
18 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Dealing with temporal indeterminacy in relational databases: An AI methodology

Published version:

DOI:10.3233/AIC-190619

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1718847 since 2019-12-10T14:25:09Z

Dealing with Temporal Indeterminacy in Relational
Databases: an AI methodology

Luca Anselma1, Luca Piovesan2, and Paolo Terenziani2

1Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10139 Torino, Italy
2DISIT, Univ. Piemonte Orientale “A. Avogadro”, Alessandria, Italy

luca.anselma@di.unito.it, luca.piovesan@uniupo.it, paolo.terenziani@uniupo.it

Abstract. Time is pervasive of the human way of approaching reality, so that it
has been widely studied in many research areas, including AI and relational
Temporal Databases (TDB). While temporally imprecise information has been
widely studied by the AI community, only few approaches have faced temporal
indeterminacy (in particular, “don’t know exactly when” indeterminacy) in
TDBs. Indeed, as we will show in this paper, the treatment of time in general,
and of temporal indeterminacy in particular, involves the introduction of
implicit forms of data representation in TDBs. As a consequence, we propose a
new AI-style methodology to cope with temporal indeterminacy in TDBs.
Specifically, we show that typical AI notions and techniques, such as making
explicit the semantics of the representation formalism, and adopting symbolic
manipulation techniques based on such a semantics, can be fruitfully exploited
in the development of a “principled” treatment of indeterminate time in
relational databases.

Keywords: Temporal data, data representation and semantics, query semantics,
symbolic manipulation

1 Introduction

Time is pervasive of reality, and plays a fundamental role in many intelligent tasks, so
that it has been widely investigated by the AI community, which, from its early years,
has developed many different methodologies for temporal representation and
temporal reasoning. Starting from the middle 80’s, also the scientific DB community
has started to recognize that time has a special status with respect to the other data, so
that its treatment within a relational database context requires dedicated techniques
[Snodgrass, 00; Snodgrass et al., 95]. Such a consideration has led to the development
of many different approaches to cope with time in the area of temporal relational
databases (TDB in the following; see, e.g., [Wu et al., 98], [Liu & Özsu, 2009]). Just
as an example, the 1998 cumulative bibliography about TDBs refers more than 2000
papers [Wu et al., 98]. Such approaches pointed out a quite wide range of solutions,
proposing, e.g., different data models, and algebraic operations to query them.

However, TDB approaches have developed quite completely in an independent way
with respect to AI methodologies. This is probably due to the fact that, to the best of
our knowledge, no TDB approach has explicitly taken into account the fact that, while
adding time to a relational DB, one adds implicit knowledge (i.e., the semantics of
time) in it. This is particularly true in case temporal indeterminacy is considered (i.e.,
“don’t know exactly when” indeterminacy [Dyreson, 09]), since indeterminacy give
rise to many different alternative possibilities, and, for the sake of space and
computational efficiency, no TDB approach makes all of them explicit. In this paper
we argue that, since a high degree of implicit information is present in temporally
indeterminate DB data, a temporal indeterminate DB is indeed quite close to a
(simplified) knowledge base, so that AI techniques can be exploited to properly cope
with it. In this paper, we propose an AI-based methodology to cope with temporal
indeterminacy:

(i) We formally define and extend the snapshot semantics for temporal data
[Snodgrass et al., 95] to cope also with temporal indeterminacy,

(ii) We propose a 1-Normal-Form representation model for “interval-based”
temporal indeterminacy

(iii) We analyse the semantics of the representation model, showing that (at
least) two alternatives are possible

(iv) We face the task of defining the relational algebraic operators (which
perform symbolic manipulation on the model) to query the
representational model, for both the alternative semantics, showing that
only with one of them it is possible to devise a relational algebra which is
both closed with respect to the model and correct with respect to the
semantics.

Result (iv) enforces the core message of our approach: in TDBs, the representational
model contains implicit (temporal) information. Thus, AI techniques could\should be
used to analyse its semantics, and to devise algebraic operators that perform symbolic
manipulation on the representational model, consistently with the devised semantics.
In other words, in this paper we propose the first (to the best of our knowledge) AI
approach in which an AI methodology is developed to be applied to the relational DB
context, to cope with time and temporal indeterminacy.

The paper is organized as follows. In Section 2, we briefly overview the related work,
focusing on the TDB approaches to temporal indeterminacy. In Section 3, informally
introduce our AI-style methodology to cope with temporal indeterminacy in TDBs,
motivating it. In Section 4, we start with the technical contributions, proposing a
“functional” (data and query) semantics for determinate time in TDB. In Section 5,
we extend such a semantics to cover temporal indeterminacy. In Section 6, we
propose a compact representation (in First Normal Form - 1NF for short) for an
important class of temporally indeterminate data, and define temporal algebraic
operators to query it, consistently with the semantics of the representation. In Section
7, we provide experimental results, showing that our treatment of temporal
indeterminacy only adds a negligible overhead to the “standard” TSQL2 treatment of
determinate temporal data. Finally, Section 8 contains conclusions and future work.
Appendix.1 briefly presents the “consensus” BCDM semantics for determinate time,
elaborated by the TDB community [Snodgrass et al., 95].

2 TDB approaches to valid time temporal indeterminacy

Many different approaches have been devoted to the treatment of time in TDBs. One
of the first milestone was the distinction between the time when facts are
inserted\deleted into\from the DB (termed transaction time), and the time when such
facts occurred in the modelled mini-world (termed valid time) (consider, e.g.,
[Snodgrass & Ahn 86]). In the following, we only consider the latter. Despite their
variety, until now most TDB approaches have focused on individual occurrences of
facts, whose valid time is exactly known (i.e., with determinate time). However, as
well known in the AI field, in many real-world cases the exact time of occurrence of
facts is not known, and can only be approximated, so that temporal indeterminacy
(i.e., “don’t know exactly when” indeterminacy [Dyreson, 09]) has to be faced.
Temporal indeterminacy is so important that “support for temporal indeterminacy”
was already one of the eight explicit goals of the data types in TSQL2 [Snodgrass et
al., 95], the milestone “consensus” approach devised by the TDB community. In
effect, temporal indeterminacy in TDBs has various possible sources, including scale,
dating techniques, future planning, unknown or imprecise event times, clock
measurements (this list is not exhaustive, and is taken from TSQL2 book [Snodgrass
et al., 95]). Due to the fact that temporal indeterminacy is pervasive in many
application domains, since the 80’s AI a plethora of approaches has been devised to
cope with it (just to mention few examples, consider the early surveys in [Vila, 94;
Allen, 91; Emerson, 90]). However, in the area of relational databases, the number of
approaches coping with temporal indeterminacy is more restricted (see e.g. the
surveys in [Jensen & Snodgrass, 96; Dyreson, 09]) and current approaches have
several limitations.
In the earliest TDB work on temporal indeterminacy, an indeterminate instant was
modeled with a set of possible chronons [Snodgrass, 82]. Dutta [Dutta, 89] introduced
a fuzzy set approach. Gadia et al. [Gadia et al., 92] proposed a model to support value
and temporal incompleteness. In the TSQL2 “consensus" book [Snodgrass et al., 95],
Chapter 18 presents a 1NF data model for temporal indeterminacy and an extension of
SQL, while it does not provide a relational algebra. Dyreson and Snodgrass [Dyreson
& Snodgrass, 98] and Dekhtyar et al. [Dekhtyar et al., 01] have proposed probabilistic
approaches coping with different forms of temporal indeterminacy. Dyreson and
Snodgrass cope with valid-time indeterminacy by associating a period of
indeterminacy with a tuple. A period of indeterminacy is a period between two
indeterminate instants, each one consisting of a range of granules and of a probability
distribution over it. However, in such an approach, no relational algebra is proposed
to query temporally indeterminate data. Dekhtyar et al. introduce temporal
probabilistic tuples to cope with a quite specific for of temporal indeterminacy,
concerning instantaneous events only (i.e., with data such as “the tuple d is in relation
r at some point of time in the interval [ti, tj] with probability between p and p0”), and
provide algebraic relational operators for their data model. Anselma et al. [Anselma
et al, 13] have proposed a general semantic model for temporal indeterminacy in

