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ABSTRACT
Signed networks contain edge annotations to indicate whether
each interaction is friendly (positive edge) or antagonistic (negative
edge). The model is simple but powerful and it can capture novel
and interesting structural properties of real-world phenomena. The
analysis of signed networks has many applications from model-
ing discussions in social media, to mining user reviews, and to
recommending products in e-commerce sites.

In this paper we consider the problem of discovering polarized
communities in signed networks. In particular, we search for two
communities (subsets of the network vertices) where within com-
munities there are mostly positive edges while across communities
there are mostly negative edges. We formulate this novel problem
as a “discrete eigenvector” problem, which we show to be NP-hard.
We then develop two intuitive spectral algorithms: one determinis-
tic, and one randomized with quality guarantee

√
n (where n is the

number of vertices in the graph), tight up to constant factors.
We validate our algorithms against non-trivial baselines on real-

world signed networks. Our experiments confirm that our algo-
rithms produce higher quality solutions, are much faster and can
scale to much larger networks than the baselines, and are able to
detect ground-truth polarized communities.
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1 INTRODUCTION
The increase of polarization around controversial issues is a grow-
ing concern with important societal fallouts. While controversy can
be engaging, and can lead to users spending more time on social-
media platforms, in disproportionate amounts it can generate a
negative user experience, potentially leading to the abandonment
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Figure 1: An example of two polarized communities in the
Congress network (dataset details in Section 5). Solid edges
are positive, while dashed edges are negative.

of the platform. Excessive polarization, together with the emer-
gence of bots and the spread of misinformation, has thus become
an urgent technological problem that needs to be solved. It is not
surprising that the last few years have witnessed an uptake of the
research on methods for the detection and suppression of these
phenomena [21, 25, 36, 37, 43, 54].

While polarization is a well studied phenomenon in political and
social sciences [5, 8, 18, 19, 23, 55], modern social-media platforms
brought it to a different scale, providing an unprecedented wealth of
data. The necessity to analyze the available data and gain valuable
insights brings new algorithmic challenges.

In order to study polarization in large-scale online data, one first
step is to detect it. As a step in this direction, in this paper we study
a fundamental problem abstraction for this task, i.e., the problem
of discovering polarized communities in signed networks.

A signed network is a simple, yet general and powerful, repre-
sentation: vertices represent entities and edges between vertices
represent interactions, which can be friendly (positive) or antago-
nistic (negative) [27]. Signed graphs analysis has many applications
from modeling interactions in social media [30], to mining user
reviews [7], to studying information diffusion and epidemics [35],
to recommending products in e-commerce sites [39, 53], and to esti-
mating the structural balance of a (physical) complex system [4, 41].

In this paper, we introduce the 2-Polarized-Communities prob-
lem (2PC), which requires finding two communities (subsets of the
network vertices) such that within communities there are mostly
positive edges while across communities there are mostly negative
edges. Furthermore, we do not aim to partition the whole network,
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so the two polarized communities we are searching can be con-
cealed within a large body of other network vertices, which are
neutral with respect to the polarized structure. Our hypothesis
is that such 2-community polarized structure accurately captures
controversial discussions in real-world social-media platforms.

Figure 1 shows an example of the two most polarized communi-
ties found in the Congress network (details in Section 5). The two
communities involve 34 and 37 vertices (out of 219), respectively,
having more than 98% of positive edges within and 78% negative
edges across. The vertices in gray do not participate in any of the
two polarized communities: either they have too few connections
with any community, or the polarity of their relations are mixed
and thus their position within the debate unclear.

Our work is, to the best of our knowledge, the first to propose a
spectral method for extracting polarized communities from signed
networks. In addition, we present hardness results and approxima-
tion guarantees. Our problem formulation deviates from the bulk of
the literature where methods typically look for finding many com-
munities while partitioning the whole network [3, 6, 12, 15, 24, 31].
As discussed in more detail in Sections 2 and 3, the closest to our
problem statement is the work by Coleman et al. [15], who employ
the correlation-clustering framework and search for exactly two
communities. However, while in that work all vertices must be
included in a cluster, in our setting we allow vertices not to be part
of any cluster. This captures the fact that polarized communities
are typically concealed within a large body of neutral vertices in a
social network. An algorithm that attempts to partition the whole
network would fail to reveal these communities. As an additional
feature, our methods can be fine-tuned to increase or decrease the
size of the discovered communities. Finally, while some spectral
techniques promote balanced partitions, we hypothesize that two
polarized communities might be of very different sizes, and thus
our problem formulation does not enforce evenly sized subgraphs.

Our reliance on spectral methods carries several benefits. First,
it is possible to leverage readily available, highly optimized, and
parallelized software implementations. This makes it straightfor-
ward for the practitioner to analyze large networks in real settings
using our approach. Second, even though in this paper we focus
on the case of two communities, we can take inspiration from the
existing literature on spectral graph partitioning to easily extend
our algorithms to the case of an arbitrary number of subgraphs,
e.g., by recursive two-way partitioning or the analysis of multiple
eigenvectors [47].

In this paper we make the following contributions:
• We formulate the 2-Polarized-Communities problem (2PC)
as a “discrete eigenvector” problem (Section 3).

• Exploiting a reduction from classic correlation clustering, we
prove that 2PC is NP-hard (Theorem 3.3).

• We devise two intuitive spectral algorithms (Section 4), one
deterministic, and one randomized with quality guarantee

√
n

(Theorem 4.2), which is tight up to constant factors. We believe
these to be the first purely combinatorial bounds for spectral
methods. Our results apply to graphs of arbitrary weights. Our
algorithms’ running time is essentially the time required to
compute the first eigenvector of the adjacency matrix of the
input graph.

