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ABSTRACT
One of the key applications of physically-deployed multi-agent sys-
tems, such as mobile robots, drones, or personal agents in human
mobility scenarios, is to promote a pervasive notion of distributed
sensing achieved by strict agent cooperation. A quintessential oper-
ation of distributed sensing is data summarisation over a region of
space, which finds many applications in variations of counting prob-
lems: counting items, measuring space, averaging environmental
values, and so on. A typical strategy to perform peer-to-peer data
summarisation with local interactions is to progressively accumu-
late information towards one or more collector agents, though this
typically exhibits several sources of fragility, especially in scenarios
featuring high mobility.

In this paper, we introduce a new multi-agent algorithm for dy-
namic summarisation of distributed data, called parametric weighted
multi-path, based on a local strategy to break, send, and then re-
combine sensed data across neighbours based on their estimated
distance, ultimately resulting in the formation of multiple, dynamic
and emergent paths of information flow towards collectors. By
empirical evaluation via simulation in synthetic and realistic case
studies, accounting for various sources of volatility, using different
state-of-the-art distance estimations, and comparing to other ex-
isting implementations of aggregation algorithms, we show that
parametric weighted multi-path is able to retain adequate accuracy
even in high-variability scenarios where all other algorithms are
significantly diverging from correct estimations.
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1 INTRODUCTION
The modern world is increasingly permeated by heterogeneous
connected, intelligent and mobile computing devices (smartphones,
drones, robots). Such a landscape increasingly calls for the adoption
of collective adaptation mechanisms so as to fulfil its potential of
forming a true pervasive computing fabric, where sensing, actuation
and computation can be naturally seen as inherently distributed
across physical space [11].

Each computational device can be modelled as (or programmed
with) an agent with limited knowledge of the portion of environ-
ment it operates upon, so the problem naturally turns into one
of engineering a situated multi-agent system (MAS) so as to effec-
tively, efficiently, and robustly turn pointwise knowledge items into
single global knowledge. Most specifically, we seek for the adop-
tion of self-organisation techniques [28, 34] to build MASs able to
realise distributed sensing, concerning physical properties of the
environment or virtual/digital characteristic of the computational
one: it is by the strict cooperation and interaction of dynamic sets
of mobile agents situated in proximity that it can be possible to
support complex situation recognition [14], aggregation of agent
intentions/predictions [13, 30], better monitoring of physical en-
vironment [11], and observation (and then control) of teams of
agents [33]. Several framework and tools are proposed to address
this kind of problems [7, 26], showing how self-organisation can be
achieved using a small set of “basic” interaction laws, upon which
increasingly complex behaviours are built [9, 16]. Due to the dy-
namic scenarios typical of pervasive computing, these laws need
to carefully trade-off efficiency with resilience to network changes.

A quintessential operation of distributed sensing is data sum-
marisation over a region of space, which finds applications in op-
erations such as counting, integration, averaging, maximisation,
density estimation, and so on. This problem can be solved by a
collection distributed algorithm (sometimes named the “C” building
block, in short [31]), which is one of the most basic and widely used
components of collective adaptive systems (CASs): it aggregates
values held by the mobile agents (/devices) situated in a spatial re-
gion into a single resulting value in a selected agent (/device) called
collector. Seen as a distributed process, collection is essentially a
multi-agent process that computes a specific case of “computational
field” [20, 33], namely, what one can interpret as a knowledge field:
knowledge distributed across space such that each agents perceives



only the local value of it—e.g., representing a partial result of count-
ing for a sub-region. Distributed collection resembles the reduce
phase of the MapReduce paradigm [15] ported into a “spatial” con-
text of agents spread in a physical environment and communicating
by proximity, and has close analogues designed for wireless sensor
networks [29]. This “brick” can be applied to a variety of different
contexts, as it can be instantiated for values of any data type with
an associative and commutative aggregation operator.

However, it turns out that efficiently implementing C is tricky:
existing implementations (single-path and multi-path [31]) are very
fragile (inaccurate, slow, and non-resilient) to mobility of agents
(and hence, to changes in the network of computational devices),
which is the norm in several emerging application contexts, includ-
ing airborne sensing by drones [10], crowd management by people
smartphones [9], and vehicular networks [22].