TDBs. They identified different forms of temporal indeterminacy, and proposed a
family of achievable representational models and algebrae for such forms. However,
such an approach is semantic-oriented, abstract and not in 1NF (thus inefficient and
not suitable for a direct implementation). A 1NF approach for a form of temporal
indeterminacy has been proposed in [Anselma et al., 16], but no semantics for the
model has been presented.

3 Towards an AI-style semantic-based methodology to cope with
time in relational DBs

A premise is important, when starting a discussion about the semantics of temporal
relational DBs. Indeed, seen from an AI perspective, a “traditional” non-temporal
relational database is just an elicitation of all and only (given the closed-world
assumption [Minker, 82]) the facts that are true in the modeled mini-world. In such a
sense, the semantics of a non-temporal DB is “trivial”, since the DB do not contain
any implicit data\information. Since all the data are explicit, no “AI-style” reasoning
mechanism is required, and (algebraic) query operators are enough to extract the
relevant data from a DB.
However, such an “easy” scenario drastically changes when time is introduced into
DBs, by associating with each fact its valid time, i.e., the time when it holds\occurs.
Roughly speaking, in such a case, eliciting explicitly all true facts would correspond
to elicit, for each possible point in time, all the facts that hold at that point. Despite
the extreme variety of TDB approaches in the literature, almost the totality of them is
based, explicitly or (in many cases) implicitly, on the above idea, commonly termed
“snapshot semantics”: a temporal database is a set of “standard” (non-temporal)
databases, each one considering a snapshot of time, and eliciting all facts (tuples) true
in the modelled mini-world at that time. As an example, the “consensus” TSQL2
presents the BCDM semantic model, which supports the “snapshot semantics”
mentioned above, and proves that such a semantics underlies many different
approaches in the literature [Snodgrass et al., 95]. For the sake of completeness, the
BCDM semantics is briefly reported in Appendix 1.

Of course, for space and time efficiency reasons, no TDB approach in the literature
directly implements temporal databases making all data explicit: representational
models are used to encode facts in a more compact and efficient form. Notably, this is
a major departure from “traditional” DB concepts: a TDBs is not just an elicitation of
all facts that holds in the modelled mini-world, but a compact implicit representation
of them. This consideration becomes even more important while considering
temporal indeterminacy. In TDBs, temporal indeterminate facts are facts for which
the time of occurrence can only be approximated. Therefore, they may involve many
different alternative possibilities and, for the sake of space and computational
efficiency, no TDB approach aims at explicitly storing and managing all of them. As
a consequence, a high degree of implicit information is present in all TDB data
models for temporal indeterminacy. The adoption of representation model that are
not fully “explicit”, but involve a degree of implicit information, makes a temporal

indeterminate TDB closer to the AI notion of knowledge base (in the sense that
implicit information is involved). As a consequence, in this paper, we suggest that a
new, “semantic-based” and “AI-based” methodology should be used, when
approaching indeterminate time in relational DBs. First of all,

(M1) a semantics for making explicit the intended meaning of the representational
models must be devised.

In such a context, the algebraic query operators cannot simply select and extract data
(since some data are implicit). Making all data explicit before\while answering
queries is certainly not a good option (for the sake of space and time efficiency of the
approach). As a consequence,

(M2) algebraic operators must operate on the (implicit) representation
(M3) algebraic operators must provide an output expressed in the given

representation (i.e., the representation formalism must be closed with respect to the
algebraic operators)

(M4) algebraic operators must be correct with respect to the semantics of the
representation

In the following, we make the above discussion more concrete and formal. We start
from the definition of a semantics for determinate time, and then we extend it to
consider temporal indeterminacy.

4 Snapshot semantics for Determinate Time DBs: a “functional”
perspective

In BCDM [Snodgrass et al., 95], a semantics for determinate time TDBs is provided
(see also Appendix 1). It encodes the “snapshot semantics” discussed above, and has
been proven to encompass the semantics of many different TDB approaches
[Snodgrass et al., 95]. However, such a semantics is deliberately “operational”,
aiming at being not far from possible implementations. In this section we propose a
“functional” specification of the snapshot semantics, which is more abstract and, in
the meanwhile, more suitable for

(i) being extended to cope with temporal indeterminacy and
(ii) specifying the semantics of temporal algebraic operators in terms of

their non-temporal counterparts.

4.1 Data Semantics

We first introduce the notion of tuple, relation, and database. We then move to the
definition of time, and define the notion of (semantics of) a temporal database.

Definition 1. (non-temporal) Database, Relation, Tuple. A (non-temporal)
relational database DB is a set of relations over the relational schema s = (R1:si , ...,
Rk:sj) where si, ..., sjÎS are the sorts of R1, ..., Rk, respectively. A relation R(x1, ..., xk):s

of sort sÎS is a sequence of attributes x1, ..., xk each with values in a proper domain
D1,…Dk. An instance r(R:s) of a relation R(x1, ..., xk) of sort sÎS is a set {a1, …, an}
tuples, where each tuple ai is a set <v1,…,vk> of values in D1´…´Dk. ■

Notation. In the following, we denote by DBs the domain of all possible database
instances over a schema s. ■

As in many TDB approaches, including TSQL2 [Snodgrass et al., 95], and in the
BCDM “consensus” semantics [Snodgrass et al., 95], we assume that time is discrete
and bounded.

Definition 2. Temporal domain DT. We assume a limited precision for time, and
call chronon (as in TSQL2 [Snodgrass et al., 95]) the basic time unit. The domain of
chronons is totally ordered and isomorphic to a subset of the domain of natural
numbers. The domain of valid times DT is given as a set DT={c1,…,ck} of chronons. ■

In the (commonly agreed) snapshot semantics, a temporal database is a set of
conventional (non-temporal) databases, one for each chronon of time. In this paper,
we propose to specify such a concept formally through the introduction of functions,
relating each time to the facts holding\occurring at that time.

Definition 3. Temporal database (semantic notion). Given a relational schema

s = (R1:si , ..., Rk:sj) a temporal database DBT is a function fs,DT: DT → DBs ■

Analogously a temporal relation is a function from DT to the tuples that hold at

each chronon in DT.

