

ated action changes by terms depending only on the boundary data.

We begin with large gauge transformations of the axion. These may also be thought

of as SL(2;Z) transformations. Under the shift

C0 → C0 + 1 (6.71)

the action changes by

SCS → SCS + iµ3

∫

D

e2πα
′F , (6.72)

so that

δSCS =
i

4π

∫

D

F ∧ F . (6.73)

As we explain below, the change δSCS in SCS is thus given by the level k = 1/2 Chern-

Simons action of the abelian connection AΣ on the three-manifold Σ. This makes sense

as an element of iR/2πZ only when D is a spin manifold34.

Let us briefly recall how the Chern-Simons action of (Σ, AΣ) is defined. Suppose

first that L is a topologically trivial line bundle over Σ on which AΣ is a connection

one-form. Thus AΣ may be regarded as a globally-defined one-form on Σ, and there is

no subtlety in defining the Chern-Simons action at level k:

SCS(Σ, AΣ) =
ik

2π

∫

Σ

AΣ ∧ dAΣ . (6.74)

When the line bundle L is non-trivial, as it generally is in this paper, the definition

of the Chern-Simons action for a connection AΣ on L is more subtle. Let us begin by

rewriting (6.74) in the case that L is trivial. If D is a four-manifold with boundary Σ,

we may always extend AΣ as a one-form A over D, and by Stokes’ theorem we may

write

SCS(Σ, AΣ) =
ik

2π

∫

D

F ∧ F (6.75)

34Recall that when D is not spin, the “gauge field” A is more precisely a Spinc connection [114]. In
this case the discussion is slightly modified, and the curvature couplings that we have ignored would
be important in the analysis.

90



where F = dA is the curvature of A. Of course, the result is independent of the choice

of extension of AΣ over D. This formula, together with a non-trivial result in cobordism

theory, is the key to defining SCS(Σ, AΣ) in general. If Σ is an oriented three-manifold

with a line bundle L → Σ, then it is a non-trivial fact that there exists an oriented

four-manifold D, with boundary Σ = ∂D, together with an extension L of L over D.

Thus we may simply define the Chern-Simons action by the formula (6.75), where F

is the curvature of any connection on L that restricts to the connection AΣ on Σ. Of

course, a priori this definition then depends on the choice of (D,L). However, suppose
that (D′,L′) is another such extension. Then the difference in Chern-Simons actions

is given by

2πik

∫

W

F

2π
∧ F

2π
. (6.76)

where W is the compact four-manifold W = D ∪Σ −D′. Since F/2π is integral, the

difference in Chern-Simons actions is therefore an integer multiple of 2πi, provided

that k ∈ Z. Thus (6.75) may be used to define the Chern-Simons action, regarded as

an element of iR/2πZ.

When Σ is a spin three-manifold, which is always true when Σ is oriented, we may

also define Chern-Simons theory at half-integer levels, k ∈ 1
2
Z. Again, a key fact is

that (Σ, L) always bounds a spin four-manifold with line bundle (D,L). In this case

the integral
∫

W

F

2π
∧ F

2π
∈ 2Z (6.77)

is always even for W a compact spin four-manifold. Thus k may take half-integer

values.

To summarise, a gauge transformation C0 → C0+1 results in a change in the Chern-

Simons term in the D3-brane action by the level 1/2 Chern-Simons action of (Σ, AΣ).

This is well-defined as an element of iR/2πZ, and thus the change in the exponentiated

action exp(−δSCS) depends only on the boundary data. This analysis is particularly

important when we come to consider summing over worldvolume instantons in the

next subsection. In this case D is held fixed, but we precisely sum over different line

bundles L on D extending L. The change in the phases of each term in the sum under

C0 → C0 + 1 are then all equal, modulo 2πi.

Now consider the large gauge transformation

C2 → C2 +
2π

µ1
σ (6.78)
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where σ is a closed two-form on M with integer periods. Thus σ represents a class

[σ] ∈ H2
free(M;Z). In particular, σ defines a class [σ]X ∈ H2

free(X ;Z). The net effect is

the shift

δSCS = iµ3

∫

D

2π

µ1
σ ∧ e2πα

′F = i

∫

D

σ ∧ F . (6.79)

The embedding Σ →֒ M gives a two-form σΣ with [σΣ] ∈ H2
free(Σ;Z)

∼= 0. The integral

in (6.79) may then be understood as a definition of the boundary quantity

i

∫

Σ

σΣ ∧ AΣ . (6.80)

The argument is similar to that for the Chern-Simons action above. For AΣ a globally-

defined connection one-form on a trivial line bundle L, the integral (6.80) is well-

defined. We may then rewrite (6.80) by choosing any four-manifold D that bounds Σ,

any extension σD of σΣ that is closed and has integer periods, and any extension A of

AΣ. Notice that σD exists by the same reasoning that L and F exist. Then Stokes’

theorem implies that

i

∫

Σ

σΣ ∧AΣ = i

∫

D

σD ∧ F . (6.81)

A non-trivial line bundle L may be extended to a line bundle L over D, with A a

connection form on L extending AΣ. Then (6.81) may be used as a definition of the

left hand side. Any other D′, σD′ may of course be used, and the difference between

the two definitions is

i

∫

W

σW ∧ F (6.82)

where W = D ∪Σ −D′ and σW is obtained by gluing together σD and σD′ , which

recall agree on the gluing locus Σ. Since [F ]/2π and [σ]W are integral classes, this last

integral is an integer multiple of 2πi, and thus (6.81) is a well-defined definition of the

left and side, modulo 2πi.