In this paper we present a new algorithm for effectively and
efficiently carrying on the computation of the C building block,
called parametric weighted multi-path (Cpwmp), which is able to
achieve adequate accuracy in highly volatile scenarios. As for exist-
ing multi-path collection algorithms, in Cpwmp data chunks flow
through agents by every possible link of the underlying proximity
network. Differently from them, however, data chunks are weighted
and broken in pieces with carefully chosen factors reflecting the
probability for the link to be lost in the immediate future because of
mobility. Moreover, the algorithm is parametric in the form of aggre-
gation used, allowing its usage both for arithmetic and idempotent
aggregation operators. We validate its performance in archetypal
situations of (respectively) device counting and progress tracking,
taking into account agent mobility, update rate variability and dis-
continuities in network configuration. Finally, a realistic case study
of crowd safety services on real GPS traces is carried out to further
validate the approach. Ultimately, by accounting for various sources
of volatility, using different state-of-the-art distance estimations,
and comparing to other existing implementations of aggregation
algorithms, we show that Cpwmp is able to retain acceptable preci-
sion even in high-variability scenarios where all other algorithms
are significantly diverging from correct estimations.

Thework of this paper is arguably a significant step in the context
of engineering MASs and CASs. In general, the proposed algorithm
can be used as a solid component for engineering collection ser-
vices in highly distributed and mobile multi-agent systems, e.g.,
as an orthogonal distributed knowledge component for intelligent
agent frameworks with a designed notion of environment and or-
ganisation [18, 27], or for agent planning as of [33]. On the other
hand, in the specific context of the aggregate computing frame-
work [9], Cpwmp provides an implementation for the fundamental
“C block” as advocated in [31], coupling that of “G block” as of [4],
and together forming a set of combinators effectively supporting
construction of higher-level, self-stabilising computations in mo-
bile distributed systems: these are available as parts of the library
of Protelis [25], an implementation of the aggregate computing
framework.

The remainder of this paper is organised as follows. Section
2 presents the background and related works, focussing on the
state-of-the-art implementations of C. Section 3 describes the new
Cpwmp algorithm. Section 4 compares the new algorithm with other
existing implementations in archetypal scenarios and in a case study.

Section 5 summarises the contributions of this paper and outlines
possible future works for further improving the Cpwmp collection
block.

2 BACKGROUND AND RELATEDWORK
TheCpwmp algorithm generalizes recently proposed techniques for
summarizing distributed data [3] by providing support for aggrega-
tions through different kinds of operations (including idempotent
operators), and by introducing the flow control technique for reduc-
ing error peaks during input discontinuities.

Data aggregation (also called collection) is a crucial component of
distributed algorithms. As such, it has been tacked in different ways
depending on the application context: high-performance computing
[15], wireless sensor networks [23, 29] and spatial computing [8].
However, all of these different approaches rely on the same basic
mechanisms. In data aggregation, distributed values have to be
combined together through an aggregation operator ⊕ satisfying
the following properties:

(1) commutativity: u ⊕ v = v ⊕ u;
(2) associativity: u ⊕ (v ⊕w) = (u ⊕ v) ⊕w .

Provided that these two axioms hold, the aggregation
⊕

C of a
multi-set C is well-defined, regardless of the overall order in which
the individual elements are aggregated. Among others, common
aggregation operators are: addition, multiplication, maximum and
minimum. In scenarios with intrinsic communication errors and
input volatility (such as wireless sensor networks and spatial com-
puting), a further more informal requirement has to be considered:

(3) continuity: the effect on the aggregation of a certain percent-
age p of errors tends to zero as p tends to zero.

This property holds for the aggregation operators cited above, how-
ever, it does not hold for other operations such as modular sum: the
modular addition of a single spurious element is enough to fully
disrupt the outcome of the aggregation of a massive collection of
elements.