Definition 4. Time slice. Given a temporal database DBT and a temporal relation

rTÎ in DBT, and given a chronon cÎDT, we define the time slice of DBT (denoted by
DBT(c)) and of rT (denoted by rT(c)) the result of the application of the functions DBT
and rT to the chronon c. ■

Example. 1. As a simple running example, let us consider a simple database
DBT1 modeling patient symptoms. The database contains a unique relation SYM of
schema <Patient,Symptom,Value> and models two facts:

(f1) John had high fever from 10 to 12 of 1/1/2018
(f2) Mary had moderate fever from 11 to 13 of 1/1/2018

(in the example, we assume that chronons are at the granularity of hours, and hour 1
represent the first hour of 1/1/2018).
The temporal database (semantic notion) modeling such a state of affairs is the
following (for the sake of clarity and simplicity, we omit the chronons in DT for
which no tuple hold, and we omit the name of the relation(s)).
 10 → {<John, fever, high>}
 11 → {<John, fever, high>,<Mary, fever, moderate>}
 12 → {<John, fever, high>,<Mary, fever, moderate>}
 13 → {<Mary, fever, moderate>}		
In this example DBT1(10) = SYMT(10) = {<John, fever, high>} ■

Notably, definition 3 above is a purely “semantic” definition. Other definitions of the
snapshot semantics for TDBs, such as the one in BCDM, are more “operational” and
are closer to actual representations\implementations (see Appendix 1). Indeed, our
“functional” definition is similar to the “relation-stamped representation” of abstract
temporal databases in the work by Chomicki and Toman [Chomicki & Toman, 98].

4.2 Query semantics

The semantic of queries is commonly expressed by specifying in terms of relational
algebraic operators. Codd designated as complete any query language that was as
expressive as his set of five relational algebraic operators: relational union (È),
relational difference (–), selection (σP), projection (πX), and Cartesian product (´) [Codd,
72]. Different approaches have generalized such operators to cope also with temporal
databases. Though quite different approaches have been proposed (depending on the
chosen representation for a temporal database), there is a common agreement that
temporal algebraic operators (i) should behave exactly as Codd’s non-temporal ones,
at each point (chronon) of time. Roughly speaking, such a requirement is usually
formally expressed in TDBs by the reducibility property, stating that temporal
algebraic operators should reduce to standard Codd’s operators in case time is
removed (see [McKenzie & Snodgrass, 91; Snodgrass et al., 95], and also Appendix
1). Notably, property (i) above (as well as reducibility) has also very important
practical implications, since it grants the possible interoperability of temporal
databases with standard non-temporal DBs [Snodgrass et al., 95]. Given our
“functional” definition of temporal databases above, in our approach we can formally
define such a property (see below).

Definition 5. Relational algebraic operators on temporal databases

(“semantic” notion). Denoting by OpC a Codd’s operator, and by OpT its
corresponding temporal operator, OpT must be defined in such a way that the
following holds
"cÎDT (OpT(rT,sT) (c)) = OpC(rT(c),sT(c))) ■

(In Definition 5 above, we assume that rT and sT are temporal relations in a

temporal database DBT, and that Op is a binary operator. rT(c) represents the time
slice of rT at the chronon c. The definition of unary operators is analogous).

Of course, the above “purely semantic” definition of temporal relational algebraic

operators is highly inefficient, since snapshot(s) of the underlying relation(s) at every
single chronon (e.g., day, millisecond) are computed. As a consequence, more
“operational” definitions of algebraic operators have been proposed in the literature.
Notably, however, the “commonly agreed” BCDM definition of the semantics of
algebraic operators (see Appendix 1) is consistent with definition 5 above.

5 Snapshot semantics for temporal indeterminacy in TDB

In TDBs, the notion of temporal indeterminacy is usually paraphrased as “don’t know
exactly when” indeterminacy (consider, e.g., the Encyclopedia survey in [Dyreson,
09]): facts hold at times that are not exactly known. An example is reported in the
following:

Example. 2. As a simple running example, let us consider a simple database

DBT1 modeling patient symptoms. The database contains a unique relation SYMI of
schema <Patient,Symptom,Value> and models two facts:

(f1) John had high fever at 10 and 11, and possibly at 12, or 13, or both.
(f2) Mary had moderate fever at 12 and 13, and possibly at 11

(in the example, we assume that chronons are at the granularity of hours, and hour 1
represent the first hour of 1/1/2018).

5.1 Data Semantics of Indeterminate Time DBs

Of course, we can still retain the definition of the temporal domain DT provided in
section 2. However, the definition of an indeterminate temporal database is different:
informally speaking, an indeterminate TDB is simply a set of alternative
(determinate) TDBs, each one encoding one of the different possibilities. Technically
speaking, it requires the introduction of a set of functions.

Definition 6. Indeterminate temporal database (semantic notion). Given a
relational schema s = (R1:si , ..., Rk:sj) an indeterminate temporal database DBIT is a
set DBIT={f1, …, fk} of functions fs,DT: DT → DBs ■

Analogously, a temporally indeterminate relation rIT is a set S(rIT) of functions

from DT to the set of tuples of rT that hold at each chronon in DT. As an example, eight
functions are necessary to cover all the alternative possibilities (henceforth called
scenarios) for Example 2.

Example. 2 (cont).

The indeterminate temporal database DBIT (semantic notion) modeling Example 2 is
the following (for the sake of brevity, we denote with “J” the tuple <John, fever,
high> and with “M” the tuple <Mary, fever,moderate>).

 f1 f2 f3 f4
10 → {J} 10 → {J} 10 → {J} 10 → {J}
11 → {J} 11 → {J} 11 → {J} 11 → {J}
12 → {M} 12 → {J,M} 12 → {M} 12 → {J,M}
13 → {M} 13 → {M} 13 → {J,M} 13 → {J,M}

 f5 f6 f7 f8
10 → {J} 10 → {J} 10 → {J} 10 → {J}
11 → {J,M} 11 → {J,M} 11 → {J,M} 11 → {J,M}
12 → {M} 12 → {J,M} 12 → {M} 12 → {J,M}
13 → {M} 13 → {M} 13 → {J,M} 13 → {J,M} ■

For the technical treatment that follows, it is useful to introduce the notion of
alternative slice.

Definition 7. Scenario slice. Given an indeterminate temporal database DBIT =
{f1,…,fk} and a temporal relation rITÎ in DBIT, and given any f Î{f1,…,fk} , we define
the scenario slice f of DBIT (denoted by DBf

IT) and of rIT (denoted by rf
T) the

determinate temporal database and the determinate temporal relation obtained by
considering only the scenario f for DBIT ■

For example, considering Example 2 above, DBf1

IT=SYMf1
IT= {10→{J}, 11→{J},

12→{M}, 13→{M}}.

5.2 Query semantics

Of course, for the algebraic query operators, we can still retain all the general
requirements discussed so far for determinate time. However, we have to generalize
the above approach, to consider the fact that a set of alternative (determinate)
temporal databases (scenarios) are involved. Therefore, given two temporally
indeterminate relations rIT and sIT, binary temporal algebraic operators must consider,
at each chronon, all the possible combinations of the scenarios frÎS(rIT) of rIT and
fsÎS(sIT) of sIT. At any temporal chronon c, the result of the temporal operator should
be the result obtained through the application of the corresponding Codd’s operator in
each pair of scenarios, considered at time c.

