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Abstract 11 

The brown marmorated stink bug Halyomorpha halys is an invasive Asiatic pentatomid 12 

recently introduced in Europe. It is regarded as a major pest of many crops due to its marked 13 

polyphagy, high reproduction potential and high mobility. Among European countries where 14 

H. halys established in the last years, most of economic losses have been reported in Italy. A 15 

promising control approach against H. halys is based on the suppression of its gut primary 16 

symbiont ‘Candidatus Pantoea carbekii’ (P. carbekii), vertically transmitted through maternal 17 

secretions containing symbiotic bacteria smeared during ovoposition, which are ingested by 18 

neonates. Symbiont elimination is regarded as a promising pest control strategy based on the 19 

application of antimicrobial substances. 20 

Here an anti-symbiont activity is shown in response to the application of micronutrient 21 

fertilizers showing antimicrobial activity, resulting in H. halys nymphal mortality in laboratory 22 

conditions. Exposure to four commercial products, available for organic farming, was tested on 23 

isolated stink bug egg masses, by measuring survival to II nymphal instar of neonates emerging 24 

from treated eggs. Zinc, copper and citric acid biocomplexes showed the most effective impact 25 

on H. halys survival, causing more than 90% nymph mortality. Molecular diagnosis for P. 26 

carbekii confirmed that observed effects were attributable to missed symbiont acquisition. 27 

Taken together, our results provide indication for the potential field use of micronutrient 28 

fertilizers as controls tool against H. halys. Future work will clarify operating details to design 29 

a new, eco-friendly approach for the control of this pest threatening Italian and European 30 

agriculture. 31 

 32 

Key words: Pantoea carbekii, Pentatomidae, symbiont disruption, micronutrient 33 

biocomplexes, integrated pest management 34 
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Introduction 35 

The brown marmorated stink bug Halyomorpha halys (Stål) is an invasive pentatomid species 36 

native of Asia, which has been accidentally introduced in North America in the 1990s and 37 

subsequently in Europe (Leskey & Nielsen 2018). More than 300 species of wild and cultivated 38 

plants can be attacked by this pest, whose feeding activity induces symptoms such as seed 39 

abortion, fruit deformation and discolorations, necrosis and other tissue alterations (Rice et al. 40 

2014; Bariselli et al. 2016; Bosco et al. 2018). Moreover, its widely aggregative behaviour 41 

observed in overwintering adults makes this insect an important household nuisance pest as 42 

well (Inkley 2012). Even though in its native area H. halys is considered only as an occasional 43 

pest of few crops (Lee et al. 2013), its high invasive potential in areas where bioclimatic 44 

condition are favourable to its development makes this stink bug a very destructive pest in 45 

countries of new introduction. In Europe, H. halys was first detected in 2004 in Switzerland, 46 

where it is rarely harmful to vegetables and crops (Haye et al. 2014). Afterwards it was found 47 

in many countries of central and southern Europe; particularly, most of economic losses have 48 

been recorded in Italy (Bariselli et al. 2016). Indeed, in Italy H. halys has two generations per 49 

year, high reproductive rates, and high mobility. Furthermore it is widely present in areas where 50 

commercial exchanges favour massive movement of goods and materials; all these traits highly 51 

enhance its pest status (Costi et al. 2017). 52 

Due to reduced effectiveness and high impact of chemical control of H. halys, alternative 53 

environmentally friendly tools are under investaigation (Haye et al. 2015; Gariepy et al. 2018). 54 

A promising approach for sustainable integrated control of economically relevant stink bugs 55 

pests could be the exploitation of gut primary symbioses typically occurring in these insects. 56 

Indeed, similarly to other Hemiptera, pentatomids rely on obligate bacterial symbionts 57 

complementing their nutritionally unbalanced diets (Moran et al. 2008). In stink bugs, these 58 

primary symbionts are hosted in caeca in the posterior midgut region. Transmission to the 59 
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progeny is achieved through a distinctive strategy, diverging from transovarial transmission 60 

commonly reported for other Hemiptera. Maternal secretions containing symbiotic bacteria are 61 

smeared on or laid close to egg masses during oviposition; nymphs immediately acquire 62 

symbionts by consuming this secretion (Prado et al. 2006). Aposymbiotic (i.e. deprived of their 63 

primary symbionts) individuals most commonly display reduced survival or fitness (Otero-64 

