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A CONTINUOUS-TIME STOCHASTIC MODEL FOR THE

MORTALITY SURFACE OF MULTIPLE POPULATIONS

PETAR JEVTIĆ AND LUCA REGIS

Abstract. We formulate, study and calibrate a continuous-time model for
the joint evolution of the mortality surface of multiple populations. We model

the mortality intensity by age and population as a mixture of stochastic latent

factors, that can be either population-specific or common to all populations.
These factors are described by affine time-(in)homogenous stochastic processes.

Traditional, deterministic mortality laws can be extended to multi-population

stochastic counterparts within our framework. We detail the calibration pro-
cedure when factors are Gaussian, using centralized data-fusion Kalman filter.

We provide an application based on the mortality of UK males and females.
Although parsimonious, the specification we calibrate provides a good fit of

the observed mortality surface (ages 0-99) of both sexes between 1960 and

2013.
Keywords: multi-population mortality, mortality surface, continuous-time

stochastic mortality, Kalman filter estimation, centralized data fusion.

JEL classification: C13, C38, G22, J11.

1. Introduction

The joint description of the mortality dynamics of different groups (populations) of
individuals has recently attracted particular attention. Indeed, capturing the com-
mon trends in the evolution of mortality rates of different populations is relevant
at many levels, from a broad perspective, regarding different national or regional
populations, to more particular ones, regarding different cohorts or income or socio-
economic groups within the portfolio of an insurer. From a financial perspective,
the growing market for longevity derivatives poses challenges to insurers and rein-
surers in terms of basis risk, originating from the differences in the dynamics of the
mortality of insurer’s policyholders and the standardized indexes underlying the
mortality-linked contracts. The modelling of the joint dynamics of the portfolio
and the reference population has obvious consequences on the pricing of products
and on their hedging effectiveness evaluation (see Li and Hardy, 2011, for instance).
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As a consequence, a growing literature in actuarial science is tackling the issue
of developing multi-population models for the evolution of mortality rates. This
paper contributes to this stream of literature, proposing a general framework for
the modelling of multi-population mortality dynamics in continuous time. A similar
aim has been pursued previously in a discrete-time set up, adapting the seminal Lee
and Carter (1992) model. Li and Lee (2005) first extended the Lee-Carter model
to multi-population mortality modelling approach, imposing a common trend to
different populations. Other recent contributions explored the joint modelling of
different national populations (Antonio et al., 2015) or sub-populations (Villegas
and Haberman, 2014), either for hedging purposes (Coughlan et al., 2011), or for
forecasting (Danesi et al., 2015)

We are the first, up to our knowledge, to develop a general multi-population model
in a continuous-time setting. Continuous-time mortality models have gained in-
creasing popularity in the last decade, starting from the paper by Milevsky and
Promislow (2001), who first applied the continuous-time Cox modelling approach
typical of credit risk (see Lando, 1998) to the survivorship of individuals. Subse-
quent papers developed this idea further (see Dahl, 2004 for instance), proposing
appropriate models that fit the mortality pattern of single (Luciano and Vigna,
2005) or multiple cohorts (Jevtić et al., 2013, Blackburn and Sherris, 2013) within
a population, and showing their convenience in pricing and hedging actuarial lia-
bilities (Dahl and Möller, 2006, Luciano et al., 2015) under the usual martingale
pricing approach. Focusing, as in Biffis (2005), on a particular class of processes,
the affine one, which is analytically tractable and provides closed-form expressions
for the survival probabilities in many instances, we propose a general model that
can be used to describe the mortality dynamics of populations and sub-populations
within them. We show that the framework can accommodate stochastic and multi-
population extensions of some traditional models well-known to actuaries, i.e. the
mortality laws. Such specifications, once properly selected depending on the data-
base and calibrated, are suitable for pricing and hedging purposes and can be very
parsimonious in terms of the number of parameters to be estimated. This is a par-
ticularly relevant feature, given the need for practical tools that can help fostering
the market for longevity-linked securities.

Our general framework encompasses several models previously proposed in the lit-
erature. The uncertainty in the model is described by a vector of state processes,
which represent the random changes in mortality patterns. This kind of approach
has been used to model jointly the dynamics of multiple ages or generations be-
longing to the same population by Jevtić et al. (2013) and Blackburn and Sherris
(2013). Our model extends that setup, by considering a set of populations and
sub-populations within them, who are affected differently by the state processes.
Moreover, each age responds to these changes in a specific way. In this sense, our
paper is closely related to Schrager (2006), who proposed an affine model under gen-
eral functional dependences between ages and their force of mortality, describing
the dynamics of the whole mortality surface (all ages, in principle) of a population.
The paper revisited some well-known mortality laws, extending them to a stochas-
tic setting via the use of latent factors. We extend that contribution in several
directions.
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Firstly, we allow for the presence of many populations sharing the same latent fac-
tors, from which they are affected in different ways and to which they respond dif-
ferently. Secondly, these populations may be divided in turn into sub-populations.
Thirdly, our paper allows to account for age, period and cohort effects simultane-
ously in the mortality dynamics of multiple populations.

We describe a calibration procedure for our model, based on sequential Kalman
filtering, when factors are described by Gaussian processes. To minimize computa-
tional instability, we apply a sequential Kalman filter algorithm as in Simon (2006).
We provide an empirical application, showing how a rather simple specification of
our model, related to the well-known Thiele law, fits the whole mortality surface
(ages 0-100) of the populations of UK males and females. Despite being very par-
simonious, this model provides a very good fit to the observed data.

The outline of the paper is the following. Section 2 presents our general frame-
work and connects it to previous literature. Section 3 provides some particular
specifications of our model, proposing stochastic extensions of some traditional ac-
tuarial laws for the force of mortality and an Age-Period-Cohort continuous-time
model for the whole mortality surface of multiple populations. Section 4 presents
an application of our model to the mortality of UK males and females, detailing
the calibration procedure based on multi-dimensional Kalman Filter. Section 5
concludes. The Appendix contains the proof of our main theorem, further details
on the calibration procedure and on the properties of the multidimensional process
we use in our application.

2. A General Multi-Population Framework

In this section we present a model which, in a parsimonious framework, describes
the joint mortality intensity dynamics of multiple populations. These populations
are composed of individuals who are heterogeneous by age groups. The differ-
ent populations can identify citizens from different countries, different sub-groups
within a general country population (such as males and females, or employed vs.
unemployed), different types of policyholders in the portfolio of an insurer.

2.1. The model. We develop our model following the continuous-time stochas-
tic mortality approach initiated by Milevsky and Promislow (2001), in which the
death process of homogeneous individuals is described by means of a Cox or doubly
stochastic process.

To properly describe our setting, let us introduce a filtered probability space
(Ω,F , (Ft)t≥0,P), where P denotes the real-world (historical) probability measure.
The filtration {Ft : 0 ≤ t ≤ T} satisfies the usual properties of right-continuity and
completeness. In addition, Ft = Ht ∨ Gt, i.e. the filtration includes all informa-
tion from the historical life tables, contained in sub-filtration Gt, and whether the
individual is alive or not, whose information is contained in the sub-filtration Ht.

In the most general setting, let us assume there exist J ∈ N++ populations of
interest, enumerated with an index j ∈ J = {1, . . . , J}. Each population may
contain Kj ∈ N++ constituent sub-populations, enumerated by the index k ∈
{1, . . . ,Kj}. The range of k depends on population j and may thus be different
depending on the population. With a pair (j, k) we uniquely identify population
j and, within it, the sub-population k. Our object of interest is the modelling of
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the evolution of the mortality intensities of sets of ages in different populations.

To this end, let us define as µj,kx+t(t) the set of predictable processes that represent
the mortality intensity at calendar time t of an age x + t belonging to the cohort

aged x at time t. Age x belongs to the set Xj,k := {xj,kmin, ..., x
j,k
max}, which includes

the (integer) ages in population j and sub-population k, ordered from the smallest,
xmin, to the biggest age xmax, and to a certain population j and sub-population k.

The mortality intensity µj,kx+t(t) is the intensity of the doubly stochastic
process that models the death of the individual. The first jump time of
such process determines the death arrival for the individual.

The mortality intensity of members of population j depends on a population-specific
state process vector, Y j(t) := [Y j1 (t), . . . , Y jN (t)]T , j ∈ J , N ∈ N++.1 Moreover, we
consider that all J populations are affected by the same innovations, described by a
vector Z of orthogonal random noises. These innovations, that are supposed to be
orthogonal to represent the different sources that may affect the evolution of human
mortality improvement, drive the randomness of the state processes of the different
populations and, as a consequence, affect their mortality intensities. Notice that,
while the elements of Z are orthogonal, this is not the case for the elements of the
population-specific state process vector nor for the elements of state process vectors
of different populations. Figure 1 graphically illustrates our model.