• Our experiments (Section 5) on a large collection of real-world
signed networks show that the proposed algorithms discover
higher quality solutions, are much faster than the baselines,
and can scale to much larger networks. In addition, they are
able to identify ground-truth planted polarized communities
in synthetic datasets.

Related literature is discussed in the next section, while Section
6 discusses future work and concludes the paper.

2 BACKGROUND AND RELATEDWORK
Signed networks. Signed graphs appeared in a work by Harary,
who was interested in the notion of balance in graphs [27]. In 1956,
Cartwright and Harary generalized Heider’s psychological theory
of balance in triangles of sentiments to the theory of balance in
signed graphs [9].

A more recent line of work develops the spectral properties of
signed graphs, still related to balance theory. Hou et al. [28] prove
that a connected signed graph is balanced if and only if the smallest
eigenvalue of the Laplacian is 0. Hou [29] also investigates the
relationship between the smallest eigenvalue of the Laplacian and
the unbalancedness of a signed graph.

Signed graphs have also been studied in different contexts. Guha
et al. [26] and Leskovec et al. [34] study directed signed graphs
and develop status theory, to reason about the importance of the
vertices in such graphs. Other lines of research include edge and
vertex classification [10, 50], link prediction [33, 49], community
detection [1, 3, 6, 48], recommendation [51], and more. A detailed
survey on the topic is provided by Tang et al. [52].

A few recent works explore the problem of finding antagonistic
communities in signed networks, though with approaches funda-
mentally different to ours. Lo et al. consider directed graphs and
search for strongly-connected positive subgraphs that are nega-
tive bi-cliques [38], which severely limits the size of the resulting
communities. A relaxed variant for undirected networks was de-
scribed in subsequent work [20]. Chu et al. propose a constrained-
programming objective to find k warring factions [14], as well as
an efficient algorithm to find local optima.
Correlation Clustering. In the standard correlation-clustering
problem [6], we ask to partition the vertices of a signed graph into
clusters so as to maximize (minimize) the number of edges that
“agree” (“disagree”) with the partitioning, i.e., the number of posi-
tive (negative) edges within clusters plus the number of negative
(positive) edges across clusters. In the original problem formula-
tions, such as the ones studied by Bansal et al. [6], Swamy [48],
and Ailon et al. [1], the number of clusters is not given as input,
instead it is part of the optimization. More recent works study the
correlation-clustering problem with additional constraints, e.g., Gi-
otis and Guruswami [24] fix the number of clusters, Coleman et
al. [15] consider only two clusters, while Puleo and Milenkovic [45]
consider constraints on the cluster sizes.

The problem we study could be seen as a variant of correlation
clustering where we search for two clusters, while we allow vertices
not to be part of any cluster.
Detecting polarization in social media. A number of papers
have studied the problem of detecting polarization in social media
Some approaches are based on text analysis [13, 42, 44], while other



approaches consider a graph-theoretic setting [2, 16, 22]. However,
our work differs significantly from these papers, as we consider
signed networks, we provide a correlation-clustering problem for-
mulation, and obtain results with approximation guarantees.

3 PROBLEM STATEMENT
Our setting is reminiscent to the correlation-clustering problem [6],
which we recall here. Given a signed network G = (V ,E+,E−),
where E+ is the set of positive edges and E− the set of negative
edges, the goal is to find a partition of the vertices into k clusters,
so as to maximize the number of positive edges within clusters plus
the number of negative edges between clusters.

An interesting property of the correlation-clustering formula-
tion is that one does not need to specify in advance the number
of clusters k , instead it is part of the optimization. In certain cases,
however, the number of clusters is given as input. The general
problem (given k) has been studied by Giotis and Guruswami [24],
while Coleman et al. [15] studied the 2-Correlation-Clustering
problem (k = 2). The problem arises, for instance, in the domain of
social networks, where two well-separated clusters reveal a polar-
ized structure. It can be defined as follows.

Problem 1 (2CC). Given a signed network G = (V ,E+,E−), find
a partition S1, S2 of V so as to maximize

cc(S1, S2) =
∑

i ∈{1,2}
(u,v)∈Si×Si

1
2
1E+ (u,v) +

∑
(u,v)∈S1×S2

1E− (u,v),

where 1S is the indicator function of the set S .

A crucial limitation of the 2CC problem is that all vertices must
be accounted for in one of the two clusters. From an application
perspective, however, this may be a strong assumption. For example,
in a social network, we may expect two polarized communities on
a topic, but there may be many individuals who are neutral.

In order to find communities embedded within large networks,
we need to exclude neutral vertices from the solution. Therefore,
a first approach might be to consider maximizing agreements in-
cluding a neutral cluster, that is, finding a partition of V into S1, S2,
and S0, so that S1 and S2 are the two polarized communities, and S0
is the neutral community, and the 2CC objective cc(S1, S2) is max-
imized. However, this modification does not change the problem
significantly. It is easy to see that it is always no worse to switch a
vertex from cluster S0 to one of the other two clusters.

Proposition 3.1. Let S0, S1, S2 be any partition ofV , with S0 , ∅.
Then there is always a partition S ′1, S

′
2 of V (i.e., S ′1 ∪ S ′2 = V and

S ′1 ∩ S ′2 = ∅) with S1 ⊆ S ′1 and S2 ⊆ S ′2 so that

cc(S ′1, S
′
2) ≥ cc(S1, S2).

A further modification might be to subtract disagreements from
the value of the solution, that is, to maximize agreements minus
disagreements. In other words, we consider the following problem.

Problem 2 (2CC-Full). Given a signed network G = (V ,E+,E−),
find a partition S0, S1, S2 of V so as to maximize

cc(S1, S2) =
∑

i ∈{1,2}
(u,v)∈Si×Si

1
2
(
1E+ (u,v) − 1E− (u,v)

)
+

∑
(u,v)∈S1×S2

(
1E− (u,v) − 1E+ (u,v)

)
,

where 1S is the indicator function of the set S .