Bravo & Sabree 2015). During the transmission process, symbionts live outside the insect gut 65 

for several days before being acquired by the next generation, being protected only by 66 

secretions. 67 

The gut primary symbionts of H. halys, named ‘Candidatus Pantoea carbekii’ (hereafter P. 68 

carbekii) (Bansal et al. 2014), inhabits the posterior midgut caeca of the host and the 69 

extrachorion secretions on the egg surface, and supplies the host with nutrients limited in its 70 

diet (Kenyon et al. 2015). Moreover, preventing vertical transmission of P. carbekii heavily 71 

affects the fitness of first generation nymphs of H. halys and their progeny (Taylor et al. 2014). 72 

The application of substances with antimicrobial activity has been tested on H. halys egg 73 

masses, in some cases showing high mortality (Mathews &Barry 2014; Taylor et al 2017). 74 

Hence, their use was proposed for symbiont-targeted control strategies against H. halys. 75 

Even though stink bug primary symbionts are regarded as a promising target for the control of 76 

H. halys (Mathews &Barry 2014; Taylor et al 2017), at present specific control methods based 77 

on this strategy are still unavailable in Europe. Hence, research on European populations is 78 

required to implement integrated crop management solutions targeting the containment of this 79 

pest. In this study, the application was assessed of active substances currently in use in 80 

European agriculture and showing direct or indirect protective effects from pathogenic 81 

microorganisms on H. halys egg masses in laboratory conditions. Their effect on nymphal 82 

survival was tested along with the interruption of P. carbekii acquisition. An Italian population 83 

was selected, as in Europe most of economic damage is produced in this area. 84 
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 85 

Material & methods 86 

Insect material 87 

During spring and summer of 2018, adults of the brown marmorated stink bug were collected 88 

from different wild and cultivated host plants in the Piedmont region, Italy. Field-collected 89 

adults were reared at the DISAFA laboratories, in climatic chambers at 25 ± 1 °C, with an L:D 90 

of 16:8 photoperiod, in net cages (930 × 475 × 475 mm) containing seedlings of broad bean, 91 

apples, and shelled hazelnuts. H. halys egg masses were collected daily from the mass rearing 92 

to obtain two distinct groups, corresponding to 24 hour-old and 5 day-old egg masses, 93 

respectively. 94 

Egg masses treatment 95 

For this study three commercially available micronutrient EC fertilizers, suitable for organic 96 

farming, were selected: (1) a zinc, copper and citric acid biocomplex (Dentamet®, Diagro Srl, 97 

Italy); (2) a zinc, manganese and citric acid biocomplex (Bio-D®, Diagro); (3) a copper 98 

hydroxide 50% wettable powder (Keos®, Green Ravenna Srl, Italy). Moreover, the 99 

experimental product Dentamet A3 (Diagro) containing citric acid, zinc sulphate, and copper 100 

sulphate, was tested as well (4). All products were used on 24 hour-old egg masses at a final 101 

concentration of 1% in combination with 0.5% a Poly-1-p-menthene-based pesticide additive 102 

(NU-FILM-P®, CBC, Italy), to increase active ingredients penetration of maternal secretions 103 

covering P. carbekii cells (Kenyon et al. 2015). Finally, an untreated control (5) and a water + 104 

0.5% additive control (6) were included. The two products showing the higher mortality rates 105 

on 24 hour-old egg masses were used to perform a second experiment on 5 day-old egg masses, 106 

along with controls. 107 
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A total of 120 egg masses were collected and randomly allocated to treatments, once the number 108 

of eggs per mass was recorded. Product applications were conducted with  24 hour-old and 5 109 

day-old egg masses for each treatment and water + additive control (N=10); 20 replicates for 110 

the untreated control were collected as well. The treatment solutions were applied to the egg 111 

masses, individually placed into Petri dishes covered with filter paper, by employing a hand 112 

sprayer under a fume hood. 113 

Nymphal rearing  114 

After the treatment, egg masses were individually reared in climatic chamber (25 °C, RH 70%) 115 

in a clear plastic Petri dishes provided with a green bean as a food source, with a wider lid to 116 

provide ventilation; hatching percentages were checked daily. Newly hatched nymphs were fed 117 

with green beans until reaching second nymph instar. Mortality rates were calculated; dead 118 

nymphs were collected each day and stored at -80°C in RNA later® (Sigma-Aldrich, MO, 119 