Given a commutative and associative operator, and an environ-
ment with proximity-based interactions, a data aggregation routine
thus asynchronously combines values held by different devices
into a single value in a selected device (called source, or sometimes
collector), controlling the flow of data towards the source in order
to avoid multiple aggregation of the same values. This two-faceted
prerequisite, of acyclic flows directed towards the source, is met by
relying on a given potential field, approximating a certain measure
of distance from the selected source. As long as information flows
descending the potential field, cyclic dependencies are prevented
and eventual reaching of the source is guaranteed. Potential de-
scent is enforced by splitting the neighbours Dδ (i.e., devices able
to directly communicate with δ ) of a device δ according to their
potential value P(·), obtaining the two disjoint sets:

D−
δ =

{
δ ′ linked to δ such that P(δ ′) < P(δ )

}
D+δ =

{
δ ′ linked to δ such that P(δ ′) > P(δ )

}
Two main implementation strategies of the collection block have
been proposed so far: single-path and multi-path, both scaling to
arbitrarily large systems (as they require constant computational
resources per node). Furthermore, they can be integrated with



Figure 1: An example of collection field in a p2p scenario,
using single-path aggregation, counting the number of blue
agents, and collecting the result in the red agent; note that
each agent holds a partial result of counting, based on how
many “single-path flows” from blue agents to red agent
cross it.

standard trust techniques to provide security against malicious
data sources.

2.1 Single-path Aggregation
The single-path strategyCsp ensures that information flows through
a forest in the network (so that no multiple aggregation is possible),
by sending the whole partial aggregate of a device δ to the single
devicem(δ ) with minimal potential among devices connected to δ .
This is accomplished by repeatedly applying the following rule:

Csp(δ ) = vδ ⊕
⊕

δ ′∈D+δ∧m(δ ′)=δ

Csp(δ
′),

which computes the partial aggregate in δ by combining together
the value vδ held in δ and the partial aggregates in devices with
higher potential for which δ is the selected output devicem(δ ′).

Since data flows descending the potential as fast as possible,
single-path aggregation attains optimal reactivity to input changes
in static environments. However, in mutable environments,m(δ )
may not be able to receive the message from δ , disrupting communi-
cation and pruning the entire branch of the forest rooted in δ . This
phenomenon translates into poor performances, provided that val-
ues far from the source contribute significantly to the aggregation
(e.g., non-zero values for summation, high values for minimisation,
and so on). Seen as a field computation, single-path aggregation
results in a configuration of values as shown in Figure 1. As the
details of the shape of such field can vary from implementation to
implementation, the key aspect is that on sources of values to be
collected, the field gives the value itself, while on the target agent
the field gives the overall result of collecting.

2.2 Multi-path Aggregation
The multi-path strategy Cmp allows information to flow through
every path compatible with the given potential field. In order to

avoid double counting, it is thus necessary to divide the partial
aggregate of a device δ equally among every device δ ′ connected to
δ with lower potential, by iteratively applying the following rule:

Cmp(δ ) = vδ ⊕
⊕
δ ′∈D+δ

{
Cmp(δ

′) ⊘ |D−
δ ′ |

}
;

where ⊘ is a binary operator such that v ⊘ n means “dividing by
n”, i. e., an element that aggregated with itself n times produces the
original value v . Since information needs to be “divisible” for ⊘ to
exist, two categories of aggregation operators are supported:

(1) arithmetic operations, e.g., point-wise sum and multiplication
of vectors ®v ∈ Rn of real numbers (for which ⊘ is respec-
tively division and root extraction);

(2) idempotent operations, e.g., computation of maximum and
minimum among values v in a partially ordered set (for
which ⊘ is the identity function).

Thus, theoretically, multi-path has a narrower scope than single-
path. However, the vast majority of practically occurring (contin-
uous) aggregation operators can be typically recast to be either
arithmetic or idempotent: e.g., idempotent operations have been
used to emulate several different aggregations through statistical
tools: distinct count, sum, uniform sampling, selection of most
frequent values [23], and order statistics [36].