Definition 8. Relational algebraic operators on indeterminate temporal
databases (“semantic” notion). Denoting by OpC a Codd’s operator, and by OpIT its
corresponding temporal operator for indeterminate time, OpIT must be defined in such
a way that the following holds
"cÎDT (OpIT(rIT,sIT) (c)) = {{OpC(fr(c), fs(c)))} \ frÎS(rIT) Ù fsÎS(sIT)} ■

 (In Definition 8, rIT and sIT are temporal relations in a temporally indeterminate
database DBIT, and Op is a binary operator. fr(c) represents the time slice at the
chronon c of the scenario fr of rIT. The definition of unary operators is simpler).

Indeed, indeterminacy intrinsically involves alternative possibilities, so that the

approach usually followed in the TDB area (as well as, of course, in AI) is the
introduction of modalities, to ask for possible (i.e., valid in at least one of the possible
scenarios) or necessary (i.e., valid in all the possible scenarios) answers (see, e.g.,
[Anselma et al, 13]).

With the introduction of the modalities (POSS – for possible) and NEC, the
semantics of algebraic query operators in the indeterminate (temporal) context can be
still be easily expressed in terms of their Codd’s non-temporal counterparts, as shown
in definition 9 below.

Definition 9. Relational algebraic operators on indeterminate temporal

databases (“semantic” notion). Denoting by OpC a Codd’s operator, and by OpIT its
corresponding temporal operator for indeterminate time OpIT must be defined in such
a way that the following holds
"cÎDT POSS (OpIT(rIT,sIT) (c)) = È

 fr Î S(rIT) Ù fs Î S(sIT)
 OpC(rfr

IT(c), sfs
IT(c))

"cÎDT NEC (OpIT(rIT,sIT)(c)) = Ç
fr Î S(rIT) Ù fs Î S(sIT)

 OpC(rfr
IT(c), sfs

IT(c)) ■

(In definition 9 above, rIT and sIT are temporal relations in a temporally

indeterminate database DBIT, and Op is a binary operator. fr(c) represents the time
slice at the chronon c of the scenario fr of rIT. The definition of unary operators is
simpler).

Roughly speaking, the above definition dictates that, to preserve the snapshot
semantics in the indeterminate context, the evaluation of a binary temporal operator
OpIT (rIT,sIT) must provide the result that would be obtained by
(i) Applying the corresponding Codd’s operator at each chronon, and considering

each combinations <fr,fs> of the scenarios S(rIT) of rIT and S(sIT) of sIT (please
notice that rfr

IT (c) denotes the time slice at the chronon c of the relation rIT,
considering only the scenario fr).

(ii) In the NEC modality, (at each chronon) the intersection among the results of
such an application in the different scenarios is performed, to grant that the
facts hold in all the scenarios. In the POSS modality, (at each chronon) union
is used, since we want to report as output (at the given chronon) all the facts
that hold in at least one scenario.

Notably, we regard definition 9 above as one of the major results of this paper:

until now, no approach in the TDB community has been able to clarify the semantics
of temporal algebraic operators on indeterminate time in terms of their Codd’s
counterparts.

But, obviously, this is query data and query semantics: a direct implementation of
the data model and algebraic operators defined so far would be highly inefficient, as
regards both space and time. As a consequence, “compact” implementations should
be performed. We address this issue in the next section, showing that, in any case, an
in-depth semantic analysis in necessary to provide correct implementations.

6 Possible “compact” approaches to temporal indeterminacy

Very different realizations of temporal relational databases for determinate time have
been proposed in the literature. Actually, all of them (except few “pioneering”

approaches) respect the “snapshot” semantics, and provide an efficient
implementation for it. The large majority of such approaches enforce at least two key
requirements to achieve efficiency:

(i) The First Normal Form (1NF) is used to represent data1
(ii) Temporal algebraic operators directly manipulate the representation

In this section we adopt the same requirements to face temporal indeterminacy.

The most frequently adopted representational model to cope with (valid) time in a
compact and 1NF way is the interval-based representation (consider, e.g., the TSQL2
“consensus” representational model). A time interval (compactly modelled by a
starting and an ending time) is associated with each temporal tuple, to denote that the
(fact represented by the) tuple holds in each time points in the interval. In the
indeterminate time context, such an interval-based representation has also been used,
e.g., in [Snodgrass & Dyreson, 98; Anselma et al., 16]: four temporal attributes (say
T1, T2, T3, and T4) are associated with each temporal tuple (see Definition 10).

Definition 10. Temporally indeterminate Database, Relation, Tuple
(representation level). At the representation level, a temporally indeterminate
relational database DBIT can be modeled by a set of (temporally indeterminate)
relations over the relational schema s = (R1:si , ..., Rk:sj) where si, ..., sjÎS are the
sorts of R1, ..., Rk, respectively. A relation R(x1, ..., xk|T1,T2,T3,T4):s of sort sÎS is a
sequence of non-temporal attributes x1, ..., xk each with values in a proper domain
D1,…Dk, and temporal attributes T1,T2,T3,T4 with domain DT. An instance r(R:s) of
a relation relation R(x1, ..., xk|T1,T2,T3,T4):s is a set {t1, …, tn} tuples, where each
tuple ti is a set <v1,…,vk|t1,t2,t3,t4> of values in D1´…´Dk´ DT ´ DT ´ DT ´ DT . ■

Example 3. In the temporally indeterminate context, the relation SYM (called
SYMIT) may be represented with the schema <Patient,Symptom,Value| T1,T2,T3,T4> ■

Intuitively and roughly speaking, the semantics of such a compact 1NF “interval-
based” representation of temporal indeterminacy is the following:
(sem1) the fact represented by the tuple <v1,…,vk|t1,t2,t3,t4> occurs possibly in [t1,t2)
and in [t3, t4), and certainly in [t2,t3).
In the following, we show that a “rough” semantics like (sem1) above is not enough:
it must be fully formalized (e.g., in terms of the sematic model proposed in Section 5
above) as a starting point for devising a “proper” representational model and algebra,
following the methodological requirements M1—M4 above.

6.1 “Single occurrence” semantics

A first way of interpreting the “ambiguous” semantics (sem1) above is the following:

1 A relation is in first normal form if and only if the domain of each attribute contains only

atomic (indivisible) values, and the value of each attribute contains only a single value from
that domain [Elmasri et al, 03]

(sem1’) the fact represented by the tuple <v1,…,vk|t1,t2,t3,t4> certainly occurs in the
time interval [t2,t3), but it may start before, in a chronon in the interval [t1,t2)
and end after, in a chronon in the interval [t3,t4).

In such a semantics, all the scenarios includes the chronons [t2,t3), as well as
(possibly) a set of chronons in [t1,t2) È [t3,t4), provided that such chronons extend the
interval [t2,t3) on the left, or on the right, or in both directions, without creating any
gap. This notion can be formalized in terms of scenarios as follows.

Definition 11. Semantics sem1’. The semantics of a tuple <v1,…,vk|t1,t2,t3,t4> is the
set of functions F = {f’: [cs,ce] → { <v1,…,vk >} \ t1 £ cs £ t2 Ù t3 < ce < t4}

This is, probably, the most intuitive notion of temporal indeterminacy in TDBs: each
tuple represents a single occurrence of a fact, and temporal indeterminacy concerns
the starting and ending chronons of it. In such a context, it looks natural to impose
t1£t2<t3£t4, thus granting that there is at least one chronon in which the fact certainly
occurs (see, e.g., [Dyreson & Snodgrass, 98]).

