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Abstract

Con
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ences over outcomes. We investigate how the decision maker can extract
the information by distorting the decisions that will be taken. We show
that only slight distortions will be necessary when agents' signals are suf-
�ciently accurate or when the number of informed agents becomes large.
We argue that the particular mechanisms analyzed are substantially less
demanding informationally than those typically employed in implementa-
tion and virtual implementation. Further, the mechanisms are immune to
manipulation by small groups of agents.
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1. Introduction

Consider the problem that an army o�cer faces in deciding whether or not to
send his troops into battle with the enemy. Optimally, his decision will depend
on the size of the opposing forces. If the enemy forces are not too strong, he
will prefer to engage them, but if they are su�ciently strong he prefers not. He
does not know the strength of the enemy, but the various troops in the area have
some information regarding the enemy's strength, albeit imperfect. The di�culty
the commanding o�cer faces is that the preferences of the individuals who pos-
sess the information regarding whether or not to engage the enemy may be very
di�erent from his own preferences. Those with information may exaggerate the
strength of the enemy in order to obtain additional resources, or perhaps to avoid
engagement entirely. In the extreme, the preferences of those with information
may be diametrically opposed to those of the decision maker. When this is the
case, those with the information necessary for informed decision making may have
a dominant strategy to misrepresent their information, precluding the possibility
of nontrivial communication.
Even when there is a con
ict between the preferences of the decision maker and

the preferences of those who possess information, it may be possible to extract the
information with more sophisticated elicitation schemes. Suppose for example that
those �eld o�cers who report to the commander have highly accurate information
regarding whether the enemy is strong or weak. The commander may employ the
following scheme. Ask each �eld o�cer whether he thinks the enemy is strong
or weak, and the action that that o�cer would most like taken. Then, with
probability 1 � ", the commander attacks if a majority of �eld o�cers report
that the enemy is \weak", and does not attack if a majority reports that the
enemy is \strong". With probability "; the commander instead chooses a �eld
o�cer at random for scrutiny and determines whether his assessment of the enemy
strength is \consistent" with the other reports, that is, if the selected o�cer's
report regarding enemy strength agrees with the assessment of a majority of all
�eld o�cers. If it does, the commander chooses the action that the �eld o�cer
reported as his �rst choice, and, if not, the commander chooses a random action.
Truthful reporting on the part of the �eld o�cers will be incentive compatible

when the o�cers' signals regarding whether the enemy is strong or weak are highly
(but not necessarily perfectly) accurate.1 When the o�cers' signals are highly

1It should be noted that there may be equilibria in which the informed agents do not report
their information truthfully in addition to the truthful reporting equilibrium. We discuss this
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accurate and others report truthfully, each maximizes his chance of being in the
majority by reporting truthfully, and thereby getting his �rst choice should the
commander randomly choose him for scrutiny. By misreporting that the enemy is
strong when in fact an o�cer has observed a \weak" enemy, an o�cer's chances
of getting his �rst choice are reduced should he be scrutinized, but he may change
the commander's decision in the event that the commander decides the action
based on the majority report. However, the probability that any individual �eld
o�cer will be pivotal goes to zero as the accuracy of the �eld o�cers' signals goes
to 1. This type of mechanism exhibits an important feature: the commanding
o�cer does not need to know the �eld o�cers' preferences which, if known, might
provide some information regarding the direction in which an o�cer might wish
to skew the decision.
The commander can thus extract the �eld o�cers' information, but the elicita-

tion of the information comes at a cost. With probability " the commander selects
a �eld o�cer for scrutiny, and if that o�cer's announcement is consistent with
the majority announcement the outcome will not necessarily be the commander's
preferred choice.
The mechanism described above uses the correlation of the o�cers' signals