Since data flows through every possible path, it is unlikely for
devices to be excluded from the aggregation, making Cmp resilient
to devicemobility. On the other hand, the reactivity to input changes
of multi-path aggregation is particularly poor. In fact, even in static
environments, values flow through every possible path including
the longest path, forcing reaction to changes to be delayed until all
paths have been exploited (in particular for idempotent operations),
and resulting in a reaction speed inversely proportional to the
device density. In mutable environments, the problem is further
exacerbated by the creation of information loops, which occur when
two or more moving devices of similar potential invert their relative
potential order in consecutive rounds, causing information from
a device δ to come back to the same device, slowing down even
further the reaction speed of the algorithm.

2.3 Distance Estimation Algorithms
All the abovementioned procedures for aggregating distributed data
are based on a given potential field as input to guide the aggregation,
representing a notion of physical distance from neighbour sources.
Accurately computing distances in a distributed and volatile sce-
nario is a demanding task, which can be tackled in different ways
depending on the context. In spite of variations, the general frame-
work is that of gradient-based field computations [21, 31], where
local estimates from the source are repetitively shared with neigh-
bours and combined with proximity estimates of mutual distance.

If no proximity sensors are available, the harsh hop-count mea-
sure can be improved through statistical tools [19], obtaining con-
tinuous and adaptive distance estimates. Furthermore, even when
a proximity sensor is available, reactivity to input changes and
network variability may be impaired by the rising value problem1—
simply, reaction to changes causing increase of distance is very low
[5]. Several solutions have been proposed to tackle this problem.
1Also known as the count to infinity problem in routing algorithms.



Following recent reviews of distance estimation algorithms [4, 5]
three solutions are shown to always outperform basic algorithms:
FLEX [6], BIS [5], and ULT [4].

FLEX is an algorithm aimed at maximising stability of values
while containing the error within predictable bounds, which also
addresses the rising value problem by introducing a metric distor-
tion. BIS, instead, exploits time information in order to solve the
rising value problem obtaining optimal single-path reactivity to
input changes, without concerns on value stability. ULT develops
on BIS by adding a stale values detector running at (faster) multi-
path speed, while addressing value stability with the addition of
filters and dampers. Being obtained by the integration of different
methods, ULT is tuned by a large number of parameters, and can
range to being almost identical to BIS (when filters and dampers
are disabled) to being closer to FLEX (when dampers are active).
Since we already included BIS in our sample of distance estimation
algorithms, we chose ULT parameters according to the “stabilised”
version evaluated in [4].

3 PARAMETRIC WEIGHTED MULTI-PATH
TheCpwmp collection develops on the multi-path strategy for arith-
metic operations, by allowing partial aggregates to be divided un-
equally among neighbours.Weights corresponding to neighbours
are calculated in order to penalise devices that are likely to lose
their “receiving” status, a situation that can happen in two cases:

(1) if the “receiving” device is too close to the edge of proximity
of the “sending” device, it might step outside of it in the
immediate future breaking the connection;

(2) if the potential of the “receiving” device is too close to the po-
tential of the “sending” device, their relative role of sender/re-
ceiver might be switched in the immediate future, possibly
creating an “information loop” between the two devices.

We can address both of these situations with a natural weight
function w(δ ,δ ′) = d(δ ,δ ′) · p(δ ,δ ′), measuring how much of
the information from δ should flow to δ ′ as the product of the
two corresponding factors d(δ ,δ ′) = R − D(δ ,δ ′) and p(δ ,δ ′) =
|P(δ ) − P(δ ′)|, where R is the communication radius, D(δ ,δ ′) is the
physical distance between devices δ ,δ ′ and P(δ ) is the potential of
device δ . Notice thatw is positive and symmetric, hence it can be
interpreted as an attribute of connection links representing both
the amount of information to “send” and to “receive”.

Since these weights do not sum up to any particular value, they
need to be normalised by the factor N (δ ) =

∑
δ ′∈D−

δ
w(δ ,δ ′), ob-

taining normalised weightsw(δ ,δ ′)/N (δ ′). The partial aggregates
accumulated by devices can then be calculated as in Cmp with the
addition of weights, by iteratively applying the following rule:

Cpwmp(δ ) = vδ ⊕
⊕
δ ′∈D+δ

{
Cpwmp(δ

′) ⊗
w(δ ′,δ )

N (δ ′)

}
;

where ⊗ is a binary operator such that v ⊗ k “extracts” a certain
percentage k of a local value v . In particular, if ⊕ is addition then ⊗

is multiplication, whereas if ⊕ is multiplication then ⊗ is exponen-
tiation. The operations ⊕, ⊗ are called parameters of the algorithm.