Figure 1. Conceptual view of the framework. The figure shows
how the population-specific sources of uncertainty affect sub-
populations within the J populations and how they are related
to the vector Zt of common, orthogonal noises.

Given this setup, the mortality intensities of the different ages in population j and
sub-population k respond differently to changes to factors Y j affecting population
j. More formally, the mortality intensity at time t of an age x + t, belonging to
population j and sub-population k, is described by a functional of the vector of
state processes Y j

µj,kx+t(t;x) := Rj,k(Y j(t), x+ t, t, x).(1)

1In principle, we need not have all groups of populations to have state process vectors of same
size, i.e. N might be indexed by j.



5

The functional Rj,k : R3 → R is the response function of a life age x + t at time t
belonging to cohort x, population j and sub-population k to changes of underlying
factors. It depends on both the age, the cohort and calendar time, thus representing
an age-period-cohort response to underlying factors (see Figure 2).

Figure 2. Conceptual view of the framework. The figure shows
how the mortality dynamics of homogeneous individuals in the
(j,k)-th population/sub-population, characterized by initial age x
evolve in time t. The response function Rj,k describes how the
latent factors interact to drive the cohort-specific mortality inten-
sities.

Before proceeding, let us comment on the generality of the framework introduced
above. The more comprehensive setting, which we described above, consists of J
populations and K sub-populations. We call this the JpKs class. The K sub-
populations within a group share the same driving factors, but differ in response
functions. It is worth describing two distinct sub-cases. The first sub-case consists
of only one population i.e. j ∈ {1 = J} and K sub-populations. There would be
only one (common) vector of state processes and K different response functions for
the groups considered. This situation belongs to the 1 population K sub-populations
(1pKs) class. For instance, the problem of jointly modeling the mortality intensities
of individuals belonging to different socio-economic groups in one population falls
in this class. The second sub-case consists of J populations i.e. j ∈ {1, . . . , J},
each composed of only one sub-population. In this case, every different group has
its own specific state process vector and response function. We refer to this setting
as J populations 1 sub-population (Jp1s) class. The problem of jointly modeling
the mortality of the total population of a set of countries is a good example of an
application that falls in the Jp1s class.

We specify further the functionRj,k(·, x+t, t, x), by introducing a set of (population,

sub-population)-specific functions gj,k0 (x+ t, t, x) and

gj,k(x+ t, t, x) := [gj,k1 (x+ t, t, x), . . . , gj,kN (x+ t, t, x)]
′
,
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where gj,ki : R3 → R+, i ∈ {0, 1, . . . , N} are age x+ t time t and cohort x dependent
functions for the j-th group and k-th population,

Rj,k(Yj(s);x+ t, t, x) :=

= gj,k0 (x+ t, t, x) + 〈gj,k1 (x+ t, t, x), . . . , gj,kN (x+ t, t, x)〉 ·Yj(t)

= gj,k0 (x+ t, t, x) + gj,k(x+ t, t, x) · Y j(t),

where <> denotes a vector whose components are the quantities divided by com-
mas.Petar, is this right?? English should be made better!

Our objective is to develop expressions for the time t-survival probability of the
ages in different groups. To enhance analytical tractability, we assume that the
dynamics of the J state processes are described by continuous-time stochastic pro-
cesses, belonging to the affine class characterized by its canonical form given in
Filipović (2009) (pages 146-150). In this setting, the Markov process Y j(t) drives
the dynamics described by the following system of stochastic differential equations

dY j(t) = Aj(θj − Y j(t))dt+ Σj
√
V jt dW

j(t),

where Aj = diag[aj1, . . . , a
j
N ] ∈ RN×N+ is a diagonal matrix, θj ∈ RN is column

vector, Σj = diag[σj1, . . . , σ
j
N ] ∈ RN×N+ is a diagonal matrix and

V jt = V jt (Y j(t)) = diag[γj1 + δj1 · Y
j(t), . . . , γjN + δjN · Y

j(t)],

with δji = [0, . . . , δj︸︷︷︸
i-th

, . . . , 0] for i ∈ {1, . . . , N}. The stochastic process W j(t) is a

vector of correlated Brownian Motions, and ρj denotes its instantaneous correlation
matrix. Thus, using Cholesky’s decomposition, the state process vector can be
transformed as

dY j(t) = Aj(θj − Y j(t))dt+ Σj
√
V jt H

jdZ(t),

where Hj is a population-specific matrix such that Hj(Hj)
′

= ρj and Z(t) is a
standard Brownian Motion, which represents the baseline innovations that are driv-
ing the system. It is quite natural, in the context of mortality modeling,
to think of the different factors as the forces driving the dynamics of the
different “portions” of the mortality surface (see xyz). θj is the vector of
long-term values that these factors are supposed to take, while Aj deter-
mines the speed at which the current value of the factor returns to this
long-term mean. In the following sections, we will consider two cases:
Gaussian factors and non-Gaussian factors. In the application, we will
focus on the former. Gaussian factors are in general analytically more
tractable, leading to closed-form formulas for survival probabilities and
speeding thus up computations. However, it must be noticed that they
can lead, in principle, to negative intensities. The inclusion of appropri-
ate constraints in the calibration procedure can mitigate this problem.2

Using square-root type processes to describe the dynamics of the factors
avoids this issue, but may require computationally intensive calibration
procedures when trying to fit the whole mortality surface. However, it
can be preferrable if long-term simulations of mortality intensities are

2As we will discuss in the



7

needed. We leave the application of square-root process to mortality
estimation to further research.

2.2. Connections with related literature. The framework introduced is very
general and relates to several existing models in the continuous-time stochastic
mortality literature. As a very special case, single-cohort models such as for example
proposed by Biffis (2005) and Luciano and Vigna (2005) can be encompassed, when
we consider 1 population, 1 sub-population and X = {x}. The models considered
in Schrager (2006) can also be recovered within this framework, as 1p1s models.
The two-populations, single-cohort models in Dahl et al. (2008), Wong et al. (2014)
and De Rosa et al. (2016) can also be seen as special cases of 1p2s models in our
framework. Each sub-population contains again only one age group. Indeed, in
these cases the state process vector Y is two-dimensional and shared by the two
populations, whose correlated mortality dynamics is described by means of two
CIR-type processes involving this state process.

The 1pKs class includes the recently proposed models that jointly describe the
mortality of a set of cohorts belonging to the same population. The multiple cohorts
correspond to our sub-populations, whose mortality dynamics depends on n (in
Jevtić et al., 2013) or 2 or 3 factors (Blackburn and Sherris, 2013) that are linked
to a unique vector of state processes. The processes in these papers are of the
Ornstein-Uhlenbeck (either mean-reverting or not) type. The response functions
have g0 = 0 and g = 1.

2.3. Survival Probabilities. Our affine framework, as introduced above, allows
us to compute the expectation of functionals of the state processes in closed form.

The survival probability T−tp
j,k
x+t(t, T ), which represents the probability that at

calendar time t an age x + t belonging to population (j, k) will survive until time

T > t, is indeed a functional of µj,kx+t(t;x), since

T−tp
j,k
x+t(t, T ) := EP[1{τx>T} | Ht ∪ {τx > t}] = EP[e−

∫ T
t
µj,k
x+s(s;x)ds | Gt].

Given our definition in equation (1), the survival probability can be written as

T−tp
j,k
x+t(t, T ) = EP[e−

∫ T
t
Rj,k(Yj(s),x+s,s,x)ds | Gt].

Theorem. Consider the above setting, then, the time-t survival probability of an
individual, aged x at t = 0, belonging to population group j and population k, up to
time T is

(2) T−tp
j,k
x+t(t) = eα

j,k(x,t,T )+βj,k(x,t,T )·Y j(t).

In specific cases, αj,k(x, t, T ) and βj,k(x, t, T ) solve the following differential equa-
tions:

i) in the Ornstein-Uhlenbeck (OU) case where γi = 1 and δi = 0

α̇j,k = gj,k0 (x+ t, t, x)−Ajθj · βj,k − 1

2
(βj,k)TΣjρj

(
Σj
)′
βj,k,

β̇
j,k

= gj,k(x+ t, t, x) + (Aj)
′
βj,k.
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ii) in the square-root (SR) process case where γi = 0 and δi = 1, in the 1pKs
case where j ∈ {1 = J} and when ρ1 = IN×N is an identity matrix 3

α̇1,k = g1,k
0 (x+ t, t, x)−A1θ1 · β1,k,

β̇
1,k

= g1,k(x+ t, t, x) + (A1)
′
β1,k −

[
1

2
(β1,k

1 )2σ2
1 , . . . ,

1

2
(β1,k
N )2σ2

N

]′

,

where αj,k(x, T, T ) = 0 and βj,k(x, T, T ) = 0.