that naturally arises from the fact that they are making assessments of the same
attribute. We will formalize the ideas in the example and provide su�cient condi-
tions under which experts' information can be extracted through small distortions
of the decision maker's optimal rule. The basic idea can be seen in the example;
when signals are very accurate, no single agent is likely to change the outcome by
misreporting his information, hence, small \rewards" will be su�cient to induce
truthful announcements. We further show that one can use this basic idea to
show that, when the number of informed agents becomes large, one can extract
the information at small cost even if each agent's information is not accurate.
When the number of agents becomes large, the chance that an agent will be piv-
otal in the decision becomes small even if the signals that agents receive are of low
accuracy. This is not enough to ensure that information can be extracted at low
cost, since giving each agent a small chance of being a \dictator" might involve
a large deviation from the decision maker's optimal rule. Using techniques from
McLean and Postlewaite (2002, 2006) we show, however, that an agent's e�ect on
the decision maker's posterior goes to zero faster than the number of agents goes
to in�nity. Consequently, as the number of agents becomes increasingly large,
the decision maker can correspondingly reduce the distortion associated with the

in the last section.
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need to scrutinize agents while still inducing the agents to truthfully reveal their
private information.
We introduce the model in the next section, and present the results for the

case of a �nite number of experts with accurate signals in section 3. In section
4 we analyze the case with a large number of experts whose signals may not be
accurate. In section 5 we discuss some extensions and further results. Section 6
contains the proofs.

1.1. Related Literature

Our notion of implementation is a weak form of virtual Bayesian implementation
(Abreu and Matsushima (1992), Matsushima (1993), Duggan (1997), Serrano and
Vohra (2005)), but di�ers in important ways. First, our focus is not on full
implementation in the sense that we do not require that all equilibria implement
a given social choice function. Second, in the literature on virtual implementation,
two social choice functions are close if they specify very similar outcomes in every
state of the world. This is a natural de�nition because the probability of every
state may be bounded away from zero. In this paper we consider environments
in which the probability of some states is vanishing. It is therefore reasonable
to use a notion of approximation that requires that two functions are close with
arbitrarily high probability. The di�erences in the two approaches have important
rami�cations regarding the classes of functions that can be implemented. To
be virtually implementable a function must be incentive compatible and satisfy
some additional conditions such as measurability (Abreu and Matsushima (1992)),
incentive consistency (Duggan (1997)) or virtual monotonicity (Serrano and Vohra
(2005)).2 In contrast, our notion of implementation does not require any of these
conditions.
There is an extensive literature on information transmission between informed

experts and an uninformed decision maker. The classic reference is Crawford
and Sobel (1982) who assume that the decision maker faces a single expert. The
literature has also analyzed the case of multiple experts. Of course, if there are
at least three experts and they are all perfectly informed (i.e., they possess the
same information) the problem of eliciting their information is trivial. The case
in which there are two perfectly informed experts has been analyzed by Gilligan
and Krehbiel (1989), Krishna and Morgan (2001), and Battaglini (2002).

2In some cases, the environment has also to satisfy certain additional assumptions. For
example, Matsushima (1993) assumes that side payments are allowed.

3



Austen-Smith (1993) is the �rst paper to focus on imperfectly informed ex-
perts. Austen-Smith assumes that the decision maker gets advice from two biased
experts whose signals about the state are conditionally independent. That paper
compares two di�erent communication structures: simultaneous reporting and se-
quential reporting. Battaglini (2004) extends the analysis to the case in which the
number of experts is arbitrary and both the state and the signals are multidimen-
sional. Battaglini exploits the fact that the experts' preferences are di�erent and
commonly known and constructs an equilibrium in which every expert truthfully
announces (a part of) his signal. If the experts' signals are very accurate or if the
number of experts is su�ciently large, the corresponding equilibrium outcome is
close to the decision maker's �rst best. In contrast to Battaglini (2004), we do not
impose any restriction on the experts' preferences and, importantly, they can be
private information. Furthermore, we provide conditions under which any social
choice rule can be approximately implemented.
Wolinsky (2002) analyzes the problem of a decision maker who tries to elicit

as much information as possible from a number of experts. The experts share the
same preferences which di�er from those of the decision maker. The information
structure in Wolinsky (2002) is signi�cantly di�erent from ours. In particular,
there is no state of the world and the experts' types are independently distributed.
Wolinsky �rst assumes that the decision maker can commit to a choice rule and
characterizes the optimal mechanism. He then relaxes the assumption of perfect
commitment and shows that it is bene�cial for the decision maker to divide the
experts in small groups and ask them to send joint reports.
In our paper, as well as in all the articles mentioned above, the experts are