Unfortunately, problem 2CC-Full suffers from the same issue as
problem 2CC: switching a vertex from the neutral cluster S0 to one
of the polarized clusters S1 or S2 (the one that is best) leads to no
worse solution according to the objective cc.

Proposition 3.2. Let S0, S1, S2 be any partition ofV , with S0 , ∅.
Then there is always a partition S ′1, S

′
2 of V (i.e., S ′1 ∪ S ′2 = V and

S ′1 ∩ S ′2 = ∅) with S1 ⊆ S ′1 and S2 ⊆ S ′2 so that

cc(S ′1, S
′
2) ≥ cc(S1, S2).

A nice property of the cc objective is that it can be written
neatly in a matrix notation. Let A be the adjacency matrix of the
signed network G = (V ,E+,E−), where positive edges (i, j) ∈ E+
are indicated by Ai j = 1, negative edges (i, j) ∈ E− are indicated
by Ai j = −1, and non-edges are indicated by Ai j = 0. A partition
S0, S1, S2 ofV can be represented by a vector x ∈ {−1, 0, 1}n , whose
i-th coordinate is xi = 0 if i ∈ S0, xi = 1 if i ∈ S1, and xi = −1 if
i ∈ S2. Then 2CC-Full can be reformulated as follows.

Problem 3 (2CC-Full). Given a signed network G = (V ,E+,E−)
with n vertices and signed adjacency matrix A, find a partition
S0, S1, S2 of V represented by vector x ∈ {−1, 0, 1}n maximizing

cc(S1, S2) = xTAx.

Since our goal is to discover polarized communities S1 and S2 that
are potentially concealed within other neutral vertices S0, we want
to find minimal sets S1 and S2. This can be achieved by normalizing
xTAx with the size of S1 and S2, which in vector form is xT x. This
consideration motivates our last problem formulation, which we
dub 2-Polarized-Communities (2PC).

Problem 4 (2PC). Given a signed network G = (V ,E+,E−)
with n vertices and signed adjacency matrix A, find a vector x ∈
{−1, 0, 1}n that maximizes

xTAx
xT x

.

In the rest of this paper we refer to the objective function of
Problem 4 as polarity. As polarity is penalized with the size of the
solution, vertices are only added to one of the two clusters if they
contribute significantly to the objective. We show this problem to
be NP-hard (proof in the Appendix) and propose algorithms with
approximation guarantees.

Theorem 3.3. 2PC is NP-hard.

It should be noted that 2PC does not enforce balance between
the communities. This can be beneficial if there exist polarized
communities of significantly different size in the input network. In
an extreme case, the solution could even be comprised of a single
cluster if there is a large, dense community that overwhelms any
other polarized formation.



4 ALGORITHMS
The formulation of 2PC is suggestive of spectral theory, which
we utilize to design our algorithms. We propose and analyze two
spectral algorithms: one is deterministic, while the second is ran-
domized and achieves approximation guarantee

√
n. The running

time of both algorithms is dominated by the computation of a spec-
tral decomposition of the adjacency matrix. In practice, this can be
done using readily available implementations that exploit sparsity
and can run in parallel on multiple cores.

The first algorithm, Eigensign, works by simply discretizing the
entries of the eigenvector of the adjacency matrix corresponding
to the largest eigenvalue.

To illustrate the difficulty of approximating 2PC, we analyze the
following simple algorithm, which we refer to as Pick-an-edge.
Pick an arbitrary edge: if it is positive, put the endpoints in one
cluster, leaving the other cluster empty; if it is negative, put the
endpoints in separate clusters.

Proposition 4.1. The Pick-an-edge algorithm gives an n-appro-
ximation of the optimum.

Proof. The described algorithm outputs a solution x such that

xTAx
xT x

≥ 1.

The result now follows from the fact that OPT ≤ λ1 ≤ n, where λ1
is the largest eigenvalue of A. □

In the case of networks with arbitrary real weights, it can be
shown that despite the close relationship between the 2PC objective
and the leading eigenvector of A, Eigensign cannot do better than
this up to constant factors. Consider a fully connected network
with one edge (u,v) of weightw ≫ 0. The rest of the edges have
weight close to zero. The primary eigenvector of the adjacency
matrix has two entries — those corresponding to u and v — of
the form 1/

√
2 − ϵ for some small ϵ , while the rest are close to

zero. We construct a solution vector y as follows: the two entries
corresponding to u and v are set to 1, and the rest to 0. We have
yTAy/yT y ≈ w . On the other hand, the Eigensign algorithm
outputs a vector x for which xTAx/xT x ≈ 2w/n. It should be
noted however, that the focus of this paper is the analysis of the
2PC problem on signed networks. The approximation capabilities of
the Eigensign algorithm on signed networks (the adjacency matrix
A contains entries with values only −1, 0, and 1) are left open.

Eigensign generally outputs a solution comprised of all the
vertices in the graph — unless some components of the eigenvector
are exactly zero — which is, of course, counter to the motivation of
our problem setting.

To overcome this issue we propose a randomized algorithm, Ran-
dom-Eigensign, which also computes the first eigenvector, i.e., v,
of the adjacency matrix. Instead of simply discretizing the entries
of v, it randomly sets each entry of x to 1 or -1 with probabilities
determined by the entries of v. Entriesvi with large magnitude |vi |
are more likely to turn into sgn(vi ) (−1 or 1), while entries vi with
small magnitude |vi | are more likely to turn into 0. For details see
Algorithm 2. Note that if x is the output of Random-Eigensign,
then E[x] = v.

