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LIFTINGS FOR ULTRA-MODULATION SPACES, AND

ONE-PARAMETER GROUPS OF GEVREY TYPE

PSEUDO-DIFFERENTIAL OPERATORS

AHMED ABDELJAWAD, SANDRO CORIASCO, AND JOACHIM TOFT

Abstract. We deduce one-parameter group properties for pseudo-di↵erential

operators Op(a), where a belongs to the class �
(!0)
⇤ of certain Gevrey symbols.

We use this to show that there are pseudo-di↵erential operators Op(a) and

Op(b) which are inverses to each others, where a 2 �
(!0)
⇤ and b 2 �

(1/!0)
⇤ .

We apply these results to deduce lifting property for modulation spaces
and construct explicit isomorpisms between them. For each weight functions
!,!0 moderated by GRS submultiplicative weights, we prove that the Toeplitz
operator (or localization operator) Tp(!0) is an isomorphism from Mp,q

(!) to

Mp,q
(!/!0)

for every p, q 2 (0,1].

0. Introduction

The topological vector spaces V1 and V2 are said to possess lifting property if
there exists a ”convenient” homeomorphisms (a lifting) between them. For example,
for any weight ! on R

d, p 2 (0,1] and s 2 R the mappings f 7! ! · f and
f 7! (1��)s/2f are homeomorphic from the (weighted) Lebesgue space L

p
(!) and

the Sobolev space H
p
s , respectively, into L

p = H
p
0 , with inverses f 7! !

�1 · f and
f 7! (1��)�s/2

f , respectively. (Cf. [34] and Section 1 for notations.) Hence, these
spaces possess lifting properties.

It is often uncomplicated to deduce lifting properties between (quasi-)Banach
spaces of functions and distributions, if the definition of their norms only di↵ers by
a multiplicative weight on the involved distributions, or on their Fourier transforms,
which is the case in the previous homeomorphisms. Here note that multiplications
on the Fourier transform side are linked to questions on di↵erentiation of the in-
volved elements. A more complicated situation appears when there are some kind
of interactions between multiplication and di↵erentiation in the definition of the
involved vector spaces.

An example where such interactions occur concerns the extended family of
Sobolev spaces, introduced by Bony and Chemin in [3] (see also [38]). More pre-
cisely, let !,!0 be suitable weight functions and g a suitable Riemannian metric,
which are defined on the phase space W ' T

⇤
R

d ' R
2d. Then Bony and Chemin

introduced in [3] the generalised Sobolev space H(!, g) which fits the Hörmander-
Weyl calculus well in the sense thatH(1, g) = L

2, and if a belongs to the Hörmander
class S(!0, g), then the Weyl operator Opw(a) with symbol a is continuous from
H(!0!, g) to H(!, g). Moreover, they form group algebras, from which it follows
that to each such weight !0, there exist symbols a and b such that

Opw(a) �Opw(b) = Opw(b) �Opw(a) = I, a 2 S(!0, g), b 2 S(1/!0, g). (0.1)
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Here I is the identity operator on S 0. In particular, by the continuity properties
of Opw(a) it follows that H(!0!, g) and H(!, g) possess lifting properties with the
homeomorphism Opw(a), and with Opw(b) as its inverse.

The existence of a and b in (0.1) is a consequence of solution properties of the
evolution equation

(@ta)(t, · ) = (b+ log #)#a(t, · ), a(0, · ) = a0 2 S(!, g), # 2 S(#, g), (0.2)

which involve the Weyl product # and a fixed element b 2 S(1, g). It is proved that
(0.2) has a unique solution a(t, · ) which belongs to S(!#t, g) (cf. [3, Theorem 6.4]
or [38, Theorem 2.6.15]). The existence of a and b in (0.1) will follow by choosing
! = a0 = 1, t = 1 and # = !0.

If g is the constant euclidean metric on the phase space R
2d, then S(!0, g)

equals S(!0)(R2d), the set of all smooth symbols a which satisfies |@↵a| . !0. We
notice that also for such simple choices of g, (0.1) above leads to lifting properties
that are not trivial. In fact, let ! and !0 be polynomially moderate weight on
the phase space, and let B be a suitable translation invariant BF-space. Then it
is observed in [30] that the continuity results for pseudo-di↵erential operators on
modulation spaces in [54,56] imply that Opw(a) in (0.1) is continuous and bijective
from M(!0!,B) to M(!,B) with continuous inverse Opw(b). In particular, by
choosing B to be the mixed norm space Lp,q(R2d) of Lebesgue type, then M(!,B)
is equal to the classical modulation space M

p,q
(!), introduced by Feichtinger in [15].

Consequently, Opw(a) above lifts Mp,q
(!0!) into M

p,q
(!).

An important class of operators in quantum mechanics and time-frequency anal-
ysis concerns Toeplitz, or localisation operators. The main issue in [30, 31] is to
show that the Toeplitz operator Tp(!0) lifts M

p,q
(!0!) into M

p,q
(!) for suitable !0. The

assumptions on !0 in [30] is that it should be polynomially moderate and satisfies
!0 2 S

(!0). In [31], the assumptions are di↵erent compared to [30]. On one hand
the growth and decay conditions on !0 is relaxed compared to [30] in the sense that
it is only assumed that !0 should be moderated by a so-called GRS-weight, which
is allowed to grow subexponentially. On the other hand, in [31] it is required that
!0 is radial symmetric in each phase shift, i. e. !0 should satisfy

!0(x1, . . . , xd, ⇠1, . . . , ⇠d) = #(r1, . . . , rd), rj = |(xj , ⇠j)|, (0.3)

for some weight #.
The approaches in [30, 31] are also di↵erent. In [31], the lifting properties for

Tp(!0) are reached by using the links between modulation spaces and Bargmann-
Foch spaces in combination of suitable estimates for a sort of generalised gamma-
functions. The approach in [30] relies on corresponding lifting properties for pseudo-
di↵erential operators, as follows:

(1) Tp(!0) = Opw(c) for some c 2 S
(!0);

(2) by the definitions, it follows by straightforward computations that if # =

!

1
2
0 , then Tp(!0) is a homeomorphism from M

p,q
(#) to M

p,q
(1/#);

(3) combining (0.1) with Wiener’s lemma for (S(1)
,#) to ensure that the inverse

of Tp(!0) in (2) is a pseudo-di↵erential operator Opw(b) with the symbol
b in S

(1/!0);

(4) by (1), (3) and duality,

T1 ⌘ Opw(b) � Tp(!0) and T2 ⌘ Tp(!0) �Opw(b)

are both the identity operator on S 0(Rd), since T1 is the identity operator
on M

p,q
(#) , T2 is the identity operator on M

p,q
(1/#), and S ✓ M

p,q
(#) \M

p,q
(1/#).
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(5) by (4), T1 = T2 = Opw(1) is the identity operator on each M
p,q
(!). Since

Tp(!0) = Opw(c) : Mp,q
(!0!) ! M

p,q
(!) and Opw(b) : Mp,q

(!) ! M
p,q
(!0!)

are continuous (cf. [54, 56]) and inverses to each other, it follows that they
are homeomorphisms.

In the first part of the paper we deduce an analog of (0.1) for the Gevrey type

symbol classes �(!0)
s and �(!0)

0,s of orders s � 1, the set of all a 2 C
1 such that

|@↵a(X)| . h
|↵|
↵!s!(X) (0.4)

for some h > 0, respectively for every h > 0, considered in [5]. That is, in Section
3 we show that there exist symbols a and b such that

Opw(a) �Opw(b) = Opw(b) �Opw(a) = I, a 2 �(!0)
s , b 2 �(1/!0)

s , (0.5)

and similarly when �(!0)
s and �(1/!0)

s are replaced by �(!0)
0,s and �(1/!0)

0,s , respectively.
As in [3], (0.5) is obtained by proving that the evolution equation

(@ta)(t, · ) = (b+ log #)#a(t, · ), a(0, · ) = a0 2 �(!)
s , # 2 �(#)s , (0.6)

analogous to (0.2), has a unique solution a(t, · ) which belongs to �(!#t)
s (and sim-

ilarly when the �(!)
s -spaces are replaced by corresponding �(!)

0,s -spaces), given in
Section 3.

In Sections 4 and 5 we use the framework of [30] in combination with (0.5) to
extend the lifting properties in [30] in such ways that the involved weights are
allowed to belong to P0

E,s or in PE,s instead of the smaller set P which is the
assumption in [30].

Our main result, which is similar to [30, Theorem 0.1], can be stated as follows.

Theorem 0.1. Let s � 1, !,!0 2 P0
E,s(R

2d), p, q 2 (0,1] and let � 2 Ss(Rd).

Then the Toeplitz operator Tp�(!0) is an isomorphism from M
p,q
(!)(R

2d) onto M
p,q
(!/!0)

(R2d).

For general !0 it is clear that �(!0)
0,s ✓ �(!0)

s ✓ S
(!0). On the other hand, for the

weights !1, !2 and !3 in �(!1)
0,s , �(!2)

s and S
(!3) we always assume that they belong

to PE,s(R2d), P0
E,s(R

2d) and P(R2d), respectively. That is, they should satisfy

!1(X + Y ) . !1(X)er1|Y |
1
s
, !2(X + Y ) . !2(X)er2|Y |

1
s
,

and !3(X + Y ) . !3(X)(1 + |Y |)N ,

for some r1 > 0 and N > 0, and every r2 > 0. From these relations we might have

�(!1)
0,s

\
�(!2)
s * S

(!0), �(!1)
0,s

\
S
(!0) * �(!2)

s and �(!2)
s

\
S
(!0) * �(!1)

0,s .

We note that, in contrast to [30,31], our lifting properties also hold for modula-
tion spaces which may fail to be Banach spaces, since p and q in Theorem 0.1 are
allowed to be smaller than 1.

We establish several results related to Theorem 0.1. Firstly, the window func-
tion � may be chosen in certain modulation spaces that are much larger than the
Gelfand-Shilov space Ss. Secondly, the theorem holds for a more general family of
modulation spaces that includes the classical ones.

It is expected that the results in Sections 4 and 5 will be more applicable com-
pared to corresponding results in [30] because the restrictions on the weights are
significantly relaxed. Beside the extension of the interval for p, q, the annoying con-
dition (0.3) in [31] is completely removed in Theorem 0.1. Consequently, Theorem
0.1 alone strictly improves the corresponding results in [31] (cf. e. g. [31, Theorem
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4.3]). Summing up, our lifting results in Sections 4 and 5 extend the lifting results
in [30, 31].

The paper is organised as follows. In Section 1 we introduce some notation, and
discuss modulation spaces and Gelfand-Shilov spaces of functions and distributions,
and pseudo-di↵erential calculus. In Section 2 we introduce and discuss basic prop-

erties for confinements of symbols in �(!0)
s and in �(!0)

0,s . These considerations are
related to the discussions in [3,38], but here adapted to symbols that possess Gevrey

regularity, e. g. when the symbols belong to �(!0)
s or �(!0)

0,s .
In contrast to the classical Hörmander symbol classes S

r
1,0 and the SG-classes

SGm,µ
1,1 , techniques on asymptotic expansions are absent for symbols in the classes

�(!0)
s or in �(!0)

0,s , and might be absent for symbols in the general Hörmander class
S(m, g). The approach with confinements is, roughly speaking, a sort of stand-in
of these absent asymptotic expansion techniques.

In Section 3 we show that (0.6) has a unique solution with the requested prop-
erties, which leads to (0.5). In Sections 4 and 5 we use the results from Section 3
to deduce lifting properties for modulation spaces under pseudo-di↵erential opera-

tors and Toeplitz operators with symbols in �(!0)
s , �(!0)

0,s or in suitable modulation
spaces.

Finally we show some examples on applications of our results in Section 6. In
Examples 6.5 and 6.8 we consider operators Op(!0) and Tp(!0), where !0 may be
of the form

!0(x, ⇠) =
�
(1 + |x|2t) r

2t + (1 + |⇠|2⌧ )
⇢
2⌧
�r0

.

Here t, ⌧ � 1 are integers and r, ⇢ > 0 are real. By Theorem 0.1 it follows that
Tp(!0) is a homeomorphism from M

p,q
(!) to M

p,q
(!/!0)

. If in addition r0 = 1, then We
show that this result in combination with Fredholm theory can be used to deduce
that the same homeomorphism property is true for Op(!0).

An other consequence of Example 6.8 is that if r0 ·max(r, ⇢) < 1 and a = e
!

1
r0
0 ,

then Op(a) from M
p,q
(!) to M

p,q
(!/e!0 ) has index zero.
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1. Preliminaries

In this section we recall some basic facts on modulation spaces, Gelfand-Shilov
spaces of functions and distributions and pseudo-di↵erential calculus (cf. [14–19,21,
25,29,34,35,38,43,48,50,53–57]).

1.1. Weight functions. A weight on R
d is a positive function ! 2 L

1
loc(R

d) such
that 1/! 2 L

1
loc(R

d). If ! and v are weights on R
d, then ! is called moderate or

v-moderate, if

!(x+ y)  C!(x)v(y), x, y 2 R
d
, (1.1)

for some constant C � 1. The set of all moderate weights on R
d is denoted by

PE(Rd). We notice that if the weight v is even and (1.1) is fulfilled with ! = v

and C = 1, and that v(x) � c for some c 2 (0, 1], then v1(x) = c
�1

v(x) satisfies the
same properties, as well as v1(x) � 1.

The weight v on R
d is called submultiplicative, if it is even, bounded from below

by 1 and (1.1) holds for ! = v and C = 1. From now on, v always denote a
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submultiplicative weight if nothing else is stated. In particular, if (1.1) holds and
v is submultiplicative, then it follows by straightforward computations that

C
�1!(x)

v(y)
 !(x+ y)  C!(x)v(y),

v(x+ y)  v(x)v(y) and v(x) = v(�x) � 1, x, y 2 R
d
.

(1.2)

If ! is a moderate weight on R
d, then by [58] and above, there is a submultiplica-

tive weight v on R
d such that (1.1) and (1.2) hold (see also [25, 53, 54]). Moreover

if v is submultiplicative on R
d, then

1 . v(x) . e
r|x| (1.3)

for some constant r > 0 (cf. [28]). Here and in what follows we write A(✓) . B(✓),
✓ 2 ⌦, if there is a constant c > 0 such that A(✓)  cB(✓) for all ✓ 2 ⌦. In
particular, if ! is moderate, then

!(x+ y) . !(x)er|y| and e
�r|x|  !(x) . e

r|x|
, x, y 2 R

d (1.4)

for some r > 0.
Next we introduce suitable subclasses of PE .

Definition 1.1. Let s > 0. The set PE,s(Rd) (P0
E,s(R

d)) consists of all ! 2
PE(Rd) such that

!(x+ y) . !(x)er|y|
1
s
, x, y 2 R

d; (1.5)

holds for some (every) r > 0.

By (1.4) it follows that P0
E,s1

= PE,s2 = PE when s1 < 1 and s2  1. For

convenience we set P0
E(R

d) = P0
E,1(R

d).

1.2. Gelfand-Shilov spaces. Let F be the Fourier transform given by

(Ff)(⇠) = bf(⇠) ⌘ (2⇡)�
d
2

Z

Rd

f(x)e�ihx,⇠i
dx (1.6)

when f 2 L
1(Rd). Here h · , · i denotes the usual scalar product on R

d.
Let h, s, s0,�,�0 2 R+, and let S�

s,h(R
d) be the set of all f 2 C

1(Rd) such that

kfkS�
s,h

⌘ sup
|x�

@
↵
f(x)|

h|↵+�|↵!��!s

is finite. Here the supremum is taken over all ↵,� 2 N
d and x 2 R

d.
Obviously S�

s,h(R
d) is a Banach space which increases as h, s and � increase,

and is contained in S (Rd), the set of Schwartz functions on R
d. If in addition

s+ � > 1 and s0 + �0 � 1

S�
s,h(R

d) and
[

h>0

S�0
s0,h

(Rd)

are dense in S (Rd). Hence, the dual (S�
s,h)

0(Rd) of S�
s,h(R

d) is a Banach space

which contains S 0(Rd).
The Gelfand-Shilov spaces S�

s (R
d) and ⌃�

s (R
d) of Roumieu respective Beurling

type of order (s,�) are the inductive and projective limits, respectively, of S�
s,h(R

d)
with respect to h. This implies that

S�
s (R

d) =
[

h>0

S�
s,h(R

d) and ⌃�
s (R

d) =
\

h>0

S�
s,h(R

d), (1.7)

and that the topology for S�
s (R

d) is the strongest possible one such that each
inclusion map from S�

s,h(R
d) to S�

s (R
d) is continuous, see also Remark 1.4 below.
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The Gelfand-Shilov distribution spaces (S�
s )

0(Rd) and (⌃�
s )

0(Rd) are the projec-
tive and inductive limit respectively of (S�

s,h)
0(Rd). Hence

(S�
s )

0(Rd) =
\

h>0

(S�
s,h)

0(Rd) and (⌃�
s )

0(Rd) =
[

h>0

(S�
s,h)

0(Rd). (1.7)0

We have that (S�
s )

0 and (⌃�
s )

0 are the topological duals of S�
s and ⌃�

s , respectively
(see [24, 42]).

We also set Ss = Ss
s and ⌃s = ⌃s

s, and similarly for their distribution spaces.
The classes S�

s (R
d) and related generalizations were widely studied, and used in

the applications to partial di↵erential equations, see for example [2, 4, 9, 12, 32, 39,
40,43]. We recall the following characterisations of S�

s (R
d).

Proposition 1.2. Let s,� > 0, p 2 [1,1] and let f 2 S (Rd). Then the following
conditions are equivalent:

(1) f 2 S�
s (R

d) (f 2 ⌃�
s (R

d));
(2) for some (every) h > 0 it holds

kx↵
fkLp . h

|↵|
↵!s and k⇠� bfkLp . h

|�|
�!�, ↵,� 2 N

d;

(3) for some (every) h > 0 it holds

kx↵
fkLp . h

|↵|
↵!s and k@�fkLp . h

|�|
�!�, ↵,� 2 N

d;

(4) for some (every) h > 0 it holds

kx↵
@
�
f(x)kLp . h

|↵+�|
↵!s �!�, ↵,� 2 N

d;

(5) for some (every) h, r > 0 it holds

ker| · |
1
s
@
↵
fkLp . h

|↵|(↵!)� ↵ 2 N
d;

(6) for some (every) r > 0 it holds

kf · er| · |
1
s kLp < 1 and k bf · er| · |

1
� kLp < 1.

Remark 1.3. Any of the conditions (2)–(6) in Proposition 1.2 induce the same
topology for S�

s (R
d) and ⌃�

s (R
d).

