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Error indicators and refinement strategies for solving Poisson problems

through a RBF partition of unity collocation scheme

Roberto Cavorettoa, Alessandra De Rossia

aDepartment of Mathematics “Giuseppe Peano”, University of Turin, Italy

Abstract

In this article adaptive refinement algorithms are presented to solve Poisson problems by a radial basis
function partition of unity (RBF-PU) collocation scheme. Since in this context the problem of constructing
an adaptive discretization method to be really effective is still open, we propose some error indicators and
refinement strategies, so that each of these two essential ingredients takes advantage of the potentiality of
the other one. More precisely, the refinement techniques coupled with a local error indicator is an ad-hoc
strategy for the RBF-PU method. The resulting scheme turns out to be flexible and the use of efficient
searching procedures enables us a fast detection of the regions that adaptively need the addition/removal of
points. Several numerical experiments and applications support our study by illustrating the performance
of our adaptive algorithms.

Keywords: meshfree methods, radial basis function collocation, refinement schemes, adaptive algorithms,
elliptic partial differential equations
2010 MSC: 65D15, 65M70

1. Introduction

Radial basis function (RBF) approximation methods are effective techniques, which are commonly ap-
plied to numerically solve high dimensional interpolation and differential problems. The use of RBF methods
has several important advantages. For example, RBF approximation enables us to reach a high convergence
order, providing a great flexibility with respect to geometric problem. Due to the meshless nature of RBF
approximation schemes, it is then quite easy to formulate and implement the algorithms in higher dimensions
(see [5, 15, 17, 30]).

In this article we propose new adaptive refinement algorithms for solving elliptic partial differential
equations (PDEs) such as Poisson type problems. Since some traditional RBF collocation schemes such as
Kansa’s method [20, 21] are generally quite ill-conditioned, we construct our adaptive refinement strategies on
the radial basis function partition of unity (RBF-PU) method. This approach is based on a decomposition
of the domain into a number of patches or subdomains, which form a cover of the underlying domain.
The PU scheme is then combined with a localized RBF approximant for every patch. As shown from
numerical experiments and applications, the use of the RBF-PU method allows us a significant reduction
of the numerical instability generated by RBFs. However, we remark that the original and more general
idea of PU was introduced by Babuška and Melenk [3, 23] in the context of PDEs. Recently, this method
combined with RBFs has gained popularity in many fields of applied mathematics, scientific computing
and engineering, since it was used to effectively solve large scale approximation and PDE problems (see e.g.
[7, 18, 22, 16, 24, 26, 27, 28]). Nevertheless, as far as we know, in the current literature the adaptivity problem
via a RBF-PU scheme has not properly been addressed yet. For this reason, in this work we aim to construct
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some adaptive refinement algorithms based on RBF-PU collocation, so that it is possible to determine some
(good) error indicator that can be integrated with an effective refinement strategy. In so doing, we propose
to use a local error indicator, which turns out to be an ad-hoc strategy for a PU scheme. Associated with
this error estimate we suggest two possible variants of a refinement technique that is based on the paradigm
to solve, estimate and refine/coarsen till a stop criterion is satisfied. This article extends and completes our
earlier work in [9], generalizing the original idea of adaptivity. This approach makes the RBF-PU scheme
much more flexible, and accordingly more effective for solving PDE problems in applications. Moreover,
we also remark that the work in [11] faces the adaptivity issue in a PU framework, but the error estimates
therein are not local and in general even depend on the exact (or true) solution. Nevertheless the latter in
real-world applications is not generally available, and so cannot be used at all. Finally, we observe that other
adaptive procedures have recently been studied for solving elliptic problems via meshfree RBF techniques,
which involve either collocation multiscale methods or finite difference methods (see e.g. [10, 13, 25]).

The article is organized as follows. In Section 2 we first give some basic information on the theory of
RBF-PU interpolation, focusing then on the related collocation method used to solve Poisson type problems.
Section 3 analyzes the data structures used for the localization and search of points within the PU framework.
In Section 4 we describe all various stages of adaptive algorithms, also discussing about different refinement
strategies. In Section 5 we show numerical results oriented to illustrate the algorithm performances. Section
6 deals with a few applications. Section 7 contains conclusions and future work.

2. RBF-PU interpolation and collocation

In this section we recall some of the main theoretical results of RBF and RBF-PU interpolation, consid-
ering then the RBF-PU collocation for solving Poisson problems.

2.1. RBF interpolation

Given a set XN = {x1, . . . ,xN} of N distinct nodes or data points defined in a domain Ω ⊆ R
s and the

corresponding set of data or function values u(x1), . . . , u(xN ) obtained by possibly sampling any (unknown)
function u : Ω → R, a standard RBF interpolant û : Ω → R is a linear combination of RBFs of the form

û(x) =

N
∑

i=1

ciϕε(||x− xi||2), x ∈ Ω, (1)

where the coefficient ci is a real number, || · ||2 specifies the so-called Euclidean norm, and ϕ : R≥0 → R

identifies a strictly positive definite (SPD) RBF, which depends on a positive shape parameter ε, i.e.

ϕε(||x− z||2) = ϕ(ε||x− z||2), ∀x, z ∈ Ω.