3.1 Implementation as Field Computation
For the sake of reproducibility, we report an implementation for
Cpwmp as a field computation, expressed in Protelis language
[9, 25], an incarnation of the field calculus [31], which is at the
basis of the experiments described in next section. Protelis is a
fully-functional language, where functions express transformation
of whole, system-wise data structures (fields), but can also be in-
terpreted as local declarative computations for the single device.
Ad-hoc constructs to express field mechanisms include rep, used
to evolve a field over time by iteratively applying the function ex-
pressed in its body, nbr, used to observe the result of evaluating its
argument expression in neighbours, and foldHood/sumHood used
to collapse such multiple observations into single values—see [25]
for more details.

def weight(potential, radius) {
(radius - nbrRange()) * (nbr(potential) - potential)

}
def normalize(w) {
let sendTo = max(-w, 0);
let N = nbr(sumHood(sendTo));
mux (N != 0) { max(w, 0) / N } else { 0 }

}

def Cpwmp(potential, radius, v, null, aggregate, extract) {
rep (x <- v) {

let nbrVals = extract(nbr(x),normalize(weight(potential,radius)));
let nbrAggr = foldHood(aggregate, nbrVals, null);
aggregate(v, nbrAggr)

} }

The weight function implements w(δ ,δ ′), using nbrRange() to com-
pute the field of distances from neighbours and nbr(potential) to
obtain the field of neighbours’ potential values. The normalize func-
tion divides the incoming weights by the sum of outgoing weights
for their respective neighbour nbr(sumHood(sendTo)). The main func-
tion Cpwmp uses the extract function to apply the normalized weights
to the neighbours’ values, and then aggregates all of them together
with the local value v. The provided implementation can be used
to transparently sustain field computation in each agent by the
Protelis platform, such that each agent can perceive the local
results of collection like with any other physical/virtual sensor.

3.2 Parametrisation
The above algorithm is naturally understood for parameters ⊕ = +,
⊗ = × (or in Protelis, (a,b) -> {a+b} and (v,k) -> {v*k}). However,
it can apply to multiple different situations, including to idem-
potent aggregation (e.g., maximum or minimum). Since the “root
extraction” corresponding to idempotent operations is the identity,
weights cannot continuously influence the transmission of values.
However, they can regulate which links should be exploited for
transmission and which should be ignored through a threshold θ
carefully determined based on the density of devices, since a higher
number of neighbours results in lower normalised weights. In order
to normalise the choice of θ , we thus ignore a link from δ ′ to δ if
its normalised weightw(δ ,δ ′)/N (δ ′) is below θ/|Dδ ′ |.

This procedure can thus be modelled by the same algorithm
Cpwmp previously defined, by setting the parameter ⊗ equal to:

v ⊗ k =

{
v if k ≥ θ

|Dδ ′ |

0⊕ otherwise



where 0⊕ is the null element of the ⊕ operation and θ is the thresh-
old (in Protelis, (v,k) -> {if (k >= t/countHood()) {v} else {null}}).
Notice that we are mathematically guaranteed that at least one
neighbour device has weight k above 1/|Dδ ′ |, thus thresholds θ ≤ 1
force links to not be fully discarded. In practice, higher values can
also be safely used provided that the network density is high enough,
as we shall show in Section 4.2.

3.3 Flow Control
During an aggregation process, distributed information flows to-
wards a set of (one or multiple) sources. In this context, the process
generates a dynamic partition S of the whole set of devices into
regions, where the cardinality of S equals the number of source
devices disseminated in the network, and each element of S consists
of exactly one source δ together with those devices for which δ is
the nearest aggregation point. In fact, each element of the partition
identifies a separate flow of information: devices in different flows
should not interact as their values are directed towards different
sources.