The next theorem shows approximation guarantees of Random-
Eigensign for signed networks.

Theorem 4.2. Algorithm Random-Eigensign gives a
√
n-appro-

ximation of the optimum in expectation.

Proof. First, observe that we can rewrite the expected value of
the objective as follows:

E

[
xTAx
xT x

]
=

n∑
k=1
E

[
xTAx
xT x

���� xT x = k] Pr (xT x = k)
=

n∑
k=1

1
k
E
[
xTAx|xT x = k

]
Pr (xT x = k)

=

n∑
k=1

1
k

∑
i,j
E
[
Ai jxix j |xT x = k

]
Pr (xT x = k).

If we define si j = sдn(vi )sдn(vj ), where sдn(x) denotes the sign of
x ∈ R, for all i, j we have

E
[
Ai jxix j |xT x = k

]
Pr (xT x = k)

= Ai jsi jPr (xi = 1,x j = 1|xT x = k)Pr (xT x = k). (1)

We now invoke Bayes’ theorem and proceed.
n∑

k=1

1
k

∑
i,j

Ai jsi jPr (xi = 1,x j = 1)Pr (xT x = k |xi = 1,x j = 1)

=

n∑
k=1

1
k

∑
i,j

Ai jvivjPr (xT x = k |xi = 1,x j = 1)

=
∑
i,j

Ai jvivj

n∑
k=1

1
k
Pr (xT x = k |xi = 1,x j = 1)

=
∑
i,j

Ai jvivjE

[
1

xT x
|xi = 1,x j = 1

]
.

Since 1/x is a convex function, by Jensen’s inequality it is

E

[
1

xT x
|xi = 1,x j = 1

]
≥ 1
E
[
xT x|xi = 1,x j = 1

] .
Furthermore, for any i, j,

E
[
xT x|xi = 1,x j = 1

]
≤ 2 +

√
n − 2.

To see this, observe that E
[
xT x

]
= ∥v∥1 ≤

√
n. So we have

E

[
1

xT x
|xi = 1,x j = 1

]
≥ 1

2 +
√
n − 2

.

Therefore,

E

[
xTAx
xT x

]
=
∑
i,j

Ai jvivjE

[
1

xT x
|xi = 1,x j = 1

]
≥
∑
i,j

Ai jvivj
1

2 +
√
n − 2

=
λ1

2 +
√
n − 2

.

That is,

O(
√
n)E

[
xTAx
xT x

]
≥ λ1 ≥ OPT .

□

In the appendix we show that this result is tight.



Algorithm 1 Eigensign
Input: adjacency matrix A

1: Compute v, the eigenvector corresponding to the largest eigen-
value λ1 of A.

2: Construct x as follows: for each i ∈ {1, . . . ,n}, xi = sgn(vi ).
3: Output x.

Algorithm 2 Random-Eigensign
Input: adjacency matrix A

1: Compute v, the eigenvector corresponding to the largest eigen-
value λ1 of A.

2: Construct x as follows: for each i ∈ {1, . . . ,n}, run a Bernoulli
experiment with success probability |vi |. If it succeeds, then
xi = sgn(vi ), otherwise xi = 0.

3: Output x.

4.1 Enhancements for practical use
When using these algorithms to analyze real-world networks in
practical applications, it might be beneficial to apply tweaks to
enhance their flexibility and produce a wider variety of results. We
propose the following simple enhancements.

Eigensign: As discussed above, Eigensign always outputs a so-
lution involving all the vertices in the network. We can circumvent
this shortcoming by including only those vertices such that the
corresponding entry of the eigenvector v is at least a user-defined
threshold τ . That is, xi = sgn(vi ) if |vi | ≥ τ , 0 otherwise.

Random-Eigensign: The
√
n-approximation guaranteed by Ran-

dom-Eigensign is matched in the extreme case in which all entries
of the eigenvector v are of equal magnitude. Paradoxically, in this
situation a solution comprised of all vertices would be optimal, but
each vertex is included with a small probability of 1/

√
n. We could of

course fix this by modifying the probabilities to be min{1,
√
n |vi |}

for each i . However, in the opposite extreme, where most of themag-
nitude of v is concentrated in one entry, modifying the probabilities
this way might disproportionately boost the likelihood of including
undesirable vertices. An adequate multiplicative factor for both
cases is ∥v∥1, modifying the probabilities to be min{1, ∥v∥1 |vi |}
for each i; in the first case, all vertices are taken with probability 1,
while in the second, the probabilities remain almost unchanged. We
employed this factor in our experiments with satisfactory results.

An obvious question arising is whether the approximation guar-
antee of Random-Eigensign could be improved using the modifica-
tion described above. This question is left for future investigation.

5 EXPERIMENTAL ASSESSMENT
This section presents the evaluation of the proposed algorithms:
first (Section 5.1) we present a characterization of the polarized
communities discovered by our methods; then (Section 5.2) we
compare our methods against non-trivial baselines in terms of
objective, efficiency and scalability, and ability to detect ground-
truth planted polarized communities in synthetic datasets. Finally,
we show a case study about political debates (Section 5.3).
Datasets. We select publicly-available real-world signed networks,
whose main characteristics are summarized in Table 1. High-
landTribes1 represents the alliance structure of the Gahuku–Gama
1konect.cc

Table 1: Signed networks used: number of vertices and edges;
ratio of negative edges (ρ− =

|E− |
|E+∪E− | ); L1-norm of the eigen-

vector corresponding the largest eigenvalue of A (∥v∥1); and,
ratio of non-zero elements of A (δ = 2 |E+∪E− |

|V |( |V |−1) ).