Example 4. Given the temporally indeterminate relation SYMIT, with the semantics
(sem1’) above, the fact

(f2) Mary had moderate fever at 12 and 13, and possibly at 11
can be represented by the tuple <Mary,fever,moderate|11,12,14,14>
The semantics of such a tuple is (where “M” stands for <Mary,fever,moderate>):
 11 → {M}
12 → {M} 12 → {M}
13 → {M} 13 → {M} ■

Notably, if we assume the semantics (sem1’), the fact (f1)

(f1) John had high fever at 10 and 11, and possibly at 12, or 13, or both
cannot be represented in the representational model: as a matter of fact, in the
semantics (sem1’) the tuple

<John,fever,high|10,10,12,14>
would be interpreted as the compact representation of the semantics below:
10 → {J} 10 → {J} 10 → {J}
11 → {J} 11 → {J} 11 → {J}
 12 → {J} 12 → {J}
 13 → {J}
while the scenario <10 → {J}, 11 → {J}, 13 → {J}> would not be part of the
semantics of the representation. Indeed, if we assume (sem1’), each tuple represents a
single occurrence of a fact, while the scenario <10 → {J}, 11 → {J}, 13 → {J}>
above represents two separate occurrences, one at [10,12), and one at [13,14).

Of course, the specification of the semantics if fundamental also for the definition of
the algebraic operators. In particular, we must grant that such operators

(i) Are correct with respect to the semantics, and
(ii) Are closed with respect to the representational model

Notably, if we assume the semantics (sem1’) for the representational model in
Definition 10, there is no way to satisfy both requirements (i) and (ii)2. A trivial
counter-example is discussed in the following, considering algebraic difference.

Example 5. Consider the difference between two relations rIT and sIT having the same
schema (A1,…,Ak|T1,T2,T3,T4). Let rIT={<a1,…,ak|1,3,5,7>} and
sIT={<a1,…,ak|3,3,8,8>} (i.e., the two tuples are value-equivalent, and the tuple in sIT
is determinate, starts at 3 and ends at 7). In such a case the result of the difference
rIT -IT sIT should be a fact a1,…,ak which may not occur, or occur in {2}, or in {1,2}. A
tuple with such a semantics cannot be represented in the given representation.
Therefore, this example suffices to show that (correct) difference is not closed with
respect with the given formalism (with semantics sem1’ above). ■

6.2 “Independent chronons” semantics

A different way of interpreting the “rough” semantics (sem1) above is the following:
(sem1”) the fact represented by the tuple <v1,…,vk|t1,t2,t3,t4> certainly holds in each

chronon in [t2,t3) (if any), and may hold in each one of the chronons between
t1 and t2, and between t3 and t4

In such a semantics, each scenario includes the chronons [t2,t3), as well as (possibly) a
set of chronons in [t1,t2) È [t3,t4). There are as many different scenarios as the
cardinality of the power set of the chronons in [t1,t2) È [t3,t4).

Definition 12. Semantics sem1”. The semantics of a tuple <v1,…,vk|t1,t2,t3,t4> is the
set of functions F = {f’: CS → { <v1,…,vk >} \ CS = {t2, t2+1, t2+2, …,t3-1} È S’,
where S’ÎPS({t1, t1+1, t1+2, …,t2-1} È {t3, t3+1, t3+2, …,t4-1}), and PS(S) denotes
the power set of a set S.

In such a semantics, there is no notion of single occurrence at all. One simply regards
chronons independently of each other. In such a context, it looks natural to impose
t1£t2£t3£t4 and t1<t4 so that the fact must be possible in at least a chronon, but may also
not be certain in any chronon (in case t2=t3).

Example 6. Given the temporally indeterminate relation SYMIT, with the semantics
(sem1”) above, the fact (f1)

 (f1) John had high fever at 10 and 11, and possibly at 12, or 13, or both
is represented in the representational model by the tuple

<John,fever,high|10,10,12,14>
which has the semantics discussed above, i.e.,

2 Notably, it is possible to show that it is not possible to define correct algebraic operators

closed with respect to the representational model also in case one admits the possibility that
facts in the TDBs do not necessarily occur, i.e., imposing t1£t2£t3£t4 in the representational
model.

10 → {J} 10 → {J} 10 → {J} 10 → {J}
11 → {J} 11 → {J} 11 → {J} 11 → {J}
 12 → {J} 13 → {J} 12 → {J}
 13 → {J}
 ■

With such a semantics for the representational model, it is possible to define correct
and closed algebraic operators as follows:

Definition 13. Algebraic operators for indeterminate time (independent chronons
semantics). Let r and s denote relations of the proper sort and <v|t1,t2,t3,t4> a tuple
with non-temporal part v and temporal part t1,t2,t3,t4.
r ÈIT s = { < v| t1,t2,t3,t4> | < v| t1,t2,t3,t4 > Î r Ú < v| t1,t2,t3,t4 > Î s}
r ´IT s = { < vr ·vs| t1,t2,t3,t4 > | $ t’1,t’2,t’3,t’4 $ t"1,t"2,t"3,t"4 (< vr| t’1,t’2,t’3,t’4 > Î r Ù
< vs| t"1,t"2,t"3,t"4 > Î s Ù t1=max(t’1, t"1) Ù t4=min(t’4, t"4) Ù t1< t4 Ù

let ts=max(t’2, t"2) Ù te=min(t’3, t"3)
if ts£ te then t2= ts Ù t3= te else t2=t3=t where t is any value in [t1,t4)}

πITX(r) = { < v| t1,t2,t3,t4 > | $vr,t1,t2,t3,t4 (< vr| t1,t2,t3,t4 > Î r Ù v = πX(vr) }
σITP(r) = { < v|t > | < v|t > Î r Ù P(v) }
r -IT s = { < v| t1,t2,t3,t4> | ($v, t1,t2,t3,t4 (< v| t1,t2,t3,t4 > Î r Ù
 ¬$ t’1,t’2,t’3,t’4 (< v| t’1,t’2,t’3,t’4 > Î s))) Ú

 ($ t’1,t’2,t’3,t’4 $ t"1,t"2,t"3,t"4 (<v| t’1,t’2,t’3,t’4> Î r Ù <v| t"1,t"2,t"3,t"4>Îs
Ù t1,t2,t3,t4 = difference([t’1,t’4), [t’2,t’3), [t"1,t"4),[t"2,t"3))}

where difference can be defined by the following function (where s a function that
returns the starting point of an interval and e returns the ending point):

difference(p1,n1,p2,n2)
(1) if (p1 ⊆ n2) then return Æ
(2) else if (p1 Ç n2 = Æ) then

if ((n1-p2) ¹Æ) then return <s(p1),s(n1-p2),e(n1-p2),e(p1)>
else return <s(p1),t,t,e(p1)> where t is any value s(p1)£t£e(p1)

(3) else if (p1 ⊃ n2) then
 if (s(n1)<s(p2)) let r1= <s(p1),s(n1-p2),e(n1-p2),s(n2)>
 else let r1= <s(p1),t,t,s(n2)> where t is any value s(p1) £t£s(n2)
 if (e(n1)>e(p2)) let r2=<e(n2),s(n1-p2),e(n1-p2),e(p1)>
 else let r2=<e(n2),t,t,e(p1)> where t is any value e(n2)£t£e(p1)
 return {r1, r2}