Remark 1.4. Let s,� > 0. Then ⌃�
s (R

d) is a Fréchet space with seminorms k · kS�
s,h

,

h > 0. Moreover, S�
s (R

d) 6= {0} if and only if s+ � � 1, and ⌃�
s (R

d) 6= {0} if and
only if s+ � � 1 and (s,�) 6= ( 12 ,

1
2 ). If " > 0 and s+ � � 1, then

⌃�
s (R

d) ✓ S�
s (R

d) ✓ ⌃�+"
s+" (R

d) ✓ S (Rd) ✓ S 0(Rd) ✓ (⌃�+"
s+" )

0(Rd) ✓ (S�
s )

0(Rd),

and if in addition (s,�) 6= ( 12 ,
1
2 ), then

(S�
s )

0(Rd) ✓ (⌃�
s )

0(Rd).

The Gelfand-Shilov spaces are invariant and possess convenient mapping prop-
erties under several basic transformations, e. g. under translations, dilations and
(partial) Fourier transformations.

The Fourier transform F on S (Rd) as well as any partial Fourier transform,
extend uniquely to homeomorphisms on S 0(Rd), S 0

s(R
d) and ⌃0

s(R
d), and restrict

to homeomorphisms on Ss(Rd) and ⌃s(Rd), and to a unitary operators on L
2(Rd).

We also recall some mapping properties of Gelfand-Shilov spaces under short-
time Fourier transforms. Let � 2 S (Rd) be fixed. For every f 2 S 0(Rd), the
short-time Fourier transform V�f is the distribution on R

2d defined by the formula

(V�f)(x, ⇠) = F (f �( · � x))(⇠) = (2⇡)�
d
2 (f,�( · � x)eih · ,⇠i). (1.8)
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We recall that if T (f,�) ⌘ V�f when f,� 2 S1/2(R
d), then T is uniquely extendable

to sequentially continuous mappings

T :S 0
s(R

d)⇥ Ss(R
d) ! S 0

s(R
2d)
\

C
1(R2d),

T :S 0
s(R

d)⇥ S 0
s(R

d) ! S 0
s(R

2d),

and similarly when Ss and S 0
s are replaced by ⌃s and ⌃0

s, respectively, or by S and
S 0, respectively (cf. [10, 58]). We also note that V�f takes the form

V�f(x, ⇠) = (2⇡)�
d
2

Z

Rd

f(y)�(y � x)e�ihy,⇠i
dy (1.8)0

when f 2 L
p
(!)(R

d) for some ! 2 PE(Rd), � 2 ⌃1(Rd) and p � 1. Here L
p
(!)(R

d),

when p 2 (0,1] and ! 2 PE(Rd), is the set of all f 2 L
p
loc(R

d) such that kfkLp
(!)

⌘
kf · !kLp is finite.

1.3. Suitable function classes with Gelfand-Shilov regularity. The next re-
sult shows that for any ! 2 PE(Rd) one can find an equivalent weight !0 which
satisfies suitable Gevrey regularity.

Proposition 1.5. Let ! 2 PE(Rd) and s > 0. Then there is an !0 2 PE(Rd) \
C

1(Rd) such that the following is true:

(1) !0 ⇣ !;

(2) |@↵!0(x)| . h
|↵|
↵!s!0(x) ⇣ h

|↵|
↵!s!(x) for every h > 0.

Proof. We may assume that s < 1. It su�ces to prove that (2) should hold for
some h > 0. Let �0 2 ⌃s

1�s(R
d) \ {0}, and let � = |�0|2. Then � 2 ⌃s

1�s(R
d),

giving that

|@↵�(x)| . h
|↵|

e
�r|x|

1
1�s

↵!s,

for every h > 0 and r > 0. Now let !0 = ! ⇤ �.
We have

|@↵!0(x)| =
����
Z

Rd

!(y)(@↵�)(x� y) dy

����

. h
|↵|
↵!s
Z

Rd

!(y)e�r|x�y|
1

1�s
dy

. h
|↵|
↵!s
Z

Rd

!(x+ (y � x))e�r|x�y|
1

1�s
dy

. h
|↵|
↵!s!(x)

Z

Rd

e
� r

2 |x�y|
1

1�s
dy ⇣ h

|↵|
↵!s!(x),

where the last inequality follows from (1.4) and the fact that � is bounded by a
super exponential function. This gives the first part of (2).

The equivalences in (1) follows in the same way as in [58]. More precisely, by
(1.4) we have

!0(x) =

Z

Rd

!(y)�(x� y) dy =

Z

Rd

!(x+ (y � x))�(x� y) dy

. !(x)

Z

Rd

e
r|x�y|

�(x� y) dy ⇣ !(x).
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In the same way, (1.4) gives

!0(x) =

Z

Rd

!(y)�(x� y) dy =

Z

Rd

!(x+ (y � x))�(x� y) dy

& !(x)

Z

Rd

e
�r|x�y|

�(x� y) dy ⇣ !(x),

and (1) as well as the second part of (2) follow. ⇤
A weight !0 which satisfies Proposition 1.5 (2) is called elliptic or s-elliptic.
Important classes of Gevrey type symbols is the following.

Definition 1.6. Let s � 0 and ! 2 PE(Rd). The class �(!)
s (Rd) (�(!)

0,s (R
d))

consists of all f 2 C
1(Rd) such that

|D↵
f(x)| . h

|↵|
↵!s!(x), x 2 R

d
,

for some h > 0 (for every h > 0).

Evidently, by Proposition 1.5 it follows that if s < 1, then the family of sym-
bol classes in Definition 1.6 does not (strictly) increase when the assumption ! 2
PE(R2d) is replaced by ! 2 PE,s(R2d) or by ! 2 P0

E,s(R
2d).

By similar arguments as in the proof of Proposition 1.5 we get the following
analogy of Proposition 2.3.16 in [37]. The details are left for the reader.

Proposition 1.7. Let s > 1/2, ! 2 PE(R2d), and � 2 ⌃s(R2d). Then ! ⇤ �
belongs to �(!)

0,s .

The following definition is motivated by Lemma 2.6.13 in [37].

Definition 1.8. Let s � 1, ! 2 PE(Rd) and #0 = 1 + | log!|. Then a is called
comparable to ! with respect to s � 1 if

(1) ka� log!kL1 < 1;

(2) a 2 �(#0)
s (Rd) and @↵a 2 �(1)s (Rd), when |↵| = 1.

Proposition 1.9. Let !, v 2 PE(Rd) be such that v is submultiplicative and (1.1)
holds for some C � 1. Also let

v1(x) ⌘ 1 + | log v(x)| and !1(x) ⌘ 1 + | log!(x)|.
Then v1 is submultiplicative and !1 is v1-moderate, and (1.1) holds with 1+logC �
1, !1 and v1 in place of C � 1, ! and v, respectively.

Proof. If !(x+y) � 1, then the second inequality in (1.2) and the fact that logC � 0
give

!1(x+ y) = 1 + log!(x+ y)

 1 + logC + log!(x) + log v(y)

 (1 + logC)(1 + | log!(x)|) (1 + log v(y))

 (1 + logC)!1(x) v1(y).

If instead !(x+ y)  1, then the first inequality in (1.2) gives

!1(x+ y) = 1� log!(x+ y)

 1 + logC � log!(x) + log v(y)

 (1 + logC)(1 + | log!(x)|) (1 + log v(y))

 (1 + logC)!1(x) v1(y),

giving that !1 is v1-moderate with the searched constants.
By choosing ! = v and C = 1, we deduce the submultiplicativity for v1, and the

result follows. ⇤
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Lemma 1.10. Let s � 1, ! 2 PE(Rd) and #0 = 1 + | log!|. Then the following
is true:

(1) there exists an elliptic weight !0 2 PE(Rd) \ �(!)
s (Rd) such that

! ⇣ !0, log!0 2 �(#0)
s (Rd) and 1 + | log!0| 2 PE(R

d) \ �(#0)
s (Rd);

(2) there exists an element a which is comparable to !0 with respect to s.

Proof. The assertion (1) follows by letting !0 be the same as in Proposition 1.5,
and (2) follows by letting a = log!0 and using the ellipticity of !0. ⇤
1.4. Modulation spaces. Before giving the definition of modulation spaces we
recall the definition of quasi-Banach spaces. A functional f 7! kfkB on a (complex)
vector space B is called a quasi-norm of order r 2 (0, 1], or an r-norm, if kfkB � 0
for all f 2 B with equality only for f = 0,

kf + gkB  2
1
r�1(kfkB + kgkB) f, g 2 B, (1.9)

and

kc · fkB = |c| · kfkB f 2 B, c 2 C. (1.10)

By Aoki and Rolewić in [1, 45] it follows that there is an equivalent quasi-norm to
the previous one which additionally satisfies

kf + gkrB  kfkrB + kgkrB f, g 2 B. (1.11)

From now on we suppose that the quasi-norm of B has been chosen such that both
(1.9) and (1.11) hold true.

The space B above is called a quasi-Banach space or an r-Banach space, if the
topology is defined by k · kB, and that B is complete under this topology.

Let � 2 ⌃1(Rd) \ 0, p, q 2 (0,1] and ! 2 PE(R2d) be fixed. Then the modula-
tion space M

p,q
(!)(R

d) consists of all f 2 ⌃0
1(R

d) such that

kfkMp,q
(!)

⌘
⇣Z

Rd

⇣Z

Rd

|V�f(x, ⇠)!(x, ⇠)|p dx
⌘q/p

d⇠

⌘1/q
< 1 (1.12)

(with the obvious modifications when p = 1 and/or q = 1). Evidently, kfkMp,q
(!)

is given by

kfkMp,q
(!)

⌘ kHf,!,pkLq , Hf,!,p(⇠) = kV�f( · , ⇠)!( · , ⇠)kLp (1.13)

We set Mp
(!) = M

p,p
(!), and if ! = 1, then we set Mp,q = M

p,q
(!) and M

p = M
p
(!).

The following proposition is a consequence of well-known facts in [15, 23, 25, 58,
60]. Here and in what follows, we let p0 denotes the conjugate exponent of p, i. e.

p
0 =

8
>>><

>>>:

1 when p 2 (0, 1]
p

p� 1
when p 2 (1,1)

1 when p = 1 .

Proposition 1.11. Let p, q, pj , qj , r 2 (0,1] be such that r  min(1, p, q), j = 1, 2,
let !,!1,!2, v 2 PE(R2d) be such that ! is v-moderate, � 2 M

r
(v)(R

d) \ 0, and let

f 2 ⌃0
1(R

d). Then the following is true:

(1) f 2 M
p,q
(!)(R

d) if and only if (1.12) holds, i. e. M
p,q
(!)(R

d) is independent of

the choice of �. Moreover, Mp,q
(!) is an r-Banach space under the r-norm

in (1.12), and di↵erent choices of � give rise to equivalent r-norms. If in
addition p, q � 1, then M

p,q
(!)(R

d) is a Banach space;
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(2) if p1  p2, q1  q2 and !2 . !1, then

⌃1(R
d) ✓M

p1,q1
(!1)

(Rd) ✓M
p2,q2
(!2)

(Rd) ✓ ⌃0
1(R

d).

Remark 1.12. For modulation spaces of the form M
p,q
(!) with fixed p, q 2 [1,1]

the norm equivalence in Proposition 1.11(1) can be extended to a larger class of
windows. In fact, assume that !, v 2 PE(R2d) with ! being v-moderate and

1  r  min(p, p0, q, q0) .

Let � 2 M
r
(v)(R

d) \ {0}. Then a Gelfand-Shilov distribution f 2 ⌃0
1(R

d) belongs

to M
p,q
(!)(R

d), if and only if V�f 2 L
p,q
(!)(R

2d). Furthermore, di↵erent choices of

� 2 M
r
(v)(R

d) \ {0} in kV�fkLp,q
(!)

give rise to equivalent norms. (Cf. Theorem 2.6

in [59].)

Remark 1.13. Let s � 1, !1 2 P0
E,s(R

2d), ! 2 PE,s(R2d) p, q 2 (0,1]. Then it
follows from [58, Theorem 3.9] that the first and last inclusions in Proposition 1.11
(2) can be refined into:

Ss(R
d) ✓ M

p,q
(!1)

(Rd) ✓ S 0
s(R

d) and ⌃s(R
d) ✓ M

p,q
(!2)

(Rd) ✓ ⌃0
s(R

d).

In essential parts of our analyses in Sections 4 and 5 it is convenient to use sym-
plectic formulations of modulation spaces with functions and distributions defined
on the phase spaces R

2d. They are defined in the same way as the modulation
spaces above, except that the short-time Fourier transforms in (1.8) are replaced
by symplectic analogies in the definition of modulation space norms.

In fact, let � be the standard symplectic form on R
2d, i. e. it should satisfy

�(X,Y ) = hy, ⇠i � hx, ⌘i, X = (x, ⇠) 2 R
2d
, Y = (y, ⌘) 2 R

2d
. (1.14)

(Here observe the di↵erence between the notation � for the symplectic form in
(1.14), and the positive number � used as parameter for the Gelfand-Shilov spaces,
e. g. in Subsections 1.2 and 1.3.) If

{e1, . . . , ed, "1, . . . , "d} (1.15)

is the standard basis of R2d, then

�(ej , ek) = 0, �(ej , "k) = ��j,k, and �("j , "k) = 0 (1.16)

when j, k 2 {1, . . . , d}. More generally, a basis (1.15) of R2d which satisfies (1.16) is
called a symplectic basis of R2d to the symplectic form �. Evidently, the standard
basis of R2d is a symplectic basis, and is sometimes called the standard symplectic
basis of R2d.

Let � 2 ⌃1(R2d) \ 0. Then the symplectic Fourier transform and symplectic
short-time Fourier transform of a 2 L

1(R2d) are defined by the formulae

(F�a)(X) = ⇡
�d

Z

R2d

a(Z)e2i�(X,Z)
dZ (1.17)

and

(V�a)(X,Y ) = ⇡
�d

Z

R2d

a(Z)�(Z � Y )e2i�(X,Z)
dZ. (1.18)

By straight-forward computations, using Fourier’s inversion formula, it follows that
F� = T � (F ⌦ (F�1)), when (Ta)(x, ⇠) = a(⇠, x) and

(V�a)(X,Y ) = 2d(V�a)(x, ⇠,�2⌘, 2y), X = (x, ⇠) 2 R
2d
, Y = (y, ⌘) 2 R

2d
.

(1.19)
In particular, all continuity and extension properties valid for the usual Fourier
transform and short-time Fourier transform carry over to their symplectic relatives.
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For example, F� is continuous on Ss(R2d), and extends uniquely to a homeomor-
phism on S 0

s(R
2d), and to a unitary map on L

2(R2d), since similar facts hold for F .
By straight-forward computations it also follows that F 2

� is the identity operator
on such spaces.

For any p, q 2 (0,1], ! 2 PE(R2d ⇥ R
2d) and a 2 ⌃0

1(R
2d), let kakMp,q

(!)
be

defined by (1.13) after V�f is replaced by V�a. Then the symplectic modulation
space Mp,q

(!)(R
2d) consists of all a 2 ⌃0

1(R
2d) such that kakMp,q

(!)
is finite.

By (1.19) it follows that

Mp,q
(!)(R

2d) = M
p,q
(!0)

(R2d) when !(x, ⇠, y, ⌘) = !0(x, ⇠,�2⌘, 2y).

Hence, the symplectic modulation spaces are merely other ways to formulate the
modulation spaces considered in the first part of the subsection.

1.5. A broader family of modulation spaces. In Section 2 we consider map-
ping properties for pseudo-di↵erential operators when acting on a broad class of
modulation spaces which are defined by imposing (quasi-)norm conditions on the
involved short-time Fourier transforms of the forms given in the following definition.
(Cf. [14–19,21].)

Definition 1.14. Let B ✓ L
r
loc(R

d) be a quasi-Banach space of order r 2 (0, 1],
and let v 2 PE(Rd). Then B is called a translation invariant Quasi-Banach
Function space on R

d, or invariant QBF space on R
d, if the following conditions

are fulfilled:

(1) if x 2 R
d and f 2 B, then f( · � x) 2 B, and

kf( · � x)kB . v(x)kfkB; (1.20)

(2) if f, g 2 L
r
loc(R

d) satisfy g 2 B and |f |  |g|, then f 2 B and

kfkB . kgkB.

It follows from (2) in Definition 1.14 that if f 2 B and h 2 L
1, then f · h 2 B,

and

kf · hkB . kfkBkhkL1 . (1.21)

If r = 1, then B in Definition 1.14 is a Banach space, and the condition (2) means
that a translation invariant QBF-space is a solid BF-space in the sense of (A.3)
in [18]. The space B in Definition 1.14 is called an invariant BF-space (with
respect to v) if r = 1, and Minkowski’s inequality holds true, i. e. f ⇤ ' 2 B when
f 2 B and ' 2 ⌃1(Rd), and

kf ⇤ 'kB . kfkBk'kL1
(v)

, f 2 B, ' 2 ⌃1(R
d). (1.22)

Example 1.15. Assume that p, q 2 [1,1], and let L
p,q
1 (R2d) be the set of all

f 2 L
1
loc(R

2d) such that

kfkLp,q
1

⌘
⇣Z

Rd

⇣Z

Rd

|f(x, ⇠)|p dx
⌘q/p

d⇠

⌘1/q

if finite. Also let Lp,q
2 (R2d) be the set of all f 2 L

1
loc(R

2d) such that

kfkLp,q
2

⌘
⇣Z

Rd

⇣Z

Rd

|f(x, ⇠)|q d⇠
⌘p/q

dx

⌘1/p

is finite. Then it follows that Lp,q
1 and L

p,q
2 are translation invariant BF-spaces with

respect to v = 1.
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Definition 1.16. Assume that B is a translation invariant QBF-space on R
2d,

! 2 PE(R2d), and that � 2 ⌃1(Rd) \ 0. Then the modulation space M(!,B)
consists of all f 2 ⌃0

1(R
d) such that

kfkM(!,B) ⌘ kV�f !kB

is finite.

Obviously, we have M
p,q
(!)(R

d) = M(!,B) when B is equal to L
p,q
1 (R2d) in

Example 1.15. It follows that many properties which are valid for the classical
modulation spaces also hold for the spaces of the form M(!,B). For example
we have the following proposition, which shows that the definition of M(!,B) is
independent of the choice of � when B is a Banach space. We omit the proof since
the completeness assertions follows from [41], and the other parts follow by similar
arguments as in the proof of Proposition 11.3.2 in [25]. (See also [41] for topological
aspects of M(!,B).)

Proposition 1.17. Let B be an invariant BF-space with respect to v0 2 PE(R2d)
for j = 1, 2. Also let !, v 2 PE(R2d) be such that ! is v-moderate, M(!,B) is
the same as in Definition 1.16, and let � 2 M

1
(v0v)

(Rd) \ 0 and f 2 ⌃0
1(R

d). Then

M(!,B) is a Banach space, and f 2 M(!,B) if and only if V�f ! 2 B, and
di↵erent choices of � gives rise to equivalent norms in M(!,B).