Proof. See the Appendix A. �

In particular cases, the systems of ODEs appearing in the theorem above have
(semi) closed-form solutions. We will consider some of these cases, motivated by
the actuarial tradition, in the next section.

3. Examples of multi-population mortality surface models

In this section, extending the single-population setting developed in Schrager (2006),
we consider some specifications of the response functions Rj,k, that allow us to ex-
tend deterministic models well-known in the actuarial tradition to a stochastic and
multi-population framework. We consider several specifications, that vary both in
the number of driving factors and in the form of the response functions. We first
consider three specifications, that extend to a stochastic and multi-population set-
ting the Gompertz and Makeham traditional mortality laws. We then propose a
fourth specification, that further disentangles the age, period and cohort effects,
introducing what, up to our knowledge, is the first example of an age-period-cohort
continuous-time model. This specification also encompasses a multi-population
extension of the classic Thiele law. These examples need not be exhaustive: ap-
propriate specifications, though similar in spirit, should be tailored to the data

considered. In what follows, we consider parameters cj,k > 1 and bj,ki > 0.

3.1. Multi-population Gompertz law. Consider the instantaneous mortality
intensity for population j sub-population k defined as

µj,kx+t(t) := (cj,k)x+tY j1 (t).

Motivated by the Gompertz law, this specification has one factor per population
and one parameter per sub-population. For high x + t, i.e. for higher ages, more
weight is given to the factor. This specification implies thus a pure age-based
response to changes in the population-specific factor.

In our framework, in this case, we have

Y j = [Y j1 ], gj0(x+ t, t, x) := 0 and

gj,k(x+ t, t, x) := [(cj,k)x+t]
′
.

3Special care must be taken when SR processes are considered as building blocks of multi-

population models. Our particular choice of Y (t) and the restrictions we place in our theorem,
are necessary to ensure that our model lies within the canonical form of affine processes, as in

Filipović (2009).
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3.2. First Makeham multi-population law. In this case the instantaneous mor-
tality intensity for population j sub-population k is defined as

µj,kx+t(t) := Y j1 (t) + (cj,k)x+tY j2 (t).

Motivated by the Makeham law, this specification has two factors per population
and one parameter per sub-population. The first factor represents a base-line mor-
tality level, which changes in calendar time equally for every age in every population.
More weight is instead given to the second factor the higher x + t, i.e. for high
ages, as in the previous specification 3.1. Again, this response function implies an
age-based response to the calendar-time changes in the factors.

In our framework, in this case, we have

Y j = [Y j1 , Y
j
2 ]T , gj,k0 (x+ t, t, x) := 0 and

gj,k(x+ t, t, x) := [1, (cj,k)x+t]
′
.

3.3. Second Makeham multi-population law. In this case, the instantaneous
mortality intensity for population j and sub-population k is defined as

µj,kx+t(t) := Y j1 (t) + (x+ t)Y j2 (t) + (cj,k)x+tY j3 (t).

Motivated by the second Makeham law, this specification has three factors per
population and one parameter per sub-population. On top of the two factors con-
sidered in the previous case 3.2, for which the same interpretation holds, in this
specification an additional factor is present. The weight of such factor is the age of
the individual at time t, implying a linear increase of the weight with age.

In our framework, in this case, we have

Y j = [Y j1 , Y
j
2 , Y

j
3 ]T , gj,k0 (x+ t, t, x) := 0 and

gj,k(x+ t, t, x) := [1, x+ t, (cj,k)x+t]
′
.

3.4. A three-factor age-period-cohort multi-population specification. In
this rather general specification, the instantaneous mortality intensity for popula-
tion j and sub-population k is defined as

µj,kx+t(t) := Y j1 (t)e−b
j,k
1 (x−bj,k2 t)

1
mj,k

+ Y j2 (t)e−b
j,k
3 (x−bj,k4 t−ηj,k)2 + Y j3 (t)e+bj,k5 (x+t).

This specification has three factors per population and eight parameters per sub-
population. This specification is connected to the classic Thiele law. The three
factors are related to infant mortality (first factor), young adults mortality (second
factor) and old ages mortality (third factor), respectively. Indeed, the weight of the
first factor declines with age, making it most relevant for young ages. The parameter
mj,k allows to better capture the infant mortality spike observed at age 0. The
weight attached to the second factor aims at reproducing the so-called “mortality
hump”, observed for young adults around the population, sub-population specific
age ηj,k. The weight imposed on the third factor increases with age, making it
relevant for older ages. This specification disentangles calendar-time and initial
age (cohort) effects in the responses of the first two factors. The response to the
third factor, instead, is age-depedent. Overall, this specification constitutes then
the first, up to our knowledge, age-period-cohort multi-population mortality model
cast in continuous-time.
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In our framework, in this case, we have

Y j = [Y j1 , Y
j
2 , Y

j
3 ]T , gj,k0 (x+ t, t, x) := 0 and

gj,k(x+ t, t, x) := [e−b
j,k
1 (x−bj,k2 t)

1
mj,k

, e−b
j,k
3 (x−bj,k4 t−ηj,k)2 , e+bj,k5 (x+t)]

′
.

4. Application

In this section, we provide an application of a model that falls within our framework
to the fit of the mortality surface of UK and Dutch males and females aged 0-89 in
the period ranging from 1960 to 2013. We are thus estimating a model that belongs
to the 2p2s class, where we have two sub-groups (the males and the females) for each
population (UK and the Netherlands). Notice that the two national populations,
and the two genders within these, show differences in the mortality levels at different
ages, and slightly different longevity improvement trends, making an analysis of
their joint dynamics interesting.

We consider males and females as being two sub-populations of the same popu-
lation, thus driven by the same vector of state processes. Hence, while affected
by the same factors because they belong to the same national population, males
and females are assumed to respond differently to changes in these factors. The
two populations have different driving factors (even though related to a unique
“global” risk source), and different responses to them. In this Section, we present
results of the estimation. The model we consider is a special case of the specifica-
tion we presented in Section 3.4 with Gaussian factors, whose dynamics follow a
multidimensional OU process. We adopt a specification that has no period effect:

bj,k2 = −1, bjk4 = −1. Also, enhance parsimony, we set to zero all the correlation
parameters collected in vectors ρ. 4 This choice provides a very good fit of the
whole mortality surface of the two genders and the widest possible age range (0-
89), despite a remarkable parsimony and a reasonable computational effort. 5 Due
to the results in Theorem 2.3, it is possible and convenient to specify the model
using a state-space linear representation and to proceed to its estimation using the
Kalman Filter algorithm. The choice of the OU process allows us to estimate the
parameters following a standard maximum likelihood procedure.

In the next sections, we first describe our calibration methodology, directing the
reader to the Appendix for further details. Hence, we describe the state-space
representation of our model and discuss its estimation using the implementation of
the sequential Kalman filter algorithm. Then, we illustrate and discuss the results
of our application.

4.1. Calibration Methodology. In this paper, we consider the case in which state
processes are Gaussian, leaving the calibration of the SR process case for further
research. In our OU case, we can directly apply the Kalman filtering algorithm,

4Notice that this choice does not prevent the model to present a correlation structure of the

intensities of different populations, and ages within them.
5Obviously, the inclusion of calendar-time specific effects in the responses would help capturing

some more features of the data. On the other side, time-inhomogeneity of the solutions to the
Riccati equations associated to the model requires an extensive computational effort, resulting in

a more time-consuming calibration procedure.
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which returns an optimal linear estimate of the unobservable factors. We fit our
model to one-year death probabilities, as in Schrager (2006).6

We apply the sequential Kalman filter algorithm, as described in the book by Simon
(2006). This algorithm allows to treat the single elements of the observational vector
as belonging to a sequence of individual observations, avoiding computational issues
related to the inversion of large and sparse matrices. Moreover, we need to tackle
the problem of how to filter the information coming from different sources, i.e. the
data related to the different populations and sub-populations. This issue falls in
the domain of data fusion and is a well-established problem in engineering (see for
instance Mitchell (2007), Raol (2009) and Durrant-Whyte (2012)). As explained
below, we consider the life tables of different groups as data collected by different
channels of a unique sensor, adopting a “centralized data-fusion” approach. Two
key steps compose our calibration procedure: the representation of our model in a
state-space linear form and the Kalman filter algorithm.