Finally, consider large gauge transformations

C4 → C4 +
2π

µ3

κ (6.83)

where κ is a closed four-form onM with integer periods. Of course

δSCS = 2πi

∫

D

κD . (6.84)
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If D′ is any other extension of Σ then the difference

2πi

∫

D

κD − 2πi

∫

D′

κD′ = 2πi

∫

W

κW ∈ 2πi (6.85)

where as usual D ∪Σ −D′ and κW is constructed by gluing κD and κD′ along Σ. This

shows that (6.84) depends only on boundary data, modulo 2πi.

cpt supported non-cpt supported

small large small large

C0 – – – i
4π

∫

D
F ∧ F

C2 0 2πiZ i
∫

Σ
λΣ ∧ F i

∫

D
σD ∧ F

C4 0 2πiZ 2πi
∫

Σ
KΣ 2πi

∫

D
κD

Table 3: Variation of the on-shell D3-brane action under gauge transformations of the
RR fields. The integrals in the last column are invariants of the boundary data modulo
2πiZ. In particular, the top right hand entry is the level 1/2 Chern-Simons action for
(Σ, AΣ).

To summarise, the last two subsections have shown that exp(−SCS) changes by a

quantity that depends only on boundary data, for any gauge transformation of the RR

fields in the bulk. In contrast, the previous two subsections have shown that exp(−SCS)

is invariant under any compactly supported gauge transformation of the RR fields in

the bulk. This is summarised in Table 3.

6.6.5 Curvature terms

Finally, we turn to the curvature terms in (6.54). Recall that the first Pontryagin form

of a real vector bundle E with curvature form RE is given by

p1(RE) = −
1

8π2
TrRE ∧RE . (6.86)

In the case at hand, E is either the tangent bundle of D or its normal bundle in

the spacetime M. The relevant connection in (2.29) is then the Levi-Civita connec-

tion of the induced metric h on D, or the induced connection on the normal bundle,

respectively.

In this subsection we note that the curvature couplings evaluated at any two points p

and p′ in the same component of the supergravity moduli space (i.e. where the topology

of X at these two points is the same) are in fact equal. Thus when we compute the

relative phase of the condensate in (6.11), the curvature terms simply drop out.
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To compute the on-shell action we have fixed a gauge for C0, which means that

C0 ∈ R is a fixed real number. Choose points p and p′ in the supergravity moduli space

which have the same topology X for the Ricci-flat Kähler background – of course, the

Kähler class, positions of the N D3-branes, and B field and RR field moduli may be

different. However, in both cases Σ is extended to the same divisor D ⊂ X , and the

difference in curvature couplings is thus

2πiC0

48

[
∫

D

[p1(RND)− p1(RTD)]−
∫

D

[p1(R
′
ND)− p1(R′

TD)]

]

. (6.87)

Here R and R′ denote the curvature forms in the two corresponding spacetimes M,

M′. These depend on the metric gX on X and also on the positions of the D3-branes.

However, we may now define the double

D̄ ≡ D ∪Σ −D . (6.88)

The difference (6.87) is then

2πiC0

48

∫

D̄

[p1(RND̄)− p1(RTD̄)] (6.89)

which is manifestly a topological invariant, since D̄ is closed without boundary. One

must be slightly careful in this argument, since the boundary Σ along which we glue

is at infinite distance. However, one can simply cut off the integral at some large rc,

and glue the metrics and connections (smoothing appropriately) along Σrc = ∂Drc . We

may conveniently view ND̄ as the normal bundle of D̄ in the spacetime double

M̄ =M∪R4×Y −M′ . (6.90)

The key observation is that, due to its construction (6.88), D̄ has an orientation-

reversing diffeomorphism which sends a point in one copy of D to the corresponding

point in the other copy. The fixed point set of this map is Σ. However, it is well-known

that if D̄ admits an orientation-reversing diffeomorphism, the Pontryagin number

p1(D̄) ≡
∫

D̄

p1(RTD̄) (6.91)

is zero. This is easy to see: the definition (6.86) is independent of orientation, whereas

the fundamental class of D̄ (and hence the integral) changes sign under a change of

orientation. But any integral is diffeomorphism-invariant, hence the result. A similar

result is true for the Pontryagin numbers of a vector bundle E over D̄, provided35

35This is certainly not true in general.
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the orientation-reversing diffeomorphism lifts to a bundle isomorphism of E. In the

case at hand, the first Pontryagin class of E, which lives in H4(D̄;Z) ∼= Z, will then

be invariant, and thus the Pontryagin number will change sign. The normal bundles

in the two spacetimes are certainly isomorphic (although they have different curvature

forms). Thus there is a natural bundle isomorphism of the normal bundle of the double

that covers the orientation-reversing diffeomorphism, and it follows that

∫

D̄

p1(RND̄) = 0 . (6.92)

Note that an alternative proof of the above would have been to use an APS index

theorem argument, as in [115]. The idea would be to relate the curvature terms to an

appropriate linear combination of indices of operators with APS boundary conditions.

The APS index theorem would then relate the curvature terms to the indices, which

would be topological invariants of D in X and thus fixed integers, and boundary terms.

6.7 Sum over gauge field instantons: theta functions

In section 6.5 we showed that S[M ] is a topological invariant, depending only on the

cohomology classes [M ], ι∗[C2] ∈ H2(D;R). Recall that we have

[M ] = ι∗[B] + (2π)2α′c1(L) ∈ H2(D;R) . (6.93)

where L is a line bundle over D that restricts to L on Σ = ∂D.

However, for fixed L there are typically countably infinitely many L that extend L

over D, and thus countably infinitely many instantons {M(L)} with different topo-

logical classes [M(L)] ∈ H2(D;R). This infinite set may be characterised as follows.