We refer to [14–19,21,23,25,46,60] for more facts about modulation spaces.
For translation invariant BF-spaces we make the following observation.

Proposition 1.18. Assume that v 2 PE(Rd), and that B is an invariant BF-
space with respect to v such that (1.22) holds true. Then the convolution mapping
(', f) 7! ' ⇤ f from C

1
0 (Rd)⇥ B to B extends uniquely to a continuous mapping

from L
1
(v)(R

d)⇥ B to B, and (1.22) holds true for any f 2 B and ' 2 L
1
(v)(R

d).

The result is a straightforward consequence of (1.22) and the fact that ⌃1 is
dense in L

1
(v).

The quasi-Banach space B above is usually a mixed quasi-normed Lebesgue
space, given as follows. Let E be the ordered basis {e1, . . . , ed} of Rd. Then the
ordered basis E0 = {e01, . . . , e0d} (the dual basis of E) satisfies

hej , e0ki = 2⇡�jk for every j, k = 1, . . . , d.

The corresponding parallelepiped, lattice, dual parallelepiped and dual lattice are
given by

(E) = {x1e1 + · · ·+ xded ; (x1, . . . , xd) 2 R
d
, 0  xk  1, k = 1, . . . , d },

⇤E = { j1e1 + · · ·+ jded ; (j1, . . . , jd) 2 Z
d },

(E0) = { ⇠1e01 + · · ·+ ⇠de
0
d ; (⇠1, . . . , ⇠d) 2 R

d
, 0  ⇠k  1, k = 1, . . . , d },

and

⇤0
E = ⇤E0 = { ◆1e01 + · · ·+ ◆de

0
d ; (◆1, . . . , ◆d) 2 Z

d },
respectively. Note here that the Fourier analysis with respect to general biorthog-
onal bases has recently been developed in [47].

We observe that there is a matrix TE such that e1, . . . , ed and e
0
1, . . . , e

0
d are the

images of the standard basis under TE and TE0 = 2⇡(T�1
E )t, respectively.

In the following we let

max q = max(q1, . . . , qd) and min q = min(q1, . . . , qd)

when q = (q1, . . . , qd) 2 (0,1]d.
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Definition 1.19. Let E be an ordered basis of Rd, p = (p1, . . . , pd) 2 (0,1]d and
r = min(1,p). If f 2 L

r
loc(R

d), then kfkLp
E
is defined by

kfkLp
E
⌘ kgd�1kLpd (R)

where gk(zk), zk 2 R
d�k, k = 0, . . . , d� 1, are inductively defined as

g0(x1, . . . , xd) ⌘ |f(x1e1 + · · ·+ xded)|,

and

gk(zk) ⌘ kgk�1( · , zk)kLpk (R), k = 1, . . . , d� 1.

The space L
p
E(R

d) consists of all f 2 L
r
loc(R

d) such that kfkLp
E

is finite, and is
called E-split Lebesgue space (with respect to p).

For the next definition we recall that �(X,Y ) denotes the standard symplectic
form on the phase space (cf. (1.14)).

Definition 1.20. Let E = {e1, . . . , e2d} be an ordered basis of R2d and let E0 =
{e1, . . . , ed}. Then E0 is called a phase split of E, if

�(ej , ek) = 0, �(ej , ed+k) = �2⇡�j,k, and �(ed+j , ed+k) = 0

when j, k 2 {1, . . . , d}.

If (1.15) is the standard basis of R2d and ed+j = 2⇡"j for j 2 {1, . . . , d}, then
(1.16) shows that {e1, . . . , ed} is a phase split of {e1, . . . , e2d}.

The following definition takes care of our most common QBF-spaces.

Definition 1.21. The space B is called a normal QBF-space (on R
2d) if it is

either an invariant BF-space on R
2d or B = L

p
E(R

2d) for some p 2 (0,1]2d and
phase split basis E of R2d.

1.6. Pseudo-di↵erential operators. We use the notation M(d,⌦) for the set of
d⇥d-matrices with entries in the set ⌦. Let s � 1/2, a 2 Ss(R2d), and A 2 M(d,R)
be fixed. Then, the pseudo-di↵erential operator OpA(a) is the linear and continuous
operator on Ss(Rd) given by

(OpA(a)f)(x) = (2⇡)�d

ZZ

R2d

a(x�A(x� y), ⇠) f(y) eihx�y,⇠i
dyd⇠ (1.23)

when f 2 Ss(Rd). For general a 2 S 0
s(R

2d), the pseudo-di↵erential operator
OpA(a) is defined as the continuous operator from Ss(Rd) to S 0

s(R
d) with dis-

tribution kernel given by

Ka,A(x, y) = (2⇡)�
d
2 (F�1

2 a)(x�A(x� y), x� y). (1.24)

Here F2F is the partial Fourier transform of F (x, y) 2 S 0
s(R

2d) with respect to the
y variable. This definition makes sense, since the mappings

F2 and F (x, y) 7! F (x�A(x� y), y � x) (1.25)

are homeomorphisms on S 0
s(R

2d). In particular, the map a 7! Ka,A is a homeo-
morphism on S 0

s(R
2d).

If A = 1
2 ·I, then OpA(a) is the Weyl quantization Opw(a) of a. If instead A = 0,

then OpA(a) equals the normal or Kohn-Nirenberg representation Op(a) = a(x,D).

Remark 1.22. For any K 2 S 0
s(R

d2+d1), let TK be the linear and continuous map-
ping from Ss(Rd1) to S 0

s(R
d2), defined by the formula

(TKf, g)L2(Rd2 ) = (K, g ⌦ f)L2(Rd2+d1 ). (1.26)

It is well-known that the Schwartz kernel theorem also holds in the context of
Gelfand-Shilov spaces (see e. g. [7, 36, 44,51]).
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In fact, let L(V1, V2) be the set of linear continuous mappings from the topological
vector space V1 to the topological vector space V2. Moreover, if Vj are quasi-
Banach spaces, then k · kL(V1,V2) denotes the quasi-norm in L(V1, V2). We also set
L(V ) = L(V, V ).

If A 2 M(d,R), then the mappings K 7! TK and a 7! OpA(a) are bijective from
S 0
s(R

2d) to L(Ss(Rd),S 0
s(R

d)). Similar facts hold true if Ss and S 0
s are replaced by

⌃s and ⌃0
s, respectively (or by S and S 0, respectively).

As a consequence of Remark 1.22 it follows that for each a1 2 S 0
s(R

2d) and
A1, A2 2 M(d,R), there is a unique a2 2 S 0

s(R
2d) such that OpA1

(a1) = OpA2
(a2).

The relation between a1 and a2 is given by

OpA1
(a1) = OpA2

(a2) , a2(x, ⇠) = e
ih(A1�A2)D⇠,Dxia1(x, ⇠). (1.27)

(Cf. [34].) Note here that the right-hand side makes sense, since it is equivalent to
ba2(⇠, x) = e

i(A1�A2)hx,⇠iba1(⇠, x), and that the map a 7! e
ihAx,⇠i

a is continuous on
S 0
s when A 2 M(d,R). (Cf. [5, 6, 65].)
Let A 2 M(d,R) and a 2 S 0

s(R
2d) be fixed. Then a is called a rank-one element

with respect to A, if the corresponding pseudo-di↵erential operator is of rank-one,
i. e.

OpA(a)f = (f, f2)f1, f 2 Ss(R
d), (1.28)

for some f1, f2 2 S 0
s(R

d). By straightforward computations it follows that (1.28) is

fulfilled, if and only if a = (2⇡)
d
2W

A
f1,f2

, where W
A
f1,f2

it the A-Wigner distribution
defined by the formula

W
A
f1,f2(x, ⇠) ⌘ F (f1(x+A · )f2(x� (I �A) · ))(⇠), (1.29)

which takes the form

W
A
f1,f2(x, ⇠) = (2⇡)�

d
2

Z

Rd

f1(x+Ay)f2(x� (I �A)y)e�ihy,⇠i
dy,

when f1, f2 2 Ss(Rd). Here I 2 M(d,R) is the identity matrix. By combining
these facts with (1.27) it follows that

W
A2
f1,f2

= e
ih(A1�A2)D⇠,DxiWA1

f1,f2
, (1.30)

for each f1, f2 2 S 0
s(R

d) and A1, A2 2 M(d,R). Since the Weyl case is particularly
important, we set W

A
f1,f2

= Wf1,f2 when A = 1
2I, i. e. Wf1,f2 is the usual (cross-

)Wigner distribution of f1 and f2.
For future references we note the link

(OpA(a)f, g)L2(Rd) = (2⇡)�
d
2 (a,WA

g,f )L2(R2d),

a 2 S 0
s(R

2d) and f, g 2 Ss(R
d) (1.31)

between pseudo-di↵erential operators and Wigner distributions, which follows by
straightforward computations (see also e. g. [61]).

Next we discuss the Weyl product, the twisted convolution and related objects.
Let s � 1/2 and let a, b 2 S 0

s(R
2d). Then the Weyl product a#b between a and b is

the function or distribution which fulfills Opw(a#b) = Opw(a) � Opw(b), provided
the right-hand side makes sense as a continuous operator from Ss(Rd) to S 0

s(R
d).

More generally, if A 2 M(d,R), then the product #A is defined by the formula

OpA(a#Ab) = OpA(a) �OpA(b), (1.32)

provided the right-hand side makes sense as a continuous operator from Ss(Rd) to
S 0
s(R

d), in which case a and b are called suitable or admissible.
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The Weyl product can also, in a convenient way, be expressed in terms of the
twisted convolution and the symplectic Fourier transform (cf. (1.17)). Let s � 1/2
and a, b 2 Ss(R2d). Then the twisted convolution of a and b is defined by the
formula

(a ⇤� b)(X) =

✓
2

⇡

◆ d
2
Z

R2d

a(X � Z)b(Z)e2i�(X,Z)
dZ. (1.33)

The definition of ⇤� extends in di↵erent ways. For example, it extends to a con-
tinuous multiplication on L

p(R2d) when p 2 [1, 2], and to a continuous map from
S 0
s(R

2d)⇥Ss(R2d) to S 0
s(R

2d). If a, b 2 S 0
s(R

2d), then a#b makes sense if and only
if a ⇤� (F�b) makes sense, and then

a#b = (2⇡)�
d
2 a ⇤� (F�b). (1.34)

We also remark that for the twisted convolution we have

F�(a ⇤� b) = (F�a) ⇤� b = ǎ ⇤� (F�b), (1.35)

where ǎ(X) = a(�X) (cf. [52, 57, 59]). A combination of (1.34) and (1.35) gives

F�(a#b) = (2⇡)�
d
2 (F�a) ⇤� (F�b). (1.36)

Definition 1.23. Let

kaksw1 ⌘ kOpw(a)kL(L2(Rd)), a 2 S 0(R2d).

The set s
w
1(R2d) consists of all a 2 S 0(R2d) such that Opw(a) is linear and con-

tinuous on L
2(Rd), or equivalently, the set of all a 2 S 0(R2d) such that kaksw1 is

finite.

Remark 1.24. By the last part of Remark 1.22 it follows that the map a 7! Opw(a)
is an isometric bijection from s

w
1(R2d) to the set of linear continuous operators on

L
2(Rd).

Remark 1.25. We remark that the relations in this subsection hold true after Ss,
S 0
s and s � 1

2 are replaced by ⌃s, ⌃0
s and s >

1
2 respectively, in each place.

Next we recall some algebraic properties and characterisations of �(!)
s (R2d) and

�(!)
0,s (R

2d) from the introduction, and begin with the following. We refer to [5] for
its proof.

Proposition 1.26. Let s � 1, !j 2 P0
E,s(R

2d), Aj 2 M(d,R) for j = 0, 1, 2, and

let !0,r(X,Y ) = !0(X)e�r|Y |
1
s when r > 0. Then the following is true:

(1) If a1, a2 2 ⌃0
s(R

2d) satisfy OpA1
(a1) = OpA2

(a2), then a1 2 �(!0)
s (R2d) if

and only if a2 2 �(!0)
s (R2d);

(2) �(!1)
s #�(!2)

s ✓ �(!1!2)
s ;

(3) �(!0)
s =

[

r>0

M
1,1
(1/!0,r)

=
[

r�0

M1,1
(1/!0,r)

.

Proposition 1.27. Let s � 1, !j 2 PE,s(R2d), Aj 2 M(d,R) for j = 0, 1, 2, and

let !0,r(X,Y ) = !0(X)e�r|Y |
1
s when r > 0. Then the following is true:

(1) If a1, a2 2 ⌃0
s(R

2d) satisfy OpA1
(a1) = OpA2

(a2), then a1 2 �(!0)
0,s (R2d) if

and only if a2 2 �(!0)
0,s (R2d);

(2) �(!1)
0,s #�(!2)

0,s ✓ �(!1!2)
0,s ;

(3) �(!0)
0,s =

\

r>0

M
1,1
(1/!0,r)

=
\

r�0

M1,1
(1/!0,r)

.
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In time-frequency analysis one also considers mapping properties for pseudo-
di↵erential operators between modulation spaces or with symbols in modulation
spaces. Especially we need the following two results, where the first one is a gen-
eralisation of [49, Theorem 2.1] by Tachizawa, see also [43, Theorem 2], and the
second one is a weighted version of [25, Theorem 14.5.2]. We refer to [62] for the
proof of the first two propositions and to [60,61] for the proof of the third one.

Proposition 1.28. Assume that A 2 M(d,R), s � 1, !,!0 2 P0
E,s(R

2d),

a 2 �(!)
s (R2d), and that B is an invariant BF-space on R

2d of Beurling type.
Then OpA(a) is continuous from M(!0!,B) to M(!0,B), and also continuous on
Ss(Rd) and on S 0

s(R
d).

Proposition 1.29. Assume that A 2 M(d,R), s � 1, !,!0 2 PE,s(R2d),

a 2 �(!)
0,s (R

2d), and that B is an invariant BF-space on R
2d of Roumieu type.

Then OpA(a) is continuous from M(!0!,B) to M(!0,B), and also continuous on
⌃s(Rd) and on ⌃0

s(R
d).

Proposition 1.30. Assume that p, q 2 (0,1], r  min(p, q, 1), ! 2 PE(R2d �
R

2d) and !1,!2 2 PE(R2d) satisfy

!2(X � Y )

!1(X + Y )
 C!(X,Y ), X, Y 2 R

2d
, (1.37)

for some constant C. If a 2 M1,r
(!) (R

2d), then Opw(a) extends uniquely to a con-

tinuous map from M
p,q
(!1)

(Rd) to M
p,q
(!2)

(Rd).

Finally we need the following result concerning mapping properties of modulation
spaces under the Weyl product. The result is a special case of [8, Theorem 2.1] (see
also [13, Theorem 0.3]).

Proposition 1.31. Assume that !j 2 PE(R2d �R
2d) for j = 0, 1, 2 satisfy

!0(X,Y )  C!1(X � Y + Z,Z)!2(X + Z, Y � Z), (1.38)

for some constant C > 0 independent of X,Y, Z 2 R
2d, and let r 2 (0, 1]. Then

the map (a, b) 7! a#b from ⌃1(R2d) ⇥ ⌃1(R2d) to ⌃1(R2d) extends uniquely to a
continuous mapping from M1,r

(!1)
(R2d)⇥M1,r

(!2)
(R2d) to M1,r

(!0)
(R2d).

We remark that the conditions (1.37) and (1.38) need to be reformulated in
awkward or inconvenient ways, if the symplectic modulation spaces are replaced by
ordinary modulation spaces in Propositions 1.30 and 1.31. Similar facts hold true
for several results in Sections 4 and 5.

1.7. The Wiener Algebra Property. As a further crucial tool in our study of
the isomorphism property of Toeplitz operators we need to combine these continu-
ity results with convenient invertibility properties. The so-called Wiener algebra
property of certain symbol classes asserts that the inversion of a pseudo-di↵erential
operator preserves the symbol class and is often referred to as the spectral invariance
of a symbol class.

Proposition 1.32. Let A 2 M(d,R). Then the following is true:

(1) If s > 1, a 2 �(1)0,s(R
2d) and OpA(a) is invertible on L

2(Rd), then OpA(a)
�1 =

OpA(b) for some b 2 �(1)0,s(R
2d).

(2) If s � 1, a 2 �(1)s (R2d) and OpA(a) is invertible on L
2(Rd), then OpA(a)

�1 =

OpA(b) for some b 2 �(1)s (R2d).
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(3) If s � 1, v0 2 P0
E,s(R

2d) is submultiplicative, v(X,Y ) ⌘ v0(Y ), X,Y 2
R

2d, a 2 M
1,1
(v) (R2d) and OpA(a) is invertible on L

2(Rd), then OpA(a)
�1 =

OpA(b), for some b 2 M
1,1
(v) (R2d).

Proof. The results follows essentially from [26, Corollary 5.5] or [27]. Suppose

s > 1, a 2 �(1)s (R2d), OpA(a) is invertible on L
2(Rd), and let vr(X,Y ) = e

r|Y |
1
s

when r � 0. Then a 2 M
1,1
(vr)

(R2d) for some r > 0. By [26, Corollary 5.5],

Op(M1,1
(vr)

(R2d)) is a Wiener algebra, giving that Op(a)�1 = Op(b) for some b 2
M

1,1
(vr)

(R2d) ✓ �(1)s (R2d). This gives (2) in the case s > 1.

If instead s = 1, then by [20, Theorem 4.4] there is an r0 > 0 such that Op(a)�1 =

Op(b) for some b 2 M
1,1
(vr0 )

(R2d) ✓ �(1)1 (R2d), and (2) follows for general s � 1.

By similar arguments, (1) and (3) follow. The details are left for the reader. ⇤

Remark 1.33. Let A 2 M(d,R). Then it follows from Proposition 1.32 (3) that
if s > 1, v0 2 PE,s(R2d) is submultiplicative, v(X,Y ) ⌘ v0(Y ), X,Y 2 R

2d,
a 2 M

1,1
(v) (R2d) and OpA(a) is invertible on L

2(Rd), then OpA(a)
�1 = OpA(b), for

some b 2 M
1,1
(v) (R2d).

1.8. Toeplitz Operators. Let a 2 ⌃1(R2d) and � 2 ⌃1(Rd). Then the Toeplitz
operator Tp�(a) (with symbol a and window �) is defined by the formula

(Tp�(a)f1, f2)L2(Rd) = (a V�f1, V�f2)L2(R2d) , (1.39)

when f1, f2 2 ⌃1(Rd). Obviously, Tp�(a) is well-defined and extends uniquely to

a continuous operator from ⌃0
1(R

d) to ⌃1(Rd).
The definition of Toeplitz operators can be extended to more general classes of

windows and symbols by using appropriate estimates for the short-time Fourier
transforms in (1.39).