For the sake of brevity, in the following we will refer to ϕε as ϕ. In Table 1 we list some examples of
popular SPD RBFs. In particular, we remark that Gaussian, Inverse MultiQuadric and Matérn functions
are globally supported and SPD in R

s for any s, whereas Wendland functions are compactly supported –
with support [0, 1/ε] – and SPD in R

s for s ≤ 3 [30].
The coefficients c1, . . . , cN in (1) are determined by enforcing the interpolation conditions û(xi) = u(xi),

i = 1, . . . , N . Consequently, we get a system of linear equations

Ac = u, (2)

where c = (c1, . . . , cN )T , u = (u1, . . . , uN )T , and A ∈ R
N×N is a symmetric matrix whose entries are defined

as Aki = ϕ(||xk −xi||2), k, i = 1, . . . , N . Since ϕ is a SPD function, the interpolation matrix A is invertible
and so the resulting problem is well-posed. It follows that a solution to the problem exists uniquely [14].

So, once the vector c was found, the RBF interpolant can be evaluated at some point x as follows

û(x) = ϕT (x)c, (3)
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RBF ϕε(r)

Gaussian C∞ (GA) exp(−ε2r2)

Inverse MultiQuadric C∞ (IMQ)
1√

1 + ε2r2

Matérn C6 (M6) exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15)

Matérn C4 (M4) exp(−εr)(ε2r2 + 3εr + 3)

Wendland C4 (W4) (1− εr)
6
+ (35ε2r2 + 18εr + 3)

Wendland C2 (W2) (1− εr)
4
+ (4εr + 1)

Table 1: Some examples of popular SPD RBFs. Here r denotes the Euclidean distance (or norm) while (·)+
defines the truncated power function.

where ϕT (x) = (ϕ(||x − x1||2), . . . , ϕ(||x − xN ||2)). Further, as known, the interpolant û in (1) (or (3))
turns out to be a function of the so-called native space Nϕ(Ω), which is uniquely associated with the RBF.
Moreover, if u ∈ Nϕ, û is the Nϕ-projection of u into the subspace Nϕ(XN ) = {ϕ(||x − xi||2),xi ∈ XN}
[30].

2.2. RBF-PU interpolation

Let Ω ⊆ R
s be an open bounded domain, and let {Ωj}dj=1 be an open bounded cover of Ω that fulfills

some mild overlap condition among the patches (or subdomains) Ωj . In fact, the patches Ωj need to form
a cover of the domain such that

d
⋃

j=1

Ωj ⊇ Ω,

and the number of patches that overlap at one given point x ∈ Ω must be bounded by a constant K
(independent of d). This overlap must also be sufficient so that each interior point x ∈ Ω is located in the
interior of at least one patch Ωj [18]. A typical example of PU patches using two different point distributions
in R

2 is shown in Figure 1; the choice of taking circular patches is not unique [27] but, being not relevant
for the purposes of this work, it is the one we will later use in our numerical examples.

0 0.2 0.4 0.6 0.8 1

x
1

0

0.2

0.4

0.6

0.8

1

x
2

Grid points

0 0.2 0.4 0.6 0.8 1

x
1

0

0.2

0.4

0.6

0.8

1

x
2

Halton points

Figure 1: Example in R
2 of PU patches in red with grid (left) and Halton (right) points in blue.
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Given such patches, a partition of unity {wj}dj=1 subordinated to the cover {Ωj}dj=1 can be defined as

d
∑

j=1

wj(x) = 1, x ∈ Ω,

where the weight wj : Ωj → R is a continuous, nonnegative and compactly supported function with
supp(wj) ⊆ Ωj . Therefore, for instance we can consider the well-known Shepard’s weight

wj(x) =
ϕj(x)
d
∑

k=1

ϕk(x)

, j = 1, . . . , d, (4)

where ϕj(x) is a compactly supported function on Ωj such as W2 function shown in Table 1. Such a function
is scaled with a shape parameter σ so that ϕj(x) = ϕ(σ||x−ξj ||2), ξj being the centre of the weight function.

For each patch, similarly to (1), a localized RBF interpolant ûj : Ωj → R can be written as follows

ûj(x) =

Nj
∑

i=1

cjiϕ(||x− x
j
i ||2), (5)

where Nj is the number of points in Ωj , i.e. the latter represents the nodes x
j
i ∈ XNj

= XN ∩ Ωj . Then,
we define the global RBF-PU interpolant

û(x) =

d
∑

j=1

wj(x)ûj(x), x ∈ Ω. (6)

If the functions ûj , j = 1, . . . , d, fulfill the following interpolation conditions

ûj(x
j
i ) = u(xj

i ), x
j
i ∈ Ωj , i = 1, . . . , Nj , (7)

the RBF-PU interpolant (6) inherits the interpolation property of the localized RBF interpolants, namely

û(xj
i ) =

d
∑

j=1

wj(x
j
i )ûj(x

j
i ) =

d
∑

j=1

wj(x
j
i )u(x

j
i ) = u(xj

i ).

Solving the j-th interpolation problem (7) results in the linear system generated by local RBFs, i.e.








ϕ(||xj
1 − x

j
1||2) · · · ϕ(||xj

1 − x
j
Nj

||2)
...

...
...

ϕ(||xj
Nj

− x
j
1||2) · · · ϕ(||xj

Nj
− x

j
Nj

||2)















cj1
...

cjNj






=







uj
1
...

uj
Nj






,

or simply

Ajcj = uj . (8)

Specifically, we notice that the use of SPD functions ϕ provides (also in the local case) existence and
uniqueness of the solution, since the local matrix Aj turns out to be nonsingular [14].