Recall that Λ = H2
cpt(D;Z) and Λ∗ = H2(D;Z) are dual lattices under the cup product

Λ× Λ∗ → Z , (6.94)

and that there is a natural map

f : Λ→ Λ∗ (6.95)

that forgets that a class has compact support. Let L0 be any fixed extension of L over

D, with c1(L0) ∈ Λ∗. We then define

[M ]0 = ι∗[B] + (2π)2α′c1(L0) ∈ H2(D;R) , (6.96)
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so that the set of all gauge instantons that are asymptotic to the torsion line bundle

L is given by
{

[M(n)] = [M ]0 + (2π)2α′f(n) | n ∈ Λ
}

. (6.97)

The D3-brane path integral thus naturally produces, for fixed choice of L, an instanton

sum

∑

n∈Λ
exp(−S[M(n)]) . (6.98)

In order to obtain a more explicit expression for this sum it is convenient to introduce

bases for the dual lattices. Let {ei} be a basis for Λ and {e∗i } be the dual basis for Λ∗,

so that
∫

D

ei ∧ e∗j = δij . (6.99)

Here i = 1, . . . , b2(D), where b2(D) is the second Betti number36 of D. In this basis we

may express the map (6.95) in terms of a matrix

f(ei) = fji e
∗
j , (6.100)

where as usual a sum is understood over repeated indices. The matrix f = (fij) is

invertible and has integer coefficients. We now make some further definitions. Let

b =
1

2πα′ ι
∗[B] c =

1

2πα′ ι
∗[C2] (6.101)

a = b+ 2πc1(L0) a(n) = a+ 2πf(n) . (6.102)

These are all elements of H2(D;R). For fixed L and background fields C2, B and

axion-dilaton τ , the instanton sum (6.98) may be written as

I([C2], [B], τ, L) =
∑

n∈Λ
exp(−S[M(n)]) (6.103)

=
∑

n∈Λ
exp

[

− i

4π

(

τ a(n)cpt ∪ a(n) + a(n)cpt ∪ c+ ccpt ∪ a(n)
)

]

where

a(n)cpt = f−1(a(n)) , ccpt = f−1(c) . (6.104)

36Notice that our topological assumptions (6.21), together with the discussion in section 6.4, imply
that all the degree two cohomology of D is represented by L2 harmonic anti-self-dual two-forms. The
assumptions (6.21) hold if D is a toric divisor, for example.
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We may now expand the various forms in terms of the basis (6.99) as

a = ai e
∗
i , c = ci e

∗
i , n = niei , (6.105)

where ai = bi + 2πc1(L0)i and we may take

bi =
1

2πα′

∫

Si

B ci =
1

2πα′

∫

Si

C2 . (6.106)

where {Si} are a basis of two-cycles for H2(D;Z). A computation then shows that

a(n)cpt ∪ a(n) = (f−1)ijaiaj + 2π(f−1)jifjknkai + 2πniai + (2π)2fijninj (6.107)

and

acpt(n) ∪ c+ ccpt ∪ a(n) = (f−1)ij(aicj + ciaj) + 2π(f−1)jifjknkci + 2πnici . (6.108)

At this point, with a fixed basis and dual basis, we may view a, c and n as vectors in

Rb2(D), and the cup product as simply a dot product of vectors. In this notation, we

may write the instanton sum as a product of two factors

I([C2], [B], τ, L) = P(c, b, τ, L)Q(c, b, τ, L) (6.109)

defined as

P(c, b, τ, L) ≡ exp

[

− i

2π
a · f−1

sym

(τ

2
a+ c

)

]

(6.110)

Q(c, b, τ, L) ≡
∑

n∈Zb2(D)

exp

[

−iπτn · fn− i

2
n(1 + fT f−1)(τa + c)

]

. (6.111)

Here we have defined

f−1
sym ≡

1

2

[

f−1 + (f−1)T
]

. (6.112)

The sum in (6.111) precisely gives rise to a Riemann theta function. This is usually

defined as

θ[z,T] =
∑

n∈Zr

exp

[

2πi

(

1

2
n ·Tn+ n · z

)]

. (6.113)

Here z ∈ Cr is a complex vector and T is a complex symmetric r × r matrix whose

imaginary part is positive definite. The space of such matrices is denoted Hr, and is

known as the Siegel upper half-space. One requires the imaginary part of T to be
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positive definite in order that the sum in (6.113) converges. In fact, it then converges

absolutely and uniformly on compact subsets of Cr ×Hr. Defining

T = − τ fsym z = − 1

4π
(1 + fT f−1) (τa+ c) . (6.114)

we have that

Q(c, b, τ, L) = θ[z,T] (6.115)

At first sight the expression (6.109) seems to depend on the choice of L0, which ap-

pears in a via equation (6.102). Of course, from the original definition of the instanton

sum this cannot be true. Using the transformation properties of the theta function

under shifts z → z + Tm + k, with m,k ∈ Zr, one can in fact easily check that the

right hand side of (6.109) is independent of the choice of L0, although each factor is

separately not independent.

Note also that fsym is indeed negative definite. The argument for this traces back

to the fact that for any [M ] ∈ H2(D;R), which is represented by the vector M in the

above basis, we have

M · f−1M = [M ]cpt ∪ [M ] =

∫

D

M ∧M = −
∫

D

M ∧ ∗M ≤ 0 (6.116)

where M ∈ H2
L2(D, gD) is the harmonic anti-self dual L2-normalisable two-form that

represents [M ] ∈ H2(D;R). The inequality is strict provided M 6= 0. This shows

that (the symmetric part of) f−1, and hence also the symmetric part of f , is negative

definite. This is precisely the condition required for the instanton sum to converge.

Notice that if f is symmetric the expressions simplify slightly. If in addition we

formally set a = 0, one obtains simply

∑

n∈Zb2(D)

exp
[

− iπτn · f n− in · c
]

. (6.117)

Interestingly, this sum has appeared recently as the partition function for fractional in-

stantons [116, 117]. Indeed, these references obtain this result by computing a partition

function that counts U(1) SYM instantons with an “observable insertion”.