We state two possible ways of extending (1.39). The first result follows from [11,
Corollary 4.2] and its proof, and the second result is a special case of [63, Theorem
3.1]. We also set

!0,t(X,Y ) = v1(2Y )t�1
!0(X) for X,Y 2 R

2d
. (1.40)

Proposition 1.34. Let 0  t  1, p, q 2 [1,1], and !,!0, v1, v0 2 PE(R2d) be
such that v0 and v1 are submultiplicative, !0 is v0-moderate and ! is v1-moderate.
Set

v = v
t
1v0 and # = !

1/2
0 ,

and let !0,t be as in (1.40). Then the following is true:

(1) The definition of (a,�) 7! Tp�(a) from ⌃1(R2d)⇥⌃1(Rd) to L(⌃1(Rd),⌃0
1(R

d))

extends uniquely to a continuous map from M1
(1/!0,t)

(R2d) ⇥ M
1
(v)(R

d) to

L(S (Rd),S 0(Rd)).

(2) If � 2 M
1
(v)(R

d) and a 2 M1
(1/!0,t)

(R2d), then Tp�(a) extends uniquely to

a continuous map from M
p,q
(#!)(R

d) to M
p,q
(!/#)(R

d).

Proposition 1.35. Let !,!1,!2, v 2 PE(R2d) be such that !1 is v-moderate, !2

is v-moderate and ! = !1/!2. Then the following is true:

(1) The mapping (a,�) 7! Tp�(a) extends uniquely to a continuous map from

L
1
(!)(R

2d)⇥M
2
(v)(R

d) to L(⌃1(Rd),⌃0
1(R

d)).

(2) If � 2 M
2
(v)(R

d) and a 2 L
1
(1/!)(R

2d), then Tp�(a) extends uniquely to a

continuous operator from M
2
(!1)

(Rd) to M
2
(!2)

(Rd).
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The symbol of a Toeplitz operator with respect to the A representation (1.23) and
(1.24) is the convolution between the Toeplitz symbol and anA-Wigner distribution.
More precisely, if a 2 ⌃1(R2d) and � 2 ⌃1(Rd), then

Tp�(a) = (2⇡)�
d
2 OpA(a ⇤WA

�,�), A 2 M(d,R). (1.41)

The formula (1.41) has appeared frequently in the literature in the Weyl case (cf.
e. g. [11,22,30,52,61] and the references therein). For general A the formula follows
by a straight-forward combination of the Weyl case, (1.27), (1.30) and

e
ihAD⇠,Dxi(a ⇤ b) = a ⇤ (eihAD⇠,Dxi ⇤ b)

for suitable a and b, which follows from Fourier’s inversion formula.
Our analysis of Toeplitz operators is based on the pseudo-di↵erential operator

representation given by (1.41), and remark that similar interpretations might be
di�cult or impossible to make in the framework of (1.39). (See the end of Section
2 and Remark 4.8 in [30].)

2. Confinement of the symbol classes �(!)
s (Rd) and �(!)

0,s (R
d)

In this section we introduce and discuss basic properties for confinements for

symbols in �(!0)
s and in �(!0)

0,s . These considerations are related to the discussions
in [3, 38], but are here adapted to symbols that possess Gevrey regularity. In
particular, this requires the deduction of various types of delicate estimates on
compositions of symbols that are confined in certain ways.

2.1. Estimates of translated and localised Weyl products. In what follows
we let aY = a( · � Y ) when a 2 S 0

1/2(R
2d) and Y 2 R

2d, and in analogous ways,

bY , �Y , 'Y ,  Y etc. are defined when b,�,', 2 S 0
1/2(R

2d). For admissible a and
b we have

(a#b)Y = aY #bY , (2.1)

which follows by straight-forward computations. We also recall that if ' 2 Ss(R2d),
then there are functions �, 2 Ss(R2d) such that ' = �# . The same is true if
Ss is replaced by ⌃s or by S (cf. [7, 64]). In particular, by choosing ' such thatR
R2d '(X) dX = 1, (2.1) gives the following.

Proposition 2.1. Let s � 1
2 . Then there are �, 2 Ss(R2d) such that
Z

R2d

 Y #�Y dY = 1. (2.2)

For independent translations in Weyl products we have the following.

Proposition 2.2. Let s � 1
2 and let �, 2 Ss(R2d). Then

(�Y # Z)(X) =  (X � Y,X � Z) (2.3)

for some  2 Ss(R2d ⇥R
2d). The same holds true with ⌃s or S in place of Ss.

Proof. We only prove the result when �, 2 Ss(R2d). The other cases follow by
similar arguments and are left for the reader.

We have

(�Y # Z)(X) = ⇡
�d

Z

R2d

�(X � Y � Y1) b (Y1)e
2i�(Y1,Z)

e
2i�(X,Y1) dY1

= ⇡
�d

Z

R2d

�((X � Y )� Y1) b (Y1)e
2i�(X�Z,Y1) dY1 =  (X � Y,X � Z),

where

 (X,Z) = ⇡
�d

Z

R2d

�(X � Y1) b (Y1)e
2i�(Z,Y1) dY1.
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We note that
 = (F�,2 � T )(�⌦ b ),

where (T�)(X,Z) = �(X � Z,Z) when � 2 Ss(R2d ⇥ R
2d), and F�,2� is the

partial symplectic Fourier transform of �(X,Z) with respect to the Z variable.

Since (�, ) 7! �⌦ b is continuous from Ss(R2d)⇥Ss(R2d) to Ss(R2d⇥R
2d), and T

and F�,2� are continuous on Ss(R2d⇥R
2d), it follows that  2 Ss(R2d⇥R

2d). ⇤
Since  in Proposition 2.2 belongs to similar types of spaces as � and  , it

follows that estimates of the form

|D↵ (X,Y )| . h
|↵|
↵!se�(|X|

1
s +|Y |

1
s )/h

hold true. In particular, the following is an immediate consequence of Proposition
2.2 and some standard manipulations in Gelfand-Shilov theory.

Corollary 2.3. Let s � 1
2 . If �, 2 Ss(R2d) (�, 2 ⌃s(R2d)), then

|D↵
XD

�
Y D

�
Z(�Y # Z)(X)| . h

|↵+�+�|(↵!�!�!)se�(|X�Y |
1
s +|X�Z|

1
s )/h (2.4)

for some h > 0 (for every h > 0).

Proof. By Proposition 2.2, (2.3) holds for some  2 Ss(R2d ⇥R
2d). Thus

|D↵
XD

�
Y D

�
Z (X � Y,X � Z)| =

���D↵
X

⇣
D

�
1D

�
2 
⌘
(X � Y,X � Z)

���


X

�↵

✓
↵

�

◆ ���
⇣
D

�+�
1 D

�+↵��
2  

⌘
(X � Y,X � Z)

���

 h
|↵+�+�|

X

�↵

✓
↵

�

◆
((� + �)!(� + ↵� �)!)s e

�r
⇣
|X�Y |

1
s +|X�Z|

1
s

⌘

.

We have
X

�↵

✓
↵

�

◆
((� + �)!(� + ↵� �)!)s  2|↵|4s|↵+�+�| (↵!�!�!)s .

Indeed, by (n+ k)!  2n+k
n!k! we get

(↵+ � + �)! =
dY

j=1

(↵j + �j + �j)! 
dY

j=1

4↵j+�j+�j↵j !�j !�j ! = 4|↵+�+�|
↵!�!�!.

Thus (2.4) holds with 2 · 4sh in place of h. ⇤
The next result is a consequence of Theorem 4.12 in [5].

Proposition 2.4. Let s � 1
2 and # 2 PE(R2d). Then the map (�, a) 7! �#a is

continuous from ⌃s(R2d)⇥ �(#)s (R2d) to Ss(R2d).

The next lemma concerns uniform estimates of the Weyl product between ele-
ments in sets

{ aj( · + Y, Y ) ; Y 2 R
2d }, j = 1, 2 (2.5)

which are bounded in Ss(R2d) or in ⌃s(R2d).

Lemma 2.5. Let s � 1
2 . Then the following is true:

(1) if the sets in (2.5) are bounded in Ss(R2d), then there are constants C > 0
and h > 0 which are independent of Y1, Y2 2 R

2d and ↵,↵1,↵2 2 N
2d such

that

|((D↵1
1 a1)( · , Y1)#(D

↵2
1 a2)( · , Y2))(X)|

 Ch
|↵1+↵2|(↵1!↵2!)

s
e
� 1

h ·(|X�Y1|
1
s +|X�Y2|

1
s +|Y1�Y2|

1
s ) (2.6)
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and

|D↵
1 (a1( · , Y1)#a2( · , Y2))(X)|

 Ch
|↵|
↵!se�

1
h ·(|X�Y1|

1
s +|X�Y2|

1
s +|Y1�Y2|

1
s ) (2.7)

hold;

(2) if the sets in (2.5) are bounded in ⌃s(R2d), then for every h > 0, there is a
constant C > 0 which is independent of Y1, Y2 2 R

2d and ↵,↵1,↵2 2 N
2d

such that (2.6) and (2.7) hold.

Proof. We only prove (2). The assertion (1) follows by similar arguments and is
left for the reader.

Let Y = Y1, Z = Y2, a(X,Y ) = a1(X+Y, Y ) and b(X,Z) = a2(X+Z,Z). Then

(a1( · , Y )#a2( · , Z))(X)

= ⇡
�d

Z

R2d

a((X � Y )� Y1, Y )F�(b( · � Z,Z))(Y1)e
2i�(X,Y1) dY1

= ⇡
�d

Z

R2d

a((X � Y )� Y1, Y )F�(b( · , Z))(Y1)e
2i�(X�Z,Y1) dY1

= �Y,Z(X � Y,X � Z),

where

�Y,Z(X1, X2) = ⇡
�d

Z

R2d

a(X1 � Y1, Y )F�(b( · , Z))(Y1)e
2i�(X2,Y1) dY1.

We observe that

D
↵1
X1

D
↵2
X2
�Y,Z(X1, X2)

= ⇡
�d

Z

R2d

(D↵1
1 a)(X1 � Y1, Y )F�((D

↵2
1 b)( · , Z))(Y1)e

2i�(X2,Y1) dY1. (2.8)

which implies that the Leibnitz rule

D
↵
1 (a1( · , Y )#a2( · , Z))(X) =

X

�↵

✓
↵

�

◆
(D↵��

1 D
�
2�Y,Z)(X � Y,X � Z)

=
X

�↵

✓
↵

�

◆
⇡
�d

Z

R2d

(D↵��
1 a)(X1 � Y1, Y )F�((D

�
1 b)( · , Z))(Y1)e

2i�(X2,Y1) dY1

(2.9)

holds. We also have

�Y,Z = (T1 � T2 � T1)(a( · , Y )⌦ b( · , Z)),

where

(T1F )(X1, X2) = F�(F (X1, · ))(X2) and (T2F )(X1, X2) = F (X1 �X2, X2),

for admissible F , and observe that both T1 and T2 are continuous mappings on
⌃s(R2d ⇥R

2d).
By the continuity of T1 and T2 on ⌃s, and the boundedness of the sets in (2.5),

it follows that

sup
Y,Z2R2d

|D↵1
X1

D
↵2
X2
�Y,Z(X1, X2)| . h

|↵1+↵2|(↵1!↵2!)
s
e
� 1

h ·(|X1|
1
s +|X2|

1
s )
,
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which is the same as

|(D↵1
1 a1( · , Y ))#(D↵2

1 a2)( · , Z))(X)| . h
|↵1+↵2|(↵1!↵2!)

s
e
� 1

h ·(|X�Y |
1
s +|X�Z|

1
s )

for every h > 0, where the involved constants are independent of Y, Z 2 R
2d. A

combination of the latter estimate and the fact that

|X � Y | 1s + |X �Z| 1s ⇣ |X � Y | 1s + |X �Z| 1s + |Y �Z| 1s , X, Y, Z 2 R
2d
, (2.10)

shows that (2.6) holds for every h > 0.
By (2.6), (2.8), (2.10) and the inequality (↵+ �)!  2|↵+�|

↵!�! we get

|D↵
1 (a1( · , Y )#a2( · , Z))(X)|


X

�↵

✓
↵

�

◆
|(D↵��

1 D
�
2�Y,Z)(X � Y,X � Z)|

. h
|↵|
X

�↵

✓
↵

�

◆
((↵� �)!�!)se�

1
h ·(|X�Y |

1
s +|X�Z|

1
s )+|Y�Z|

1
s )

 (2sh)|↵|

0

@
X

�↵

✓
↵

�

◆1

A e
� 1

h ·(|X�Y |
1
s +|X�Z|

1
s )+|Y�Z|

1
s )

= (2s+1
h)|↵|e�

1
h ·(|X�Y |

1
s +|X�Z|

1
s )+|Y�Z|

1
s )

for every h > 0, and the result follows. ⇤
Remark 2.6. Let ⌦1 and ⌦2 be (countable or uncountable) index sets. By similar
arguments as in the previous proof, it follows that the conclusions of Lemma 2.5
also holds when considering more general bounded subsets

{ a✓,j( · + Y, Y ) ; Y 2 R
2d
, ✓ 2 ⌦j }, j = 1, 2

of Ss(R2d) respective ⌃s(R2d).

Lemma 2.7. Let s � 1
2 , �, 2 ⌃s(R2d), !,# 2 PE(R2d), �Y = �( · � Y ), and

 Z =  ( · � Z). Then the following is true:

(1) if a 2 �(!)
s (R2d) (a 2 �(!)

0,s (R
2d)), then

|D↵
XD

�
Y (�Y a)(X)| . h

|↵|
1 h

|�|
2 (↵!�!)se�|X�Y |

1
s /h1 min(!(X),!(Y )) (2.11)

and

|D↵
XD

�
Y (�Y #a)(X)| . h

|↵|
1 h

|�|
2 (↵!�!)se�|X�Y |

1
s /h1 min(!(X),!(Y )), (2.12)

for some h1 > 0 (for every h1 > 0) and every h2 > 0;

(2) if a1 2 �(!)
s (R2d) and a2 2 �(#)s (R2d) (a1 2 �(!)

0,s (R
2d) and a2 2 �(#)0,s (R

2d)),
then

|D↵
XD

�
Y D

�
Z((�Y a1)#( Za2))(X)|

. h
|↵+�|
1 h

|�|
2 (↵!�!�!)se�(|X�Y |

1
s +|X�Z|

1
s +|Y�Z|

1
s )/h1 min

X1,X22{X,Y,Z}

�
!(X1)#(X2)

�
,

for some h1 > 0 (for every h1 > 0) and every h2 > 0.

Proof. We only consider the case when a1 2 �(!)
0,s (R

2d) and a2 2 �(#)0,s (R
2d). The

other cases follow by similar arguments and are left for the reader.
Let

 (X,Y ) = �(X � Y )a(X).
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By Leibniz rule we get

|D↵
XD

�
Y (X,Y )| 

X

�↵

✓
↵

�

◆
|�(↵+���)(X � Y )a(�)(X)|

. 2|↵| sup
�↵

✓
h
|↵+�|((↵+ � � �)!�!)se�|X�Y |

1
s /h

!(X)

◆

 (21+s
h)|↵+�|(↵!�!)se�|X�Y |

1
s /h

!(X) . (21+s
h)|↵+�|(↵!�!)se�|X�Y |

1
s /(2h)

!(Y ),

for every h > 0 which is chosen small enough. Here we have used the fact that for
some r > 0

!(X) . !(Y )er|X�Y | . !(Y )e|X�Y |
1
s /(2h)

,

since ! is a moderate function. This gives (2.11).
Next we prove (2). Let

b1,�,h( · , Y ) =
D

�
Y (�Y a1)

h|�|�!s!(Y )
and b2,�,h( · , Z) =

D
�
Z( Za2)

h|�|�!s#(Z)

Then (1) and Remark 2.6 show that

{ b1,�,h( · + Y, Y ) ; Y 2 R
2d
, h > 0, � 2 N

2d }

and

{ b2,�,h( · + Z,Z) ; Z 2 R
2d
, h > 0, � 2 N

2d }

are bounded subsets of ⌃s(R2d).
Hence, Remark 2.6 shows that

|D↵
X(b1,�,h( · , Y )#b2,�,h( · , Z))(X)| . h

|↵|
↵!se�(|X�Y |

1
s +|X�Z|

1
s +|Y�Z|

1
s )/h

for every h > 0, or equivalently,

|D↵
XD

�
Y D

�
Z((�Y a)#( Zb))(X)|

. h
|↵+�+�|(↵!�!�!)se�(|X�Y |

1
s +|X�Z|

1
s +|Y�Z|

1
s )/h

!(Y )#(Z).

The assertion now follows from the latter estimate and the fact that ! and # are
moderate weights, giving that

!(Y ) . !(X)e|X�Y |
1
s /(2h) . !(Z)e(|X�Y |

1
s +|X�Z|

1
s )/(2h)

,

and similarly for #. ⇤

Lemmas 2.5 and 2.7 imply the following characterisation of �(!)
s (R2d).

Proposition 2.8. Suppose s > 1/2, � 2 ⌃s(R2d) have non-vanishing integral,
! 2 PE(R2d), a 2 ⌃0

1(R
2d), and let �Y = �( · �Y ). Then the following conditions

are equivalent:

(1) a 2 �(!)
s (a 2 �(!)

0,s );

(2) �Y a is smooth and satisfies (2.11) for some h1 > 0 (for every h1 > 0) and
every h2 > 0;

(3) �Y #a is smooth and satisfies (2.12) for some h1 > 0 (for every h1 > 0)
and every h2 > 0;
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(4)

|D↵
X(�Y a)(X)| . h

|↵|
1 ↵!se�|X�Y |

1
s /h1 min(!(X),!(Y )) (2.13)

for some h1 > 0 (for every h1 > 0);

(5)

|D↵
X(�Y #a)(X)| . h

|↵|
1 ↵!se�|X�Y |

1
s /h1 min(!(X),!(Y )) (2.14)

for some h1 > 0 (for every h1 > 0).

Proof. By Lemmas 2.5 and 2.7, (1) implies that (2) and (3) hold, which in turn
imply (4) and (5).

If (4) holds, then (0.4) follows by integrating (2.13) with respect to Y , and using
the fact that

R
R2d �Y dY is a non-zero constant, since � has non-vanishing integral.

In the same way it follows that (5) leads to (0.4). Consequently, (4) as well as (5)
imply (1), and the result follows. ⇤

2.2. A family related to �(1)s and �(1)0,s. Let IR = [�R,R] and E
0 = E

0
h,s =

L
1(IR ⇥R

2d; sw1(R2d)), with the symbol subspace s
w
1(R2d) from Definition 1.23.

We shall consider suitable decreasing family {En
h,s}1n=0 of Banach spaces. To this

aim, let

Gn = {(Y, T1, . . . , Tn) 2 R
2d(n+1) : Y, Tj 2 R

2d with |Tj |  1, j = 1, . . . , n}, n 2 N.