To be able to formulate error bounds, we first consider some technical conditions and then define a few
assumptions on regularity of Ωj [29]. We thus require the partition of unity functions wj to be k-stable.
This condition implies that each wj ∈ Ck(Rs) satisfies the inequality

‖Dαwj‖L∞(Ωj)
≤ Cα

δ
|α|
j

, ∀α ∈ N
s
0, with |α| ≤ k, j = 1, . . . , d,
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where Cα is some positive constant, and δj = diam(Ωj) = sup
x,z∈Ωj

||x− z||2.
Then, we define two common indicators of data regularity: the separation distance and the fill distance.

The former is defined as

qXN
=

1

2
min
k 6=i

||xk − xi||2, (9)

while the latter is given by

hXN ,Ω = sup
x∈Ω

min
xi∈XN

||x− xi||2. (10)

Notice that (9) represents the radius of the largest ball that can be centred at every point on XN such that
no two balls overlap, whereas (10) indicates how well the data fill out the domain Ω.

Definition 2.1. Suppose that Ω ⊆ R
s is bounded and XN = {x1, . . . ,xN} ⊆ Ω. An open and bounded

covering {Ωj}dj=1 is called regular for (Ω, XN ) if the following conditions hold:

• ∀x ∈ Ω, the number of patches Ωj with x ∈ Ωj is bounded by a global constant K;

• every patch Ωj fulfills an interior cone condition [30];

• the local fill distances hXNj
,Ωj

are uniformly bounded by the global fill distance (10).

After taking the space Ck
ν (R

s) of all functions f ∈ Ck whose derivatives of order |α| = k satisfy
Dαu(x) = O(||x||ν2) for ||x||2 → 0, it is possible to refer to the following convergence result (see [14,
Theorem 29.1] and [30, Theorem 15.9]).

Theorem 2.1. Suppose that Ω ⊆ R
s is open and bounded and XN = {x1, . . . ,xN} ⊆ Ω. Let ϕ ∈ Ck

ν (R
s) be

a strictly conditionally positive definite function of order m. If {Ωj}dj=1 is a regular covering for (Ω, XN ) and

{wj}dj=1 is k-stable for {Ωj}dj=1, then the error between u ∈ Nϕ(Ω) and its PU interpolant (6) is bounded
by

|Dαu(x)−Dαû(x)| ≤ Ch
(k+ν)/2−|α|
XN ,Ω |u|Nϕ(Ω), ∀x ∈ Ω, |α| ≤ k/2.

Comparing the convergence result given in Theorem 2.1 with the global error estimates in [30], it turns
out to be evident that the PU interpolation guarantees the preservation of the local approximation order
for the global fit. Hence a big problem can suitably be decomposed by solving small interpolation problems
and then glue them together with the partition of unity weights. As a result, the PU approach can be
viewed as a simple and efficient tool to decompose a large interpolation problem into many small problems,
simultaneously ensuring that the accuracy obtained for the local fits is carried over to the global one.

2.3. RBF-PU collocation

In this subsection we consider the RBF-PU method for solving differential problems via a collocation
scheme. In so doing, we focus on elliptic PDEs such as Poisson type problems. Therefore, for the elliptic
operator L = −∆, the Poisson equation is defined as

−∆u(x) = f(x), x ∈ Ω, (11)

together with Dirichlet boundary conditions

u(x) = g(x), x ∈ ∂Ω. (12)

This problem can then be discretized on a set XN of collocation nodes, which can be split into the two
subsets XNi

and XNb
of interior and boundary points, i.e. XN = XNi

∪XNb
, where Ni and Nb represent

5



respectively the number of interior and boundary points. Thus, supposing that ϕ and wj is at least C2 and
the PDE problem can be approximated by (6), we obtain

−∆û(xi) = −
d
∑

j=1

∆(wj(xi)ûj(xi)) = f(xi), xi ∈ Ω

û(xi) =

d
∑

j=1

wj(xi)ûj(xi) = g(xi), xi ∈ ∂Ω.

(13)

In particular, we can expand the (Laplace) elliptic operator ∆ as follows

−∆(wj(xi)ûj(xi)) = −∆wj(xi)ûj(xi)− 2∇wj(xi) · ∇ûj(xi)− wj(xi)∆ûj(xi), xi ∈ Ω, (14)

and define the local vectors ûj = (ûj(x
j
1), . . . , ûj(x

j
Nj

))T and cj = (cj1, . . . , c
j
Nj

)T , where cj = A−1
j ûj (see

[11]). From (5), we have then the relations

∆ûj = A∆
j A

−1
j ûj , ∇ûj = A∇

j A−1
j ûj , (15)

A∆
j and A∇

j being matrices whose entries are given by

(A∆
j )ki = ∆ϕ(||xj

k − x
j
i ||2),

and

(A∇
j )ki = ∇ϕ(||xj

k − x
j
i ||2).

In addition, the diagonal matrices W∆
j , W∇

j and Wj are defined as

W∆
j = diag

(

∆wj(x
j
1), . . . ,∆wj(x

j
Nj

)
)

,

W∇
j = diag

(

∇wj(x
j
1), . . . ,∇wj(x

j
Nj

)
)

,

Wj = diag
(

wj(x
j
1), . . . , wj(x

j
Nj

)
)

.

The discrete operator Qj is obtained by differentiating (13) by means of a product derivative rule and of
the relations in (15). Now, taking into account the expansion in (14), the discrete local Laplacian operators
can be expressed as

Q̄j =
(

W∆
j Aj + 2W∇

j A∇
j +WjA

∆
j

)

A−1
j .