Real-world datasets |V | |E+ ∪ E− | ρ− ∥v∥1 δ

HighlandTribes 16 58 0.50 3.61 0.48
Cloister 18 125 0.55 3.71 0.81
Congress 219 521 0.20 10.51 0.02
Bitcoin 5 k 21 k 0.15 31.21 1.2e−03
WikiElections 7 k 100 k 0.22 35.96 3.9e−03
Referendum 10 k 251 k 0.05 42.66 4.2e−03
Slashdot 82 k 500 k 0.23 59.46 1.4e−04
WikiConflict 116 k 2M 0.62 119.66 2.9e−04
Epinions 131 k 711 k 0.17 72.20 8.2e−05
WikiPolitics 138 k 715 k 0.12 91.48 7.4e−05

WikiConflict16 |V | 1M 67M 0.62 129.04 3.4e−05
Epinions16 |V | 2M 23M 0.17 75.99 9.5e−06

tribes of New Guinea. Cloister1 contains the esteem/disesteem rela-
tions of monks living in a cloister in New England (USA).Congress1
reports (un/)favorable mentions of politicians speaking in the US
Congress. Bitcoin2 and Epinions2 are who-trusts-whom networks
of the users of Bitcoin OTC and Epinions, respectively.WikiElec-
tions1 includes the votes about admin elections of the users of the
English Wikipedia. Referendum3 [32] records Twitter data about
the 2016 Italian Referendum: an interaction is negative if two users
are classified with different stances, and is positive otherwise. Slash-
dot2 contains friend/foe links between the users of Slashdot. The
edges of WikiConflict2 represent positive and negative edit con-
flicts between the users of the English Wikipedia. WikiPolitics1

represents interpreted interactions between the users of the English
Wikipedia that have edited pages about politics.
In order to study scalability, we artificially augment two of the
largest datasets to produce networks with millions of vertices and
tens of millions of edges (details in Section 5.2).

Implementation. All methods, with the exception of algorithm
FOCG (details in Section 5.2), are implemented in Python (v. 2.7.15)
and compiled by Cython. The experiments run on a machine
equipped with Intel Xeon CPU at 2.1GHz and 128GB RAM.4

5.1 Solutions characterization
Wefirst characterize the solutions discovered by ourmethods Eigen-
sign (for short E) and Random-Eigensign (RE), and we show how
the tweaks described in Section 4.1 enhance their flexibility in pro-
ducing awider variety of results. In particular, algorithm E evaluates
the threshold τ for each |vi | discretized at the third decimal digit.
This operation is carried out efficiently, since v is computed only
once regardless of the number of evaluated values of τ . On the other
hand, algorithm RE employs ∥v ∥1 as multiplicative factor, therefore
the probabilities are modified to be min{1, ∥v∥1 |vi |}. In the follow-
ing, we refer to the two communities included in the solutions as

2snap.stanford.edu
3researchgate.net/publication/324517807_Annotated_Corpus_for_Stance_Detection_-
_Italian_Constitutional_Referendum_2016
4Code and datasets available at github.com/egalimberti/polarized_communities.

http://konect.cc
http://snap.stanford.edu
https://www.researchgate.net/publication/324517807_Annotated_Corpus_for_Stance_Detection_-_Italian_Constitutional_Referendum_2016
https://www.researchgate.net/publication/324517807_Annotated_Corpus_for_Stance_Detection_-_Italian_Constitutional_Referendum_2016
https://github.com/egalimberti/polarized_communities
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Figure 2: Solutions produced by E as a function of τ .
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Figure 3: Edge-agreement ratio of the solutions of RE.

S1 and S2, namely the subsets of vertices that are assigned with 1
and −1, respectively, by the solution vector x.

Figure 2 shows how the solutions returned by algorithm E are
affected by parameter τ in terms of polarity, edge-agreement ratio
(i.e., the portion of edges in the solution that comply with the
polarized structure), and size on four datasets. In all of them, the
three measures follow very similar trends. The highest polarity is
achieved at about a fourth of the domain of τ , when most of the
neutral vertices are discarded. The edge-agreement ratio, instead,
is consistently close or equal to 1: the solutions have a coherent
polarized structure regardless of the chosen τ . Finally, as expected,
the number of vertices included in the solutions decreases as τ
grows, and presents a substantial decay at the beginning of the
domain. Therefore, parameter τ is a powerful enhancement that
allows algorithm E to be tuned to return the most suitable solution
for the domain under analysis.

For algorithm RE, due to the randomness, we report the best
solution with respect to polarity out of 100 runs. We do the same
for the baseline LS, that we introduce in Section 5.2. Figure 3 shows
the boxplots of the edge-agreement ratio over the larger datasets. It

has significant values in all cases, above 0.9, and is stable among the
different executions. Polarity and solution size for all datasets are
reported in Figure 4. For such measures, we do not show boxplots
as they are highly dependent on the specific dataset and very stable
over different runs: their index of dispersion is lower than 0.01 and
3.2e−05, respectively, for all datasets. This confirms that algorithm
RE is very stable and does not requiremultiple executions to identify
high-quality solutions.