6.8 Coupling to Goldstone and pseudo-Goldstone bosons

In this final subsection we collect various pieces together and present an expression for

the gauge-invariant phase of the baryon condensate that we defined in (6.11). This will
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also give us the opportunity to discuss the dependence of this phase on the RR moduli

fields. The phase of the “bare” condensate, evaluated at a point37 p0 ∈M grav is

arg〈B(Σ, L)〉p0 = −µ3

∫

D

C4 −
1

2π
a · f−1

sym

(

C0

2
a+ c

)

+ arg θ[z,T] , (6.118)

where recall that to determine a point p0 in particular means choosing a B field and

RR fields. Specifically, these enter into (6.118) through the definitions (6.114), (6.101),

(6.102). For the relative phase (6.11) we then have, with a slight abuse of notation,

arg〈B(Σ, L)〉p0,p = −µ3

∫

D

[C4(p)− C4(p0)] + arg
P(p)
P(p0)

+ arg
θ[p]

θ[p0]
. (6.119)

This expression shows that the baryon condensate, as it currently stands, has a definite

charge under the U(1)b2(X) subgroup of baryonic symmetries associated to C4. On the

other hand, the theta function does not have a definite charge under the remaining

U(1)b4(X) subgroup of baryonic symmetries associated to C2 (although recall we have

shown that (6.119) is invariant under small and large gauge transformations of all RR

fields, and in particular is a well-defined function of the C2 moduli).

As we have explained in subsection 2.5, in the classical gauge theory the baryon

operators form a ring graded by their charge under the full baryonic symmetry group

U(1)χ−1. One may thus write a basis of baryon operators which have definite charge

(the basis is homogeneous) under this symmetry group. In all known examples, the

classical baryon operators dual to (Σ, L) indeed have definite charge under U(1)χ−1.

For example, for the Y p,q theories [14] the baryon operators dual to (Σ, L) are de-

terminants of the bifundamental fields, which thus carry charge ±1 under precisely

two U(1) subgroups. These are simply the U(1)s of the head and tail gauge group

of the corresponding bifundamental field, which in general are certainly anomalous.

However, quantum mechanically, one expects that the vacuum expectation values of

these operators should only have well-defined charges under exact global symmetries.

In the gravity dual, the group U(1)χ−1 is identified with the RR field torus (3.20), with

a U(1)b3(Y ) subgroup coming from non-compactly supported gauge transformations of

the C4 field. One thus expects the phases of the baryon VEVs to be linear precisely in

these b3(Y ) moduli.

However, as our calculation currently stands, the two sets of b4(X) anomalous sym-

metries enter the condensate calculation rather differently: the b4(X) moduli coming

from C4 behave in the same way as the b3(Y ) moduli. We believe this is evidence

37We have omitted the curvature coupling, which cancels in (6.119) below.
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for also summing over disconnected compact components Dcpt in the full condensate

calculation. A priori, one should include these as contributions to the Euclidean path

integral with fixed boundary conditions at infinity. The sum over such compact compo-

nents would then break the asymmetry we have described above, giving the condensate

a non-linear dependence also on the b4(X) modes associated to C4.

This discussion may also be phrased in terms of the coupling of the phase of the

condensate to the Goldstone and pseudo-Goldstone bosons. This generalises the dis-

cussion in [30]. The coupling may be obtained straighforwardly by considering two

infinitesimally displaced points p0 and p0 + δp in moduli space. Then the C4 coupling

in (6.119) gives

δϑM
∫

D

ΨM M = 1, . . . , b3(Y ), b3(Y ) + 1, . . . , b2(X) , (6.120)

while the C2 moduli δϕA clearly couple through a non-linear (p0-dependent) expression.

Notice that it is straightforward to show that ΨM is indeed integrable, using the bound-

ary behaviour determined in section 4. Indeed, ΨM form a basis for H4
free(X, Y ;Z), and

the coupling
∫

D
ΨM is then topological.

Summing over compact four-cycles, the b4(X) pseudo-Goldstone modes of C4, which

are associated to classes in the image H4(X, Y ;R) → H4(X ;R), would couple differ-

ently to each compact component. On the other hand, it is simple to see that the b3(Y )

Goldstone modes δϑI do not couple to the compact components, since

δϑI
∫

Dcpt

ΨI = 0 . (6.121)

This follows since by definition the ΨI are exact forms, which thus map to zero in

H4(X ;R). We thus see that also summing over Dcpt in the condensate calculation

implies that only the b3(Y ) Goldstone bosons couple linearly to the phase of the con-

densate, and that the two b4(X) sets of pseudo-Goldstone bosons associated to C4 and

C2 are then treated more symmetrically.

7 Summary and discussion

7.1 Summary

In this section we summarise the constructions of the paper. We begin by recalling

how one constructs a symmetry-breaking supergravity background, and describe the
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corresponding moduli space. We then summarise the prescription for computing baryon

condensates in such a background.

7.1.1 Supergravity backgrounds

We first summarise how one constructs a supergravity background of section 3, and

the moduli space of such vacua:

• The starting point is a Ricci-flat Kähler cone (C(Y ), g), together with a choice of

flat form fields on the Sasaki-Einstein link (Y, gY ). The latter means specifying

a flat B field together with a point in the RR torus (3.7). By AdS/CFT, the

corresponding AdS5 background determines a dual four-dimensional SCFT, with

the B field and RR fields determining the values of certain marginal couplings.

• We suppose that the underlying complex variety Z = C(Y ) above is such that it

admits a crepant resolution π : X → Z. By the conjecture in section 2.1, for each

Kähler class in the Kähler cone of H2(X ;R) there exists a unique asymptotically

conical Ricci-flat Kähler metric gX on X . This is known to be true in some cases,

as discussed in section 2.1, and is a conjectural non-compact version of Yau’s

theorem.