4.1.1. State-space Linear Representation. In order to apply the Kalman filtering al-
gorithm to mortality data, that come at annual frequency, we discretize our problem
and we represent it in state-space form. From now on, for simplicity, we consider
integer ages and yearly-collected data, having in mind that this is the standard for-
mat of the mortality data collected in life tables. However, the case of non-integer
ages and higher data frequency can be handled in this framework.

Given expression (2), the logarithms of survival probabilities are linear functions of
the state process vector. Because survival probabilities take values between zero and
one, we consider the opposite of this quantity, which is positive, as our measurement
for each age. With a slight abuse of notation, we refer to the observation points as
to t ∈ {1, . . . , T}, where t = 1 denotes the first year of observation, and denote with
q̄j,k(t) the elements of our observation vector for each couple (j, k) of populations
and sub-populations:

q̄j,k(t) := − ln(1− q̂j,k(t)) = − ln(p̂j,k(t)).

Indeed, given (2), we assume that each measurement comes from the following
model

q̄j,kx+t(t) = −αj,k(x, t, t+ 1)− βj,k(x, t, t+ 1)
′
Y j(t) + εj,kx (t), x ∈Xj,k,(3)

where εjx(t) is the observation (or measurement) noise. We assume that this noise
is Gaussian with mean zero and standard deviation proportional to the observation
itself, i.e. Var[εj,kx (t)] = [sj,k q̄j,kx (t)]2, sj,k ∈ R. This assumption is well justified by
the fact that, due to the smaller cohort size, observations referring to old ages are
usually noisier (in relative terms) than observations of younger ages. We further
assume that measurement errors are uncorrelated across ages. The real parameter
sj,k can in principle be different for every population and sub-population (to take
into account, for instance, different data-collection methodologies) and belongs to
the optimal parameter set.

6This choice allows us to exploit the information of the whole life table, but makes it more difficult

to capture cohort effects in the data. An alternative approach, that we leave for further research,
involves fitting death probabilities, or, equivalently, survival probabilities, with different maturities

for the same cohort.
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Given our model specification, we derive the expressions for αj,k(x, t, t+ 1) and for

the components of the vector βj,k(x, t, t+ 1). Hence,

βj,k3 (x, t, t+ 1) =
eb

j,k
3 (x+t)

bj,k3 − a
j
3

(
1− e(bj,k3 −a

j
3)
)
,

β̇j,k1 = e−b
j,k
1 (x+t)

1
mj,k

+ aj1β
j,k
1 ,

β̇j,k2 = e−b
j,k
2 (x+t−ηj,k)2 + aj2β

j,k
2 ,

α̇j,k = −1

2
(βj,k)TΣjρj

(
Σj
)T
βj,k,

αj,k(x, T, T ) = 0 and βj,k(x, T, T ) = 0.

The only analytical solution concerns the third component of vector βj,k, while
numerical methods are required to obtain the other coefficients in our model (3) as
solutions to the above Ordinary Differential Equations (ODEs).

For simplicity, we slightly transform our observations and define

q̃j,kx+t(t) := q̄j,kx+t + αj,k(x, t, t+ 1).

The crucial problem left to solve concerns how to treat the observations coming
from the life tables of the different populations and sub-populations. We adopt a
“centralized data fusion” approach (see Mitchell (2007), Raol (2009)). Technically
speaking, it is akin to the problem of tracking a signal coming from a centralized
multi-channel sensor(s). In practice, for all observation points, we group all the in-
formation coming from the different populations in a unique observational vector,
as if they were coming from the same source. Still, heterogeneity in the obser-
vational noise relative to different groups is allowed for. Indeed, this approach is
consistent with our modelling of the state vector Z, that is assumed to be the same
underlying source of uncertainty for all populations.

In a more compact form, our state-space linear representation reads

Q̃(t) = −B(t)Y (t) + ε(t), ε(t) ∼ N (0,R(t))(4)

Y (t+ 1) = DY (l) + η(t+ 1), η(t+ 1) ∼ N (0,Γ(t+ 1))(5)

where Q̃(t) and ε(t) are the vectors that collect all the (transformed) observations
and (aggregated) noises respectively, for all the ages and all the populations and
sub-populations. Analogously, Y (t) is the vector that collects the values of all the
state processes, while η(t+ 1) collects their noises. We assume that the state pro-
cess noises and measurement errors are inter-temporally and mutually uncorrelated,
even across populations and sub-populations. The Appendix provides further de-
tails on how the matrices appearing in equations (4) and (5) are constructed, and
derives the explicit expressions for the covariance matrix Γ(t) in the OU case. The
next section focuses on the Kalman Filter estimation of the state-space model pre-
sented here.

4.1.2. Kalman Filter estimation. Given our multivariate Gaussian linear state space
model, described by the equations (4) and (5), we apply the Kalman filter algorithm
to find the estimates of the unobservable values of the state process vector Y (t),
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a(t), and of its variance-covariance matrix conditional on the observations, P (t),
i.e.

a(t) := E[Y (t) | F(t− 1)] and

P (t) := Var[Y (l) | F(t− 1)]

where the filtration F(t − 1) := {Q̃(t), . . . , Q̃(t − 1)} contains all the information
about past observations. The standard Kalman filter equations for our state space
model are

v(t) := Q̃(t)− E[Q̃(t) | F(t− 1)] = Q̃(t) +B(t)a(t)

F (t) := Var[Q̃(t) | F(t− 1)] = Var[v(t)] = B(t)P (t)B′(t) +R(t)

K(t) := P (t)B′(t)

a(t+ 1) = D(t)(a(t) +K(t)F−1(t)v(t))

P (t+ 1) = D(t)(P (t)−K(t)F−1(t)K ′(t))D′(t) + Γ(t+ 1)

where v(t) is the one-step-ahead prediction error, F (t) is its variance matrix. The
matrix K(t), commonly referred to as the Kalman gain, is the covariance matrix

between the state process and the error, Cov[Y (t), Q̃(t) | F(t − 1)]. The last two
equations recursively define the estimates of interest. The Kalman filter needs to
be initialized, and we set the initial values of a(1) and P (1) to

a(1) = E[Y (1) | F(0)] = E[Y (1)] = a

P (1) = Var[Y (1) | F(0)] = Var[Y (1)] = P .

where the elements of a belong to the optimal parameter set and P is the uncon-
ditional variance/covariance matrix of the initial state vector.

The above algorithm can easily run into numerical problems, due to the inversion
of the highly dimensional and sparse matrix F . In the previous section, we have
assumed that the covariance matrix of the measurements, R, is diagonal. We
can therefore apply the sequential Kalman filter algorithm (see Simon (2006)),
that allows us to treat each element in the observation vector q̄j,k(t) as a separate
measurement7. The mathematical formulation of this algorithm is different, but
equivalent to the standard Kalman Filter one. In the Appendix, we provide further
details on the algorithm.

Given the above setup, we need to jointly estimate the unobservable values of our
state processes in time and the model parameters, that include the coefficients of
the state processes dynamics and the parameters that enter the response functions.
Defining Θ as the vector containing all the (time-independent) parameters of our
model, the log-likelihood function of our state-space model is

logL(Θ) = const−1

2

T∑
l=1

p∑
i=1

logFi(t) + v2
i (t)F−1

i (t),(6)

where p is the number of observations for each period, Fi(t) and vi(t) denote the
Kalman gain and the one-step ahead prediction error relative to the i-th observation

7Notice that this algorithm can be applied even when R is non-diagonal, but constant.
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Figure 3. Observed mortality rates (qx) of the UK males (top
left panel), UK females (top right panel), Dutch males (bottom
left panel) and Dutch females (bottom right panel) aged 0-89 from
1960 to 2013.

at time t, as defined in Appendix B. This function needs to be maximized to obtain
the best fit of the model to the data. Numerical optimization procedures must be
applied to find the optimal parameter set Θ̂, i.e.

Θ̂ = argmax
Θ

L(Θ).

4.2. Estimation Results. We estimate the parameters of our model, following
the above procedure. Our dataset is taken from the UK national population life
table provided by the Human Mortality Database. The mortality surfaces of the
two sub-populations of males and females are depicted in Figure 3. The figure
allows to appreciate the most relevant phenomena concerning mortality evolution
in the last 50 years, in particular the remarkable and constant decline in mortality
rates over time at all ages, but especially at age 0 and the difference in the levels
and patterns in the evolution of mortality rates between the two sub-populations
considered.