a�ected by the decision maker's choice. One strand of the literature has also
studied the case in which the experts are concerned with their reputation for
being well informed. Ottaviani and S�rensen (2006a, 2006b) consider a model
in which the experts receive a noisy signal about the state of the world and the
quality of their information is unknown. Each expert's reputation is updated on
the basis on their messages and the realized state. Ottaviani and S�rensen show
that the experts generally do not reveal their information truthfully.
Our paper is also related to the recent literature on strategic voting. Fedder-

sen and Pesendorfer (1997, 1998) consider two-candidate elections with privately
informed voters. They show that under non-unanimous voting rules, large elec-
tions fully aggregate the available information in the sense that the winner is the
candidate that would be chosen if all private information were publicly available.
This implies that under majority rule, for example, a social planner can implement
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the outcome preferred by the majority of the voters. In contrast, our asymptotic
results show that if the planner has the ability to commit to a mechanism, then
he can approximately implement almost any social choice rule.
We postpone to section 5 a discussion of the relationship of our results to the

notion of informational size introduced in McLean and Postlewaite (2002).

2. The Model

2.1. Information

We will consider a model with n � 3 experts. If r is a positive integer, let Jr =
f1; : : : ; rg: Experts are in possession of private information of two kinds. First,
each expert observes a signal that is correlated with the true but unobservable
state of nature �: The state can directly a�ect his payo� but the signal does not.
Second, each expert knows his own \personal characteristic" which parametrizes
his payo� function but has no e�ect on his beliefs regarding the state. More
formally, let � = f�1; : : : ; �mg denote the �nite set of states of nature, let Si
denote the �nite set of possible signals that expert i can receive and let Qi denote
the expert's (not necessarily �nite) set of personal characteristics. The set of
types of expert i in this setup is therefore Si � Qi: Let S � S1 � � � � � Sn and
S�i � �j 6=iSj: The product sets Q and Q�i are de�ned in a similar fashion. Let
�X denote the set of probability measures on a set X. Let �x 2 �X denote the
Dirac measure concentrated on x 2 X. Each probability measure P 2 ��

��S is

the distribution of an (n + 1)-dimensional random vector (e�; ~s) taking values in
�� S whose dependence on P will be suppressed. Let ��

��S denote the subset
of ���S satisfying the following support conditions:

P (�) = Probfe� = �g > 0 for each � 2 �

and
P (s) = Probfes1 = s1; : : : ; esn = sng > 0 for each s 2 S:

For each P 2 ��
��S and s 2 S; let h(s) = P�(�js) denote the associated conditional

probability on �:
In addition, we will make the following conditional independence assumption3:

3The conditional independence assumption simpli�es the presentation but our results will
hold under more general circumstances (see section 5 for details).
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for each k 2 f1; : : : ;mg and each (s1; : : : ; sn) 2 S;

Probf~s1 = s1; : : : ; ~sn = snj~� = �kg =
Y
i2Jn

Pi(sij�k)

where
Pi(sij�k) = Probf~si = sij~� = �kg:

Let �CI
��S denote the measures in �

�
��S satisfying the conditional independence

assumption.
The probabilistic relationship between states, signals and characteristics will

be de�ned by a product probability measure P 
 P̂ 2 ���S�Q where P 2 �CI
��S

and P̂ 2 �Q: This is a stochastic independence assumption: if P 
 P̂ is the

distribution of a (2n + 1)-dimensional random vector (e�; ~s; ~q) taking values in
�� S �Q, then

Probfe� = �; es1 = s1; : : : ; esn = sn; (eq1; : : : ; eqn) 2 Cg = P (�; s)P̂ (C):

for each (�; s1; : : : ; sn) 2 �� S and each event C � Q:

2.2. The Decision Maker

In addition to the n experts, our model includes a decision maker, or social planner,
who is interested in choosing an action a from a �nite set of social alternatives A
with jAj = N . The behavior of the decision maker is described by a function

� : �� ! �A:

Loosely speaking, we interpret the function � as a \reduced form" description of
the decision maker's behavior: if the probability measure � 2 �� represents the
decision maker's \beliefs" regarding the state of nature, then the decision maker
chooses an action from the set A according to the probability measure �(�j�) 2 �A:
For example, suppose that (a; �) 7! g(a; �) is a function describing the payo� to
the decision maker if he takes action a and the state is �: For each vector of beliefs
� 2 ��; we could naturally de�ne �(�j�) 2 �A so that

�(aj�) > 0) a 2 argmax
a2A

X
�2�

g(a; �)�(�):

Other examples are clearly possible and our reduced form description can accom-
modate all of these. In particular, suppose that the social choice is made by a
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committee of individuals with heterogeneous preferences. The committee elicits
the information from the experts and then makes a �nal decision using a certain
voting rule. In this case, the function � represents the outcome of the voting.
As we have described above, both si and qi are the private information of

expert i. The decision maker cannot observe the experts' characteristics qi or
their signals si: Given the function �; the decision maker would like to choose
an action using the best available information regarding the state �. Since the
decision maker himself receives no information regarding the state �; he must ask
the experts to report their signals. If s 2 S is the experts' reported signal pro�le,
then the measure h(s) = P�(�js) de�nes the decision maker's updated beliefs and
he will then choose an action according to the probability measure �(�jh(s)):

2.3. The Experts

The payo� of expert i depends on the action a chosen by the decision maker, the
state of nature � and the idiosyncratic parameter qi: Formally, the payo� of expert
i is de�ned by a function

ui : A���Qi ! R:

To prove our results, we will need the following de�nition.

De�nition: Let K be a positive number. A function ui : A���Qi ! R satis�es
the K-strict maximum condition if

(i) For every � 2 � and for every qi 2 Qi; the mapping a 2 A 7! ui(a; �; qi)
has a unique maximizer which we will denote a�i (�; qi):
(ii) For every i, for every � 2 � and for every qi 2 Qi;

ui(a
�
i (�; qi); �; qi)� ui(a; �; qi) � K for all a 6= a�i (�; qi):

Note that (ii) is implied by (i) for some K > 0 when Qi is �nite.

2.4. Mechanisms

A mechanism is a mapping (s; q) 2 S � Q 7! �(�js; q) 2 �A: If (s; q) is the
announced pro�le of signals and characteristics, then �(ajs; q) is the probability
with which the decision maker chooses action a 2 A: Obviously, a mechanism
induces a game of incomplete information and the decision maker is concerned
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with the trade-o� between the \performance" of the mechanism and its incentive
properties. The performance of mechanism � is measured4 by

sup
q2Q

X
s2S

jj�(�jh(s))� �(�js; q)jjP (s) (2.1)

where
jj�(�jh(s))� �(�js; q)jj =

X
a2A

j�(ajh(s))� �(ajs; q)j:

According to this performance criterion, a mechanism � is \good" if the quantity
in expression (2.1) is \small." For an alternative viewpoint of our performance
criterion, note that X

s2S
jj�(�jh(s))� �(�js; q)jjP (s) � "

implies that
Probfjj�(�jh(~s))� �(�j~s; q)jj �

p
"g > 1�

p
":

Thus, a good mechanism has the property that, for each pro�le q 2 Q; �(�jh(s))
and �(�js; q) are close on a set of s pro�les of high probability.5

De�nition: A mechanism � is incentive compatible if for each i, each (si; qi) 2
Si �Qi and each (s

0
i; q

0
i) 2 Si �Qi;

E~q

24 X
s�i2S�i

X
�2�

X
a2A

[�(ajs�i; si; ~q�i; qi)� �(ajs�i; s0i; ~q�i; q0i)]ui(a; �; qi)P (�; s�ijsi) j~qi = qi

35 � 0:
The mechanisms that we analyze below actually satisfy a stronger notion of incen-
tive compatibility: each expert i has an incentive to report his signal si truthfully
and, conditional on truthful announcement of the experts' signals, it is a domi-
nant strategy for expert i to announce his preference parameter qi truthfully. We
discuss this in the last section.