• We pick m points x1, . . . , xm on X and place Ni pointlike D3-branes at each

point, such that
∑m

i=1Ni = N . Then one can always solve uniquely for the warp

factor H in (3.10), as a sum of Green’s functions on (X, gX). In order that the

supergravity approximation to string theory be valid one requires all Ni to be

large.

• One picks particular differential form representatives of the B field and RR fields

on Y , in their appropriate cohomology classes determined by the marginal cou-

plings, and extends these over X such that they satisfy the supergravity equations

of motion. The only non-flat field is C4, whose field strength is given in terms

of the warp factor H by (3.2). That the flat B field and C2 field on Y may be

extended as flat fields over X is a topological fact. The differential forms are

denoted B◦, C◦
∗ . More precisely, B◦ and C◦

2 may be defined once the resolution

X is fixed, whereas C◦
4 is a function of the D3-brane positions x1, . . . , xm and the

metric on X . Thus we should write C◦
4({xi}, [ωX]), and choose solutions with

fixed gauge C◦
4 |∂M at infinity.
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• One may add to these background differential forms any flat field that is com-

pactly supported, so that the gauge at infinity is fixed. We identify fields iff they

differ by a compactly supported gauge transformation. This leads to the group

H2(X, Y ;R)/H2
free(X, Y ;Z) classifying the space of such B fields, and the RR

torus (3.20). These groups are clearly independent of the choice of fixed back-

ground forms B◦, C◦
∗ . In principle one can also turn on discrete torsion fields,

which should be classified by K-theory.

• The moduli are then: a choice of crepant resolutionX , a Kähler class inH2(X ;R),

the choice of where one puts the pointlike D3-branes, and the B field and RR field

moduli described in the last item. The supergravity backgrounds describe38 an

RG flow from the UV SCFT dual to (Y, gY ) to a product of N = 4 SYM theories

with gauge groups SU(Ni) in the IR, together with the Goldstone bosons of

section 5.

7.1.2 Baryon condensates

The computation of baryon condensates in section 6 may then be summarised as fol-

lows:

• Our starting point is to pick a smooth39 supersymmetric three-submanifold Σ

together with a torsion line bundle L over Σ. A D3-brane wrapped over (Σ, L) is

dual to a baryon operator B(Σ, L), whose condensate in one of the above vacua

we would like to compute.

• The conjecture (6.10) is that the condensate 〈B(Σ, L)〉p, in a supergravity vacuum

p described above, is given by a path integral over Euclidean D3-branes in the

background with fixed boundary (Σ, L), at a (any) point in R4. In practice

we may compute this semi-classically by evaluating the on-shell worldvolume

action of such D3-branes. In this paper we have focused on the contribution of

a particular asymptotically conical divisor D with boundary Σ. More generally

one should presumably integrate over a moduli space40 of such minimal surfaces

38One might also consider crepant partial resolutions, which if they admit Ricci-flat Kähler metrics
with appropriate conical behaviour near the residual singularities would describe RG flows from the
UV SCFT to more interesting (products of) SCFTs in the IR, together with some number of Goldstone
bosons. Such backgrounds, where explicit Ricci-flat Kähler metrics are known, were studied in [22].

39More generally one can consider multiply-wrapped D3-branes, leading to flat non-abelian gauge
bundles over Σ, or singular/intersecting Σ. These form a larger class of baryon operators, as discussed
in section 6.1.

40For toric geometries note that there is a unique connected toric divisor D ⊂ X with ∂D = Σ.

102



with boundary Σ, which also raises the issue of fermion zero modes and whether

one should consider only connected D. We shall discuss these matters further in

section 7.2. For now we focus on the contribution to the semi-classical evaluation

of the path integral of a smooth connected divisor D.

• As shown in our previous paper [22], the part of the Born-Infeld action that

is independent of the D3-brane worldvolume gauge field M has precisely the

correct divergence at large r to interpret exp(−SD3) as the VEV of an operator

with conformal dimension equal to that of the D3-brane wrapped on (Σ, L). One

may also perform a simple holographic renormalisation of this part of the action.

The condensate is identically zero if D contains any of the points xi where the

background D3-branes are placed [22].

• One must next extend the torsion line bundle L on Σ to a line bundle L on D.

Given the topological assumptions (6.21), which for example hold for toric vari-

eties, this is always possible. We have then shown that there is always a unique

supersymmetric solution for the worldvolume gauge fieldM which is L2 normalis-

able, for any extension L. This ensures that the gauge field does not contribute to

the conformal dimension result above (there is no renormalisation required), and

that M is flat at infinity. Moreover, the on-shell action is a topological invariant.

• The imaginary part of the D3-brane action is described by the Chern-Simons

terms. Even classically the overall phase of the VEV of a baryon operator is not

physical; but the relative phase of the VEVs at different points in the moduli

space is physical, and it is this quantity that we shall compute. Thus we must

pick a base point p0, which is a particular choice of smooth supergravity vacuum,

and compute the phase of the on-shell D3-brane action in a vacuum p relative

to the phase evaluated in the background p0. In practice, we study the case in

which both p and p0 both lie in the same chamber C, meaning that X ∼= X0 are

isomorphic.

• For fixed X and choice of fixed background fields B◦, C◦
0 , C

◦
2 and C◦

4({xi}, [ωX ]),

the invariance of the D3-brane action under compactly supported gauge trans-

formations in section 6.6 implies that the Chern-Simons action is a well-defined

function of the B field and RR field moduli. These moduli consist of a point in

H2(X, Y ;R)/H2
free(X, Y ;Z), and a point in the RR torus (3.20). The value of

the Chern-Simons action certainly depends on the arbitrary choice of fixed back-
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ground fields above. However, under any gauge transformation of the background

fields, the exponentiated Chern-Simons action changes by terms that depend only

on the boundary data. Since the boundary data is fixed and equal for all points

in the moduli space, if one computes the difference of Chern-Simons actions,

evaluated at any point p in the moduli space and a fixed point p0, respectively,

then this relative value is gauge-invariant modulo 2πiZ.