To derive the discrete local PDE operator, including the boundary conditions, we get

(Qj)ki =

{

(Q̄j)ki, x
j
i ∈ Ω,

δki, x
j
i ∈ ∂Ω,

δki being the Kronecker delta. As a result, the global discrete operator is obtained by assembling the local
matrices Qj into the global sparse matrix Q. Finally, the numerical solution can be found by solving the
linear system

Qz = v, (16)

where z = (û(x1), . . . , û(xN ))T and v = (v1, . . . , vN )T is defined by

vi =

{

f(xi), xi ∈ Ω,
g(xi), xi ∈ ∂Ω.

As for the RBF collocation scheme [19], also in the RBF-PU collocation we have no theoretical proof
that proves the sparse collocation matrix Q in (16) is invertible. This implies that the matrix Q could be
singular for some configurations of points. However, the fact of constructing an adaptive scheme allows
us to search for a “good” final configuration of data for which matrix singularity is avoided. So, here, we
deal with the problem essentially from a numerical point of view, whereas the treatment of more theoretical
issues such as well-posedness will be considered in future works.

6



3. Fast algorithms for localization and search of points

In the PU framework, a remarkable task regards the selection of the collocation nodes in the various
patches Ωj , j = 1, . . . , d. From a computational standpoint efficiency assumes in fact an important role
to fast assembly the collocation matrix and, as a result, determine the PDE solution by RBF-PU method.
Thus, this section describes the searching technique used to localize and determine all the points belonging
to a given patch. Such procedure is related to the construction of a partitioning structure used in [7, 8] to
efficiently solve two- and three-dimensional interpolation problems, and here suitably adapted for solving
PDE problems by a collocation method. Although these algorithms can be applied to generic domains, for
the sake of brevity and clarity we now focus on the domain Ω = [0, 1]2 ⊆ R

2.

3.1. Description of the algorithms

Stage 1: localization phase. At first, we define a cover of the unit square domain Ω consisting
of patches of radius δ =

√

2/d, where each patch has a center in Ω. We remark that the larger (smaller)
the value of d is, the finer (coarser) the structure becomes. The number d of patches is selected by suitably
adapting the definition given in [7] for the purposes of this work, i.e. developing an adaptive refinement
scheme for RBF-PU collocation.

Stage 2: partitioning phase. In order to find all collocation nodes that belong to a given patch
Ωj and then apply our RBF-PU scheme, we construct a structure that partitions the domain Ω in blocks
of squared shape. Such process leads to an effective searching technique which is quite efficient from a
computational standpoint. More precisely, it consists in partitioning the unit square Ω with b2 square
blocks, where b is the number of blocks along one side of the domain defined by b = ⌈1/δ⌉. Hence the side of
each block of squared shape is slightly less or equal to the patch radius. This choice enables us to examine in
the searching procedure only a small number of blocks, thus significantly reducing the computational effort
with respect to the most advanced searching procedures such as kd-trees [2, 30]. In the partitioning process
we then number the blocks of square shape from 1 to b2, following the lexicographic order “bottom to top,
left to right”. By repeatedly using a quicksort routine, we can thus split by the block-based structure the
set of (interior and boundary) collocation points in the b2 square blocks, as to easily be able to find the b2

subsets containing the points belonging to nine blocks: the k-th block and its eight neighboring blocks, see
Figure 2 (left). In this way, we get a fast searching procedure to detect all points belonging to each patch
Ωj .

Figure 2: Example of block-based structure applied to interior collocation points (blue): to left the parti-
tioning structure with the k-th block and its eight neighboring blocks (red); to right the k-th block (green,
with k = 55) and a neighborhood associated with a point denoted by ⋆ (orange) belonging to the k-th block.

Stage 3: searching phase. After partitioning the collocation points in the b2 square blocks, we need
to answer the following queries, known respectively as containing query and range search, i.e., i) given a

7



patch centre belonging to Ω, return the k-th square block containing that centre; ii) given a set of collocation
nodes and a patch Ωj , find all nodes located in that patch. Thus, given a patch centre, the block-based
containing query provides the index of the k-block containing such centre, i.e. k = (k1 − 1) b + k2. An
example of this strategy is shown in Figure 2 (right). Then, after answering the first query, given a patch
Ωj the search routine enables to determine all points lying in the j-th patch. Specifically, assuming that
the j-th patch centre belongs to the k-th block, the block-based search process examines all data lying in
the k-th block and in its eight neighboring blocks, see Figure 2 (bottom). Obviously, if a block lies on the
boundary of the domain Ω, the block-based structure and the search process allow to further reduce the
number of neighboring blocks that need to be examined.

3.2. Complexity analysis

The localization phase in Stage 1 is essentially a sort of data pre-processing which is not involved in
complexity cost. So we focus on Stage 2 used to partition the N collocation points in blocks. In the
assessment of the total complexity we should also consider the cost which derives from the storing of other
points used in the numerical scheme (i.e., test points, evaluation points, etc.). However, for simplicity,
here we explicitly refer only to collocation points, further supposing to apply our localization and search
procedures at the initial set of points, i.e. XN(1) = XN . Then, as we will see in Section 4, in our adaptive
scheme this process is iterated to the set XN(i) , i = 2, 3, . . .. Since adaptivity, in particular at the final
phase, may create distribution of points not much uniform in the domain Ω, we give a sketch of complexity
assuming to have some data regularity. As stated in Stage 2, the partitioning structure is based on the use
of a quicksort routine, i.e. recursive calls to the Matlab sortrows.m routine, which requires O(N logN)
time complexity and O(logN) space, where N is the number of points to be sorted. This approach allows us
to partition the domain, organizing the points in a block-based structure. So we can estimate that the cost
of this second phase is about O( 32N logN+ N

2 ). In regards to the search process of Stage 3 we need further
to apply a quicksort procedure to sort distances of points within each patch. As the data point distribution
is supposed to be quite uniform (and accordingly is in the nine neighboring blocks), the complexity of this
search phase is estimated by O(1).