However, the collection algorithms presented so far do not strictly
follow this “best practice”: neighbour devices in the border of dif-
ferent regions can communicate, since one of them has to hold a
higher potential than the other. Thus, the aggregate computed by a
source is poisoned by values belonging to other flows of informa-
tion. In static environments, the poisoning is restrained to border
devices, resulting in a moderate to small overall error. In mutable
environments, more significant errors can happen as devices cross
the border of different regions: when the set of sources changes,
values computed in a certain direction can flow back towards the
opposite direction as they enter a new flow, causing extreme double-
counting phenomena and exponential error growth.

Interaction between different flows can be avoided by labelling
each flow with a unique identifier f (δ ): e.g., a random number
generated by the source of the flow and carried over by the distance
calculation algorithm. Then, the parametric weighted multi-path
collection can be improved as follows:

Cpwmpf(δ ) = vδ ⊕
⊕

δ ′∈D+δ∧ f (δ )=f (δ ′)

{
Cpwmpf(δ

′) ⊗
w(δ ′,δ )

N (δ ′)

}
.

4 EVALUATION
We comparedCpwmp with and without flow control (pwmpf, pwmp)
against reference multi-path and single-path (mp, sp) implementa-
tions, both in isolation tests and in a realistic case study. For each
of them, we evaluated the performance with respect to the state-
of-the-art distance algorithms FLEX [6], BIS [5] and ULT [4] (see
Section 2.3).

For the isolation tests, the same archetypal scenario was selected
according to the guidelines developed in [5]:2 1000 devices ran-
domly distributed along a 2000m × 200m rectangular area, with a
1s average computation rate and a 100m communication range [2].
A single source device was located on the right end of the corridor,
then discontinuously moved to the left end at time T = 250s . We

2The guidelines require high number of hops from the source to extremal nodes, and
source discontinuities for measuring reaction to changes, in order provide a general
and significant testing bed for this kind of algorithms.

tested degrees of variability ranging from 0 (no movement, regu-
lar computation rate for every device) to 1 (short- and long-range
random movements with similar speed for every device, irregular
computation rate in each device and between different devices),
thus testing the algorithm in scenarios with increasing variability
aimed at reproducing the worst possible case. The simulations were
obtained with Protelis [25] as programming language, Alchemist
as simulator [24] and the supercomputer OCCAM [1] as platform.3

4.1 Isolation Test: Device Counting
Firstly, we tested collection for arithmetic operators by setting
⊕ = +, ⊗ = ×, ⊘ = / and values vδ = 1 for each device. This
choice amounts to counting the total number of devices, which is a
commonly used routine and a paradigmatic example of arithmetic
aggregation. We run 20 instances of each scenario and computed
median results, as the relative standard errors between runs were
significantly high. Figure 2 summarises the evaluation results.

Single-path collection systematically underestimates the ideal
value, independently from the choice of the distance estimation al-
gorithm, with a similarly poor performance under variabilities from
0.5 to 1 showing that accurate values are attainable only for very
low-variability scenarios. Conversely, multi-path collection system-
atically overestimates the value with an exponentially-growing
behaviour (randomly “reset” from time to time) which gets expo-
nentially worse as variability increases.

On the other hand, Cpwmp collection with BIS distance estima-
tion achieves an adequate accuracy even in highly volatile scenarios,
scoring the best results for every value of variability, only slightly
improved during input discontinuities by the addition of flow con-
trol (Section 3.3). In combination with FLEX or ULT, the perfor-
mance decreases (while still being competitive with those of multi-
and single-path collection) showing a preference for responsive
estimates over stable ones.

We remark that the difference with the other algorithms is so sig-
nificant that the proposed algorithm can be considered as effectively
extending the applicability of distributed collection in scenarios where
it was previously inapplicable because of high degrees of variability.

4.2 Isolation Test: Progress Tracking
We tested collection for idempotent operators by setting ⊕ = max
and threshold θ = 3.5, which was set according to simulations
(Figure 3) opting for the highest value granting negligible trans-
mission failure (for the given density ρ = 25). The values to be
aggregated were chosen to make the aggregation as difficult as
possible. As discussed in Section 2, a difficult aggregation problem
requires both obsolete and distant values to be able to significantly
contribute to the aggregation. If obsolete values have a negligible
impact, multi-path collection is optimal as it does not need to react
to environmental changes. If distant values have a negligible impact,
single-path collection is optimal since even a small coverage of the
network may be sufficient.