We define E
n
h,s = E

n
R,h,s, n � 1, as the set of all a 2 E

0 such that

kak(n) = sup
1kn

sup
t2IR

sup
(Y,T1,...,Tk)2Gk

khT1, DXi · · · hTk, DXia(t, Y, · )ksw1
hk(k!)s

< 1,

with the norm
kakEn

h,s
= kakEn

R,h,s
⌘ max(kakE0 , kak(n)).

We also let E1
h,s = E

1
R,h,s be the set of all

a 2
\

n�0

E
n
R,h,s (2.15)

such that
kakE1

R,h,s
⌘ sup

n�0
kakEn

R,h,s

is finite.

Lemma 2.9. Let n � 0, R > 0 and s > 0. Then E
n
h,s and E

1
h,s are Banach spaces.

Proof. Let {aj}j�0 be a Cauchy sequence in E
n
h,s, n � 1. By definition, this

sequence clearly has a limit a 2 E
0, and for some X 7! bk(t, Y, T1, . . . , Tk, X) 2

s
w
1(R2d) we have

lim
j!1

sup
khT1, DXi · · · hTk, DXiaj(t, Y, · )� bk(t, Y, T1, . . . , Tk, · )ksw1

hk(k!)s
= 0,

where the supremum is taken over all

k 2 {1, . . . , n}, t 2 IR and (Y, T1, . . . , Tk) 2 Gk.

We need to prove that a 2 E
n
h,s, and aj ! a in E

n
h,s.

The conditions here above are equivalent to

lim
j!1

✓
sup
t2IR

sup
Y 2R2d

kaj(t, Y, · )� a(t, Y, · )ksw1

◆
= 0 (2.16)
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and

lim
j!1

sup
k(�1)khT1, Di · · · hTk, Diaj(t, Y, · )� bk(t, Y, T1, . . . , Tk, · )ksw1

hk(k!)s
= 0,

(2.17)

where the latter supremum should be taken over all

k 2 {1, . . . , n}, t 2 IR and (Y, T1, . . . , Tk) 2 Gk.

Since s
w
1(R2d) is continuously embedded in S 0(R2d), it follows from (2.16) and

(2.17) that

X 7! (�1)khT1, DXi · · · hTk, DXiaj(t, Y,X)

has the limit

X 7! (�1)khT1, DXi · · · hTk, DXia(t, Y,X)

in S 0(R2d), and the limit

X 7! bk(t, Y, T1, . . . , Tk, X)

in s
w
1(R2d), and thereby in S 0(R2d), as j tends to 1. Hence

bk(t, Y, T1, . . . , Tk, X) = (�1)khT1, DXi · · · hTk, DXia(t, Y,X)

and it follows that En
h,s is a Banach space for every h > 0, s > 0 and integer n � 0.

If in addition {aj}j�0 is a Cauchy sequence in E
1
h,s, then the limit a above satisfy

(2.15). Since aj stays bounded in E
1
h,s, it follows that a has bounded E

1
h,s norm,

and therefore, E1
h,s is complete and thereby a Banach space. ⇤

The spaces E1
h,s can be related to �(1)s and �(1)0,s, as the following lemma shows.

The details are left for the reader.

Lemma 2.10. Let a 2 L
1(IR ⇥R

2d; sw1(R2d)). Then {a(t, Y, · )}t2IR,Y 2R2d is a

uniformly bounded family in �(1)s (R2d) (�(1)0,s(R
2d)), if and only if

kakE1
h,s

< 1

for some h > 0 (for every h > 0).

Later on we also need the following result of di↵erential equations with functions
depending on a real variable with values in E

1
h,s. The proof is omitted since the

result can be considered as a part of the standard theory of ordinary di↵erential
equations of first order in Banach spaces.

Lemma 2.11. Suppose s � 0, n � 0 be an integer, T > 0, and let K be an operator
from E

n
h,s to E

n
h,s for every h > 0 such that

kKakEn
h,s

 CkakEn
h,s

, a 2 E
n
h,s, (2.18)

for some constant C which only depend on h > 0. Then

dc(t)

dt
= K(c(t)), c(0) 2 E

n
h,s,

has a unique solution t 7! c(t) from [�T, T ] to E
n
h,s which satisfies

kc(t)kEn
h,s

 kc(0)kEn
h,s

e
CT

,

where C is the same as in (2.18). The same holds true with E
1
h,s in place of En

h,s

at each occurrence.
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3. One-parameter group of elliptic symbols in the classes �(!)
s (Rd)

and �(!)
0,s (R

d)

In this section we show that for suitable s and !0, there are elements a 2 �(!0)
s

and b 2 �(1/!0)
s such that a#b = b#a = 1. This is essentially a consequence of The-

orem 3.8, where it is proved that the evolution equation (0.6) has a unique solution

a(t, · ) which belongs to �(!#t)
s , thereby deducing needed semigroup properties for

scales of pseudo-di↵erential operators. Similar facts hold for corresponding Beurling
type spaces (cf. Theorem 3.9).

First we have the following result on certain logarithms of weight functions.

Proposition 3.1. Let ! 2 PE(R2d) \ �(!)
s0 (R2d), s0 2 (0, 1], v 2 PE(R2d), be

such that ! is v-moderate, #(X) = 1 + log v(X) and let

c(X,Y ) = log
!(X + Y )

!(Y )
.

Then,

(1) {c( · , Y )}Y 2R2d is a uniformly bounded family in �(#)s (R2d), s � 1;

(2) for ↵ 6= 0, {(@↵Xc)( · , Y )}Y 2R2d is a uniformly bounded family in �(1)s (R2d),
s � 1.

For the proof of Proposition 3.1 we need the following multidimensional version
of the well-known Faà di Bruno formula for the derivatives of composed functions.
It can be found, e.g., setting q = p = 1, n = 2d, in equations (2.3) and (2.4) in [33].

Lemma 3.2. Let f 2 C
1(R) and g 2 C

1(Rd;R). Then

@
↵
f(g(x))

↵!
=

X

1k|↵|

f
(k)(g(x))

k!

X

�1+···+�k=↵
�j 6=0, j=1,...,k

Y

1jk

(@�jg)(x)

�j !
, ↵ 2 N

d \ 0. (3.1)

We will also need the next factorial estimate, for expressions involving decompo-
sitions of ↵ 2 N

2d, ↵ 6= 0, into the sum of k nontrivial multi-indeces �j , j = 1, . . . , k,
as in (3.1), and corresponding products of (powers of) factorials.

Lemma 3.3. Let s0 2 (0, 1], ↵ 2 N
2d, ↵ 6= 0. Then, for suitable C0 > 0, depending

only in d,
X

1k|↵|

1

k

X

�1+···+�k=↵
�j 6=0, j=1,...,k

Y

1jk

�j !
s0�1 . C

|↵|
0 . (3.2)

Lemma 3.3 follows from Lemma A.2 in Appendix A.

Proof of Proposition 3.1. In order to prove (1) we need to show that c( · , Y ) satisfies

�(#)s estimates, uniformly with respect to Y 2 R
2d. By (1.2) we get

c(X,Y )  log(Cv(X)) . 1 + log v(X) = #(X)

and

c(X,Y ) � log((Cv(X))�1) & �(1 + log v(X)) = �#(X).

Hence, |c(X,Y )| . #(X), X 2 R
2d. If c(X,Y ) � 0, then it follows by submulti-

plicativity of !, that

c(X,Y ) = log!(Y +X)� log!(Y ) . log!(Y ) + log v(X)� log!(Y )

 #(X),
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for any Y 2 R
2d. Again by moderateness, when c(X,Y )  0, recall that !(X+Y ) �

!(Y )
v(X) , so that

c(X,Y ) & log
!(Y )

v(X)
� log!(Y ) � � log v(X) � �#(X),

and we can conclude |c(X,Y )| . #(X), X 2 R
2d. Now, for ↵ 2 N

2d, ↵ 6= 0, (0.4)
with a = ! and (3.1) give

@
↵
Xc(X,Y ) = ↵!

X

1k|↵|

(�1)k+1

k [!(X + Y )]k

X

�1+···+�k=↵
�j 6=0, j=1,...,k

Y

1jk

(@�j!)(X + Y )

�j !
,

and by (3.2),

|@↵Xc(X,Y )| . ↵!
X

1k|↵|

1

k [!(X + Y )]k

X

�1+···+�k=↵
�j 6=0, j=1,...,k

Y

1jk

!(X + Y )h|�j |�j !s0

�j !

= h
|↵|
↵!

X

1k|↵|

1

k

X

�1+···+�k=↵
�j 6=0, j=1,...,k

Y

1jk

�j !
s0�1 . (C0h)

|↵|
↵!s,

which gives the result. ⇤

Proposition 3.4. Assume s >
1
2 and !(X) . e

r|X|
1
s for some r > 0. Let

{a( · , Y )}Y 2R2d be a uniformly bounded family in ⌃s(R2d) and {c( · , Z)}Z2R2d be

a bounded family in �(!)
s (R2d). Then,

{a( · , Y )#c( · , Z)}Y,Z2R2d and {c( · , Z)#a( · , Y )}Y,Z2R2d

are bounded families in Ss(R2d).

Proof. Let � 2 ⌃s and a 2 �(!)
s . By Lemma 2.7 it follows that

|D↵
X(�#a)(X)|  Ch

|↵|
↵!se�r|X|

1
s
, (3.3)

for some h, r > 0. Then (3.3) holds if and only if �#a belongs to Ss. By the
proof of (3.3), the constants C, h and r can be chosen to depend continuously on

� 2 ⌃s(R2d) and a 2 �(!)
s (R2d). Hence if ⌦1 is bounded in ⌃s(R2d) and ⌦2 is

bounded in �(!)
s (R2d), then it follows that {�#a}�2⌦1,a2⌦2 is a bounded family in

Ss(R2d). ⇤

The following result can be found e. g. in [52].

Lemma 3.5. Let a 2 S 0(R2d). Then

kaksw1  C

X

|↵|d+1

k@↵akL1 (3.4)

and

kakL1  C

X

|↵|2d+1

k@↵aksw1 (3.5)

for some constant C > 0 depending on the dimension d only.

Proposition 3.6. Let a 2 S 0(R2d), s � 1
2 and set b↵�(X) = @

↵(X�
a(X)) when

↵,� 2 N
2d. Then the following conditions are equivalent:

(1) a 2 Ss(R2d) (a 2 ⌃s(R2d));
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(2) for some h > 0 (every h > 0) it holds

kb↵�kL1 . h
|↵+�|(↵!�!)s, ↵,� 2 N

2d;

(3) for some h > 0 (every h > 0) it holds

kb↵�ksw1 . h
|↵+�|(↵!�!)s, ↵,� 2 N

2d.

Proof. We only prove the result in the Roumieu case. The Beurling case follows by
similar arguments and is left for the reader.

The equivalence between (1) and (2) follows from the definitions. The proof of
the equivalence of (2) and (3) follows by a straightforward application of Lemma
3.5. In fact, assume that (2) holds true. Then (3.4) gives

kb↵�ksw1  C

X

|�|d+1

k@�b↵�kL1 .
X

|�|d+1

h
|↵+�+�|((↵+ �)!�!)s

= h
|↵+�|(↵!�!)s

X

|�|d+1

h
|�|
�!s
✓
(↵+ �)!

↵! �!

◆s

. (2sh)|↵+�|(↵!�!)s.

In the last inequality we have used
X

|�|d+1

h
|�|
�!s
✓
(↵+ �)!

↵! �!

◆s

 C1 · 2s(|↵|+d+1)  C22
s|↵+�|

,

where the constants C1 and C2 only depend on d and h. Hence (3) holds true, as
claimed. The proof of the converse follows by similar argument, employing (3.5)
instead of (3.4). ⇤

We also need the following characterisation of �(1)s (R2d).

Proposition 3.7. Let a 2 S 0(R2d) and s > 0. Then the following conditions are
equivalent:

(1) a 2 �(1)s (R2d);
(2) there exists h > 0 such that

k@↵akL1(R2d) . h
|↵|
↵!s, ↵ 2 N

2d;

(3) there exists h > 0 such that

k@↵aksw1 . h
|↵|
↵!s, ↵ 2 N

2d; (3.6)

(4) there exists h > 0 such that

khT1, DXi · · · hTm, DXiaksw1 (3.7)

for any T1, . . . , Tm 2 R
2d such that |Tj |  1, j = 1, . . . ,m, m � 1.

Proof. The equivalence between (1) and (2) is well known. The equivalence of
(2) and (3) is proved by similar arguments to the one employed in the proof of
Proposition 3.6, using Lemma 3.5. It remains to prove the equivalence with (4).
Assume that (3) holds true, and let

Tk =
dX

l=1

(tk,lel + ⌧k,l"l),

for the standard symplectic basis (1.15) of R2d. If we set ed+l = "l, tk,d+l = ⌧k,l,
l 2 {1, . . . , d}, and letting Xl being the coordinates for X = (x, ⇠) 2 R

2d with
respect to this basis, then

hTk, DXia =
2dX

l=1

tk,l
@a

@Xl
,
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so that the symbol hT1, DXi · · · hTm, DXia is in the span of symbols of the form
 

mY

k=1

tk,lk

!
�
@X1,l1

· · · @Xm,lm
a
�

where the summation contains at most (2d)m terms. Since |Tj |  1, j = 1, . . . ,m,
(3.4) gives

khT1, DXi · · · hTm, DXiaksw1  (2d)m sup
|↵|=m

k@↵aksw1

. sup
|↵|=m

X

|�|d+1

h
|↵+�|(↵+ �)!s

= sup
|↵|=m

h
|↵|
↵!s

X

|�|d+1

h
|�|
�!s
✓
(↵+ �)!

↵! �!

◆s

. (2s+1
h)mm!s,

which gives (4).
If instead (4) holds, then choosing T1, . . . T|↵| in suitable ways, the left-hand

sides of (3.6) and (3.7) agree. The assertion (3) now follows from (4) by using the
inequality |↵|!  d

|↵|
↵!. ⇤

The first main result of this section is the following analogy of [3, Theorem 6.4]
and [38, Theorem 2.6.15] in the framework of Gevrey regularity. It deals with
the existence of one-parameter groups of pseudo-di↵erential operators, obtained as
solutions to suitable evolution equations.

Theorem 3.8. Let s � 1, !,# 2 P0
E,s(R

2d) be such that ! 2 �(!)
s (R2d) and

# 2 �(#)s (R2d), and let a0 2 �(!)
s (R2d), b 2 �(1)s (R2d). Then, there exists a unique

smooth map (t,X) 7! a(t,X) 2 C such that a(t, · ) 2 �(! #t)
s (R2d) for all t 2 R,

and (
(@ta)(t, · ) = (b+ log #)#a(t, · )
a(0, · ) = a0.

(3.8)

If in addition ! ⌘ a0 ⌘ 1, then a(t,X) also satisfies
(
(@ta)(t, · ) = a(t, · )#(b+ log #)

a(0, · ) = a0,
(3.9)

and

a(t1, · )#a(t2, · ) = a(t1 + t2, · ), a(t, · ) 2 �(#
t)

s (R2d), t, t1, t2 2 R. (3.10)

Proof. First suppose that a solution a(t,X) of (3.8) exists. Then

a(t,X) = a0(X) +

Z t

0
c(u,X) du

with

c(t, · ) = (b+ log #)#a(t, · ) 2 �(!#thlog #i)
s (R2d),

in view of Propositions 1.27 and 3.1. This implies that the map t 7! a(t, · ) is C
1

from [�R,R] into the symbol space

�(!(#+#�1)Rhlog #i)
s (R2d).

Choose s0 < s, and �, 2 Ss0(R
2d) such that (2.2) holds true. Let

c1(t, Y, · ) = !(Y )�1
#(Y )�t

�Y #a(t, · ). (3.11)
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By Lemma 2.7 (1) we have t 7! c1(t, Y, · ) is a C
1 map from [�R,R] into Ss(R2d),

for any Y 2 R
2d. Moreover,

@tc1(t, Y, · ) = !(Y )�1
#(Y )�t

�Y #f( · , Y )#a(t, · )

when

f(X,Y ) = b(X) + log
#(X)

#(Y )
.

Then,

(@tc1)(t, Y, · ) = !(Y )�1
#(Y )�t

Z

R2d

�Y #f( · , Y )# Z#�Z#a(t, · ) dZ

giving that

(@tc1)(t, Y, · ) =
Z

R2d

KY,Z(t, · )#c1(t, Z, · ) dZ (3.12)

with

KY,Z(t, · ) =
!(Z)#(Z)t

!(Y )#(Y )t
�Y #f( · , Y )# Z . (3.13)

We also need to consider the similar situation where f( · , Y ) is replaced by f( · , Z),
that is

@tc2(t, Y, · ) =
Z

R2d

eKY,Z(t, · )#c2(t, Z, · ) dZ, (3.12)0

where

eKY,Z(t, · ) =
!(Z)#(Z)t

!(Y )#(Y )t
�Y #f( · , Z)# Z , (3.13)0

and

c2(0, Y, · ) = c1(0, Y, · ) = !(Y )�1
�Y #a0. (3.14)

We consider the operators K and eK when acting on E
0 from Subsection 2.2,

defined by

(Ka)(t, Y,X) =

Z

R2d

(KY,Z(t, · )#a(t, Z, · ))(X) dZ,

and

( eKa)(t, Y,X) =

Z

R2d

( eKY,Z(t, · )#a(t, Z, · ))(X) dZ.

We claim that

kKakEn
h,s

 C(n+ 1)kakEn
h,s

and keKakEn
h,s

 C(n+ 1)kakEn
h,s

(3.15)

for some constant C, which is independent of h, n and s.
In order to prove (3.15), it is convenient to let Pk be the family of all subsets of

{1, . . . , k}, k � 1. For each P 2 Pk, a 2 s
w
1(R2d), we set

H(a, P ) =

(
a when P = ;,
hTj1 , DXi · · · hTjl , DXia when P = {j1 < · · · < jl}, l  k.