To fit our model to the dataset, we perform the maximization of the log-likelihood
through numerical methods, using a two-step procedure. First, we run a global Dif-
ferential Evolution algorithm as a “burn-in”, and we use the parameters resulting
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Figure 4. Percentage relative errors by age and year for the four
sub-populations considered.

from this procedure as the starting values for a local optimization algorithm. The
model we fit requires estimation of 34 parameters only, while the number of obser-
vations is 19080. Despite its parsimony, the model seems to perform well. Figure
4 reports the percentage relative errors by age and year, showing that no evident
clusters appear in the error structure. Table 1 collects the estimated parameters
and some relevant statistics.

Also, following Blackburn and Sherris (2013) and the procedure described in Stof-
fer and Wall (2004), we test stability of our parameter estimation, providing boot-
strapped confidence intervals.8 Our bootstrapping procedure consists in re-sampling
our dataset 500 times, generating new samples using the optimal estimation resid-
uals. We then re-estimate each re-sampled model, obtaining a new set of optimal
parameter values for each sample. The distribution of these parameters provides us
with a confidence interval for parameter estimates Table 4.2 reports the 10%-90%
confidence intervals for our estimated parameters and the point estimates, which
lie in these confidence intervals.

8Bootstrapping is adviced in our case, since the Hessian obtained in the numerical maximization
of the likelihood may be unstable.
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Maximized Number of
log-Likelihood 131106.58 parameters 34

Optimal parameters

Netherlands
Common Males Females

Parameter Value Parameter Value Parameter Value

a1 5.57 ∗ 10−20 bm1 14.2125 bf1 14.5628
a2 2.62 ∗ 10−13 mm 19.2338 mf 18.6586

a3 1.25 ∗ 10−14 bm3 0.0323 bf3 61.6314
σ1 0.0050 ηm 28.9970 ηf 22.2256

σ2 0.0281 bm5 0.0965 bf5 0.1041
σ3 1.02 ∗ 10−6

s 0.1783

UK
Common Males Females

Parameter Value Parameter Value Parameter Value

a1 2.16 ∗ 10−8 bm1 8.4634 bf1 8.6002
a2 0.1024 mm 6.3018 mf 7.1210

a3 1.31 ∗ 10−11 bm3 0.0006 bf3 0.0005
σ1 0.0364 ηm 86.0886 ηf 99.9998

σ2 0.0007 bm5 0.1354 bf5 0.1282
σ3 6.42 ∗ 10−6

s 0.1884

Table 1. This table collects the optimal parameters for our model.
The Table is divided in two panels, one for each population. For
each population, the “common” column collects the parameters
relative to the factor processes and the measurement variance co-
variance matrix s. The other two columns collect the parameters
relative to the response functions of the two sub-populations of
males and females.

The three factors, that are related to infant, specific-age (mainly young adults) and
elderly mortality respectively, all decline in calendar time (see Figure 4.2), for both
populations, as expected.9

9The three factors, whose long-run average is set to zero, have initial values that are quite distant

from this value, especially the first one. The interpretation is that the ideal convergence to zero
might be reached only in the very distant future. Alternatively, setting θ 6= 0, one may try to fix

or calibrate boundaries on the future improvement of human mortality.
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Bootstrapping

Parameter 10% CI Point Estimate 90% CI CV

Netherlands

a1 5.52 ∗ 10−21 5.57 ∗ 10−21 5.62 ∗ 10−21 0.0057
a2 2.60 ∗ 10−13 2.62 ∗ 10−13 2.65 ∗ 10−13 0.0058
a3 1.24 ∗ 10−14 1.25 ∗ 10−14 1.26 ∗ 10−14 0.0259
σ1 0.0049 0.0050 0.0050 0.0081
σ2 0.0278 0.0281 0.0283 0.0197
σ3 1.02 ∗ 10−6 1.02 ∗ 10−6 1.04 ∗ 10−6 0.0056
s 0.1768 0.1783 0.1838 0.0454
bm1 14.0961 14.2125 14.3284 0.0062

bf1 14.4477 14.5628 14.6824 0.0058
mm 19.0700 19.2338 19.3833 0.0060
mf 18.5113 18.6586 18.7996 0.0058
bm3 0.0320 0.0323 0.0326 0.0156

bf3 61.1214 61.6314 62.1204 0.0057
ηm 22.0466 22.2256 22.4021 0.0061
ηf 28.7699 28.9970 29.2182 0.0056
bm5 0.1033 0.1041 0.1051 0.0067

bf5 0.0957 0.0965 0.0972 0.0057

UK

a1 2.15 ∗ 10−8 2.16 ∗ 10−8 2.18 ∗ 10−8 0.0061
a2 0.1016 0.1024 0.1032 0.0141
a3 1.30 ∗ 10−11 1.31 ∗ 10−11 1.33 ∗ 10−11 0.0062
σ1 0.0361 0.0364 0.0367 0.0426
σ2 0.0007 0.007 0.0007 0.0055
σ3 6.36 ∗ 10−6 6.42 ∗ 10−6 6.47 ∗ 10−6 0.0104
s 0.1870 0.1884 0.1919 0.0287
bm1 8.3937 8.4634 8.5321 0.0061

bf1 8.5309 8.6002 8.6702 0.0059
mm 6.2510 6.3018 6.3549 0.0102
mf 7.0639 7.1210 7.1780 0.0058
bm3 5.72 ∗ 10−4 5.77 ∗ 10−4 5.81 ∗ 10−4 0.0056

bf3 4.91 ∗ 10−4 4.95 ∗ 10−4 4.99 ∗ 10−5 0.0066
ηm 85.41 86.0928 86.77 0.0056
ηf 99.2003 99.9998 100.8054 0.0058
bm5 0.1344 0.1354 0.1369 0.0072

bf5 0.1272 0.1282 0.1291 0.0056

Table 2. This table collects the bootstrapped confidence intervals
from our model. The Table is divided in two panels, one for each
population. For each population, the point estimates, together
with the 10% and 90% confidence intervals (CI) are reported. Fi-
nally, the coefficients of variation (CV) of the distribution of the
bootstrapped parameters are reported.
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Figure 5. The figures plot the values of the three factors, Y1, Y2

and Y3, for the two populations, normalized to their values at the
first year.
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Abstracting from the absolute initial values of the factors, which we mormalize to
1, Figure 4.2 shows that the estimates of the factor related to infant mortality for
both populations has experienced the largest drop, being almost ten times lower
in 2013 than in 1960, while the other two factors dropped at around a half of the
initial value.

The model specification we have selected implies that the two sub-populations are
affected by factors having a common dynamics, and thus a common drift, diffu-
sion and correlation coefficients, that are reported in the left column. For UK, the
second and the third factor, which affect young adult and old-age mortality respec-
tively, show a very low level of variability. For the Netherlands, instead, the second
factor appears much more volatile. A non-negligible part of the estimation error
is captured by the age-specific measurement error, that we assumed to be propor-
tional to the mortality rate. Comparing the parameters for the two sub-populations
within the two populations, we find that

(1) the first factor affects very young females in the Netherlands more than

males (in level, see bf1 vs. bm1 ) and its effect decays more slowly for them
with age, while it weighs initially more for UK males, decaying than faster
for them;

(2) the second factor captures the mortality hump around age 20 for the Nether-
lands, while it is practically irrelevant for UK;

(3) the third factor, which captures old-age mortality increases, weighs more
for old women than men at the same age, for both populations.

Despite its remarkable parsimoniousness, our tested three-factor model is able to
fit reasonably well the joint life tables of UK and Netherlands males and females
from 1960 to 2013, and proves to be flexible enough to capture most of the observed
features of mortality dynamics at all ages. This is evident when computing, for each
age, the Mean Absolute Relative Estimation (MARE) Error in time, calculated as:

MARE(x) =
1

T

T∑
t=1

∣∣∣∣ q̂x(t)− qx(t)

qx(t)

∣∣∣∣ ,
where q̂x(t) denotes the fitted mortality rate. We report it, for the two populations
and sub-populations separately, of males and females, in Figure 4.2.