• Finally, the choice of L is far from unique: for a fixed L on Σ there are in-

finitely many extensions L(n) over D, labelled by a point in a lattice n ∈ Λ ∼=
H2(D,Σ;Z). Since there is a unique L2 solution to the worldvolume gauge field

equations of motion for each L(n), in the Euclidean path integral one naturally

sums over the lattice Λ. This leads to a Riemann theta function, described in

section 6.7.

7.2 Discussion

The results we have described in this paper leave a number of issues open to further

study. In this final subsection we discuss some of the remaining problems.

Firstly, we encourage geometric analysts to prove the non-compact version of the

Calabi conjecture in section 2.1. This is vital for the form of the supergravity moduli

space we have described. Since submitting the first version of this paper to the archive,

the conjecture has subsequently been proved in [45] in the case that the Kähler class

is compactly supported. The general case in which [ω]Y is non-zero is thus still open,

although we believe41 solving this is now just a technical problem. It would also be

interesting to understand in more detail how the classical VMS of section 2.5 compares

to the supergravity moduli space of section 3, especially in its global structure. For

example, the B field is periodic42, while the FI parameters, over which the classical

vacuum moduli space M fibers, are real numbers.

The metric fluctuations of section 4.4 should certainly be studied properly, giving a

more complete fluctuation analysis than we have presented in section 4. In particular

the recent paper [87], which appeared whilst this article was being completed, will

be very useful. The results in sections 4 and 5 relate to the Kaluza-Klein spectrum

41We thank C. van Coevering and A. Futaki for discussions on this issue.
42Recall that the conifold may be realised as the IR fixed point of an RG flow induced via mass

perturbation of the N = 2 A1 orbifold theory, and the periodicity of the B field may be understood
from a field theory point of view in terms of Seiberg duality of this theory [82]. Whether such an
argument can be extended is not clear.
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on general Sasaki-Einstein manifolds. It would be interesting to undertake a general

investigation of these spectra, and also to obtain better control over the eigenvalues

µA that arise in the asymptotic expansions. It is also important to study further the

identification of massive vector multiplets in AdS5 with anomalous baryonic currents

that we discussed in section 5.3. In particular, the key point that needs to be addressed

is whether these currents belong to the Kaluza-Klein spectrum of AdS5×Y , as suggested

by the results of this paper, or whether they correspond to highly massive states, like

the Konishi current of N = 4 SYM. For instance, it would be interesting to see if it is

possible to get a handle on these currents via a field theory calculation.

An outstanding problem is to understand precisely how baryons in the classical field

theory are related to baryons, realised as wrapped D3-branes, in AdS5 × Y . We have

given some idea of how complicated the latter are in section 6.1, and we refer the

reader back to that section for a reminder of the discussion. Particularly difficult to

understand are D3-branes wrapped on singular (or intersecting) Σ, and time-dependent

D3-branes. This is essentially a geometric problem. One would also like to understand

how the anomalous part of classical baryonic charge group U(1)χ−1 is realised in terms

of D3-branes wrapping Σ, with appropriate supersymmetric gauge bundles, on Y : a 1-1

mapping between baryon operators and D3-brane states implies there is such a reali-

sation. Understanding this problem is probably a necessary prerequisite to calculating

VEVs of more general baryon operators. In section 6.8 we have alluded to the fact that

the full condensate probably involves also summing over compact components. It is

also important to address fermion zero modes, which would give vanishing conditions.

Another interesting question is whether there is any hope that the gravity condensates

may be reproduced by a field theory calculation. In particular, it would be interesting

to understand how theta functions may arise.

Finally, perhaps the most interesting remaining issue concerns the 2b4(X) massless

pseudo-Goldstone modes. As we have explained, these massless modes correspond to

flat directions in the classical moduli space. This is different from the situation dis-

cussed in section 2.3, where the RR moduli are instead axions which get “eaten” by the

worldvolume gauge fields, via a generalised Green-Schwarz mechanism. Notice that the

existence of these massless fields may be also understood from the complementary point

of view of Kaluza-Klein reduction on (warped) Calabi-Yau manifolds. In particular,

b2(X) of them are Kähler moduli of the non-compact Calabi-Yau, complexified by the

RR C4 moduli, which are expected to be classically massless. In general, in Calabi-Yau

compactifications a potential for massless modes can be generated by D-brane instan-
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tons wrapping compact cycles in X . Thus an instanton-induced superpotential may

lift some of the moduli we have described. Understanding how such mechanisms may

work in the context of AdS/CFT is clearly very interesting. Since instanton-induced

effects are generally proportional to the on-shell instanton action, the same reasoning

as in section 6.8 implies that the b3(Y ) Goldstone bosons, which by Goldstone’s theo-

rem are certainly massless, do not couple to such D-brane instantons. Thus the b3(Y )

massless fields should be massless after any such instanton effects are taken into ac-

count; the remaining massless modes we have found are not protected, and it would be

interesting to try to understand if and how they may gain a (small) mass via D-brane

instanton effects. Correspondingly, it would be nice to understand the realisation of

this mechanism directly in the gauge theory.
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Y. Tachikawa, F. Yagi and S.-T. Yau for useful discussions. J. F. S. is supported by a

Royal Society University Research Fellowship. D. M. acknowledges support from NSF

grant PHY-0503584.

A Closed and co-closed forms on cones

In this appendix we study L2 closed and co-closed forms on cones. If (W, gW ) is a

compact Riemannian manifold then its cone C(W ) ∼= R+ ×W has metric

dρ2 + ρ2gW (A.1)

where ρ > 0. We use the coordinate ρ, rather than r, since for applications in the main

text we will sometimes have ρ = r but sometimes ρ = 1/r. We will correspondingly

need to study forms that are L2 on intervals of the form [ρ0,∞) and (0, ρ0] for some

(any) ρ0 with 0 < ρ0 <∞. We assume that C(W ) has even dimension 2n, so that W

has dimension 2n− 1. The analysis below essentially follows that in [86, 118, 119].