We shall estimate

k(hT1, DXi · · · hTk, DXiKa)(t, Y, · )ksw1(R2d)

hk(k!)s
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when a 2 E
n
h,s. Since

(hT1, DXi · · · hTk, DXiKa)(t, Y,X)

= hT1, DXi · · · hTk, DXi
Z

R2d

(KY,Z(t, · )#a(t, Z, · ))(X) dZ

=
X

P2Pk

Z

R2d

(H(KY,Z(t, · ), P )#H(a(t, Z, · ), P c))(X) dZ,

we find

k(hT1, DXi · · · hTk, DXiKa)(t, Y, · )ksw1
hk(k!)s


kX

l=0

X

|P |=l

✓
k

l

◆�s Z

R2d

kH(KY,Z(t, · ), P )ksw1
hl l!s

·
kH(a(t, Z, · ), P c)ksw1

hk�l((k � l)!)s
dZ


kX

l=0

X

|P |=l

kakEk�l
h,s

✓
k

l

◆�s Z

R2d

kH(KY,Z(t, · ), P )ksw1
hl l!s

dZ

. kakEk
h,s

kX

l=0

X

|P |=l

✓
k

l

◆�1 Z

R2d

kH(KY,Z(t, · ), P )ksw1
hl l!s

dZ

 (k + 1)Dk(Y )kakEk
h,s

, (3.16)

where

Dk(Y ) = sup
lk

sup
|P |=l

✓Z

R2d

kH(KY,Z(t, · ), P )ksw1
hl l!s

dZ

◆
, (3.17)

Here the third inequality in (3.16) follows from the fact that s � 1 and kakEn
h,s

increases with n.
We have to estimate Dk(Y ) in (3.17) and study the di↵erent quantities on the

right-hand side of (3.13). Since ! and # belong to P0
E,s, it follows that for every

r > 0,

!(Z)#(Z)t

!(Y )#(Y )t
=
!(Z)

!(Y )

✓
#(Z)

#(Y )

◆t

. e
r|Y�Z|

1
s

✓
e
r|Y�Z|

1
s

◆t

= e
r(1+t)|Y�Z|

1
s
, Y, Z 2 R

2d
. (3.18)

For the Weyl product in (3.13) we have

�Y #f(Y, · ) = �( · � Y )#
⇣
b+ log

#

#(Y )

⌘

=
⇣
�#b( · + Y )

⌘

Y
+ �( · � Y )#

⇣
log

#

#(Y )

⌘

=
⇣
�#b( · + Y )

⌘

Y
+
⇣
�# log

#( · + Y )

#(Y )

⌘

Y
.

By Propositions 3.1 and 3.4,
n
�#b( · + Y )

o

Y 2R2d
and

n
�# log

#( · + Y )

#(Y )

o

Y 2R2d
(3.19)

are uniformly bounded families in Ss(R2d). Note that

a2(Z,X) =  Z(X) ) {a2(Z, · + Z)}Z2R2d = { }Z2R2d ,
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which is evidently a uniformly bounded family in Ss(R2d). Combining this last
observation with the computations on �Y #f( · , Y ) above, using Lemmata 2.5 and
2.7, we finally obtain

|D↵
X(�Y #f(Y, · )# Z)(X)| . h

|↵|
↵!se�r0(|X�Y |

1
s +|X�Z|

1
s +|Y�Z|

1
s )
,

X, Y, Z 2 R
2d
,↵ 2 N

2d
,

(3.20)

for some h, r0 > 0.
By Proposition 3.7, (3.18) and (3.20) we get for all P 2 Pk Y, Z 2 R

2d and some
r0, h > 0 that

kH(KY,Z(t, · ), P )ksw1  Ch
l
l!se�r0|Y�Z|

1
s
, l = |P |,

where C is independent of k. Hence Dk in (3.17) satisfies

Dk(Y )  C1

Z

R2d

e
�r0|Y�Z|

1
s
dZ = C2,

for some constants C1 and C2 which are independent of Y 2 R
2d, h > 0 and k � 0.

Hence (3.16) gives

kKa(t, Y, · )ksw1  CkakEk
h,s

,

and
khT1, DXi · · · hTk, DXiKa(t, Y, · )ksw1

hk(k!)s
 C(k + 1)kakEk

h,s
,

as claimed, where C is independent of Y 2 R
2d, k and h > 0.

By a completely similar argument, an analogous result can be obtained for eK.
In fact, by similar arguments that lead to (3.19) it follows that

{b( · + Z)# }Z2R2d and

⇢
log

#( · + Z)

#(Z)
# 

�

Z2R2d

are bounded in Ss(R2d), given that (3.20) holds with f(Z, · ) in place of f(Y, · ).
This gives (3.15).

We have proven that for any T > 0, then

kKkEn
h,s!En

h,s
 C(n+ 1) and keKkEn

h,s!En
h,s

 C(n+ 1), |t|  T, (3.21)

where C is independent of n. As a consequence, since !(Y )�1
�Y #a0 belongs to

E
n
h,s for every n and with uniform bound of the norms with respect to n it follows

that the equations

dc1

dt
= Kc1,

dc2

dt
= eKc2 c1(0) = c2(0) = !(Y )�1

�Y #a0 (3.22)

have unique solutions on [�T, T ] belonging to E
n
h,s, in view of Lemma 2.11, and

that

kcjkEn
h,s

 kcj(0)kEn
h,s

e
C(n+1)T  kcj(0)kE1

h,s
e
C(n+1)T

, j = 1, 2, (3.23)

where the constant C is the same as in (3.21) and is therefore independent of n.
This gives

sup

✓khT1, DXi · · · hTn, DXicj(t, Y, · )ksw1
hn(n!)s

◆
 kcj(0)kE1

h,s
e
C(n+1)T

,

which is the same as

sup

✓khT1, DXi · · · hTn, DXicj(t, Y, · )ksw1
h
n
0 (n!)

s

◆
 kcj(0)kE1

h,s
e
CT

, h0 = he
CT

.

(3.24)
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Here the supremum is taken over all T1, . . . , Tn, Y 2 R
2d such that |Tj |  1, and

t 2 [�T, T ]. By taking the supremum of the left-hand side of (3.24) over all n � 0
we get

kcjkE1
h0,s

 kcj(0)kE1
h,s

e
CT

, h0 = he
CT

.

By Proposition 2.8 it follows that cj(t, Y, · ) 2 �(1)s (R2d), uniformly in Y and for
bounded t.

In order to prove the uniqueness of the solution a of (3.8), first we assume the
existence and by what we have proven above i.e. that c1(t, Y, · ) in (3.11) satisfies
(3.22) which implies the uniqueness of the solution of (3.8), since

a(t, · ) =
Z

R2d

 Y #�Y #a(t, · ) dY =

Z

R2d

!(Y )#(Y )t Y #c1(t, Y, · ) dY. (3.25)

To prove the existence of a solution of (3.8), we consider the solution c2(t, Y, · ) of
(3.12)0 with the initial data (3.14), and we let

a(t, · ) =
Z

R2d

!(Y )#(Y )t Y #c2(t, Y, · ) dY. (3.26)

By Propositions 1.7 and 2.8, the family { Y #c2(t, Y, · )}Y 2R2d belongs to Ss and

a(t, · ) belongs to �(w#t)
s . Moreover,

da(t, · )
dt

=

Z

R2d

!(Y )#(Y )t log #(Y ) Y #c2(t, Y, · ) dY

+

Z

R2d

Z

R2d

!(Y )#(Y )t Y # eKY,Z(t, · )#c2(t, Z, · ) dY dZ

=

Z

R2d

!(Z)#(Z)t log #(Z) Z#c2(t, Z, · ) dZ

+

Z

R2d

Z

R2d

!(Z)#(Z)t Y #�Y #f(Z, · )# Z#c2(t, Z, · ) dY dZ

=

Z

R2d

!(Z)#(Z)t(b+ log #)# Z#c2(t, Z, · ) dZ

= (b+ log #)#a(t, · ),
with the initial data

a(0, · ) =
Z

R2d

!(Y ) Y #(!(Y )�1
�Y #a0) dY = a0,

which provide a solution of (3.8).
In order to prove the last part we consider the unique solution a(t, · ) of (3.8)

with the initial data a(0, · ) ⌘ 1. If ! ⌘ 1, then for u 2 R the mappings

t 7! a(t+ u, · ) and t 7! a(t, · )#a(u, · )
are both solutions of (3.8) with value a(u, · ) at t = 0, and

a(t+ u, · ) = a(t, · )#a(u, · ), (3.27)

by the uniqueness property for the solution of (3.8).
Using (3.27) we have for all t 2 R, a(t, · )#a(�t, · ) = 1. Taking the derivative

we get

0 =
d

dt
(a(t, · )#a(�t, · )) = (b+log #)#a(t, · )#a(�t, · )�a(t, · )#(b+log #)#a(�t, · ).

That is (b + log #) = a(t, · )#(b + log #)#a(�t, · ), implying the commutation for
the sharp product of a(t, · ) with (b+ log #), and the result follows. ⇤

By similar argument as for the previous result we get the following. The verifi-
cations are left for the reader.
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Theorem 3.9. Let s � 1, !,# 2 PE,s(R2d) be such that ! 2 �(!)
s (R2d) and

# 2 �(#)s (R2d), and let a0 2 �(!)
0,s (R

2d), b 2 �(1)0,s(R
2d). Then, there exists a unique

smooth map (t,X) 7! a(t,X) 2 C such that a(t, · ) 2 �(! #t)
0,s (R2d) for all t 2 R,

and a(t, · ) satisfies (3.8).
Moreover, if ! ⌘ a0 ⌘ 1, then a(t,X) also satisfies (3.9) and

a(t1, · )#a(t2, · ) = a(t1 + t2, · ), a(t, · ) 2 �(#
t)

0,s (R2d), t, t1, t2 2 R.

4. Lifting of pseudo-differential operators and Toeplitz operators

on modulation spaces

In this section we apply the group properties in Theorems 3.8 and 3.9 to deduce
lifting properties of pseudo-di↵erential operators on modulation spaces. Thereafter
we combine these results by the Wiener property of certain pseudo-di↵erential op-
erators with symbols in suitable modulation spaces to get lifting properties for
Toeplitz operators with weights as their symbols.

We begin to apply Theorems 3.8 and 3.9 to get the following. (See Definition
1.21 concerning normal QBF-spaces.)

Theorem 4.1. Let s � 1, p 2 (0,1]2d, A 2 M(d,R), ! 2 P0
E,s(R

2d), and let B
be a normal QBF-space on R

2d. Then the following is true:

(1) There exist a 2 �(!)
s (R2d) and b 2 �(1/!)

s (R2d) such that

OpA(a) �OpA(b) = OpA(b) �OpA(a) = IdS0
s(R

d) . (4.1)

Furthermore, OpA(a) is an isomorphism from M(!0,B) onto M(!0/!,B),
for every !0 2 P0

E,s(R
2d).

(2) Let a 2 �(!)
s (R2d). Then the following conditions are equivalent:

(i) OpA(a) is an isomorphism from M
2
(!1)

(Rd) to M
2
(!1/!)(R

d) for some

!1 2 P0
E,s(R

2d);

(ii) OpA(a) is an isomorphism from M(!2,B) to M(!2/!,B) for every
!2 2 P0

E,s(R
2d) and normal QBF-space B on R

2d.
Furthermore, if (i) or (ii) hold, then the inverse of OpA(a) is given by

OpA(b) for some b 2 �(1/!)
s (R2d), and (4.1) holds.

Theorem 4.2. Let s > 1, p 2 (0,1]2d, A 2 M(d,R) and let ! 2 PE,s(R2d).
Then the following is true:

(1) There exist a 2 �(!)
0,s (R

2d) and b 2 �(1/!)
0,s (R2d) such that

OpA(a) �OpA(b) = OpA(b) �OpA(a) = Id⌃0
s(R

d) . (4.2)

Furthermore, OpA(a) is an isomorphism from M(!0,B) onto M(!0/!,B),
for every !0 2 PE,s(R2d) and normal QBF-space B on R

2d;

(2) Let a 2 �(!)
0,s (R

2d). Then the following conditions are equivalent:

(i) OpA(a) is an isomorphism from M
2
(!1)

(Rd) to M
2
(!1/!)(R

d) for some

!1 2 PE,s(R2d);

(ii) OpA(a) is an isomorphism from M(!2,B) to M(!2/!,B) for every
!2 2 PE,s(R2d) and normal QBF-space B on R

2d.
Furthermore, if (i) or (ii) hold, then the inverse of OpA(a) is equal to

OpA(b) for some b 2 �(1/!)
0,s (R2d), and (4.2) holds.

We only prove Theorem 4.2. Theorem 4.1 follows by similar arguments and is
left for the reader.
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Proof of Theorem 4.2. The existence of a 2 �(!)
0,s (R

2d) and b 2 �(1/!)
0,s (R2d) such

that (4.2) holds is guaranteed by Theorem 3.9. By [62, Theorems 2.5 and 2.8] it
follows that

OpA(a) :M(!0,B) !M(!0/!,B) (4.3)

and

OpA(b) :M(!0/!,B) !M(!0,B) (4.4)

are continuous. By (4.2) and the fact thatM(!0,B) andM(!0/!,B) are contained
in ⌃0

s(R
2d), it follows that (4.3) and (4.4) are homeomorphisms, and (1) follows.

It su�ces to prove (2) in the Weyl case, A = 1
2I, in view of Proposition 1.26. It

is also clear that (ii) implies (i). We need to prove that (i) implies (ii).
By (1), we may find

a1 2 �(!1)
0,s , b1 2 �(1/!1)

0,s , a2 2 �(!1/!)
0,s , b2 2 �(!/!1)

0,s

satisfying the following properties:

• Opw(aj) and Opw(bj) are inverses to each others on ⌃0
s(R

d) for j = 1, 2;

• For arbitrary !2 2 PE,s(R2d), the mappings

Opw(a1) : M2
(!2)

! M
2
(!2/!1)

,

Opw(b1) : M2
(!2)

! M
2
(!2!1)

,

Opw(a2) : M2
(!2)

! M
2
(!2!/!1)

,

Opw(b2) : M2
(!2)

! M
2
(!2!1/!)

(4.5)

are isomorphisms.

In particular, Opw(a1) is an isomorphism from M
2
(!1)

to L
2, and Opw(b1) is an

isomorphism from L
2 to M

2
(!1)

.
Now set c = a2#a#b1. By Proposition 1.27 the symbol c satisfies

c = a2#a#b1 2 �(!1/!)
0,s #�(!)

0,s #�
(1/!1)
0,s ✓ �(1)0,s.

Furthermore, Opw(c) is a composition of three isomorphisms and consequently
Opw(c) is boundedly invertible on L

2.

By Proposition 1.32 (2), Opw(c)�1 = Opw(c1) for some c1 2 �(1)0,s. Hence, by
(1) it follows that Opw(c) and Opw(c1) are isomorphisms on M(!2,B), for each
!2 2 PE,s(R2d) and normal QBF-space B on R

2d. Since Opw(c) and Opw(c1) are
bounded on every M(!,B), the factorization of the identity Opw(c)Opw(c1) = Id
is well-defined on every M(!,B). Consequently, Opw(c) is an isomorphism on
M(!,B).

Using the inverses of a2 and b1, we now find that

Opw(a) = Opw(b2) �Opw(c) �Opw(a1)

is a composition of isomorphisms from the domain space M(!2,B) onto the im-
age space M(!2/!,B) (factoring through some intermediate spaces) for every
!2 2 PE,s(R2d) and every invariant BF-space B. This proves the isomorphism
assertions for Opw(a).

Finally, the inverse of Opw(a) is given by

Opw(b1) �Opw(c1) �Opw(a2).

which is a Weyl operator with symbol in �(1/!)
0,s in view of Proposition 1.27, and

the result follows. ⇤
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5. Mapping properties for Toeplitz operators

In this section we study the isomorphism properties of Toeplitz operators be-
tween modulation spaces as in [30]. We first state results for Toeplitz operators
that are well-defined in the sense of (1.39) and Propositions 1.34 and 1.35. Then
we state and prove more general results for Toeplitz operators that are defined only
in the framework of pseudo-di↵erential calculus.

5.1. Lifting properties for Toeplitz operators with windows in M
r
(v). We

start with the following result about Toeplitz operators with smooth symbols.

Theorem 5.1. Let s � 1 !,!0, v 2 P0
E,s(R

2d) be such that !0 2 �(!0)
s (R2d) and

that !0 is v-moderate, and let B be a normal QBF-space on R
2d. If � 2 M

1
(v)(R

d),

then Tp�(!0) is an isomorphism from M(!,B) to M(!/!0,B).

In the next result we relax our restrictions on the weights but impose more
restrictions on B.

Theorem 5.2. Let s > 1, 0  t  1, p, q 2 [1,1], and !,!0, v0, v1 2 PE,s(R2d)

be such that !0 is v0-moderate and ! is v1-moderate. Set v = v
t
1v0, # = !

1/2
0 and

let !0,t be the same as in (1.40). If � 2 M
1
(v)(R

d) and !0 2 M1
(1/!0,t)

(R2d), then

Tp�(!0) is an isomorphism from M
p,q
(#!)(R

d) to M
p,q
(!/#)(R

d).

Before the proofs we have the following consequence of Theorem 5.2 which is the
Gevrey version of [30, Corollary 4.3], as well as the original searched result. It also
generalize corresponding results in [31] (cf. e. g. [31, Theorem 4.3]).

Corollary 5.3. Let s � 1, !,!0, v1, v0 2 PE,s(R2d) and that !0 is v0-moderate

and ! is v1-moderate. Set v = v1v0 and # = !
1/2
0 . If � 2 M

1
(v)(R

d), then Tp�(!0) is

an isomorphism from M
p,q
(#!)(R

d) to M
p,q
(!/#)(R

d) simultaneously for all p, q 2 [1,1].

Proof. Let !1 2 PE,s(R2d)\�(!1)
0,s (R2d) be such that C�1  !1/!0  C, for some

constant C. Hence, !/!0 2 L
1 ✓ M

1. By Theorem 2.2 in [56], it follows that
! = !1 · (!/!1) belongs to M

1
(!2)

(R2d), when !2(x, ⇠, ⌘, y) = 1/!0(x, ⇠). The result
now follows by setting t = 1 and q0 = 1 in Theorem 5.2. ⇤

Theorems 5.1 and 5.2 are special cases of the following results.

Theorem 5.1
0
. Let s � 1, !, v, v0 2 P0

E,s(R
2d) be such that !0 2 �(!0)

s (R2d) and

that !0 is v-moderate, and let B be a normal QBF-space on R
2d. If � 2 M

2
(v)(R

d),

then Tp�(!0) is an isomorphism from M(!,B) to M(!/!0,B).

Theorem 5.2
0
. Let s > 1, 0  t  1, p, q, q0 2 [1,1] and !,!0, v0, v1 2 PE,s(R2d)

be such that !0 is v0-moderate and ! is v1-moderate. Set r0 = 2q0/(2q0 � 1),

v = v
t
1v0, # = !

1/2
0 and let !0,t be the same as in (1.40). If � 2 M

r0
(v)(R

d) and

!0 2 M1,q0
(1/!0,t)

, then Tp�(!0) is an isomorphism from M
p,q
(#!)(R

d) to M
p,q
(!/#)(R

d).

5.2. Lifting properties for Toeplitz operators with smooth symbols act-

ing on normal QBF-spaces. By imposing stronger conditions on the window
function � in the previous results, we may relax the restrictions on the modulation
spaces as in the following generalization of Theorem 0.1.