The model produces an average relative error of 13.61% for the 360 ages consid-
ered. Having set, for simplicity, the same specifications for the two sub-populations,
the model reproduces the dynamics at the different ages with a different level of
accuracy for males and females. For instance, it does a better job in capturing
the decline in infant mortality for males rather than for females, for both popula-
tions, while it tends to fit more accurately young female adults (19-25) than male
ones, especially for UK. Finally, the model produces lower relative estimation er-
rors for female than for male old-age mortality rates, for UK, while the converse
happens for the Netherlands. These differences suggest that considering different
response functions across the two populations, and sub-populations within them
might improve the results, at the price of introducing additional complexity in
modelling. Overall, the MARE for UK 14.16%, larger than the one obtained for
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Figure 6. Mean Absolute Relative Errors by age for UK males
(left top panel), UK females (right top panel), Dutch males (left
bottom panel) and Dutch females (right bottom panel).

the Netherlands, 13.06%. Also, the model fits better UK females (10.44%) than
UK males (17.88%) mortality, while the converse happens for Netherlands (10.99%
vs. 15.14%). Overall, the model fits better female mortality (12.79% MARE) than
male one (14.43%). Analysis of the average relative error by calendar year (Figure
??) reveals no particular trend. However, it is likely that some further feature of
the data could be captured by the introduction of period-effects in the response
functions, such as those we proposed in the specification described in Section 3.4.

5. Conclusions

In this paper, we have described a general framework for multi-population mor-
tality evolution, in the context of continuous-time, affine factor models. A set
of latent, unobservable factors describes the evolution of mortality rates in time.
Different populations, and within them, sub-populations, are assumed to respond
differently to changes in these factors, following specific response functions, that
can be themselves age and time-dependent. Our multi-population model allows
to represent many different groups of homogeneous individuals, heterogeneous by
age, such as males and females within different national populations or people with
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Figure 7. Mean Absolute Relative Errors by period for males
(blue line) and females (red line).

different socio-economic status belonging to the different states of a country. We
showed how well-known deterministic mortality models can be extended to stochas-
tic counterparts that fit into the framework we described. Our calibrated applica-
tion exemplifies the flexibility and relevance of our approach. We fit the evolution
of UK males and females mortality rates from 1960 to 2013 using a parsimonious
model that relates to the classical Thiele law. Some relevant problems concerning
the calibration procedure are discussed and tackled, in the context of Kalman filter-
ing techniques applied to Gaussian factors. Extension of the calibration procedure
to SR process, via quasi-Monte Carlo techniques, is in our research agenda, together
with an exploration of the application of time-inhomogeneous specifications of our
model. The models and the fitting procedure described in this paper can naturally
serve as tools to be used in pricing and risk management applications. Nonetheless,
we envisage the use of our framework to the stochastic forecast of multi-population
mortality rates to be used in a wide variety of applications, such as the projections
of public finance items.
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6. Appendix

6.1. Appendix A - Proof of Theorem 2.3. To get the expressions for αj,k(x, t, T )

and βj,k(x, t, T ), we apply the Feynman-Kac theorem. Let us first fix x, t, T and

use the shortcut notation αj,k and βj,k respectively. Our candidate solution is

T−tp
j,k
x+t(t) = eα

j,k(x,t,T )+βj,k(x,t,T )·Y j(t) := vj,k.

Applying the Feynman-Kac theorem, we have

∂vj,k

∂t
+ µj(Y j

t , t) · ∇Y jvj,k +
1

2
tr
{
σj(Y j

t , t)σ
j(Y j

t , t)
′
∇Y j∇Y jvj

}
+

−Rj,k(Y j
t , x+ t, t, x)vj,k = 0,

where we used the notation Y j
t to indicate Y j(t). Since

∇Y jvj,k = vj,kβj,k,
∂vj,k

∂t
= vj,k

(
α̇j,k+(Y j

t )
′
β̇
j,k
)

and ∇Y j∇Y jvj,k = βj,k(βj,k)
′
,

we have

vj,k(α̇j,k + (Y j
t )

′
β̇
j,k

) +Aj(θj − Y j
t ) · (vj,kβ

j,k)

+
1

2
tr
{

Σj
√
V jt H

j(Hj)
′
(√

V jt

)′(
Σj
)′
∇Y j∇Y jvj,k

}
− [gj,k0 (x+ t, t, x) + (Y j

t )
′
gj,k(x+ t, t, x)]vj,k = 0.

Collecting and rearranging, we get

vj,k
[
(α̇j,k + (Y j

t )
′
β̇
j,k

) +Aj(θj − Y j
t ) · β

j,k

+
1

2
tr
{

Σj
√
V jt ρ

j
(√

V jt

)′(
Σj
)′
βj,k(βj,k)

′
}

− gj,k0 (x+ t, t, x)− (Y j
t )

′
gj,k(x+ t, t, x)

]
= 0.

We use the properties of the trace of a matrix and obtain

vj,k
[
α̇j,k + (Y j

t )
′
β̇
j,k

+Ajθj · βj,k −AjY j
t · β

j,k

+
1

2
tr
{

(βj,k)
′
Σj
√
V jt ρ

j
(√

V jt

)′(
Σj
)′
βj,k

}
− gj,k0 (x+ t, t, x)− (Y j

t )
′
gj,k(x+ t, t, x)

]
= 0.

Thus,

α̇j,k + (Y j
t )

′
β̇
j,k

+Ajθj · βj,k − (Y j
t )

′
(Aj)

′
βj,k

+
1

2
tr
{

(βj,k)
′
Σj
√
V jt ρ

j
(√

V jt

)′(
Σj
)′
βj,k

}
− gj,k0 (x+ t, t, x)− (Y j

t )
′
gj,k(x+ t, t, x) = 0.

At this point, we need to consider separately the case of the OU and SR processes.
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6.1.1. OU Case. Let γj,ki = 1 and δj,ki = 0. Then Vt = IN×N and, after rearranging
the terms,

α̇j,k +Ajθj · βj,k − gj0(x+ t, t, x) +
1

2
tr
{

(βj,k)
′
Σjρj

(
Σj
)′
βj,k

}
+ (Y j

t )
′
[
β̇
j,k
− (Aj)

′
βj,k − gj,k(x+ t, t, x)

]
= 0.

Since the trace of a scalar is a scalar, we have

α̇j,k +Ajθj · βj,k − gj,k0 (x+ t, t, x) +
1

2
(βj,k)

′
Σjρj

(
Σj
)′
βj,k

+ (Y j
t )

′
[
β̇
j,k
− (Aj)

′
βj,k − gj,k(x+ t, t, x)

]
= 0.

Now, by the “affine matching principle” (see Duffie and Kan, 1996) we have

β̇
j,k

= gj,k(x+ t, t, x) + (Aj)
′
βj,k

α̇j,k = gj,k0 (x+ t, t, x)−Ajθj · βj,k − 1

2
(βj,k)

′
Σjρj

(
Σj
)′
βj,k.

6.1.2. SR process Case. Let γi = 0 and δi = 1. Then since Vt = diag[Y 1
1 (t), . . . , Y 1

N (t)] =

Y
′

tIN×N and ρ1 = IN×N we have

α̇1,k +A1θ1 · β1,k − g1,k
0 (x+ t, t, x) +

1

2
tr
{

(β1,k)
′
Σ1Vt

(
Σ1
)′
β1,k

}
+ (Y 1

t )
′
(
β̇

1,k
− (A1)

′
β1,k − g1,k(x+ t, t, x)

)
= 0.

Realizing that the trace of a scalar is a scalar, we have

α̇1,k +A1θ1 · β1,k − g1,k
0 (x+ t, t, x) +

1

2
(β1,k)

′
Σ1Vt

(
Σ1
)′
β1,k

+ (Y 1
t )

′
(
β̇

1,k
− (A1)

′
β1,k − g1,k(x+ t, t, x)

)
= 0.

which can be written as

α̇1,k +A1θ1 · β1,k − g1,k
0 (x+ t, t, x) + (Y 1

t )
′
[

1

2
(β1,k

1 )2σ2
1 , . . . ,

1

2
(β1,k
N )2σ2

N

]′

+ (Y 1
t )

′
(
β̇

1,k
− (A1)

′
β1,k − g1,k(x+ t, t, x)

)
= 0.

Hence,

α̇1,k +A1θ1 · β1,k − g1,k
0 (x+ t, t, x)

+ (Y 1
t )

′

(
β̇

1,k
− (A1)

′
β1,k − g1,k(x+ t, t, x) +

[
1

2
(β1,k

1 )2σ2
1 , . . . ,

1

2
(β1,k
N )2σ2

N

]′)
= 0.