(4) else
 if ((n1-p2) ¹Æ) return <s(p1-n2),s(n1-p2),e(n1-p2),e(p1-n2)>
 else return <s(p1-n2),t,t,e(p1-n2)> where t is any value s(p1-n2)£t£e(p1-n2)

■

The difference function accepts as parameters two time intervals for the minuend (p1
and n1) and two time intervals for the subtrahend (p2 and n2). p1 and p2 are the

possible intervals, i.e., they contain the chronons that are in at least one scenario, and
n1 and n2 are the necessary – certain – intervals, i.e., they contain the chronons that
are in every scenario (thus n1⊆p1 and n2⊆p2). The function operates along the
following idea: if a chronon is both in the minuend and in the subtrahend, and in the
subtrahend such a chronon is (i) necessary (i.e., it belongs to n2), it will not be in the
result, (ii) only possible (i.e., it belongs to p2 but not to n2), it will be possible in the
result. From (i) and the fact that n1⊆p1, descends part (1) of the difference function,
from (ii) descends part (2), from (i) and (ii) and the fact that n2⊆p1 descends part (3)
and, in particular, since n2⊆p1 the minuend “breaks” into two (pairs of) intervals,
from (i) and (ii) and the fact that n2⊈p1 descends part (4).

In such a context, the NEC and POSS operators can be defined as follows:

Definition 14. NEC and POSS operators for indeterminate time (independent
chronons semantics). Let r denote an indeterminate time relation and <v|t1,t2,t3,t4> a
tuple with non-temporal part v and temporal part t1,t2,t3,t4.
NEC(r) = { < v| t2,t2,t3,t3> | < v| t1,t2,t3,t4 > Î r Ù t2<t3}
POSS(r) = { < v| t1,t1,t1,t4> | < v| t1,t2,t3,t4 > Î r } ■

Roughly speaking, since the semantics of the representation is (sem1”) above, the
chronons in which a fact necessarily occurs\holds are the ones in [t2,t3). A fact with a
determinate time [t2,t3) can be represented, in our formalism, by a tuple <v| t2,t2,t3,t3>,
in which the intervals for possible chronons (i.e., [t2,t2) and [t3,t3)) are empty, and the
interval for necessary chronons is [t2,t3). Analogously, the chronons in which the fact
may occur (i.e., in which the fact possibly or necessarily occur) are the ones in [t1,t2)
È [t2,t3) È [t3,t4), i.e., in [t1,t4). A fact with determinate time [t1,t4) can be represented,
in our formalism, by a tuple < v| t1,t1,t1,t4>, in which the first interval for possible
chronons (i.e., [t1,t1)) and the interval for necessary chronons (i.e., [t1,t1)) are empty,
while the second interval for possible chronons is [t1,t4). Notably, other semantically
equivalent representations are possible.

Property 1. The algebraic operators in Definitions 13 and 14 are correct (with respect
to the semantics defined so far) and are closed with respect to the representational
model.
Proof (sketch). Let us consider, for example, the case of Cartesian Product. The
closure of such an operation directly follows from its definition: the output is a set of
tuples having as non-temporal values the concatenation of the non-temporal values
being paired, and as temporal part a quadruple of values t1,t2,t3,t4 such that t1£t2£t3£t4
and t1<t4 (notably, in case max(t’1, t"1) ³ min(t’4, t"4), the tuple is not part of the
output). As regards correctness with respect to the semantics, we have to prove that,
given any chronon cÎDT,

(i) a tuple t=<v | t1,t2,t3,t4 > belongs to NEC(r ´IT s)(c) if and only if it
belongs to Ç

fr Î S(rIT) Ù fs Î S(sIT)
 (rfr

IT(c) ´C sfs
IT(c))

(ii) a tuple t=< v | t1,t2,t3,t4 > belongs to POSS(r ´IT s)(c) if and only if it
belongs to È

fr Î S(rIT) Ù fs Î S(sIT)
 (rfr

IT(c) ´C sfs
IT(c))

(where ´C denotes Codd’s Cartesian Product). Let us consider, for short, the a part of
the proof: if a tuple t=< v | t1,t2,t3,t4 > belongs to NEC(r ´IT s)(c) , then it must belong
to Ç

fr Î S(rIT) Ù fs Î S(sIT)
 (rfr

IT(c) ´C sfs
IT(c)). By definition of NEC, all tuples in

NEC(r) are of the form < v| t2,t2,t3,t3>. If t=< v| t2,t2,t3,t3> and tÎ NEC(r ´IT s)(c), we
have that (i) c must belong to [t2,t3) and (ii) there must be a tuple t’Î(r ´IT s) such that
t’=< v| t1,t2,t3,t4>. Given (i), the semantics (sem 1”) implies that c→{v} belongs to all
the scenarios of (r ´IT s); If such the tuple t’ belongs to (r ´IT s), given the definition
of ´IT, there must be a tuple tr=<vr| tr1,tr2,tr3,tr4>Îr and a tuple ts=<vs| ts1,ts2,ts3,ts4>Îs
such that v=vr·vs and t2=max(tr2, ts2) Ù t3=min(tr3, ts3) (i.e., [t2,t3)= [tr2,tr3) Ç [ts2,ts3)).
Since cÎ[t2,t3) and [t2,t3)= [tr2,tr3) Ç [ts2,ts3)), we thus have that cÎ[tr2,tr3) and
cÎ[ts2,ts3). Since cÎ[tr2,tr3), given (sem1”), we have that c→{vr} belongs to all the
scenarios frÎS(rIT) of rIT; Since cÎ[ts2,ts3), given (sem1”), we have that c→{vs}
belongs all the scenarios fsÎS(sIT) of sIT. As a consequence, given the definition of
Codd’s Cartesian Product, in each combination of scenarios for rIT and sIT, v=vr·vs

belongs to the output, so that v=vr·vs belongs to intersection of all the outputs.
The proof in the other direction is similar, and is not reported for the sake of brevity.
■

7 Experimental evaluations

As discussed in Section 3, the treatment of temporal indeterminacy involves the
management of implicit data in the treatment of query answering (algebraic
operators), so that AI symbolic manipulation techniques can be used. Specifically, in
Section 6.2, we have defined new algebraic operators for indeterminate time, and we
have proven their correctness with respect to the underlying semantics. In this
Section, we discuss some experimental evaluations, showing that, though
significantly more expressive, our approach only adds a negligible overhead with
respect to TSQL2, in which only determinate (i.e., exact) valid time is considered
(notably, in TSQL2 book, Chapter 18, also temporal indeterminacy is considered;
however, no extension of algebraic operators to cope with indeterminacy is proposed).

We have implemented the data model and algebra discussed in Section 6.2 and the
TSQL2 model and algebra to cope with determinate time, using PL/pgSQL stored
procedures and PostgreSQL. We have experimentally evaluated the performance of
our temporal algebra. Experiments have been performed on an Intel Core i7-6700HQ
CPU, 2.60 GHZ, 8 GB RAM, OS Windows 10, using PostgreSQL 10 DBMS with
default settings (effective cache size 500 MB, 8 KB page size and 500 MB shared
buffers).

We have generated datasets of different dimension, to test and compare the
scalability of our approach, with respect to TSQL2. In particular, we have focused our
experiments on the algebraic operators that manipulate the temporal attributes, i.e.,
Cartesian Product and difference.