These two conditions hold true for any arithmetic aggregation
of non-null values and may seem trivial, however, most simple
idempotent aggregation problems fail to satisfy one of them. For

3The URL of the actual code experiment is not indicated to preserve anonymity; it will
be made available at publication time.
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is the communication radius).

the first condition to hold, values need to decrease (in average) as
time passes. For the second, values need to increase (in average)
as distance from the source increases. We thus chose (positive) vδ
according to the simplest formula satisfying the two conditions:

vδ = d(δ ) + (500 − t(δ ))ν

where d(δ ) is the distance from the source as computed by a given
distance estimation algorithm, t(δ ) is the time elapsed from the start
of the simulation and ν = 1m/s is an arbitrarily chosen conversion

constant. The first term of the formula addresses the impact of
distant values, while the second term ensures that obsolete values
are similarly significant (with the additive constant 500 so that
vδ > 0 for plotting convenience). Note that the proposed formula
for vδ is archetypal of (more involvedly defined) similar problems
that may naturally occur in practical applications: for example,
vδ could track the progress of shipments moving at speed ν from
warehouses (at distances d(δ )) towards the source, which all started
at t = 0 so that the maximum vδ represents the farthest away item.

We run 20 instances of each scenario and averaged the results,
which had relative standard error below 5% for all variabilities
and FLEX or BIS distance estimations, below 12% for ULT distance
estimation. Figure 4 summarises the evaluation results.

In these simulations, the BIS distance estimation algorithm is
consistently better regardless of the collection strategy used, fol-
lowed by FLEX and ULT: FLEX fails to produce consistent results
for the vδ values after the source switch, while ULT does not allow
the collection algorithms to stabilise. As before, single-path col-
lection systematically underestimates the ideal value for non-zero
degrees of variability, while multi-path collection overestimates the
value by not being able to noticeably react to input changes even
in fully-static environments (see Section 2.2).

On the other hand, Cpwmp collection always significantly out-
performs the other strategies. The addition of flow control has a
negligible impact, and thus is not shown in the graphs. The best
overall results are again obtained by the Cpwmp collection with
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Figure 4: Progress tracking through different aggregation and distance estimation routines, upon increasing variability with
a source change at T = 250s. Evolution through time is presented for variabilities 0, 0.5, 1 (bottom) and BIS gradient, together
with the average count in the whole time window 0 − 500s (top) and different gradient routines.

flow control and BIS distance estimation, which has a relative error
below 10% even for the highest values of variability.

4.3 Case Study: Crowd Safety Service
Finally, we tested the performance of the different collection algo-
rithms in a realistic case study of crowd safety services on real GPS
traces. In fact, high concentrations of people in constrained areas
have the simultaneous effects of (i) overwhelming traditional wire-
less infrastructures, and (ii) creating zones of dangerous overcrowd-
ing, where even small incidents can induce stampedes, injuries or
deaths [2]. As the number of IoT-like connected devices increases,
however, distributed crowd monitoring can be more effective even
in absence of centrally deployed infrastructures, thus allowing for
effective prevention of accidents and stampedes.

We built a crowd safety service upon previously developed ones
[9], basing on simple conservative estimates of dangerous crowding
via level of service (LoS) ratings [17], with LoSD (> 1.08 people/m2)
denoting an area at risk of overcrowding (risk area) and LoS E
(> 2.17 people/m2) in a group of at least 1000 people indicating
a potentially dangerous density (overcrowded area). We estimated
local people density through the formula ρ = |N | /(pπr2w), where
|N | is the count of neighbours within range r = 30m, p = 2%
estimates the proportion of people with a device running the app,
andw = 0.25 estimates the fraction of walkable space in the local
urban environment. The risk area was computed locally, whereas
the overcrowded area was determined by averaging local densities
over contiguous regions through the collection blocks (since LoS
E requires the density to be measured over at least 1000 people).