5.2 Comparative evaluation
We next compare algorithms E and RE against non-trivial baselines
inspired by methods proposed in the literature for different yet
related problems.
FOCG. The first method we compare to, whose objective is to find k
oppositive cohesive groups (i.e., k-OCG) in signed networks, is taken
from [14]. Algorithm FOCG detects p different k-OCG structures
within the input signed network, among which we elect the one
having highest polarity as the ultimate solution to our problem. We
setup the algorithm with the default configuration (i.e., α = 0.3 and
β = 50) and k = 2. The code is provided by the authors.
Greedy. Our second baseline is inspired by the 2-approximation
algorithm for densest subgraph [11]. AlgorithmGreedy (for shortG),
iteratively removes the vertex minimizing the difference between
the number of positive adjacent edges and the number of negative
adjacent edges, up to when the graph is empty. At the end, it returns
the subgraph having the highest polarity among all subgraphs
visited during its execution. The assignment of the vertices to the
clusters is guided by the sign of the components of the eigenvector v,
corresponding to the largest eigenvalue of A.
Bansal. A different approach, motivated by the strong similarity
to our setting, is inspired by Bansal’s 3-approximation algorithm
for 2CC on complete signed graphs [6]. For each vertex u ∈ V , this
algorithm, which we refer to as Bansal (for short B), identifies u
together with the vertices sharing a positive edge with u as one
cluster, and the vertices sharing a negative edge as the other. Of
these |V | possible solutions, it returns the one maximizing polarity.
LocalSearch. Finally, we consider a local search approach (Lo-
calSearch, for short LS), guided by our objective function. Algo-
rithm LS starts from a set of vertices chosen at random; at each
iteration, it adds (removes) to (from) the current solution the vertex
that maximizes the gain in terms of polarity, and finally terminates
when the gain of moving any vertex is lower than 0.2. Also for this
algorithm, the assignment of the vertices to the clusters is guided
by the signs of v.

Figure 4 reports the achieved values of polarity for all compared
algorithms on all datasets, as well as the size (normalized by |V |)
of the solutions returned. In most of the cases, algorithm E results
the be the most competitive method with respect to polarity; on
the other hand, algorithm RE is able to return solutions of high
polarity for the small-sized datasets. Algorithm FOCG is instead not
competitive since its solutions are of extremely small size (note that
the numerator of our objective can be up to quadratic in the size of
the denominator, so size matters for reaching high polarity). Algo-
rithm G has, in general, polarity comparable to algorithm E, slightly
higher in a few cases (with the exception of WikiConflict, in which
algorithm E clearly outperforms algorithm G). However, it must
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Figure 4: Polarity and solution size (normalized) of the pro-
posed algorithms and baselines.
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Figure 5: F1-score as a function of the noise parameter η
(nc = 100, nn = 800).
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Figure 6: F1-score as a function of the number noisy vertices
nn (nc = 100, η = 0.5).

be noted that algorithm G often returns a very dense subgraph as
one of the two communities, leaving the second community totally
empty, which is, of course, undesirable in our context. Algorithms
B and LS, instead, exhibit weak performance in terms of polarity:
their search spaces strongly depend on the neighborhood structure
of the vertices (for B), or on the random starting sets (for LS). About
the solution size, all methods, with the exception of algorithms
FOCG and LS, return solutions of reasonable dimension with re-
spect to the number of vertices of the networks. Excluding the small
empirical datasets (i.e., HighlandTribes, Cloister, and Congress),
the size of the solutions is below 20% of the input.
Planted polarized communities. In order to better assess the
effectiveness of the various algorithms, we test their ability to detect

a known planted solution, concealed within varying amounts of
noise. For our purposes we create a collection of synthetic signed
networks identified by three parameters: the size of each planted
polarized communitync = |S1 | = |S2 | (for convenience, we consider
communities having the same size); the number of noisy vertices
external to the two polarized communities nn = |V \ (S1 ∪ S2)|;
and, a noise parameter η ∈ [0, 1] governing the edge density and
agreement to the model. In detail:

• edges inside S1 (respect. S2) exist and are positive with proba-
bility 1 − η, exist and are negative with probability η/2, and
do not exist with probability η/2;

• edges between S1 and S2 exist and are negativewith probability
1 − η, exist and are positive with probability η/2, and do not
exist with probability η/2;

• all other edges (outside the two polarized communities) exist
with probability η and have equal probability of being positive
or negative.

The higher η, the less internally dense and polarized the two com-
munities are, and the more connected the noisy vertices are, both
between themselves and to the communities. Observe how the case
with no noise (η = 0) corresponds to the “perfect” structure.

For each configuration of the parameters, we create 10 different
networks and we report the average F1-score in detecting which
vertices belong to S1 (respect. S2) and which ones to V \ (S1 ∪ S2)5.

In Figure 5 we fix the size of the synthetic network to 1 000
(nc = 100, nn = 800) and vary η. For η = 0, all algorithms have, as
expected, maximum F1-score with the exception of algorithm G
that, even in the case without noise, is not able to exactly identify
the planted structure. As expected, as η increases, the F1-score
decays for all methods; however, our algorithms E and RE clearly
outperform the others. Figure 6 shows the F1-score varying the
number nn of vertices external to the polarized communities, with
fixed nc = 100 and η = 0.5. Again algorithms E and RE stand out,
especially E that presents F1-score close to the maximum in all
cases. Algorithm FOCG has the poorest performance: the small size
of its solutions penalizes the recall, which is never greater than 0.1.
Runtime and scalability. Figure 7 reports the runtime of all algo-
rithms over all datasets. Algorithms E and RE, with their practical
enhancements discussed in Section 4.1, always terminate in less
than 40 seconds. The runtime of the baselines is instead more than
an order of magnitude higher than algorithms E and RE.

In order to assess the scalability of our methods, we augment
two of the larger datasets (i.e., WikiConflict and Epinions) by ar-
tificially injecting dummy vertices having a number of randomly-
connected edges equal to the average degree of the original network,
while maintaining ρ− (i.e., the ratio of negative edges). The largest
datasets created in this way contain up to 2M vertices and 67M
edges (see Table 1 for details). Note that, as the quantity of noise
increases, δ , i.e., the ratio of non-zero elements of the adjacency
matrix, decreases. Nonetheless, δ differs with respect to the original
datasets less than an order of magnitude in both cases, making the
following results about scalability significant.