4. Adaptive refinement schemes

As known for instance from [4], when one seeks to get an adaptive technique, it is important to devise
some error indicator that can integrate perfectly with a refinement algorithm. Therefore, in order to derive
an adaptive algorithm to be really effective, a good combination between error indicator and refinement
strategy has to be found so that each of these two essential ingredients can benefit from the efficacy of
the other one. This aspect is of particular relevance in this context, because it allows us to increase the
benefits when one adaptively applies a numerical method to solve PDEs. With this scope, referring to
[12], the authors in [11] have presented a few techniques for PU collocation to carry out a refinement of the
collocation nodes, which essentially consists in the addition/removal of any points. However, such refinement
procedures are based on the use of a true solution (although in real-world problems it is usually unknown),
or of any indicator that in some practical situations cannot give satisfactory results leading to low accuracy
or creation of huge number of points.

4.1. Error indicators

Based on previous considerations we briefly recall two error indicators presented for the first time in
[9], whose use is now coupled to a new refinement algorithm. Since we suppose the exact solution is not
available, we define these indicators so that they only depend on the approximate solution coming from the
RBF-PU collocation or some its related information. Therefore, focusing on the k-th iteration, the error
indicators are defined as follows.

Indicator 1. We compare two RBF-PU collocation solutions computed on two different sets of nodes,
namely a coarser set X

N
(k)
c

and a finer one X
N

(k)
f

, with X
N

(k)
c

⊆ X
N

(k)
f

. Then, for k = 1, 2, . . ., providing an
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estimate on the set X
N

(k)
c

, the error indicator is given by

E(x
(k)
i ) =

∣

∣

∣

∣

ûX
N

(k)
f

(x
(k)
i )− ûX

N
(k)
c

(x
(k)
i )

∣

∣

∣

∣

, xi ∈ X
N

(k)
c

. (17)

Note that indicator (17) is based on the assumption that a finer set gives us a greater accuracy than the
solution computed on a coarser one.

Indicator 2. It is obtained by making a comparison between the RBF-PU collocation solution û com-

puted on XNj
(k) and the localized RBF interpolant (Iû)Ωj

constructed on the N
(k)
j collocation points of Ωj

by using the collocation solution found. Therefore, we can evaluate the error on a set T (k) = {t(k)1 , . . . , t
(k)

n(k)}
of test points, thus deriving the indicator

E(x
(k)
i ) =

∣

∣

∣û(t
(k)
i )− (Iû)Ωj

(t
(k)
i )
∣

∣

∣ , t
(k)
i ∈ T (k). (18)

Note that the use of indicator (18) is justified by the fact that if the collocation solution is not accurate then
a significant difference should also be detected by the local interpolant of data coming from collocation.

Remark 4.1. Since the indicator (18) enables us to work locally on each patch, it turns out to be more
efficient than (17) in terms of computational cost. For this reason, in the experiments we will restrict our
attention only on the use of (18).

4.2. Refinement strategies

Associated with any error indicator, we have to define some refinement strategies that enable the adaptive
scheme to be effective. In particular, in this work, we propose a more general refinement algorithm than the
one given in [9]. In fact, even though the structure of these computational procedures is quite similar, the
new version guarantees a greater flexibility allowing us to add and/or remove points, in an adaptive way, by
using different data distributions. As we will see in Section 5, this choice (i.e. the mode of adding/removing
points) can significantly influence the numerical results. For this reason, we give a general description of
the refinement algorithm, then specifying which are the possible changes that can be carried out. Moreover,
although these techniques can be applied to generic (regular or irregular) domains, for the sake of simplicity
in the following we discuss in detail the case in which the domain is a square.

First of all, we take a set XN(1) ≡ XN = {x(1)
1 , . . . ,x

(1)

N(1)} of collocation nodes, which is split into the
sets X

N
(1)
i

and X
N

(1)
b

of interior and boundary nodes, respectively. Obviously, the adaptive process is then

iterated and the sets XN(k) = X
N

(k)
i

∪X
N

(k)
b

are updated, for k = 1, 2, . . .. In Figure 3 we give some possible

examples of initial configuration of collocation points, using grid points on the boundary and grid (left) or
uniformly random Halton (right) points in the interior of the domain Ω [14]. Both of these configurations
will be used in our numerical experiments.

Basically, the refinement method we discuss here has some connections with the so-called residual sub-
sampling technique studied in [12], and then used in [11]. Nevertheless, in particular in the latter paper the
authors construct their refinement strategy assuming that the true solution of the PDE problem is given. As
a result, our technique points out a greater strength and chance of use than previous method since in real-
life situations, we need an adaptive scheme where both error estimate and refinement strategy can exploit
at best each other all own potentialities. So, we propose a new refinement technique for solving Poisson
problems by an adaptive RBF-PU collocation scheme. This procedure follows the common paradigm to
solve, estimate and refine/coarsen till a stop criterion is satisfied. It can therefore be sketched as shown in
Procedure 1.

Remark 4.2. In the refinement algorithm we update step-by-step the set XN(k) , for k = 1, 2, . . .. It is
therefore evident that at each iteration the error indicator (18) needs to solve a collocation problem and an
interpolation one. The former is characterized by computation of the approximate solution û via RBF-PU
method, while the latter is based on the computation of d local RBF interpolants (Iû)Ωj

constructed on
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Figure 3: Examples of starting sets of (interior and boundary) collocation nodes with Ni = 81 and Nb = 40.