USA). As live nymphs moulted to the second instar, they were collected as well and stored as 120 

described above. 121 

RNA extraction and Real Time PCR 122 

Real Time PCR was used to determine the presence or absence of P. carbekii to assess the rate 123 

of effective acquisition of bacteria from the egg mass surface. A RNA-based approach was 124 

designed in order to avoid possible amplification of the DNA related to dead P. carbekii cells, 125 

eliminating the risk of false positive detection. A subset of stored nymphs was used, consisting 126 

of 10 individuals from the two treatments emerging as the most effective within the experiment 127 

on 24 day-old egg masses, as well as from the controls. RNA extraction was performed with 128 

the “SV Total RNA Isolation System” (Promega, WI, USA), accordingly to the supplier’s 129 

suggestions. After extractions, RNA quality and concentration were assessed with a ND-1000 130 

spectrophotometer (NanoDrop, DE, USA). First strand cDNA was synthesized by using the 131 
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“Reverse Transcription System” (Promega) and Random Primers, following the manufacturer’s 132 

instructions. cDNA was used as a template for Real Time PCR analysis with the newly designed 133 

P. carbekii-specific primers PcarQF (5’-ACAGACTAGAGTCTCGTAGA-3’) and PcarQR 134 

(5’-TCACATCTTAAAGACACAAC-3’), amplifying a 207 bp fragment of the symbiont 135 

16SrRNA gene. The following thermal conditions were applied: an initial denaturation at 94°C 136 

for 3 min was followed by 50 cycles consisting of denaturation at 94°C for 15 sec and annealing 137 

at 53°C for 30 sec. A final step for melting curve analysis from 70 to 95°C, measuring 138 

fluorescence every 0.5°C, was added. Moreover, to verify whether negative nymphs were truly 139 

deprived of P. carbekii, rather than missing due to sample quality, Real Time PCR targeting 140 

the insect’s 18S rRNA gene (MqFw / MqRv) was used (Marzachì & Bosco 2005), under the 141 

conditions described by Gonella et al. (2015). 142 

Statistical analysis 143 

To compare hatching and mortality data obtained in this work, the percentages of dead 144 

specimens were derived with respect to the total number of emerged nymphs for each egg mass. 145 

Normalized mortality rates were calculated according to the Abbott’s formula (Abbott 1925); 146 

moreover, absolute mortality rates were analysed with SPSS Statistics 25 (IBM Corp. Released 147 

2017, Armonk, NY, USA), using a generalized linear model (GLM) with a binomial probability 148 

distribution and logit link function. Means were separated by a Bonferroni post hoc test (P < 149 

0.05). 150 

Results 151 

To test the effect of applying micronutrient-based active substances on H. halys nymph 152 

survival, egg masses obtained from our laboratory colony were used; these egg masses counted 153 

an average of 24.21 eggs per mass. Binomial GLM analysis on 24 hour-old egg masses revealed 154 

that the mean egg hatching rates obtained after treatment with product (1) and (4) were 155 
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significantly lower than products (2) and (3); similarly significant differences were recorded 156 

between untreated control and water + additive (Tab. 1). Furthermore, significantly different 157 

percentages were found of nymphs dying before reaching II instar (df = 5; χ2 = 443.600; P 158 

<0.05) (Tab.1). The highest percentage of dead nymphs was found for the zinc, copper and 159 

citric acid-based products (1) and (4). The application of substance (1) induced significantly 160 

higher mortality than use of products (2) and (3), containing zinc, manganese and citric acid, 161 

and copper hydroxide, respectively. However, all of tested commercial products caused 162 

significantly increased mortality than both controls (untreated and water + additive). 163 

Experiment on 5 day-old egg masses, performed using only products (1) and (4) and the 164 

controls, showed similar results, as significant differences were recorded according to binomial 165 

GLM on nymphal mortality rates (df = 3; χ2 = 245.335; P <0.05) (Fig.1). Although slightly 166 

lower percentages of dead nymphs were detected for both products, mortality rates were 167 

significantly more abundant than untreated and water + additive controls in either cases. As in 168 

experiments on 24 hour-old egg masses, the highest mortality was observed for product (1). On 169 

the other hand, a significantly lower number of eggs hatched from treatment with product (4) 170 