Theorem 0.1
0
. Let s � 1, !,!0 2 P0

E,s(R
2d), p 2 (0,1]2d, B be a normal

QBF-space on R
2d, and let � 2 Ss(Rd). Then the Toeplitz operator Tp�(!0) is an

isomorphism from M(!,B) onto M(!/!0,B).
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5.3. Mapping properties for Toeplitz operators. We postpone the proofs of
these theorems after performing some preparations and deducing some results of
independent interests.

Lemma 5.4. Let s � 1, !, v 2 PE,s(R2d) be such that # = !
1/2 is v-moderate.

Assume that � 2 M
2
(v). Then Tp�(!) is an isomorphism from M

2
(#)(R

d) onto

M
2
(1/#)(R

d).

Proof. Recall from Remark 1.12 that for � 2 M
2
(v)(R

d) \ {0} the expression kV�f ·
#kL2 defines an equivalent norm on M

2
(#). Thus the occurring STFTs with respect

to � are well defined.
Since Tp�(!) is bounded from M

2
(#) to M

2
(1/#) by Proposition 1.35, the estimate

kTp�(!)fkM2
(1/#)

. kfkM2
(#)

(5.1)

holds for all f 2 M
2
(#).

Next we observe that

(Tp�(!)f, g)L2(Rd) = (!V�f, V�g)L2(R2d) = (f, g)M2,�
(#)

, (5.2)

for f, g 2 M
2
(#)(R

d) and � 2 M
2
(v)(R

d). The duality of modulation spaces (Propo-

sition 1.11(3)) now yields the following identity:

kfkM2
(#)

⇣ sup
kgkM2

(#)
=1

|(f, g)M2
(#)

|

⇣ sup
kgkM2

(#)
=1

|(Tp�(!)f, g)L2 | ⇣ kTp�(!)fkM2
(1/#)

. (5.3)

A combination of (5.1) and (5.3) shows that kfkM2
(#)

and kTp�(!)fkM2
(1/#)

are

equivalent norms on M
2
(#).

In particular, Tp�(!) is one-to-one from M
2
(#) to M

2
(1/#) with closed range. Since

Tp�(!) is self-adjoint with respect to L
2, it follows by duality that Tp�(!) has

dense range in M
2
(1/#). Consequently, Tp�(!) is onto M

2
(1/#). By Banach’s theorem

Tp�(!) is an isomorphism from M
2
(#) to M

2
(1/#). ⇤

We need a further generalization of Proposition 1.34 to more general classes of
symbols and windows. Set

!1(X,Y ) =
v0(2Y )1/2v1(2Y )

!0(X + Y )1/2!0(X � Y )1/2
. (5.4)

Proposition 1.34
0
. Let s � 1, 0  t  1, p, q, q0 2 [1,1], and !,!0, v0, v1 2

PE,s(R2d) be such that v0 and v1 are submultiplicative, !0 is v0-moderate and !
is v1-moderate. Set

r0 = 2q0/(2q0 � 1), v = v
t
1v0 and # = !

1/2
0 ,

and let !0,t and !1 be as in (1.40) and (5.4). Then the following is true:

(1) The definition of (a,�) 7! Tp�(a) from ⌃s(R2d)⇥⌃s(Rd) to L(⌃s(Rd),⌃0
s(R

d))

extends uniquely to a continuous map from M1,q0
(1/!0,t)

(R2d) ⇥ M
r0
(v)(R

d) to

L(⌃s(Rd),⌃0
s(R

d)).

(2) If � 2 M
r0
(v)(R

d) and a 2 M1,q0
(1/!0,t)

(R2d), then Tp�(a) = Opw(a0) for some

a0 2 M1,1
(!1)

(R2d), and Tp�(a) extends uniquely to a continuous map from

M
p,q
(#!)(R

d) to M
p,q
(!/#)(R

d).
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For the proof we need the following result, which follows from [55, Proposition
2.1] and its proof. The proof is therefore omitted.

Lemma 5.5. Assume that s � 1, q0, r0 2 [1,1] satisfy r0 = 2q0/(2q0 � 1). Also
assume that v 2 PE,s(R2d) is submultiplicative, and that ,0 2 PE,s(R2d�R

2d)
satisfy

0(X1 +X2, Y )  C(X1, Y ) v(Y +X2)v(Y �X2) X1, X2, Y 2 R
2d
, (5.5)

for some constant C > 0. Then the map (a,�) 7! Tp�(a) from ⌃s(R2d) ⇥
⌃s(Rd) to L(⌃s(Rd),⌃0

s(R
d)) extends uniquely to a continuous mapping from

M1,q0
(!) (R2d) ⇥ M

r0
(v)(R

d) to L(⌃s(Rd),⌃0
s(R

d)). Furthermore, if � 2 M
r0
(v)(R

d)

and a 2 M1,q0
() (R2d), then Tp�(a) = Opw(b) for some b 2 M1,1

(0)
.

Proof of Proposition 1.34 0. We show that the conditions on the involved parame-
ters and weight functions satisfy the conditions of Lemma 5.5.

First we observe that

vj(2Y )  Cvj(Y +X2)vj(Y �X2), j = 0, 1

for some constant C which is independent of X2, Y 2 R
2d, because v0 and v1 are

submultiplicative. By (5.4) we get

!1(X1 +X2, Y ) =
v0(2Y )1/2v1(2Y )

!0(X1 +X2 + Y )1/2!0(X1 +X2 � Y )1/2

 C1
v0(2Y )1/2v1(2Y )v0(X2 + Y )1/2v0(X2 � Y )1/2

!0(X1)

= C1v1(2Y )1�t v0(2Y )1/2v1(2Y )tv0(X2 + Y )1/2v0(X2 � Y )1/2

!0(X1)

 C2v1(2Y )1�t v1(X2 + Y )tv1(X2 � Y )tv0(X2 + Y )v0(X2 � Y )

!0(X1)
.

Hence

!1(X1 +X2, Y )  C
v1(2Y )1�t

v(X2 + Y )v(X2 � Y )

!0(X1)
. (5.6)

By letting 0 = !1 and  = 1/!0,t, it follows that (5.6) agrees with (5.5). The
result now follows from Lemma 5.5. ⇤
5.4. Proofs of the lifting results for Toeplitz operators. Theorem 5.10 is an
immediate consequences of Remark 1.13, Theorem 4.1, Lemma 5.4 and the following
proposition.

Proposition 5.6. Assume that s � 1, !0 2 P0
E,s(R

2d) be such that !0 2 �(!0)
s (R2d),

that v 2 P0
E,s(R

2d) is submultiplicative, and that !1/2
0 is v-moderate. If � 2

M
2
(v)(R

d), then Tp�(!0) = Opw(b) for some b 2 �(!0)
s (R2d).

Proof. By Propositions 1.26 and 1.27 with t = 0 we have !0 2 M1,1
(1/!0,r0 )

(R2d)

for some r0 � 0, where !0,r0(X,Y ) = !0(X)e�r0|Y |
1
s . Furthermore, by letting

v1(Y ) = e
r0|Y |

1
s , and !1 in (5.4) we have

!1(X,Y ) & e
r0|2Y |

1
s
v(2Y )1/2

!0(X + Y )1/2!0(X � Y )1/2
& e

r0|Y |
1
s

!0(X)
.

Hence, Proposition 1.340 gives Tp�(!0) = Opw(b), for some

b 2 M1,1
(1/!0,r0 )

(R2d) ✓ �(!0)
s (R2d). ⇤
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For the proof of Theorem 5.20 we need the following two lemmas, where the first
one is the Gevrey version of [30, Proposition 2.11].

Lemma 5.7. Let s � 1, !0, v0, v1 2 P0
E,s(R

2d � R
2d) be such that !0 is v0-

moderate. Set # = !
1/2
0 , and

!1(X,Y ) =
v0(2Y )1/2v1(2Y )

#(X + Y )#(X � Y )
,

!2(X,Y ) = #(X � Y )#(X + Y )v1(2Y ),

v2(X,Y ) = v1(2Y ). (5.7)

Then

�(1/#)s #M1,1
(!1)

#�(1/#)s ✓ M1,1
(v2)

, (5.8)

�(1/#)s #M1,1
(v2)

#�(1/#)s ✓ M1,1
(!2)

. (5.9)

The same holds true with PE,s and �(1/#)0,s in place of P0
E,s and �(1/#)s respec-

tively, at each occurrence.

Proof. We shall mainly follows the proof of [30, Proposition 2.11]. Since �(1/#)s =
S

r�0 M
1,1
(#r)

with #r(X,Y ) = #(X)er|Y |
1
s (Proposition 1.26(3)), it su�ces to argue

with the symbol class M1,1
(#r)

for some su�ciently large r instead of �(1/#)s .
For suitable r we show that

!3(X,Y ) . !1(X � Y + Z,Z)#r(X + Z, Y � Z) (5.10)

v1(2Y ) . #r(X � Y + Z,Z)!3(X + Z, Y � Z) , (5.11)

where

!3(X,Y ) =
v1(2Y )#(X + Y )

!0(X � Y )
.

Proposition 1.31 applied to (5.10) gives that M1,1
(!1)

#�(1/#)s ✓ M1,1
(!3)

, and (5.11)

implies that �(1/#)s #M1,1
(!3)

✓ M1,1
(v2)

, and (5.8) holds.

Since # is v1/20 -moderate and v0 2 P0
E,s, we have

#(X � Y )�1  v0(2Z)1/2#(X � Y + 2Z)�1 and #(X + Y )  #(X + Z)er|Y�Z|
1
s

for suitable r > 0. This gives

!3(X,Y ) . v0(2Z)1/2v1(2Z)#(X + Z)er|Y�Z|
1
s

#(X � Y + 2Z)#(X � Y )

= !1(X � Y + Z,Z)#r(X + Z, Y � Z),

for some r > 0.
We also have

v1(2Y ) . #(X � Y )v0(2Y )1/2v1(2Y )#(X + Y )

#(X � Y )2

. #(X � Y + Z)er|Z|
1
s
v0(2(Y � Z))1/2v1(2(Y � Z))#(X + Y )

#(X � Y + 2Z)2

= #r(X � Y + Z,Z)!3(X + Z, Y � Z).

The inclusion (5.9) is proved similarly. Let

!4(X,Y ) = #(X � Y )v1(2Y )
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be the intermediate weight. Then the inequality

!4(X,Y ) =. #(X � Y + Z)er|Z|
1
s
v1(2(Y � Z))

= #r(X � Y + Z,Z)v2(X + Z, Y � Z)

implies that �(1/#)s #M1,1
(v2)

✓ M1,1
(!4)

.
Similarly we obtain

!2(X,Y ) . #(X � Y )v1(2Z)#(X + Z)er|Z�Y |
1
s

= !4(X � Y + Z,Z)#r(X + Z, Y � Z),

and thus M1,1
(!4)

#�(1/#)s ✓ M1,1
(!2)

.

The case PE,s and �(1/#)0,s in place of P0
E,s and �(1/#)s respectively, at each

occurrence, is treated in similar ways and is left for the reader. ⇤

Lemma 5.8. Let s, !j, vj and # be the same as in Lemma 5.7, j = 0, 1, 2. Also
let p, q 2 [1,1] and b 2 M1,1

(!1)
(R2d). Then the following is true:

(1) Opw(b) is continuous from M
p,q
(#)(R

d) to M
p,q
(1/#)(R

d);

(2) if in addition Opw(b) is an isomorphism from M
2
(#)(R

d) to M
2
(1/#)(R

d),

then its inverse Opw(b)�1 equals Opw(c) for some c 2 M1,1
(!2)

(R2d).

Proof. The assertion (1) follows immediately from Proposition 1.30.

By Theorem 3.9, there are a 2 �(1/#)0,s (R2d) and a0 2 �(#)0,s (R
2d) such that the

map

Opw(a) : L2(Rd) ! M
2
(#)(R

d)

is an isomorphism with inverse Opw(a0). By Propositions 1.26 and 1.27, Opw(a) is
also bijective from M

2
(1/#)(R

d) to L
2(Rd). Furthermore, by Theorem 4.2 it follows

that a 2 M1,1
(#r)

when r � 0, where

#r(X,Y ) = #(X)er|Y |
1
s
.

Let b0 = a#b#a. From Lemma 5.7 we know that

b0 2 M1,1
(v2)

(R2d), where v2(X,Y ) = v1(2Y ) (5.12)

is submultiplicative and depends on Y only. Since Opw(b) is bijective from M
2
(#)

to M
2
(1/#) by Lemma 5.4 (2), Opw(b0) is bijective and continuous on L

2.

Since v2 is submultiplicative and in PE,s(R2d), M1,1
(v2)

is a Wiener algebra by
Proposition 1.32. Therefore, the Weyl symbol c0 of the inverse to the bijective
operator Opw(b0) on L

2 belongs to M1,1
(v2)

(R2d).
Since

Opw(c0) = Opw(b0)
�1 = Opw(a)�1 Opw(b)�1 Opw(a)�1

,

we find

Opw(c) = Opw(b)�1 = Opw(a)Opw(c0)Opw(a),

or equivalently,

c = a#c0#a, where a 2 �(1/#)0,s and c0 2 M1,1
(v2)

. (5.13)

The definitions of the weights are chosen such that Lemma 5.7 implies that c 2
M1,1

(!2)
, and (2) follows. ⇤
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Proof of Theorem 5.20. First we note that the Toeplitz operator Tp�(!0) is an iso-
morphism from M

2
(#) to M

2
(1/#) in view of Lemma 5.4. With !1 defined in (5.4),

Proposition 1.340 implies that there exist b 2 M1,1
(!1)

and c 2 S 0
s(R

2d) such that

Tp�(!0) = Opw(b) and Tp�(!0)
�1 = Opw(c) .

Let

!2(X,Y ) = #(X � Y )#(X + Y )v1(2Y ) and !3(X,Y ) =
#(X + Y )

#(X � Y )
. (5.14)

By Lemma 5.8 and Proposition 1.30 it follows that c 2 M1,1
(!2)

(R2d), and that
the mappings

Opw(b) : Mp,q
(!#) ! M

p,q
(!/#) and Opw(c) : Mp,q

(!/#) ! M
p,q
(!#) (5.15)

are continuous.
We have

!1(X � Y + Z,Z)!2(X + Z, Y � Z)

=
⇣

v0(2Z)1/2v1(2Z)

#(X � Y + 2Z)#(X � Y )

⌘
·
�
#(X � Y + 2Z)#(X + Y )v1(2(Y � Z))

�

=
v0(2Z)1/2v1(2Z)v1(2(Y � Z))#(X + Y )

#(X � Y )

& #(X + Y )

#(X � Y )
= !3(X,Y ) .

Therefore Proposition 1.31 shows that b#c 2 M1,1
(!3)

. Since Opw(b) is an isomor-

phism fromM
2
(#) toM

2
(1/#) with inverse Opw(c), it follows that b#c = 1 and that the

constant symbol 1 belongs to M1,1
(!3)

. By similar arguments it follows that c#b = 1.

Therefore the identity operator Id = Opw(b) � Opw(c) on M
p,q
(!#) factors through

M
p,q
(!/#), and thus Opw(b) = Tp�(!0) is an isomorphism from M

p,q
(!#) to M

p,q
(!/#) with

inverse Opw(c). This gives the result. ⇤
5.5. Specific bijective pseudo-di↵erential and Toeplitz operators on mod-

ulation spaces. We shall now apply the previous results to construct explicit iso-
morphisms between modulation spaces with di↵erent weights. These may be in the
form of pseudo-di↵erential operators or of Toeplitz operators.

The following result extends [30, Proposition 5.1] in the sense that it shows that
the latter result holds after the class P(R2d) have been replaced by the larger class
P0

E,s(R
2d).

Proposition 5.9. Let s � 1, !0 2 P0
E,s(R

2d), B be a normal QBF-space on R
2d

and let
��(x, ⇠) = Ce

�(�1|x|2+�2|⇠|2) � = (�1,�2) 2 R
2
+.

Then the following is true:

(1) !0 ⇤ �� belongs to P0
E,s(R

2d) \ �(!0)
0,1 for all � 2 R

2
+ and

!0 ⇤ �� ⇣ !0 ;

(2) If �1 ·�2 < 1, then there exists ⌫ 2 R
2
+ and a Gauss function � on R

d such
that Opw(!0⇤��) = Tp�(!0⇤�⌫) is bijective from M(!,B) to M(!/!0,B)

for all ! 2 PE,s(R2d);

(3) If �1·�2  1 and in addition !0 2 �(!0)
s (R2d), then Opw(!0⇤��) = Tp�(!0)

is bijective from M(!,B) to M(!/!0,B) for all ! 2 PE,s(R2d).
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We shall follow the proof of [30, Proposition 5.1].

Proof. The assertion (1) is a straight-forward consequence of the definitions.
(2) Choose µj > �j such that µ1 · µ2 = 1. Then �µ = cW (�,�) with �(x) =

e
�µ1|x|2/2 for some positive constant c, and there is another Gaussian �⌫ such that
�� = �µ ⇤�⌫ . Using (1.41), this factorization implies that the Weyl operator with
symbol !0 ⇤ �� is the Toeplitz operator

Opw(!0 ⇤ ��) = Opw(!0 ⇤ �⌫ ⇤ cW (�,�)) = c(2⇡)
d
2Tp�(!0 ⇤ �⌫).

By (1) !0⇤�⌫ 2 P0
E,s(R

2d)\�(!0)
0,1 (R2d) is equivalent to !0. Hence Theorem 5.10

shows that Opw(!0⇤��) is bijective from M(!,B) to M(!/!0,B), and (2) follows.
The assertion (3) follows from (2) in the case �1 · �2 < 1. If �1 · �2 = 1, then

�� = cW (�,�) for �(x) = e
��1|x|2/2 and thus

Opw(!0 ⇤ ��) = Tpw� (!0)

is bijective from M(!,B) to M(!/!0,B), since !0 2 P0
E,s(R

2d)\�(!0)
s (R2d). ⇤

6. Gevrey modest weights and examples

In this section we give some examples on how the results in the previous sections
can be applied. In Subsection 6.1 we introduce a weight class called Gevrey modest
weights and discuss basic properties of such weights under compositions of power
and exponential functions. This class include symbols to operators like Harmonic
oscillator as well as weak forms of Schrödinger and Dirac propagators. In Subsec-
tion 6.2 we apply the lifting properties to show that the Toeplitz operators with
Gevrey modest weights as their symbols possess lifting properties between suit-
able modulation spaces. We combine these results with Fredholm theory to deduce
that corresponding pseudo-di↵erential operators are Fredholm operators with in-
dex zero when acting between those modulation spaces. We also show that some of
these pseudo-di↵erential operators more generally possess similar lifting properties
as corresponding Toeplitz operators.

6.1. Gevrey modest weights. Before discussing the examples we introduce sub-
classes of smooth weights which satisfy suitable ellipticity conditions.