Procedure 1: Refinement algorithm

Step 1 Create a set XN(1) of (initial) collocation nodes

Step 2 Fix two positive tolerances (or thresholds) τmin and τmax, such that 0 < τmin < τmax

Step 3 For k = 1, 2, . . . compute the k-th approximate collocation solution on XN(k)

Step 4 Define a set T (k) of test points

Step 5 Evaluate the error at the test point t
(k)
i ∈ T (k) via an (error) indicator

Step 6 If the error indicator

i) E(t
(1)
i ) > τmax, add the test point t

(k)
i among the collocation points

ii) E(t
(1)
i ) < τmin, remove the collocation node x̄

(k)
i closest to t

(k)
i

from the collocation points

Define the sets

Z
T

(k)
max

= {t(k)i ∈ T (k) : E(t
(k)
i ) > τmax, i = 1, . . . , T

(k)
max}

Z
T

(k)
min

= {x̄(k)
i ∈ XN(k) : E(t

(k)
i ) < τmin, i = 1, . . . , T

(k)
min}

and construct the refined set

XN(k+1) = X
N

(k+1)
i

∪X
N

(k+1)
b

, with X
N

(k+1)
i

= (X
N

(k)
i

∪ Z
T

(k)
max

)\Z
T

(k)
min

Step 7 Stop when Z
T

(k)
min

= ∅

the N
(k)
j collocation points lying in Ωj, j = 1, . . . , d. This approach requires firstly to invert the collocation

matrix given in the linear system (16), whose cost is O((N (k))3), whereas the inversion of a local interpolation

matrix needs only O((N
(k)
j )3) operations, with N

(k)
j << N (k). Finally, once the final collocation points were

determined, the adaptive refinement algorithm stops and the resulting approximate solution can be evaluated
on a set of evaluation points. The cost of this final step is O(1). Note that here we use a direct solver to find
the solutions of linear systems, because the target of this work is devoted to the construction and validation
of new adaptive refinement strategies. It is therefore out of our scopes, for instance, the application of new
or sophisticated iterative solvers from numerical linear algebra.
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4.3. Discussion about the refinement algorithms

After considering the generic description of the refinement algorithm given in the previous subsection,
we discuss about possible variants that can result in different numerical results. In fact, as evident from
Figure 3, various initial (and even successive) configurations of points can be considered. For instance, at
the initial phase, in Step 1 we offer the chance to start with interior grid or quasi random Halton points.
The choice is of great importance in an adaptive scheme, because it defines the refinement strategy and,
in practice, how the points are added or removed within the iterative process. It is thus reasonable to
think that this selection influences the approximation method in terms of both computational efficiency and
numerical accuracy. In what follows, we provide two alternative refinements that we will then use in our
tests:

– RefAlg-1 consists in taking the Halton points as test points starting from Step 2;

– RefAlg-2 imposes to start with an initial inner node grid of stepsize h1, selecting then in the successive
phase from Step 2 further grids whose stepsize is given by hj = hj−1/2, for j = 2, 3, . . ..

We remark that in this second case from a computational standpoint it is convenient to iterate this
process only a few times (for instance, till j = 3), then completing the refinement with Halton points as test
points. As an example, to compare how the two refinement strategies RefAlg-1 and RefAlg-2 work, one
can refer to Figures 5 and 7, respectively. Finally, we observe that our refinement techniques are based on
the use of Halton points, but in practice the choice of other point distributions is absolutely arbitrary.

5. Numerical results

In this numerical section we analyze the algorithm performances. All the routines were implemented in
Matlab environment, and the experiments were done on a computer with processor Intel(R) Core(TM)
i7-4500U CPU 1.80 GHz and RAM 4GB.

In the following we show the results, which refer to numerical solution of a few Poisson type problems
via RBF-PU collocation as described in Subsection 2.3. Specifically, we present some numerical results that
aim to test our adaptive refinement algorithms, which make use of estimate (18) with the related refinement
strategies, as stressed in Section 4. As regards, instead, the phases of localization and search of collocation
points regarding the RBF-PU collocation, details are given in Section 3.

Therefore we focus on the experiments done by using in the PU method the localized M6 approximant. As
shape parameter we take the value of ε = 3 while the W2 function is used in (4) within the Shepard weight.
Though we restrict our attention on a single RBF with fixed shape parameter, in our study we analyzed the
algorithm behavior taking various localized RBF approximants and different values of ε. However, even if
the choice of the RBF and the role of the shape parameter ε are known to be relevant for the accuracy of the
whole approximation process (see e.g. [14]), we do not care of it because in this work our main interest is
addressed to adaptivity (and not to seek the best possible accuracy). Additionally, we remark that either in
applications or in particular situations in which adaptivity is required, the use of very smooth local kernels
is not usually suggested since they turn out to be quite ill-conditioned [15].

In the various experiments we thus discuss the algorithm performances associated with the RBF-PU
method by referring to some benchmark test problems of Poisson type, which are defined on the unit square
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domain Ω = [0, 1]2 (and numbered by the symbol #). The true solutions of these problems are

#1: u1(x1, x2) = sin(x1 + 2x2
2)− sin(2x2

1 + (x2 − 0.5)2),

#2: u2(x1, x2) =
1

20
exp(4x1) cos(2x1 + x2),

#3: u3(x1, x2) =
1

2
x2

[

cos(4x2
1 + x2

2 − 1)
]4

+
1

4
x1,

#4: u4(x1, x2) = exp(−8((x1 − 0.5)2 + (x2 − 0.05)2)),

#5: u5(x1, x2) = sinh(0.3(4x1 − 4) sin(8x2 − 4) exp(−(4x1 − 2.1)4)),

#6: u6(x1, x2) =
1

25(4x1 − 2)2 + 25(4x2 − 2)2 + 1
.