Now, applying the “affine matching principle” (see Duffie and Kan, 1996), we have

α̇1,k = g1,k
0 (x+ t, t, x)−A1θ1 · β1,k

β̇
1,k

= g1,k(x+ t, t, x) + (A1)
′
β1,k −

[
1

2
(β1,k

1 )2σ2
1 , . . . ,

1

2
(β1,k
N )2σ2

N

]′

.



26 JEVTIĆ, P. AND REGIS, L.

6.2. Appendix B - Further details on the state space representation and
calibration procedure. In Section 4.1.1 we expressed the measurement process
for population j sub-population k. In compact form, expression (3) can be written
as

Q̄
j,k

(t) = −αj,k(t)−Bj,k(t)Y j(t) + εj,k(t)

where

Q̄
j,k

:= [q̄j,kxmin
(t), . . . , q̄j,kxmax

(t)]

αj,k(t) := [αj,k(xj,kmin, t, t+ 1), . . . , αj,k(xj,kmax, t, t+ 1)]′

Bj,k(t) := [βj,k(xj,kmin, t, t+ 1), . . . ,βj,k(xj,kmax, t, t+ 1)]′

εj,k(t) := [εj,k
xj,k
min

(t), . . . , εj
xj,k
min

(t)]′ where εj,k(t) ∼ N (0,Rj,k(t)) ,

Rj,k(t) := diag[(sq̄j,k
xj,k
min

(t))2, . . . , (sq̄j,k
xj,k
max

(t))2].

We slightly transform the measurement process, obtaining

Q̃
j,k

(t) := Q̄
j,k

(t) +αj,k(t) = −Bj,k(t)Y j(t) + εj,k(t).

The state-space process for population j has the following dynamics,

Y j(t+ 1) = e−A
j

Y j(t) + (1− e−A
j

)θ + ηj(t+ 1), j ∈ J , where

ηj(t+ 1) ∼ N (0,Γj(t+ 1)), and Γj(t+ 1) := E
[( ∫ t+1

l

e−A
j(t+1−s)ΣjHjdZs

)]2
.

From now on, to simplify notation and without significant loss of generality, we
assume θ = 0.

The assumption that the state-space process noise ηj and measurement noise εj,k

are both inter-temporarily and mutually uncorrelated formally implies that

E[εj,k(m)εj,k(n)] = δm,nR
j,k(m),

E[ηj(m)ηj(n)] = δm,nΓj(m) and

E[ηj(m)εj,k(n)] = 0 where ∀m,n ∈ {0, . . . , T}.

For each population j, we gather the information coming from all sub-populations.
There exists one state process only, common to all sub-populations, and mortality
data from different sub-populations are akin to the signals received by different
multi-channel sensors in a centralized architecture.10

Q̃
j
(t) : = [Q̃

j,1
(t), . . . , Q̃

j,Kj

(t)]′

Bj(t) : = [Bj,1(t), . . . ,Bj,Kj (t)]′

εj(t) : = [εj,1(t), . . . , εj,Kj (t)]′

Rj(t) := E[εj(t)εj(t)′] = blockdiag[Rj,1(t), . . . ,Rj,Kj (t)].

10This problem is known in the radar (or satellite) target tracking domain as the single-target-
multiple-sensors problem (see Mitchell (2007), Raol (2009)).
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We further assume that measurement noises of different populations and sub-
populations are inter-temporally uncorrelated11, i.e.

E[εj1,k1(m)εj2,k2(n)] = 0, ∀m,n ∈ {0, . . . , T} and

∀k1, k2 ∈ {1, . . . ,Kj}, k1 6= k2, ∀j1, j2 ∈ {1, . . . , J}, j1 6= j2.

Finally, as described in Section 4.1.1, to tackle our multi-population joint estimation
problem, we need to combine all observations and observation models into a single
composite group model, following a “centralized data-fusion approach”.12 This
strategy allows us to treat all observations as if they were coming from a unique
(albeit very big) multi-channel sensor, where each channel of the unique sensor
receives the information from one population. In practice, we obtain the matrices
in our equations (4) and (5) as follows:

Q̃(t) : = [Q̃
1
(t), . . . , Q̃

J
(t)]′

B(t) : = blockdiag[B1(t), . . . ,BJ(t)]

ε(t) : = [ε1(t), . . . , εJ(t)]′

R(t) := E[ε(t)ε′(t)] = blockdiag[R1(t), . . . ,RJ(t)],

Y (t) := [Y 1(t), . . . ,Y J(t)]′

D := blockdiag[e−A
1

, . . . , e−A
J

]

Γ(t+ 1) := [Γj1,j2(t+ 1)]j1,j2∈J , having

Γj1,j2(t+ 1) := E

[∫ t+1

t

e−A
j1 (t+1−s)Σj1Hj1(Hj2)′Σj2e−A

j2 (t+1−s)dZs

]
and in particular Γj,j(t+ 1) = Γj(t+ 1), j ∈ J .

Sequential KF algorithm

In the following, we provide further details on the sequential Kalman Filter algo-
rithm we have used in estimating our model in Section 4. For this purpose, we will
now see our matrices as

Q̃(t) = [Q̃1(t), . . . , Q̃p(t)]
′

ε(t) = [ε1(t), . . . , εp(t)]
′

B(t) = [B1(t), . . . ,Bp(t)]
′

R(t) = diag[σ2
1(t), . . . , σ2

p(t)]
′

where p =
∑
j,k #Xj,k is the total number of ages considered, Qi(t) is a scalar

and Bi(t)’s are row vectors. Now, since R is a diagonal matrix, the equation that
describes the model for each single observation of interest is

Q̃i(t) = −Bi(t)Y (t) + εi(t).(7)

The sequential Kalman filter algorithm runs then as follows:

11Notice that this assumption, although reasonable in many instances, can be rather strong if the

same institution collects the measurements from all sub-populations.
12An alternative is track-to-track fusion, where bulk of computational effort is made in a decen-
tralized manner (via many separate local Kalman filters) and then estimates are optimally merged

at each point in time.
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(1) The filter is initialized using the unconditional mean and variance of the
state-process vector,

a(1) = E[Y (1) | F(0)] = E[Y (1)] = a

P (1) = Var[Y (1) | F(0)] = Var[Y (1)] = P ,

(2) At each time step t, the state process vector and its variance covariance
matrix are updated as in the standard Kalman Filter,

a−(t+ 1) = D(t)a(t)

P−(t+ 1) = D(t)P (t)D′(t) + Γ(t+ 1).

(3) At each time step t, the estimates are initialized

a+
0 (t+ 1) = a−(t)

P+
0 (t+ 1) = P−(t),

and then updated at after each observation i = 1, ..., p, as

a+
i (t) = a+

i−1(t) +Ki(l)v
+
i (t)

P+
i (t) = P+

i−1(t)−Ki(t)Bi(t)P
+
i−1(t),

where

v+
i (t) = Q̃i(t) +Bi(t)a

+
i−1(t)

Ki(t) =
P+
i−1(t)B

′

i(t)

σ2
i (l)

.

Note that vi(t) and Fi(t) are scalars and Ki(t) is a column vector. Finally,
we set

a+(t) = a+
p (t);

P+(t) = P+
p (t).

For each i = 1, ..., p, we further compute

Fi(t) = Bi(t)P
+(t)B

′

i(t) + σ2
i (t),

vi(t) = Q̃i(t) +Bi(t)a
+(t).

These last expressions for Fi(t) and vi(t) define the quantities that enter the log-
likelihood function (6), that is maximized to get the optimal parameter set.

6.3. Appendix C - Variance-Covariance matrix in the OU process case.
Let us consider the case in which the dynamics of the factors are described by OU
processes, of the type

dY j(t) = Aj(θj − Y j(t))dt+ ΣjdWj(t).

The above SDE can be written in integral form as

Yj(t) = e−AjtYj(0) +

∫ t

0

e−Aj(t−s)θjds+

∫ t

0

e−Aj(t−s)ΣjHjdZ(s).
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This process is Gaussian. As a consequence, we can estimate our model for the
death probabilities, that has a state-space linear representation, using a maximum
likelihood approach. In this Appendix, we explicitly derive a general expression
for the variance/covariance matrix Γ of the factors, when they are correlated. We
define first

Y (t) :=

Y 1(t)
· · ·
Y J(t)

 , W (t) :=

W 1(t)
· · ·

W J(t)

 , θ :=

θ1

· · ·
θJ

 ,

A :=


A1 0 · · · 0

0 Aj · · · 0
...

...
. . .

...

0 0 · · · AJ

 , Σ :=


Σ1 0 · · · 0

0 Σj · · · 0
...

...
. . .

...