Definition 6.1. Let ! 2 PE(Rd) and # 2 PE(Rd). Then ! is called Gevrey
modest in Roumieu (Beurling) sense of order s > 0 (with respect to #), if ! 2
C

1(Rd),

lim
|x|!1

!(x) = 1, lim
|x|!1

#(x)

!(x)
= 0 and |@↵!(x)| . h

|↵|
↵!s#(x), ↵ 2 N

d \ 0,

(6.1)
for some (for every) h > 0. If in addition # in (6.1) can be chosen such that

lim
|x|!1

#(x) = 0,

then ! is called strongly Gevrey modest.

Remark 6.2. If ! 2 PE(Rd) is Gevrey modest in Roumieu (Beurling) sense of order
s > 0 with respect to # 2 PE(Rd), then

! 2 �(!)
s (Rd) and @

↵
! 2 �(#)s (Rd)✓ �(!)

s (Rd), ↵ 2 N
d \ 0

�
! 2 �(!)

0,s (R
d) and @

↵
! 2 �(#)0,s (R

d)✓ �(!)
0,s (R

d), ↵ 2 N
d \ 0

�
.
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It follows by straight-forward computations that additions and products of Gevrey
modest weights are Gevrey modest, but similar facts do not in generally hold true
for tensor products. On the other hand, for additions in the spirit of tensor products
we have the following.

Proposition 6.3. Let !j 2 PE(Rdj ), j = 1, 2, be Gevrey modest in Roumieu
(Beurling) sense of order s > 0. Then

!(x1, x2) = !1(x1) + !2(x2)

is Gevrey modest in Roumieu (Beurling) sense of order s > 0.

Proof. We only prove the result in the Roumieu case. The Beurling case follows by
similar arguments and is left for the reader. Let

d = d1 + d2, ↵ = (↵1 + ↵2) 2 N
d1+d2 \ 0 and x = (x1, x2) 2 R

d1+d2 .

If both ↵1 and ↵2 are non-zero, then @↵! = 0, and it is obvious that (6.1) holds
true for some choice of # 2 PE(Rd). We need to consider the cases when ↵1 = 0
or ↵2 = 0.

Choose #1,#2 in such ways that (6.1) holds with #j and !j in place of # and !,
and let

#(x1, x2) = #1(x1) + #2(x2).

We have

|@↵xj
!(x1, x2)| = |@↵!j(xj)| . h

|↵|
↵!s#j(xj)  h

|↵|
↵!s#(x).

The result follows if we prove the second limit in (6.1).
Since

#(x1, x2)

!(x1, x2)
⇣ max

j=1,2

✓
#j(xj)

!1(x1) + !2(x2)

◆

it su�ces to prove

lim
|x|!1

#j(xj)

!1(x1) + !2(x2)
= 0, j = 1, 2, (6.2)

and by reasons of symmetry it su�ces to prove this for j = 1. Let " 2 (0, 1) and
let R0 > 0 be chosen such that

#1(x1)

!1(x1)
< " when |x1| > R0.

Also let

C = 1 + sup
x12Rd1

#1(x1)

!1(x1)
, m = inf

|x1|R0

|!1(x1)| and M = sup
|x1|R0

|!1(x1)|,

and choose R > 2R0 such that

!2(x2) >
CM

"
�m

when |x2| > R/2.
Suppose that |x| > R. If |x1| > R0, then

#1(x1)

!1(x1) + !2(x2)
 #1(x1)

!1(x1)
< ".

If instead |x1|  R0, then |x2| > R/2 by the triangle inequality. This gives

#1(x1)

!1(x1) + !2(x2)
 CM

m+ !2(x2)
< ".

Hence
#1(x1)

!1(x1) + !2(x2)
< " when |x| > R. ⇤
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Proposition 6.4. Let t > 0, ! 2 PE(Rd)\C1(Rd) be Gevrey modest in Roumieu
(Beurling) sense of order s � 1 with respect to # 2 PE(Rd). Then the following is
true:

(1) !t is Gevrey modest in Roumieu (Beurling) sense of order s � 1 with respect
to !t�1

#;

(2) if in addition ! is strongly Gevrey modest, then e
! is Gevrey modest in

Roumieu (Beurling) sense of order s � 1 with respect to e
!
#.

Proof. We only prove the result in the Roumieu case. The Beurling case follows by
similar arguments and is left for the reader.

Let ↵ 2 N
d \ 0. By the assumptions it follows that !(x) � c for some c > 0. Let

f1(u) = u
t. Then,

f
(n)
1 (u) =

✓
t

n

◆
n!ut�n

,

✓
t

n

◆
= n!�1

nY

j=1

(t� j + 1)

and we notice that |
� t
n

�
|  h

n for some h > 0 which is independent of n.
For an arbitrary term in Lemma 3.2 with g = !, �1, . . . ,�n 2 N

d \ 0 such that
�1 + · · ·+ �n = ↵ we have
�����
f
(n)
1 (!(x))

n!

�����

nY

j=1

|@�j!(x)|
�j !

. h
|�1+···+�n|(�1! · · ·�n!)s�1

✓
t

n

◆
!(x)t�n

#(x)n

. h
|↵|
1 (�1! · · ·�n!)s�1

!(x)t
✓
#(x)

!(x)

◆n

. (Ch1)
|↵|(�1! · · ·�n!)s�1

!(x)t�1
#(x), (6.3)

for some h1 > 0 and C � 1. Here the last inequality follows from the fact that
!(x)�1

#(x) is bounded. By Lemma A.1 there is a bound of number of terms in

(3.1) of the form h
|↵|
2 for some h2 > 0. A combination of this fact, Lemma 3.2,

(6.3), (�1! · · ·�n!)s  ↵!s and |↵|!  C
|↵|
�1! · · ·�n!, for some constant C > 0 gives

|@↵!(x)| . h
|↵|
3 sup

✓
|↵|!

�1! · · ·�n!

◆
↵!s!(x)t�1

#(x) . h
|↵|
4 ↵!s!(x)t�1

#(x),

for some h3, h4 > 0. Here the supremum is taken over all �1, . . . ,�n 2 N
d \ 0 such

that �1 + · · ·+ �n = ↵.
We also notice that the limits in (6.1) hold true with !t and !t�1

# in place of
! and #. This gives (1).

(2) We recall that ↵ 6= 0. It follows from the assumptions that we may choose

# with limit zero at infinity. Let f2(u) = e
u. Then f

(n)
2 (!(x)) = e

!(x) and for an
arbitrary term in (3.1) we have
�����
f
(n)
2 (!(x))

n!

�����

nY

j=1

|@�j!(x)|
�j !

. h
|�1+···+�n|(�1! · · ·�n!)s�1 e

!(x)

n!
#(x)n

. h
|↵|
1 ↵!s�1 e

!(x)

n!
#(x), (6.4)

for some h1 > 0. Here the last inequality follows from the fact that #(x) tends to
zero at infinity. By again using the fact that |↵|!  C

|↵|
↵! for some constant C > 0,

Lemma 3.2, Lemma A.1 and (6.4) give

|@↵(e!)| . h
|↵|
↵!se!#

for some h > 0.
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We also notice that the limits in (6.1) hold true with e
! and e

!
# in place of !

and #. This gives the result. ⇤
Example 6.5. Let f be a homogeneous polynomial on R

d of degree n which is
positive outside origin, r > 0, rn = r � 1

n and let

!r,f (x) = (1 + f(x))r.

Then the following is true:

(1) !r,f is Gevrey modest in Roumieu sense of order s = 1 and with respect to
!rn,f ;

(2) if in addition r <
1
n , then e

!r,f is Gevrey modest in Roumieu sense of order
s = 1 and with respect to e

!r,f!rn,f ;

(3) if rj > 0, fj be homogeneous polynomials on R
dj of degree nj which are

positive outside origin, j = 1, 2, then

!0(x1, x2) =
�
!r1,f1(x1) + !r2,f2(x2)

�r

is Gevrey modest in Roumieu sense of order s = 1.

In fact, since f is positive outside origin, it follows that n = 2m is even, giving
that

!1,f (x) ⇣ (1 + |x|2)m.

This gives

!1,f (x+ y) ⇣ (1 + |x+ y|2)m . (1 + |x|2)m(1 + |y|2)m ⇣ !1,f (x)!1,f (y).

Hence, for some positive constant c it follows that c · !1,f is submultiplicative and
polynomially bounded. In particular, !1,f 2 P(Rd).

We also have @↵!1,f = 0 when |↵| > n, and

|@↵!1,f (x)| . (1 + |x|2)m� |↵|
2 ⇣ !r0,f (x).

with r0 = 1� |↵|
n . This gives (1) for r = 1. For general r > 0, (1) now follows from

the case r = 1 and Proposition 6.4.
The assertions (2) and (3) now follow from (1) and Propositions 6.3 and 6.4 (2).

Proposition 6.6. Let ! 2 PE(Rd) be Gevrey modest in Roumieu (Beurling)
sense of order s � 1 with respect to # 2 PE(Rd) and let � 2 ⌃1(Rd) be such thatR
�(x) dx = 1. Then

! � ! ⇤ � 2 �(#)s (Rd)
�
! � ! ⇤ � 2 �(#)0,s (R

d)
�

Proof. Again we only prove the result in the Roumieu case. The Beurling case
follows by similar arguments and is left for the reader.

Let g = ! � ! ⇤ �. Then

g(x) =

Z

Rd

✓Z 1

0
h!0(x� ty), yi�(y) dt

◆
dy.

By di↵erentiations we get for some h,C > 0 and submultiplicative function v on
R

d that

|D↵
g(x)| 

Z

Rd

✓Z 1

0
|hD↵(!0)(x� ty), yi�(y)| dt

◆
dy

. h
|↵+1||↵+ 1|!

Z

Rd

✓Z 1

0
#(x� ty)|y| |�(y)| dt

◆
dy

 (Ch)|↵|↵!#(x)

Z

Rd

✓Z 1

0
v(ty)|y| |�(y)| dt

◆
dy ⇣ (Ch)|↵|↵!#(x),
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which gives the result. ⇤

6.2. Mapping properties for pseudo-di↵erential operators and Toeplitz

operators with Gevrey modestest weights as their symbols. As a conse-
quence of the previous result we have the following.

Theorem 6.7. Let s � 1, A 2 M(d,R), !0 2 P0
E,s(R

2d) be Gevrey modest in

Roumieu sense of order s, � 2 S1(Rd) \ 0, ! 2 P0
E,s(R

2d) and let B be a normal

QBF-space on R
2d. Then the following is true:

(1) Tp�(!0) is homeomorphic from M(!,B) to M(!/!0,B);

(2) if in addition B is a Banach space, then OpA(!0) is continuous from
M(!,B) to M(!/!0,B) with index zero.

Proof. We may assume that k�kL2 = 1 The assertion (1) as well as the continuity
assertions in (2) follows from Theorems 4.1 and 5.10.

In order to prove that the index of OpA(!0) is zero we observe that

(2⇡)�
d
2

ZZ

R2d

W
A
�,�(x, ⇠) dxd⇠ = k�k2L2 = 1

by a straight-forward application of Fourier’s inversion formula. A combination of
(1.41) and Proposition 6.6 shows that

OpA(!0) = Tp�(!0) + OpA(b),

for some b 2 �(#)s (R2d).
The assertion (2) follows from (1) and Fredholm’s theorem if we prove that

OpA(b) : M(!,B) ! M(!/!0,B) (6.5)

is compact.
We have

Opw(b) : M(!,B) ! M(!/#,B) (6.6)

is continuous. Since
!/!0

!/#
=

#

!0

tends to zero at infinity, the embedding

◆ : M(!/#,B) ! M(!/!0,B) (6.7)

is compact in view of [41, Theorem 2.9]. Hence the operator in (6.5) factorizes into
the continuous operator (6.6) and the compact operator (6.7), giving that (6.5) is
compact. This gives the assertion. ⇤

Example 6.8. Let fj , rj , !r,f and !0 be the same as in Example 6.5 with dj = d,
and let nj be the degrees of fj , j = 1, 2. Then,

!0(x, ⇠) =
�
!r1,f1(x) + !r2,f2(⇠)

�r
.

Also let A 2 M(d,R), � 2 S1(Rd) \ 0, ! 2 P0
E(R

2d), B be a normal QBF-space
on R

2d and
a(x, ⇠) = e

!0(x,⇠).

Then the following is true:

(1) Tp�(!0) is homeomorphic from M(!,B) to M(!/!0,B). If in addition
B is a Banach space, then OpA(!0) is a continuous map from M(!,B) to
M(!/!0,B) with index zero.

The same conclusions hold true with e
!0 in place of !0 at each occur-

rence, when rnj < 1, j = 1, 2;
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(2) If in addition r = 1 and B is a Banach space, then OpA(!0) is homeomor-
phic from M(!,B) to M(!/!0,B).

In fact, (1) follows from the conclusions in Example 6.5 in combination with
Propositions 6.3, 6.4 and Theorem 6.7.

For r = 1, we have

OpA(!0) : M2
(!0)

(Rd) ! L
2(Rd) (6.8)

is injective, because

(OpA(!0)f, f)L2 =

Z

Rd

!r1,f1(x)|f(x)|2 dx+

Z

Rd

!r2,f2(⇠)| bf(⇠)|2 d⇠ > 0

when f 2 M
2
(!0)

(Rd) \ 0. Since (6.8) also has index zero in view of (1), Banach’s

theorem shows that (6.8) is a homeomorphism. The assertion (2) now follows from
Theorem 4.1.

Remark 6.9. We notice that the claim for Tp�(!0) and OpA(!0) in the previous
example can only be proved for weights ! in the subset P of P0

E if one should use
the embedding results in [30] instead of the results in Section 1 and Subsection
5.5. The embedding results in [31] are not applicable for the situation in the
example, because !0 is in general not radial symmetric at each phase space variable
(xj , ⇠j) 2 R

2.

Remark 6.10. As explained in the example, the map (6.8) is a homoemorphism.
Even this, perhaps the most simple special case, seems not to be easy to achieve
by other methods.

Appendix A. Proof of Lemma 3.3

Lemma A.1. Let ↵ = (↵1, . . . ,↵d) 2 N
d. Then the number of elements in the set

⌦k,↵ ⌘ { (�1, . . . ,�k) 2 N
kd ; �1 + · · ·+ �k = ↵ } (A.1)

is equal to
dY

j=1

✓
↵j + k � 1

k � 1

◆
.

For the proof we recall the formula

kX

j=0

✓
n+ j

j

◆
=

✓
n+ k + 1

k

◆
, (A.2)

which follows by a standard induction argument.

Proof. Let N be the number of elements in the set (A.1), which is the searched
number, and let Nj be the number of elements of the set

{ (�0
1 , . . . ,�

0
k) 2 N

k ; �0
1 + · · ·+ �

0
k = ↵j }, j = 1, . . . , d

By straight-forward computations it follows that N = N1 · · ·Nd, and it su�ces to
prove the result in the case d = 1, and then ↵ = ↵1.

In order to prove the result for d = 1, let � 2 N, Sk(�) be the number of elements
in ⌦k,� . Then the statement is

Sk(�) =

✓
� + k � 1

k � 1

◆
, (A.3)

and we shall prove the statement by induction. We have that Sk(�) agrees with
the number of possibilities to put � elements into k boxes. If k = 1, then there is
only one possibilities, i.e. S1(�) = 1. Suppose that the statement is true for k  j,
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j � 1. Prove it for k = j + 1. If we have put �0 objects in box number j + 1, then
� � �0 remains to put in the first j boxes. This implies

Sj+1(�) =
�X

�0=0

Sj(� � �0) =
�X

�0=0

Sj(�0).

Hence, by (A.2) and the induction hypothesis we get

Sj+1(�) =
�X

�0=0

✓
�0 + j � 1

j � 1

◆
=

�X

�0=0

✓
�0 + j � 1

�0

◆
=

✓
�0 + j

�0

◆
=

✓
�0 + j

j

◆
,

and (A.3) follows for k = j + 1. ⇤

Lemma A.2. Let ↵ 2 N
d \ 0, s0 2 (0, 1], and let ⌦k,↵ be the same as in (A.1).

Then
|↵|X

k=1

1

k

X

�2⌦k,↵

(�!)s0�1  6|↵|.

Proof. By Lemma A.1 and the fact that s0 � 1 < 0 we get

|↵|X

k=1

1

k

0

@
X

�2⌦k,↵

�!s0�1

1

A 
|↵|X

k=1

0

@
X

�2⌦k,↵

1

1

A =

|↵|X

k=1

0

@
dY

j=1

✓
↵j + k

k

◆1

A

 |↵|
dY

j=1

22↵j = |↵| · 4|↵|  6|↵|. ⇤
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Bull. Soc. math. France 122 (1994), 77–118.

[4] M. Cappiello, T. Gramchev, L. Rodino Super-exponential decay and holomorphic extensions
for semilinear equations with polynomial coe�cients, J. Funct. Anal. 237 (2006), 634–654.

[5] M. Cappiello, J. Toft Pseudo-di↵erential operators in a Gelfand-Shilov setting, Math. Nachr.
290 (2017), 738–755.

[6] E. Carypis, P. Wahlberg Propagation of exponential phase space singularities for
Schrödinger equations with quadratic Hamiltonians, J. Fourier Anal. Appl. 23 (2017), 530–
571.

[7] Y. Chen, M. Signahl, J. Toft Factorizations and singular value estimates of operators with
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[12] E. Cordero, S. Pilipović, L. Rodino, N. Teofanov Localization operators and exponential
weights for modulation spaces. Mediterr. J. Math. 2 (2005), 381–394.

[13] E. Cordero, J. Toft, P. Wahlberg Sharp results for the Weyl product on modulation spaces,
J. Funct. Anal. 267 (2014), 3016–3057.

[14] H. G. Feichtinger Banach convolution algebras of Wiener’s type, in: Proc. Functions, Se-
ries, Operators in Budapest, Colloquia Math. Soc. J. Bolyai, North Holland Publ. Co.,
Amsterdam Oxford NewYork, 1980.



48 AHMED ABDELJAWAD, SANDRO CORIASCO, AND JOACHIM TOFT

[15] H. G. Feichtinger Modulation spaces on locally compact abelian groups. In Proceedings of
“International Conference on Wavelets and Applications” 2002, pages 99–140, Chennai,
India, 2003. Updated version of a technical report, University of Vienna, 1983.

[16] H. G. Feichtinger Atomic characterizations of modulation spaces through Gabor-type repre-
sentations, in: Proc. Conf. on Constructive Function Theory, Rocky Mountain J. Math. 19
(1989), 113–126.

[17] H. G. Feichtinger Wiener amalgams over Euclidean spaces and some of their applications,
in: Function spaces (Edwardsville, IL, 1990), Lect. Notes in pure and appl. math., 136,
Marcel Dekker, New York, 1992, pp. 123–137.

[18] H. G. Feichtinger Modulation spaces: Looking back and ahead, Sampl. Theory Signal Image
Process. 5 (2006), 109–140.
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