In Figure 4 we show a graphical representation of such analytic solutions. Note that Poisson problems
#1–#4 are also studied in [11], while problems #5–#6 (suitably rescaled) come from [22].

To measure the precision of our numerical solutions, we report the ∞-norm or Maximum Absolute (MA)
error defined by

MA error = max
1≤i≤Ne

|u(zi)− û(zi)|,

and the Root Mean Square (RMS) error

RMS error =

(

1

Ne

Ne
∑

i=1

|u(zi)− û(zi)|2
)1/2

,

which are both computed on a set of Ne gridded evaluation points. Further, by making use of the Matlab

condest command we also give a Condition Number (CN) estimate of the collocation matrix Q in (16), and
show the execution (or CPU) times expressed in seconds.

In the tests we start by taking N = 121 collocation points, consisting of Ni = 81 interior points and
Nb = 40 boundary points. Precisely, we consider two different initial configurations of interior points,
i.e. grid and Halton points, as depicted in Figure 3, by making use of the refinement strategy RefAlg-1.
Further, to evaluate the adaptive refinement algorithm, we show the numerical results found by setting
(τmin, τmax) = (10−8, 10−5) as lower and upper thresholds, respectively. At the initial phase, the iterative
process begins with N = 121 collocation points, which consist of Nb = 40 grid points and Ni = 81: (a)
grid points; (b) Halton points. In Tables 2–3 we show a summary of all results obtained, also indicating the
final number Ntot of interior and boundary collocation points necessary to achieve the minimum/maximum
tolerances. Then, in Figure 5 the final distribution of points is plotted even if here we only focus, for the
sake of brevity, on the specific case of grid data as starting interior/boundary points. Moreover, always
referring to the same test examples, in Figure 6 we graphically represent the absolute error |u(zi)− û(zi)|,
i = 1, . . . , Ne, computed on the grid of Ne = 402 evaluation points, as above mentioned.

From an analysis of our tests, it is possible to remark that the adaptive algorithm allows to add points in
the domain areas in which the solution highlights some significant variation. In general, taking into account
the couple of tolerances used, the adaptive refinement algorithm results in getting similar MA and RMS
errors for Poisson problems #1–#5, while for the elliptic problem #6 we remark the algorithm undersamples
the peak present in the central area of the domain Ω. This fact reflects on the final accuracy, since error
indicator and refinement process turn out to be less sensible than in the previous tests. It is however evident
that – as shown in Figure 4 (bottom, right) – the last example is quite hard problem to deal with and,
accordingly, high precision is difficult to get. Considering then the CN of the collocation matrix, we can see
that in all problems faced it assumes a value between 10+6 and 10+9. Such conditioning is much smaller than
the one present in the commonly used RBF collocation methods (cf. [14]). Additionally, from Tables 2–3
we can observe as the adaptive algorithm converges to the solution in few seconds, except for the problem
#5 in which the addition/removal process results in a less computational efficiency.
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u1(x1, x2) u2(x1, x2)

u3(x1, x2) u4(x1, x2)

u5(x1, x2) u6(x1, x2)

Figure 4: Exact solutions of Poisson problems.

Finally, we conclude this section showing some numerical results obtained by using the refinement strat-
egy RefAlg-2, with (τmin, τmax) = (10−8, 10−5). As Table 4 highlights, this adaptive approach gives for
Poisson problems #1–#5 quite similar results to those reported in Table 2, whereas for problem #6 we get
an improvement of about one order of magnitude better in terms of accuracy. In fact, in this particularly
hard situation the use of a refinement technique as RefAlg-2, along with a local error indicator, allows us
to give a better error estimate. Figure 7 shows the final configuration of points once the adaptive refine-
ment was completed. A visual inspection makes evident how the two refinement techniques generate quite
different point distributions (cf. Figures 5 and 7).

13



Poisson Ntot MA error RMS error CN time

#1 709 1.09e−4 3.10e−5 7.34e+06 3.5

#2 755 1.00e−4 3.46e−5 6.58e+06 4.6

#3 1411 1.58e−4 1.71e−5 4.04e+08 8.6

#4 834 4.64e−5 1.56e−5 4.04e+07 3.9

#5 2096 5.82e−5 1.73e−5 1.13e+08 13.9

#6 1197 3.44e−2 5.26e−3 1.78e+08 7.9

Table 2: Results in (a) obtained via RefAlg-1.

Poisson Ntot MA error RMS error CN time

#1 712 7.04e−5 1.99e−5 7.59e+06 4.6

#2 746 1.21e−4 3.45e−5 9.56e+06 4.0

#3 1452 1.13e−4 1.72e−5 1.31e+08 8.8

#4 818 5.00e−5 1.49e−5 4.87e+06 4.4

#5 2094 5.48e−5 1.49e−5 8.85e+07 15.3

#6 1071 2.20e−2 2.84e−3 1.71e+07 6.2

Table 3: Results in (b) obtained via RefAlg-1.