(Tab. 1). 171 

To verify whether mortality results were indeed referable to missed P. carbekii acquisition, for 172 

treatments (1) and (4), which caused the highest mortality rates, 10 dead I instar nymphs as well 173 

as 10 II instar nymphs found live at the end of our experiments were used for RNA extraction 174 

followed by P. carbekii-specific Real time PCR on cDNA. The results of this molecular analysis 175 

revealed that all of dead I instar nymphs treated with either products, regardless of the applied 176 

active substance, were deprived of the bacterial symbiont (Fig.2). Likewise, no P. carbekii-177 

positive samples were detected among live II instar nymphs obtained from egg masses exposed 178 

to products (1) and (4). Real time PCR targeting 18SrRNA of nymph cDNA testing negative 179 

for P. carbekii indicated effective amplication for all individuals, confirming the success of 180 
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sample processing. On the other hand, 95% of nymphs from the controls (either dead or live) 181 

carried the symbiont, even though a lower percentage of positive samples were observed after 182 

egg masses exposure to water + additive (Fig.2). Strikingly, about 10% of nymphs from the 183 

untreated control, found live at the end of the trials, tested negative for P. carbekii. 184 

 185 

Discussion 186 

This work provided experimental evidences of extensive suppressive effect caused to H. halys 187 

nymphal survival after exposure to micronutrient fertilizers, as a consequence of interrupted 188 

acquisition of P. carbekii. Indeed, the chemical composition of these products entails anti-189 

microbial activity as a side effect of fertilizer application. Products (1), (2), and (4), displaying 190 

the most severe effect on nymphal survival, contained zinc and citric acid. Zinc is widely used 191 

as a pesticide active ingredient to control different plant pathogens, exhibiting lethal effects on 192 

many Gram negative bacteria (Fones et al. 2010; Navarrete et al. 2015; Aggarwal et al. 2018). 193 

Similarly, citric acid, as well as other organic acids, has been shown to display broad range 194 

bactericidal activity majorly related to pH reduction and disruption of cell transmembrane 195 

transport (Finten et al. 2017). Product (1), whose application resulted in the highest mortality 196 

rates, was previously shown to inhibit growth of Xylella fastidiosa, reducing the severity of 197 

symptoms related to this pathogen in olive trees (Scortichini et al. 2018). Copper was present 198 

in products (1), (3), and (4). The involvement of this element in plant pathogen control is widely 199 

recognized (Scheck & Pscheidt 1998; Narciso et al. 2012), and our results confirmed a lethal 200 

effect on P. carbekii as well. Moreover, higher mortality, as a result of bactericidal effect, was 201 

exhibited when copper was used in combination with zinc and citric acid, while the application 202 

of copper hydroxide alone was less effective in reducing nymphal survival. Similarly, the use 203 

of manganese in place of copper in product (2) limited the lethal effect on nymphs. Therefore, 204 

a crucial involvement in P. carbekii suppression can be assumed for Zn- and Cu-hydracid 205 
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complexes, which are generated in products (1) and (4). Additionally, application of these 206 

products - especially product (4) - caused a partial ovicidal effect, resulting in even higher total 207 

nymph mortality. Indeed, considering both unhatched eggs and dead nymphs, overall mortality 208 

was in average 95% for treatments on 24 hour-old egg masses and 90% on 5 day-old egg 209 

masses. 210 

Mortality rates detected in this work were generally more abundant than values reported by 211 

Mathews and Barry (2014) and Taylor et al. (2017); however, the products tested by these 212 

authors widely diverged with micronutrient fertilizers in their composition. Mathews and Barry 213 

(2014) examined the use of compost tea, whose activity is due to a combined effect of biotic 214 

and abiotic agents (Palmer et al. 2010). The products tested by Taylor et al. (2017) included 215 

insecticides, antibiotics and other antimicrobials. Interestingly, the product showing the highest 216 

mortality according to these authors was a surfactant mixture (Naiad). This substance was 217 

suggested to hamper symbiont acquisition due to a combination of antimicrobial activity and 218 

ability to penetrate the egg secretion coating (Taylor et al. 2017). A similar combined effect 219 

may be assumed to be exerted after administering the four products tested in our work, as the 220 

pesticide additive added prior to product application on egg masses is used as a wetting agent 221 

similar to Naiad. Although the mortality caused by spraying water + additive alone was not 222 

significantly divergent from untreated control, this treatment was related to a higher number of 223 

dead nymphs, suggesting partial removal of P. carbekii cells, as indicated also by Real Time 224 

PCR data. Likewise, application of water + additive resulted in a lower number of hatched eggs 225 

than untreated control, suggesting an egg toxic effect at least in our experimental conditions. 226 