Let θ be a p-form on C(W ) of the form

θ = g(ρ)α+ f(ρ)dρ ∧ β . (A.2)
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Here α and β are pull-backs of forms on W , and thus are independent of ρ. One easily

computes

∗ θ = (−1)pρ2n−2p−1gdρ ∧ ∗Wα+ ρ2n−2p+1f ∗W β , (A.3)

and

dθ = g′dρ ∧ α + gdα− fdρ ∧ dβ (A.4)

d†θ =
g

ρ2
d†
Wα−

f

ρ2
dρ ∧ d†

Wβ −
[

f ′ + (2n− 2p+ 1)
f

ρ

]

β . (A.5)

The Laplacian ∆ = dd† + d†d acting on θ is then

∆θ =

[

−g′′ − (2n− 2p− 1)
g′

ρ

]

α +
g

ρ2
∆Wα−

2g

ρ3
dρ ∧ d†

Wα

+

[

−f ′′ + (2n− 2p+ 1)

(

f

ρ2
− f ′

ρ

)]

dρ ∧ β +
f

ρ2
dρ ∧∆Wβ −

2f

ρ
dβ .(A.6)

Here ∗W , d†
W = (−1)p ∗W d ∗W and ∆W are the Hodge operator, codifferential and

Laplacian on (W, gW ), respectively. Note this corrects the formula in [86].

An arbitrary p-form on C(W ) may be written

θ = α(ρ) + dρ ∧ β(ρ) (A.7)

where α(ρ), β(ρ) are forms on Wρ ⊂ C(W ). For fixed ρ, we may expand α(ρ) and β(ρ)

in terms of eigenmodes of the Laplacian ∆W

α(ρ) =
∑

µ∈Spec∆(p)
W

gµ(ρ)αµ (A.8)

β(ρ) =
∑

λ∈Spec∆(p−1)
W

fλ(ρ)βλ (A.9)

where

∆
(p)
W αµ = µαµ (A.10)

∆
(p−1)
W βλ = λ βλ . (A.11)

We wish to classify harmonic p-forms θ on the cone that are both closed and co-closed.

Suppose first that β(ρ) = 0. dθ = 0 immediately gives43 g′µαµ = 0 and gµdαµ = 0

for each mode αµ, which implies gµ = cµ is constant. d†θ = 0 implies that d†
Wαµ = 0.

43Here and in the rest of this appendix, a prime denotes derivative with respect to ρ.
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Thus αµ is both closed and co-closed on the link (W, gW ) and thus harmonic, and so

µ = 0.

Suppose instead that α(ρ) = 0. d†θ = 0 implies that d†
Wβλ = 0, while dθ = 0 implies

that dβλ = 0. Thus again βλ is harmonic on (W, gW ), and so λ = 0. The equation

d†θ = 0 also implies

ρf ′
0 + (2n− 2p+ 1)f0 = 0 (A.12)

which has general solution

f0 = cρ−2n+2p−1 . (A.13)

More generally, focusing on an eigenmode αµ in the equation dθ = 0 gives αµ ∝ dβλ

for some λ. Without loss of generality we may take αµ = dβλ. Applying ∆W to this

relation gives λ = µ. We then have the relation

g′µ = fµ . (A.14)

The equation d†θ = 0 implies either fµ = 0, in which case gµ is constant and we reduce

to the solution already discussed above, or else d†
Wβµ = 0. d†θ = 0 then implies

gµ d
†
Wαµ = ρ2

[

f ′
µ + (2n− 2p+ 1)

fµ
ρ

]

βµ (A.15)

or, equivalently,

ρ2g′′µ + ρ(2n− 2p+ 1)g′µ − µgµ = 0 . (A.16)

This has general solution

gµ = c+ρ
p−n+νp + c−ρ

p−n−νp (A.17)

where c± are constants and we have defined

νp =
√

(p− n)2 + µ . (A.18)

One might also worry that there is an additional solution when the two solutions in

(A.17) coincide. This occurs when νp = 0, which implies (since necessarily µ ≥ 0)

µ = 0, n = p, leading to the equation

ρg′′0 + g′0 = 0 (A.19)
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which has general solution

g0 = c1 + c2 log ρ . (A.20)

However, note that if µ = 0 then α0 is harmonic, and the relation α0 = dβ0 is impossible

by the Hodge decomposition on (W, gW ) (alternatively, β0 is harmonic and thus closed,

so α0 = 0).

To summarise, any closed and co-closed p-form on C(W ) may be written as a con-

vergent sum of the following three types of modes

(I) : α0 (A.21)

(II) : ρ−2n+2p−1dρ ∧ β0 (A.22)

(III)± : ρp−n±νpdβµ + (p− n± νp)ρp−n−1±νpdρ ∧ βµ . (A.23)

Here α0, β0 are harmonic p-forms and (p− 1)-forms, respectively, while βµ in mode III

is a co-closed (p − 1)-form which is an eigenfunction of ∆W with eigenvalue µ. Note

that µ > 0 necessarily for modes of type III.