As regard Cartesian Product in our approach, we have generated two tables T2 and
T2 (of increasing dimension: 500, 1000, 2500, 5000, 10000, 25000, and 50000 tuples

each) such that 10% of the tuples of T1 intersects as regards the possible chronons
and, among them, 50% intersects also as regards certain chronons. In TSQL2, the
two tables T1’ (corresponding to T1) and T2’ (corresponding to T2) have been
implemented considering only two temporal attributes (to model the start and the end
of the valid time). They contain the same tuples as T1 and T2 as regard the non-
temporal attributes, and have as valid time the possible valid time of the
corresponding tuples in T1 and T2.

Left part of Fig. 1 shows the execution times of Cartesian Product in our approach
(blue and solid line) and in TSQL2 (red and dotted line), expressed in milliseconds.
Right part of Fig. 1 shows the physical I/O (number of blocks). The answer set is not
shown, since, obviously, it is the same for the two approaches. Notably, the I/O is
slightly greater in our approach, due to the fact that our data model has two additional
temporal attributes (to model both possible and certain time) with respect to TSQL2
(in which only determinate time is modeled). Such a fact also explains the slight
overhead in execution time, which is also caused by the fact that the computation of
intersection requires more operations in our approach (with respect to TSQL2).

As regard temporal difference, we have generated two tables T1 and T2 of
increasing dimension (10000, 25000, 50000, 100000, 250000, 500000, 1000000
tuples) in such a way that 10% of the tuples in T1 have a value-equivalent counterpart
(i.e., tuples with the same values for the non-temporal attributes) in T2. Among them,
20% temporally intersects as regards possible times, and 10% intersects also as
regards certain time. As above, the tuples in the corresponding TSQL2 tables contain
the same tuples as T1 and T2 as regard the non-temporal attributes, and have as valid
time the possible valid time of the corresponding tuples in T1 and T2. Notably, the
answer set of our approach is significantly greater than the one in TSQL2. This is a
natural consequence of the different semantics of data. In TSQL2, only certain time
can be considered, so that, e.g., the difference between a time interval t and a time
interval t’ containing t is obviously empty. On the other hand, in case t and t’ are

Figure 2. Difference. Comparisons between our approach and TSQL2 as regards
execution time (top left figure), I/O (top right figure), and answer set (bottom left
figure), considering datasets of different dimensions.

Figure 1. Cartesian Product. Comparisons between our approach and TSQL2 as
regards execution time (on the left) and I/O (on the right), considering datasets of
different dimensions.

possible times, their difference is t. As an obvious consequence, the output in our
approach can be larger. Given the larger answer set, and the additional memory
needed to store four temporal attributes (instead than two, as in TSQL2), also the I/O
(and the execution time) of our approach is higher than in TSQL2. Notably however,
Fig. 2 clearly shows that the I/O and execution-time overhead of our approach is
negligible.

To summarize, our experimental evaluations show that, while adding the

possibility of modeling and querying indeterminate time, our AI-based approach only
adds a negligible overhead to the “consensus” TSQL2 approach, in which only exact
time is considered.

8 Conclusions and future work

In this paper, we propose an innovative AI approach in which a semantic-based AI-
style methodology is applied to the context of TDBs in order to cope with temporal
indeterminacy. Specifically:

(1) We propose a new “functional” semantic definition for indeterminate time in
TDBs, which allows us to express the semantics of temporal algebraic
operators in terms of their Codd’s counterparts (thus formally providing a
“snapshot semantics” for indeterminate time TDBs).

(2) We propose a new AI-style methodology to the treatment of TDBs, using it
to develop a semantically-grounded 1NF approach (data model plus algebra)
to cope with “interval-based” temporal indeterminacy.

Indeed, in this paper we have widely discussed the fact that, when introducing the
temporal dimension, TDBs have to cope with implicit information, which has to be
symbolically manipulated by algebraic operators to answer queries. As a
consequence, we have proposed an innovative AI-based methodology to cope with
time in relational DBs. We are confident that our methodology can be fruitfully
applied to other types of temporal information in TDBs (e.g., “now-relative” data
[Anselma et al., 16b], implicit representation of periodically repeated data
[Terenziani, 16a, 16b]), and possibly of other forms of indeterminacy, thus leading to
a new AI stream of research to cope with indeterminate\implicit data in relational
DBs.

Appendix 1. BCDM Semantics

BCDM (Bitemporal Conceptual Data Model) [Snodgrass et al., 95] is a unifying
data model, isolating the “core” semantics underlying many temporal relational
approaches, including TSQL2. In BCDM, tuples are associated with valid time and
transaction time [Ahn & Snodgrass, 86]. For both domains, a limited precision is

assumed (the chronon is the basic time unit). Both time domains are totally ordered
and isomorphic to the subsets of the domain of natural numbers. The domain of valid
times DVT is given as a set DVT={c1,…,ck} of chronons, and the domain of transaction
times DTT is given as DTT={c’1,…,c’j}È{UC} (where UC –Until Changed– is a
distinguished value). In general, the schema of a BCDM relation R=(A1,...,An|T)
consists of an arbitrary number of non-timestamp (explicit henceforth) attributes A1,
…, An, encoding some fact, and of a timestamp attribute T, with domain DTT´DVT; the
explicit attributes and the timestamp attribute are separated by the symbol “|”. Thus, a
tuple x=(v1,…,vn|tb) in a BCDM relation r(R) on the schema R consists of a number of
attribute values associated with a set of bitemporal chronons cbl=(c’h, ci), with c’hÎDTT
and ciÎDVT, to denote that the fact v1,…,vn is current (present in the database) at time
c’h and valid at time ci. An empty timestamp and value-equivalent tuples (i.e., tuples
which are equal as regards the values of the non-temporal attributes [Snodgrass et al.,
95]) are not admitted.

Valid-time, transaction-time and atemporal tuples are special cases, in which either
the transaction time, or the valid time, or both of them are absent. In the following, we
restrict our attention to valid time (in fact, temporal indeterminacy cannot affect
transaction time). In BCDM, in which each tuple is paired with all the chonons when
it holds. In BCDM, temporal databases directly associate valid times with tuples, so
that the semantics of Example 1 above would be modeled as follows:

{<John, fever, high| {10,11,12)>, <Mary, fever, moderate| {11,12,13}>.

Codd designated as complete any query language that was as expressive as his set of
five relational algebraic operators: relational union (È), relational difference (–),
selection (σP), projection (πX), and Cartesian product (´) [Codd, 72]. BCDM
generalizes these operators to cover bitemporal relations. BCDM dictates that, to
support the “snapshot semantics”, temporal operators must behave as standard non-
temporal operators on the non-temporal attributes, and apply set operators on the
temporal component of tuples. Cartesian product involves the intersection of the
temporal components, projection and union involve their union, and difference the
difference of temporal components.