5For instance recall is defined as ( |S∗
1 ∩ S1 | + |S∗

2 ∩ S2 |)/ |S1 ∪ S2 |, where S∗
1 (S∗

2 )
denotes the first (second) community returned by the algorithm while S1 (S2) denotes
the corresponding ground-truth one.
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Figure 8, which reports on the x-axis the number of dummy
vertices added, shows that the runtime of both algorithms E and RE
grows linearly with the number of vertices. Among the two, algo-
rithm E is slightly slower than algorithm RE due to the evaluation
of multiple values of the threshold τ . In the worst case, algorithms
E returns in about 21minutes. On the other hand, the baselines can-
not complete each computation within the 10 000 seconds timeout
that we apply. No baseline terminates for more than |V | additional
dummy vertices on both datasets. In particular, algorithm FOCG is
able to handle in reasonable time only the original versions, with no
dummy vertices. It should be noted that algorithm FOCG recursively
finds a polarized structure, removes the corresponding subgraph,
and repeats the process on the remaining vertices. While each one
of these iterations runs efficiently, most of the found structures are
too small to be of interest in our setting. Thus, it is necessary to
allow the algorithm to complete many of such iterations in order
to find interesting solutions.

5.3 Case study: political debate
We finally analyze the solution extracted by algorithm RE from Ref-
erendum to show tangible benefits of our problem formulation and
algorithms in identifying the two most polarized communities in a
signed networkmodeling political debates. The Referendum dataset
includes Twitter data about the Italian Constitutional Referendum
held on December 4, 2016 (more information about the Referendum
can be found at this link). The original data seed consists of about
1M tweets posted between November 24 and December 7, 2016, ex-
tended by collecting retweets, quotes, and replies. The users (10 884
in total) are annotated with a stance about their outlook towards
the Referendum as favorable (5 137), against (1 510), or none (4 237)
when the stance cannot be inferred. An interaction (edge) is consid-
ered negative if occurred between two users (vertices) of different

stances, and is positive otherwise, i.e., we treat “none” users as
neutral, in agreement with both favorable and against users.

The solution output by algorithm RE consists of two communi-
ties of 27 and 1 558 users, accounting for 14% of the overall user set.
Both communities have more than 99% of positive edges within and
74% of negative edges in-between, and thus, are highly polarized.
Interestingly, all the 27 users of the smaller community are classi-
fied as favorable to the Referendum, while the users in the larger
community as against (75%) or “none” (24%), with the exception of 3
favorables. Moreover, the vertices in the solution have, on average,
183.12 adjacent edges compared to the average 22.85 contacts of
the vertices outside, meaning that the solution identifies the “core”
of the controversies, i.e., a set of intensely debating users about
the Referendum. These results provide evidence of the practical
value of our problem formulation and algorithms to identify two
communities that are polarized about a certain topic.

6 CONCLUSIONS AND FUTUREWORK
Detecting extremely polarized communities might enable fine-
grained analysis of controversy in social networks, as well as
open the door to interventions aimed at reducing it [21]. As a
step in this direction, in this paper we introduce the 2-Polarized-
Communities problem, which requires finding two communities
(subsets of the network vertices) such that within communities
there are mostly positive edges while across communities there
are mostly negative edges. We prove that the proposed problem is
NP-hard and devise two efficient algorithms with provable approx-
imation guarantees. Through an extensive set of experiments on a
wide variety of real-world networks, we show how the proposed ob-
jective function can be optimized to reveal polarized communities.
Our experiments confirm that our algorithms are more accurate,
faster, and more scalable than non-trivial baselines.

This work opens several enticing avenues for further inquiry.
Some questions follow immediately from our theoretical results.
What are the approximation capabilities of Eigensign in signed
networks? Can we improve the

√
n factor of Random-Eigensign,

e.g., by multiplying the probability vectors by ∥v ∥1 or some other
factor? Finally, it would be interesting to extend the problem to
detect an arbitrary number of communities.

The application of the proposed algorithms to real-world net-
works with positive and negative relationships can have impli-
cations in computational social science problems. For instance,
understanding opinion shifts in data streaming from social me-
dia sources can be investigated in terms of polarized communi-
ties. Opinions shared within vertices (individuals) belonging to the
same community are likely to be reinforced after different interac-
tions; discussions within individuals with antagonistic perspectives
may result in both opinion shifts and controversy amplification.
The identification of a subgraph made of vertices belonging to
2-Polarized-Communities may lead to novel ways to discover
the basic laws behind opinion shift dynamics. Thus, it would be
interesting to study extensions of the 2-Polarized-Communities
problem in the setting of temporal networks.
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A APPENDIX
Hardness (Theorem 3.3). In this section, we refer to a solution of
2PC as S1, S2, which denote the subsets of vertices that are assigned
a 1 or a −1, respectively, in the solution vector x. Given a vertex
v ∈ V and a subset of vertices S ⊆ V , we use d+(v, S) (respectively
d−(v, S)) to denote the number of ‘+’ edges (respectively ‘−’ edges)
connecting v to other vertex in S .

We exploit the following result in our proof. It can be easily
verified by examining the behavior of the cost functions when
moving one vertex from one set to the other, so we omit the proof.

Proposition A.1. If we require S1 ∪ S2 = V , problem 2CC-Full
is equivalent to 2CC, i.e., their optimal solutions are the same.

Wenow prove that 2PC isNP-hard by reduction from 2CC, which
has been shown to be NP-hard by Shamir et al. [46].