Poisson Ntot MA error RMS error CN time

#1 920 6.33e−5 1.64e−5 4.76e+06 3.2

#2 1003 1.66e−4 6.44e−5 1.41e+07 2.7

#3 1635 1.82e−4 2.08e−5 5.50e+07 13.1

#4 1079 5.06e−5 1.19e−5 9.12e+06 4.4

#5 2104 4.94e−5 1.57e−5 7.90e+07 13.6

#6 1265 4.96e−3 7.56e−4 1.87e+08 3.4

Table 4: Results obtained via RefAlg-2.

6. Applications

In this section we focus on two applications. Firstly, we numerically solve a Poisson problem whose
solution is expressed by the first modes of a truncated series expansion; then, we deal with a Laplace
problem which models the steady state temperature distribution in a thin plate.

6.1. Approximation of a truncated series

In this application we consider a Poisson problem of the form (11)–(12) defined on Ω = [0, 1]2, whose
solution for j → ∞ becomes nonanalytic (see [22]). Here we assume as exact solution the first p+ 1 modes
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Figure 5: Final data distribution in (a) obtained via RefAlg-1.

of the expansion

u(x1, x2) =

p
∑

j=0

exp(−
√
2j)(cos(2j(4x1 − 2)) + cos(2j(4x2 − 2))).

In these tests we then compute the approximate solution by applying the adaptive algorithm with
refinement RefAlg-1 for p = 1, 2, 3, evaluating the results on a set of Ne = 402 grid points. In Figure
8 we plot solutions and Laplacians of the truncated series for various p. We thus report the collocation
results in a summarizing table, where the RBF-PU method is run using a local M6 approximant with shape
parameter ε = 3. Precisely, Table 5 shows the output of the algorithm obtained by starting from N = 121
grid points, composed of Ni = 81 interior points and Nb = 40 boundary points. Moreover, as in previous
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Figure 6: Absolute error |u(x1, x2)− û(x1, x2)| in (a) obtained via RefAlg-1.

section, we focus our attention on accuracy, stability and efficiency of our collocation scheme. In doing that,
we fix as tolerances in the refinement phase (τmin, τmax) = (10−7, 10−4). As evident from Figure 8, when
the value of p increases the complexity of the problem grows. This fact happens since the solution becomes
more and more difficult to be approximated and, at the same time, the Laplacian significantly increases the
level of oscillations. Accordingly, growing p leads to a lager number of collocation points to get the desired
thresholds. Finally, analyzing errors and conditioning, we can observe a similar behavior to that shown in
the several test examples of Section 5. For brevity, we omit to report the results obtained with RefAlg-2

as numerically similar to the previous ones.
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Figure 7: Final data distribution obtained via RefAlg-2.

p Ntot MA error RMS error CN time

1 812 1.26e−3 6.36e−4 9.93e+06 5.3

2 1422 3.01e−4 1.10e−4 2.75e+07 8.2

3 2585 7.15e−4 1.75e−4 3.48e+08 17.5

Table 5: Approximation of the truncated series by varying p via RefAlg-1.
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solution: p = 1 Laplacian: p = 1

solution: p = 2 Laplacian: p = 2

solution: p = 3 Laplacian: p = 3

Figure 8: Truncated sums of exact solution (left) and Laplacian (right).

6.2. Modeling temperature distribution

In this application we consider the Laplace equation which models the steady state temperature distri-
bution in a thin plate [1, 6]

∆u(x1, x2) = 0, (x1, x2) ∈ (0, 1)2

with Dirichlet boundary conditions

u(x1, 0) = 1, u(x1, 1) = 0, u(0, x2) = 0, u(1, x2) = 0.
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The analytic solution of this problem is given by

u(x1, x2) =

(

4

π

) ∞
∑

i=0

{

1

2i+ 1
sin[(2i+ 1)πx1] sinh[(1− x2)(2i+ 1)π] csch[(2i+ 1)π]

}

.

We remark that this solution has a behavior difficult to be captured close to the boundaries, where the
values of the solution are prescribed equal to zero and one by the Dirichlet conditions (see Figure 9, left).
Hence, considered the difficulty in dealing with a problem of this type, we select N = 225 grid points,
taking Ni = 169 interior and Nb = 56 boundary points, respectively. We then apply the adaptive RBF-PU
method using the M6 as local approximant, with ε = 11. Fixed (τmin, τmax) = (10−7, 10−4), our algorithm
with RefAlg-2 gives us back a RMS error = 6.88e−4 selecting a number of Ntot = 1546 collocation points.
Finally, Figure 9 (right) shows the absolute errors. The worst results are obtained near the boundary x2 = 0
when the series goes to one very quickly, whereas in all other parts of the domain errors are very low. Note
that overall such accuracy is comparable with the one achieved by the method proposed in [1] but, as evident
from that work, the RBF-PU approach enables us to get much better results than RBF collocation does.
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Figure 9: Temperature distribution (left) and absolute error obtained by applying the adaptive scheme via
RefAlg-2 (right).

7. Conclusions and future work

In this paper we presented some adaptive refinement techniques to solve elliptic PDEs and in particular
Poisson problems via a RBF-PU collocation scheme. More precisely, we proposed the use of some flexible
refinement strategies that coupled with an appropriate error indicator enabled the addition and/or the
removal of points. The final result was the creation of an ad-hoc approach in the RBF-PU framework.
Numerical tests and applications showed the performance of our adaptive refinement algorithms.

As future work we propose to extend our adaptive algorithms modelling other types of PDE problems.
This could include the numerical solution of time-independent and time-dependent differential equations.
Another important aspect that deserves to be investigated concerns the design of different (or variable) cover
structures for PU patches, whose size and shape could be related to the adaptive refinement scheme.
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