0 0 · · · ΣJ

 .
Then, the conditional mean and variance of the state process vector is

E[Y(t) | Y (0)] = e−AtY(0) + (1− e−At)θ,

Γ(t) := Var[Y(t) | Y (0)] = E
[( ∫ t

0

e−A(t−s)ΣdW (s)
)2]

.

Defining

H(t) =

H1

· · ·
HJ

 ,
we have W (t) = HZ(t). Applying Itô isometry,

Γ(t) =

∫ t

0

e−A(t−s)ΣHH
′
Σ

′
(e−A(t−s))

′
ds.

Since

HH
′

=


H1(H1)

′
H1(H2)

′ · · · H1(HJ)
′

H2(H1)
′
H2(H2)

′ · · · H2(HJ)
′

...
...

. . .
...

HJ(H1)
′
HJ(H2)

′ · · · HJ(HJ)
′

 ,
then

ΣHH
′
Σ

′
=


Σ1H1(H1)

′
(Σ1)

′
Σ1H1(H2)

′
(Σ2)

′ · · · Σ1H1(HJ)
′
(ΣJ)

′

Σ2H2(H1)
′
(Σ1)

′
Σ2H2(H2)

′
(Σ2)

′ · · · Σ2H2(HJ)
′
(ΣJ)

′

...
...

. . .
...

ΣJHJ(H1)
′
(Σ1)

′
Σ1H1(HJ)

′
(ΣJ)

′ · · · ΣJHJ(HJ)
′
(ΣJ)

′

 .
Becasue A is a diagonal matrix, we have

e−A(t−s) = (e−A(t−s))
′

As a consequence,

e−A(t−s)ΣHH
′
Σ

′
(e−A(t−s))

′
=

=

 e
−A1(t−s)Σ1H1(H1)

′
(Σ1)

′
e−A

1(t−s) · · · e−A
1(t−s)Σ1H1(HJ)

′
(ΣJ)

′
e−A

J (t−s)

...
. . .

...

e−A
J (t−s)ΣJHJ(H1)

′
(Σ1)

′
e−A

1(t−s) · · · e−A
J (t−s)ΣJHJ(HJ)

′
(ΣJ)

′
e−A

J (t−s)

 .
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Concluding,

Var[Y(t) | Y (0)] =


∫ t

0
e−A

1(t−s)Σ1H1(H1)
′
(Σ1)

′
e−A

1(t−s)ds · · ·
∫ t

0
e−A

1(t−s)Σ1H1(HJ)
′
(ΣJ)

′
e−A

J (t−s)

...
. . .

...∫ t
0
e−A

J (t−s)ΣJHJ(H1)
′
(Σ1)

′
e−A

1(t−s)ds · · ·
∫ t

0
e−A

2(t−s)ΣJHJ(HJ)
′
(ΣJ)

′
e−A

J (t−s)

 .
The variance/covariance matrix Γ is then a block matrix, whose blocks represent

the variance/covariance matrices Γj1,j2 of the pairs of vectors of processes driving
the dynamics of populations j1 and j2. In a more compact form, we have

Γ(t) =


Γ1,1(t) Γ1,2(t) · · · Γ1,J(t)
Γ2,1(t) Γ2,2(t) · · · Γ2,J(t)

· · · · · ·
. . . · · ·

ΓJ,1(t) ΓJ,2(t) · · · ΓJ,J(t)

 .
Let us now expand each block. Each element can be written as

Γj1,j2(t) :=

∫ t

0

e−A
j1 (t−s)Σj1Hj1(Hj2)

′
(Σj2)

′
e−A

j2 (t−s)ds.

We know that

vec(ABC) = (C
′
⊗A) vec(B).

Then,

vec
(
e−A

j1 (t−s)Σj1Hj1(Hj2)
′
(Σj2)

′
e−A

j2 (t−s)
)

=
(
e−A

j1 (t−s) ⊗ e−A
j2 (t−s)

)
vec(Σj1Hj1(Hj2)

′
(Σj2)

′
).

We now use the identity

eA⊕B = eA ⊗ eB,
where

AM×M ⊕BN×N = AM×M ⊗ IN×N + IM×M ⊗BN×N .

We have that

vec
(
e−A

j1 (t−s)Σj1Hj1(Hj2)
′
(Σj2)

′
e−A

j2 (t−s)
)

= vec
(
e−A

j1⊕Aj2 (t−s)
)

vec(Σj1Hj1(Hj2)
′
(Σj2)

′
),

and, finally,

vec(Γj1,j2(t)) =
(∫ t

0

e−A
j1⊕Aj2 (t−s)ds

)
vec(Σj1Hj1(Hj2)

′
(Σj2)

′
)

= (Aj1 ⊕Aj2)−1e−A
j1⊕Aj2 (t−s) |t0 vec(Σj1Hj1(Hj2)

′
(Σj2)

′
)

= (Aj1 ⊕Aj2)−1
(
1− e−A

j1⊕Aj2 t
)

vec(Σj1Hj1(Hj2)
′
(Σj2)

′
).

6.3.1. Three-factor models. In particular, let us focus on the 3-dimensional case, as
in our specification described in Section 3.4, that we used in our application. In
such a case,

Hk =


1 0 0

ρk12

√
1− (ρk12)2 0

ρk13
ρk23−ρ

k
13ρ

k
12√

1−(ρk12)2

√
1+2ρk12ρ

k
13ρ

k
23−[(ρk12)2+(ρk13)2+(ρk23)2]

1−(ρk12)2

 .
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for k ∈ {1, . . . , J}, while

Σk =

 σk1 0 0
0 σk2 0
0 0 σk3

 ,
hence

ΣkHk =


σk1 0 0

σk2ρ
k
12 σk2

√
1− (ρk12)2 0

σk3ρ
k
13 σk3

ρk23−ρ
k
13ρ

k
12√

1−(ρk12)2
σk3

√
1+2ρk12ρ

k
13ρ

k
23−[(ρk12)2+(ρk13)2+(ρk23)2]

1−(ρk12)2

 .
Now

Σj1Hj1(Hj2)
′
(Σj2)

′
=

σj11 0 0

σj12 ρ
j1
12 σj12

√
1− (ρj1j1j2)2 0

σj13 ρ
j1
13 σj13

ρ
j1
23−ρ

j1
13ρ

j1
12√

1−(ρ
j1
12)2

σj13

√
1+2ρ

j1
12ρ

j1
13ρ

j1
23−[(ρ

j1
12)2+(ρ

j1
13)2+(ρ

j1
23)2]

1−(ρ
j1
12)2

×

σj21 σj22 ρ

j2
12 σj23 ρ

j2
13

0 σj22

√
1− (ρj212)2 σj23

ρ
j2
23−ρ

j2
13ρ

j2
12√

1−(ρ
j2
12)2

0 0 σj23

√
1+2ρ

j2
12ρ

j2
13ρ

j2
23−[(ρ

j2
12)2+(ρ

j2
13)2+(ρ

j2
23)2]

1−(ρ
j2
12)2

 =


σj11 σ

j2
1 σj11 σ

j2
2 ρ

j2
12 σj11 σ

j2
3 ρ

j2
13

σj12 ρ
j1
12σ

j2
1 σj12 σ

j2
2

(
ρj112ρ

j2
12 + λj1λj2

)
σj12 σ

j2
3

(
ρj112ρ

j2
13 + λj1γj2

)
σj13 σ

j2
1 ρ

j1
13 σj13 σ

j2
2

(
ρj113ρ

j1
12 + γj1λj2

)
σj13 σ

j2
3

(
ρj113ρ

j2
13 + γj1γj2 + ψj1ψj2)

)
 ,

where

λj =
√

1− (ρj12)2, γj =
ρj23−ρ

j
13ρ

j
12√

1−(ρj12)2
,

ψj =

√
1+2ρj12ρ

j
13ρ

j
23−[(ρj12)2+(ρj13)2+(ρj23)2]

1−(ρj12)2
, j ∈ {1, . . . , J}

Hence, the i1, i2-th element of matrix, where i1, i2 ∈ {1, . . . , J}, is

[Γj1,j2 ]i1,i2 =
σj1i σ

j2
j

aj1i + aj2j

(
1− e−(a

j1
i +a

j2
j )t
)

[Hj1(Hj2)
′
]i1,i2

and unconditional variance-covariance matrix, obtained by letting t→∞, leads to

[Γj1,j2 ]∞i1,i2 =
σj1i σ

j2
j

aj1i + aj2j
[Hj1(Hj2)

′
]i1,i2 .(8)