Moreover, the significant efficiency in penetrating egg coating was coupled with high 227 

persistence potential of the anti-P. carbekii activity, as similar results were obtained using 228 

newly laid as well as mature egg masses. 229 



11 
 

Real Time PCR screening of nymph cDNA provided confirmation for the unsuccessful 230 

acquisition of P. carbekii by nymphs treated with the most effective products. Most of nymphs 231 

deprived of their symbiont dead; strikingly a 10% of tested untreated populations was able to 232 

survive in the absence of P. carbekii. Live P. carbeckii-free H. halys individuals were observed 233 

both from treated egg masses and in the controls. Since this was found for nymphs from the 234 

same egg mass, limited genetic variability can be presumed, on the other hand the introduction 235 

of a different symbiotic organism capable to replace P. carbekii in nutrient provisioning cannot 236 

be ruled out. A potential substitute symbiont should not be affected by antimicrobial 237 

administration on the egg surface; therefore it should either: i) be unsensitive to the application 238 

of tested products, or ii) undergo vertical transmission through a different route (e.g. 239 

transovarial transmission). Despite the terminal gut portion of H. halys was previously reported 240 

to be widely dominated by P. carbekii in American populations (Kenyon et al. 2015), further 241 

work deeply examining the microbiome composition of in Italian population of the brown 242 

marmorated stink bug is required, to identify candidate species possibly involved in symbiont 243 

replacement. 244 

As a conclusion, the experimental evidences provided by this work in laboratory conditions 245 

suggest that foliar application of micronutrient fertilizers on H. halys-infected crops has the 246 

potential to induce high nymphal mortality. Specifically, the use of zinc, copper and citric acid 247 

biocomplexes could results in the most effective containment of H. halys populations. However, 248 

in order to develop standard operating procedures for the control of the brown marmorated stink 249 

bug, some issues are still to be clarified. In particular, field efficiency and persistence of product 250 

application should be evaluated, to establish treatment number, timing and dose. Moreover, the 251 

interaction of these substances with non-target organisms, including natural enemies, which 252 

have a direct role in the control of H. halys (Leskey et al. 2018). 253 

 254 
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Table 1. Data recorded during laboratory experimental application of micronutrient EC 340 

fertilizers to 24 hour-old and 5 day-old H. halys egg masses. Results are expressed as average 341 

values ± SE. For egg hatching rates, different letters indicate significantly different values 342 

according to binomial GLM analysis + Bonferroni’s test. Separate statistical tests were 343 

conducted for 24 hour-old egg masses (df = 5; χ2 = 41.376; P <0.05) and 5 day-old egg masses 344 

(df = 3; χ2 = 29.332; P <0.05). Normalized mortality rates were obtained with respect to 345 

untreated control according to the Abbott’s Formula. 346 

Egg masses 

age 
Treatment 

Average number 

of eggs per mass 

Average egg 

hatching rate 

Normalized 

mortality rate to II 

nymphal instar (%) 

24 hours 

Product (1) 25.8 ± 1.12 68.60 ± 1.78 a 92.60 ± 0.29 

Product (2) 25.6 ± 0.95 81.64 ± 1.24 b  90.96 ± 0.86 

Product (3) 26 ± 1.03 82.30 ± 1.22 b 87.67 ± 1.44 

Product (4) 24.2 ± 1.71 66.94 ± 2.20 a 91.58 ± 0.68 

Water + additive  19.70 ± 2.04 71.06 ± 1.91 ab 64.36 ± 15.17 

Untreated control 24.75 ± 1.46 82.22 ± 1.68 b 0.00 

5 days 

Product (1) 26.40 ± 1.10 82.57 ± 2.26 c 87.84 ± 0.76 

Product (4) 21.00 ± 1.57 60.95 ± 1.96 a 82.57 ± 3.38 

Water + additive  21.06 ± 2.10 68.05 ± 1.77 ab 37.25 ± 4.71 

Untreated control 22.90 ± 1.93 75.10 ± 1.76 bc 0.00 

 347 
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Fig. 1. Mortality rates recorded for H. halys neonate nymphs after treatment with different 349 

micronutrient fertilizers. The percentage of dead nymphs before reaching II instar was 350 

calculated for 24 hour-old (light columns) and 5 day-old (dark columns) egg masses. Bars 351 

indicate standard errors. Different letters indicate significantly different values according to 352 

binomial GLM + Bonferroni’s test (P < 0.05). 353 

 354 
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Figure 2. Percentage of nymphs carrying P. carbekii according to Real Time PCR on cDNA. 356 

 357 