It is straightforward to compute the pointwise square norms ‖θ‖2 = 1
p!
θi1...ipθ

i1...ip of

the above modes. For a general p-form θ as in (A.2) one obtains

‖θ‖2 = ρ−2p
[

g2‖α‖2W + ρ2f 2‖β‖2W
]

. (A.24)

Here ‖ · ‖W denotes the pointwise norm on (W, gW ). The pointwise square norms of

the above modes are then given by a non-zero function on W times the function of ρ

given in Table 4. Using these formulae it is a simple matter to determine which modes

mode ‖θ‖2 L2
0 L2

∞

I ρ−2p p < n p > n

II ρ−4n+2p p > n p < n

III+ ρ−2n+2νp yes no

III− ρ−2n−2νp no yes

Table 4: Summary of the square-integrability of the various modes.

are L2 near to ρ = 0 and ρ =∞. Fix some ρ0 with 0 < ρ0 <∞. If the integral of the

pointwise square norm of θ over (0, ρ0]×W is finite then we shall say that θ is L2
0. On

the other hand, if the integral of the pointwise square norm of θ over [ρ0,∞) ×W is

finite then we shall say that θ is L2
∞. The relevant integrals take the form
∫

F (ρ)ρ2n−1dρ . (A.25)
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In particular, if F (ρ) = ρ−2n+γ then F is integrable on (0, ρ0] iff γ > 0 and is integrable

on [ρ0,∞) iff γ < 0.

B Eigenvalues of Laplacians on (Y, gY )

In this section we derive some formulae relating the one-forms β(1)A in the main text,

which are eigenforms of the Laplacian ∆Y , to scalar eigenfunctions on (Y, gY ). These

formulae are used in section 5.3.

Suppose that ψ is an L2 harmonic two-form on (X, gX). As discussed in the main

text, there is an asymptotic expansion of ψ with leading term

ψ ∼ d
(

r−1−νβ
)

(B.1)

where β is a co-closed one-form on (Y, gY ) satisfying

∆Y β = µ β (B.2)

and

ν =
√

1 + µ . (B.3)

As argued in the main text, ψ is (1, 1) and primitive, namely

ωX yψ = 0 , (B.4)

where ωX is the Kähler form on X . Since asymptotically

ωX ∼ ωC(Y ) =
1

2
d(r2η) (B.5)

the equation (B.4) gives, from its leading term,

dβ y dη = 2(1 + ν)β y η . (B.6)

Defining the function

f = β y η (B.7)

one can also prove the identity

∆Y f = µ β y η − dβ y dη . (B.8)
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This is proven using (B.2), together with the fact that η is a Killing one-form, and the

Weitzenböck formula

∆Y β = −∆i∆iβ + RicY · β . (B.9)

On a Sasaki-Einstein five-manifold RicY = 4gY . Combining (B.6) and (B.8) one obtains

∆Y f = E f (B.10)

where

E = µ− 2− 2
√

1 + µ . (B.11)

This last formula is used in section 5.3.

C Flat form fields

In this appendix we review the classification of flat form fields, up to gauge equivalence,

on a spacetimeM. Such fields play an important role throughout the paper.

A flat (p− 1)-form potential C has, by definition, field strength G = dC = 0. Since

it is the field strength G that generally enters the supergravity equations, one may

typically turn on flat fields without altering the equations of motion. The potential C

transforms under a form of gauge transformation via

C → C + dλ (C.1)

where λ is any (p−2)-form on spacetimeM. In fact, more generally C also transforms

under large gauge transformations

C → C +
2π

µ
a (C.2)

where a is any closed (p− 1)-form with integral periods. These reduce to (C.1) when

the cohomology class of a is trivial. The constant µ depends on the normalisation of

the potential, and may be determined from the Wess-Zumino couplings of an object

coupling electrically to C. Specifically, the latter is given by

SWZ = µ

∫

C . (C.3)
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The transformations (C.2) then leave the exponentiated action exp(iSWZ) invariant.

This leads to the groupHp−1(M;R)/Hp−1
free (M;Z), classifying the space of closed poten-

tials mod gauge transformations. Here Hp−1
free (M;Z), which is the image of Hp−1(M;Z)

in Hp−1(M;R), is the group of large gauge transformations.

However, in general not all flat form fields arise this way. The p-form field strength G

satisfies a form of Dirac quantisation, and consequently defines an element ofHp(M;Z).

A flat p-form field on a spacetimeM then lies in the kernel of the map Hp(M;Z) →
Hp(M;R). But this kernel is by definition the torsion component Hp

tor(M;Z). Such a

torsion p-form field strength is not described globally by a closed (p−1)-form potential.

Indeed, the short exact coefficient sequence

0→ Z→ R→ U(1)→ 0 (C.4)

induces in a standard way the long exact sequence

· · · −→ Hp−1(M;Z) −→ Hp−1(M;R) −→ Hp−1(M;U(1))
β−→

Hp(M;Z) −→ Hp(M;R) −→ · · · (C.5)

which implies that Hp
tor(M;Z) ∼= β(Hp−1(M;U(1))). Here β is the so-called Bockstein

map. In fact it is Hp−1(M;U(1)) which classifies, up to gauge equivalence, flat form

fields with a field strength of degree p. An element of this group may be regarded as

specifying the holonomy of the potential over closed (p − 1)-cycles. Thus, if γ is a

chain representing a (p − 1)-cycle [γ] ∈ Hp−1(M;Z), we may define the holonomy of

the potential C over γ to be

exp

(

iµ

∫

γ

C

)

. (C.6)

The holonomy of a flat potential defines a homomorphism Hp−1(M;Z)→ U(1). Since

U(1) is a divisible group, the group of such homomorphisms is Hp−1(M;U(1)). The

long exact coefficient sequence (C.5) implies that in general the groupHp−1(M;U(1)) is

disconnected, with the number of connected components being the number of elements

in Hp
tor(M;Z). Thus the discussion in the previous paragraph misses the flat fields

that have torsion fluxes [G] ∈ Hp
tor(M;Z), which are not described globally by a closed

(p− 1)-form potential C.

In this paper we shall largely not include the torsion flat fields in the discussion.

An important exception to this is in section 6. Another reason for ignoring the torsion

classes is that, although we are treating RR fields in terms of cohomology in this paper,

more precisely they are classified by K-theory [120]. These differ in their torsion.
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