We considered people who were within 100m of an overcrowded
area in the last 100s to be warned of the risk and possibly steered
(warning area). Warned people were given dispersing directions
calculated based on a physical model, associating an equal repulsive
force field to each close neighbour. We placed 6000mobile personal
devices with a 100m connection range and 20s average computation
interval (low consumption settings), each following one of the
1500 available4 GPS traces of people’s smartphones for the 2013
Vienna City Marathon, a benchmark scenario considered in [9,
35] among many. We tested scenarios with varying probabilities
Pfollows = 0, 0.25 for an application user to actually follow steering
instructions given by the smartphone. We run 20 instances of each
scenario and averaged the results, which had a 11% relative standard
error between them. Figure 5 summarises the evaluation results.

Scenarios with Pfollows = 0 were included to compare the perfor-
mance of different algorithms in measuring overcrowding under
identical conditions. In these scenarios, multi-path and Cpwmp per-
formed almost identically, showing a somewhat steady course get-
ting slightly worse towards the end. On the other hand, single-path
collection was less effective in measuring overcrowded andwarning
areas, as the averaging routine wasn’t able to gather distant values
and occasionally underestimated the situation. Thus, the evaluation
of single-path on Pfollows = 0.25 is less reliable as well and cannot
be directly compared to that of the other algorithms. In scenarios
with Pfollows = 0.25, Cpwmp reduced the overcrowded area slightly

4Due to the very low density of available traces, the resulting network is highly
disconnected and the advantages of our algorithm are minimised, although still visible.
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Figure 5: Crowd tracking through different aggregation routines—users’ probabilities of following dispersion advices equal to
0 and 0.25. Number of people belonging to the selected LoS areas is shown during an interval of 2 hours (7200s).

more than multi-path, while warning less people towards the end
(thus reducing the obtrusiveness of the application).

5 CONCLUSIONS
We introduced parametric weighted multi-path collection Cpwmp, a
new algorithm for summarising distributed data improving over
state-of-the-art implementations of the C block. Experimental eval-
uation in isolation tests shows that Cpwmp achieves adequate accu-
racy even in very high-variability scenarios where other approaches
are infeasible, both in arithmetic (device counting) and idempotent
(progress tracking) aggregations. Namely, Cpwmp paves the way
for effective exploitation of fully-distributed collection processes
– hence, distributed situation recognition – in mobile multi-agent
systems, e.g., when agent communication is carried on by wireless
broadcasts.

Evaluation in a realistic case study of crowd safety services
on real GPS traces shows a consistent improvement, though also
suggests that more significant improvements may be possible in
future settings with higher densities of devices. Hence, in future
works, ad-hoc adaptations of the algorithm may be developed to
improve its performance, in particular by reducing the error peaks
that are still present in response to input discontinuities. In these
situations, potential-descending data flowsmay create loops leading
to exponential increases in error, so that time-driven strategies for
preventing them would be significantly beneficial. Furthermore,
the weights given to links may be more accurately tuned through
statistical methods, given information on the average movement of
devices, improving accuracy also in steady state.

Cpwmp is an algorithm that effectively abstracts from the hetero-
geneous nature of devices, assuming they all have same interac-
tion/computation capabilities. When heterogeneity play a crucial
role, one needs to adapt it to the situation at hand. Nodes that need
not participate in collection, must simply be excluded (by the un-
derlying platform or at application level) from the “neighbouring”
relation upon which the algorithm is devised. Future works will
consider that case in which devices have dynamic availability of
computational resources, and task allocation has to be considered
to select which device has to be used to collaborate on collection,
and to which extent.

As the notion of field is shown to be a useful one to model and
implement distributed collection processes, a future work will be
to explore how it can conversely be used for planning and action
[33]. Early ideas are presented in [32] where all components of a
MAPE loop (Monitor, Analyse, Plan and Act) are supported by field
computations: generally, specific building blocks need to be imple-
mented to streamline smooth development of advanced adaptive
behaviour.

Finally, we plan to integrate collection, and other key self-organi-
sation building blocks [31], as services available to intelligent agent
platforms like, e.g., Jason [12], also to investigate theory and prac-
tice of distributed notions of knowledge, plans and goals.
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