Definition 14. BCDM temporal algebraic operators. Let r and s denote relations

of the same sort and <v|t> a tuple with non-temporal part v and temporal part t.
r ÈT s = { < v|t > | < v|t > Î r Ú < v|t > Î s}
r -T s = { < v|t > | (< v|t > Î r Ù ¬$ts (< v|ts > Î s)) Ú

 $tr $ts (< v|tr > Î r Ù < v|ts > Î s Ù t = tr – ts Ù t ¹ Æ) }
r ´T s = { < vr ∙vs|t > | $tr $ts (< vr|tr > Î r Ù < vs|ts > Î s Ù t = tr Ç ts Ù t ¹ Æ) }
πT

X (r) = { < v|t > | $vr tr (< vr| tr > Î r Ù v = πX (vr)) }
σT

P (r) = { < v|t > | < v|t > Î r Ù P(v) } ■

This definition can be motivated by a sequenced snapshot semantics [Dunn et al., 02]:
results should be valid independently at each point of time. Such a property is
formally proved by proving the reducibility property.

To prove reducibility, they first introduce the timeslice operators. For the sake of
simplicity, here we consider valid time relations only, so that valid timeslice operator
is introduced.

Definition 15. Valid timeslice operator. Let rT be valid time relation defined over

the schema (A1, …, An | T) and t a valid time. The result of the valid timeslice
operator ρt(rT) is a standard nontemporal relation over the schema (A1, …, An),
defined as follows:
ρt(rT) = {x \ $ x’ÎrT (x[A1, …, An]=x’[A1, …, An] Ù tÎx[T]}
(in the definition, x[A1, …, An] represents the values of the attributes A1, …, An in the
tuple x, and x[T] its valid times). ■

The valid timeslice operator, given a valid time BCDM relation and a time t,

removes the temporal part of the tuple and retains only the tuples whose valid time
contained t.

Property 2. Reducibility of BCDM algebra to Codd’s one. BCDM algebraic

operators are reducible to Codd operators, i.e., for BCDM operator OpT that extends a
Codd’s operator Op to cope with time, and for each time t, the following holds (the
analogous holds for unary operators):

ρtT(rT OpT sT) = ρtT(rT) Op ρtT(sT).
(see the proof in [Snodgrass et al., 95]) ■

References

[Allen, 91] J. F. Allen, Time and time again: The many ways to represent time. Int. J. Intell.

Syst., 6, pp. 341–355, (1991).
[Anselma et al., 13] Anselma, L., Terenziani, P., Snodgrass, R.T.: Valid-Time Indeterminacy in

Temporal Relational Databases: Semantics and Representations. IEEE Transactions on
Knowledge and Data Engineering. 25, 2880–2894 (2013).

[Anselma et al., 16] Anselma, L., Piovesan, L., Terenziani, P.: A 1NF temporal relational
model and algebra coping with valid-time temporal indeterminacy. Journal of Intelligent
Information Systems. 47, 345–374 (2016).

[Anselma et al., 16b] Anselma, L., Piovesan, L., Sattar, A, Stantic B., Terenziani, P.: A
Comprehensive Approach to 'Now' in Temporal Relational Databases: Semantics and
Representation. IEEE Trans. Knowl. Data Eng. 28(10): 2538-2551 (2016)

[Chomicki & Toman, 98] J. Chomicki and D. Toman: Temporal Logic in Information Systems,
in Logics for Databases and Information Systems, Chomicki and Saake (eds.), Kluwer,
31-70, (1998).

[Codd, 72] E. F. Codd, Relational Completeness of Data Base Sublanguages. In: R. Rustin
(ed.), Database Systems 65-98, Prentice Hall and IBM Research Report RJ 987, San Jose,
California, (1972).

[Dekhtyar et al., 01] Dekhtyar, A., Ross, R., Subrahmanian, V.: Probabilistic temporal
databases, I: algebra. ACM Transactions on Database Systems (TODS). 26, 41–95
(2001).

[Dyreson & Snodgrass, 98] Dyreson, C.E., Snodgrass, R.T.: Supporting valid-time
indeterminacy. ACM Transactions on Database Systems (TODS). 23, 1–57 (1998).

 [Dyreson, 09] Dyreson, C.: Temporal Indeterminacy. In: Liu, L. and Ozsu, M.T. (eds.)

Encyclopedia of Database Systems. pp. 2973–2976. Springer US, Boston, MA (2009).
[Dunn et al., 02] J. Dunn, S. Davey, A. Descour, and R.T. Snodgrass, Sequenced Subset

Operators: Definition and Implementation, proc. ICDE'02, (2002).
[Dutta, 89] Dutta S: Generalized events in temporal databases. In: Data Engineering,

Proceedings. ICDE 1989, pp 118-125,(1989).
[Elmasri et al., 03] Elmasri, Ramez; Navathe, Shamkant B. (July 2003). Fundamentals of

Database Systems, Fourth Edition. Pearson.
[Emerson, 90] Emerson AE. Temporal and Modal Logic, In: Van Leeuwen (ed) Handbook of

Theoretical Computer Science, Vol. B, pp. 997-1072, Elsevier Science Publishers,
(1990).

[Gadia et al., 92] Gadia SK, Nair SS, Poon YC: Incomplete information in relational temporal
databases. In: Yuan LY (ed) VLDB, Morgan Kaufmann, pp 395-406, (1992).

[Jensen & Snodgrass, 96] Jensen, C.S., Snodgrass, R.T.: Semantics of Time-Varying
Information. INFORMATION SYSTEMS. 21, 311–352 (1996).

[Liu & Özsu, 2009] Liu, L., Özsu, M.T. eds: Encyclopedia of database systems. Springer
(2009).

[Mc Kenzie & Snodgrass, 91] McKenzie, L.E., Jr., Snodgrass, R.T.: Evaluation of Relational
Algebras Incorporating the Time Dimension in Databases. ACM Comput. Surv. 23, 501–
543 (1991).

[Minker, 82] Minker, Jack: On indefinite databases and the closed world assumption, Lecture
Notes in Computer Science, 138, Springer Berlin Heidelberg, pp. 292–308, (1982).

[Snodgrass, 82] Snodgrass RT: Monitoring distributed systems: A relational approach. PhD
thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh,PA,
(1982).

[Snodgrass, 00] Snodgrass, R.: Developing Time-oriented Database Applications in SQL.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000).

[Snodgrass & Ahn 86] R. T. Snodgrass and I. Ahn, “Temporal Databases,” IEEE Computer
19(9): 35–42, September, 1986.

[Snodgrass et al., 95] Snodgrass RT (ed.), Ahn I, Ariav G, Batory D, Clifford J, Dyreson C,
Elmasri R, Grandi F, Jensen C, Kafer W, Kline N, Kulkarni K, Leung C, Lorentzos N,
Roddick J, Segev A, Soo M, Sripada S.M (1995) The temporal query language TSQL2,
Kluwer Academic Publishers, Boston (1995).

[Terenziani, 16a] Terenziani P.: Irregular Indeterminate Repeated Facts in Temporal Relational
Databases. IEEE Trans. Knowl. Data Eng. 28(4): 1075-1079 (2016)

[Terenziani, 16b] Terenziani P.: Nearly Periodic Facts in Temporal Relational Databases. IEEE
Trans. Knowl. Data Eng. 28(10): 2822-2826 (2016).

[Vila, 94] Vila L. A survey on temporal reasoning in artificial intelligence, AI Communications
7(1): 4-28 (1994).

[Wu et al., 98] Wu, Y., Jajodia, S., Wang, X.S.: Temporal database bibliography update. In:
Etzion, O., Jajodia, S., and Sripada, S. (eds.) Temporal Databases: Research and Practice.
pp. 338–366. Springer Berlin Heidelberg, Berlin, Heidelberg (1998).