Proof of Theorem 3.3. Given a graph G̃ = (Ṽ , Ẽ) with n ver-
tices as instance of 2CC, we construct a graph G = (V ,E) to be
an instance of 2PC as follows. For every vertex in Ṽ we create a
corresponding vertex in V , and for every edge in Ẽ we add an edge
in E between the corresponding vertices in Ṽ , and having the same
sign. Furthermore, for every vertex v in Ṽ we introduce a clique of
m > 3n vertices (and positive edges) and a ‘+’ edge between v and
every vertex in the clique. The strategy to prove hardness is the



following. We first restrict ourselves to complete solutions of 2PC
(i.e. S1 ∪ S2 = V ), which can of course be mapped to solutions of
2CC. We prove that if one such complete solution S1, S2 optimizes
2PC, the corresponding solution of 2CC is also a maximizer. Second,
we show that any optimal solution of the constructed instance of
2PC is complete.

We denote the objective of the problems 2CC and 2PC, on in-
stances G̃ and G, byW2CC andWHPC , respectively. We consider
a solution S̃1, S̃2 of 2CC, and a solution S1, S2 of 2PC, such that
S̃1 ⊆ S1 and S̃2 ⊆ S2. Let us first restrict our attention to complete
solutions of 2PC. Observe that

WHPC(S1, S2) =
1

n + nm

(
W2CC(S̃1, S̃2) − D(S̃1, S̃2)

)
+

1
n + nm

(
|S1 |m + |S2 |m + n

(
m

2

))
,

where D(S̃1, S̃2) =
∑
v ∈S̃1 d+(v, S̃2) +

∑
v ∈S̃2 d+(v, S̃2) + d−(v, S̃1) +

d−(v, S̃2), that is, the sum of disagreements in the resulting cluster-
ing. Note thatW2CC(S̃1, S̃2) − D(S̃1, S̃2) is exactly the objective of
the 2CC-Full problem. In other words, the obective of 2PC on G is
proportional to the objective of 2CC-Full on G̃ plus a constant. By
Proposition A.1, the first part of the proof is complete.

We now consider a complete solution S1, S2 and show that remov-
ing vertices leads to no further improvement. Suppose we remove
a set R of r vertices from the solution. We want to show

ν (WHPC(S1, S2)) − ∆(R)
n + nm − r

<
ν (WHPC(S1, S2))

n + nm
,

where ν (WHPC(S1, S2)) is the numerator ofWHPC(S1, S2), and ∆(R)
is the net change after removing the vertices in R (i.e., the number of
agreements minus disagreements that are removed). Equivalently,
wewant to show∆(R)(n+nm) > rν (WHPC(S1, S2)). We first consider
that the removed vertices are in Ṽ . Observe that

∆(R) ≥ rm −
(
r

2

)
− r (n − r ),

ν (WHPC(S1, S2)) ≤
(
n

2

)
+ nm + n

(
m

2

)
.

This upper bound holds because the right hand side simply counts
all possible ‘+’ and ‘−’ edges, the edges between each actual vertex
and its clique, and the edges within cliques. It is therefore sufficient
to show

rm − rn + r2 −
(
r

2

)
> r

(n
2
)
+ nm + n

(m
2
)

n + nm
.

After some manipulations and relaxing the condition to remove the
dependence on r , we arrive at the following sufficient condition:

(m − n) (n + nm) >
(
n

2

)
+ nm + n

(
m

2

)
,

which holds form > 3n. The case where the removed vertices are
not in Ṽ can be analyzed in the same manner. We have shown that
we can reduce an instance of 2CC to a polynomially-sized instance
of 2PC. □

Tight example for Random-Eigensign.We consider a complete
graph where all edges are positive, except for one Hamiltonian

cycle comprised of negative edges. Without loss of generality, we
can order the vertices so that the adjacency matrix is

A =

©«

0 −1 1 . . . 1 −1
−1 0 −1 1 . . . 1

...
...

1 1 . . . −1 0 −1
−1 1 . . . 1 −1 0 . . .

ª®®®®®®¬
.

That is, matrixA is comprised entirely of ones, save for the subdiag-
onal and superdiagonal entries, which are -1, and An1 = A1n = −1.
It is easy to see that a constant vector v, i.e., satisfyingvi = vj is an
eigenvector of eigenvalue n − 5. Since

∑
i λ

2
i (A) = ∥A∥2F = n(n − 1),

the eigenvalue n − 5 will be the largest if
n(n − 1)

2
< (n − 5)2,

which holds for n > 16. Note that
√
nv is a feasible solution for 2PC.

We now show that Random-Eigensign attains a value of Θ(
√
n).

We first rely on Equality (1) to obtain the following:

E

[
xTAx
xT x

]
=

n∑
k=1

1
k

∑
i,j

Ai jsi jPr (xi = 1,x j = 1)Pr (xT x = k |xi = 1,x j = 1)

=

n∑
k=1

1
k

∑
i,j

Ai jvivjPr (xT x = k |xi = 1,x j = 1)

Now, observe that given k , Pr (xT x = k |xh = 1,xl = 1) is con-
stant for all i , j. Thus, for arbitrary h, l ,

E

[
xTAx
xT x

]
=

n∑
k=1

1
k
Pr (xT x = k |xh = 1,xl = 1)

∑
i,j

Ai jvivj

= (n − 5)E
[

1
xT x

����xh = 1,xl = 1
]
. (2)

Observe that when all entries of v are equal in absolute value,
xT x is a binomial variable with parameters (n, |vi |) = (n, 1/

√
n).

Thus, by Jensen’s inequality we have

E

[
1

xT x

����xh = 1,xl = 1
]
≥ 1
E
[
xT x|xh = 1,xl = 1

] = Ω(1/
√
n).

Furthermore, it is known [17] that

E

[
1

xT x

����xh = 1,xl = 1
]
= O(1/

√
n).

That is,

E

[
1

xT x

����xh = 1,xl = 1
]
= Θ(1/

√
n).

Combining this with Equality (2) we get

E

[
xTAx
xT x

]
= Θ(

√
n) = Θ

(
OPT
√
n

)
.
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