4Throughout the paper, jj�jj will denote the `1 norm and jj�jj2 will denote the `2 norm.
5We evaluate the performance of a mechanism from an ex-ante point of view. It is therefore

possible that in some unlikely events the decision maker will implement an outcome which is
rather di�erent from the outcome speci�ed by the function �:
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3. Finitely Many Experts with Accurate Signals: The Jury

Model

We discussed in the introduction the basic idea of how to construct a mechanism to
extract experts' information. We next provide a slightly more detailed description
of the mechanism. Agents report their private information, which consists of a
signal about the state of the world and their utility function. With probability
close to 1, the information is used to update the decision maker's beliefs and the
desired decision is taken. With small probability an agent is chosen at random
and \scrutinized" to see if his report about the state is the same as reported by the
majority. The correlation in the agents' signals conditional on the state � makes
this a \statistical test" as to whether the agent reported truthfully, assuming other
agents were reporting truthfully. When other agents are reporting truthfully, a
given agent is more likely to \pass" this test by truthfully reporting his signal.
We reward the agent if he passes the test by distorting the optimal decision rule
slightly, and giving the scrutinized agent his optimal decision, contingent on his
announced utility function and the announced signals of the other agents.
When agents' signals are very accurate, no single agent's report is likely to have

a signi�cant e�ect on the posterior distribution on �, and consequently there is
little chance that his report will a�ect the outcome. Thus, when the signals are
highly accurate, the distortion in the decision rule necessary to provide incentives
for truthful revelation is small.

3.1. The Setup

In this section, the n experts are interpreted as \jurors" and the decision maker
is interpreted as a \judge". Let � = f�0; �1g where �1 = 1 corresponds to \guilty"
and �0 = 0 corresponds to \innocent." Suppose that the jurors receive a noisy
signal of the state. In particular, let Si = f�0; �1g where �1 = guilty and �0 =
innocent. Let s0 and s1 denote the special signal pro�les s0 = (�0; : : : ; �0) and s

1 =
(�1; : : : ; �1): Let A = f0; 1g where 0 corresponds to \acquit" and 1 corresponds
to \convict."6 The payo� function of juror i is a mapping ui : A � � � Qi ! R:
We will assume that each Qi is �nite and that ui satis�es the Ki�strict maximum
condition for some Ki > 0: We can illustrate the strict maximum condition in an

6The results extend to the case in which there are several states, actions and signals in a
straightforward manner.
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example. For each i 2 Jn; let

ui(a; �; qi) = a(� � qi):

Hence, qi may be interpreted as an idiosyncratic measure of the \discomfort"
experienced by juror i whenever a defendant is convicted, irrespective of guilt or
innocence. If 0 < qi < 1; then

�qi < 0 < 1� qi;

so that conviction of a guilty party is preferred to acquittal, and acquittal is
preferred to conviction of an innocent party. If each Qi is a �nite subset of ]0; 1[,
then it is easily veri�ed that conditions (i) and (ii) are satis�ed.
The behavior of the decision maker is described by a function � : �� ! �A: If

� 2 �� represents the decision maker's beliefs regarding the defendant's guilt or
innocence, then �(1j�) is the probability of conviction and �(0j�) is the probability
of acquittal. Note that we make no assumptions regarding the properties of �; in
particular, � need not be continuous.
For each P 2 �CI

��S, let

�(P ) := min
k2f0;1g

min
i2Jn

Pi(�kj�k):

The number �(P ) is a measure of the quality of the signals. When the state
is �k; k = 0; 1; each agent observes the correct signal �k with probability at least
�(P ):

3.2. The Jury Result

Proposition 1: Choose n � 3: LetK1; : : : ; Kn be given as above, letK = miniKi

and suppose that " > 0: There exists a � 2]0; 1[ (depending on " and K) such
that, for all P̂ 2 �Q and for all P 2 �CI

��S satisfying �(P ) > �; there exists an
incentive compatible mechanism � satisfying

max
q2Q

X
s

k�(�jh(s))� �(�js; q)kP (s) < " :

The proof of Proposition 1 appears in section 6, but we will construct the
mechanism and present the idea of the argument here. For k 2 f0; 1g; let

�k(s) := fi 2 Jnjsi = �kg

10



denote the set of jurors who observe signal �k when the realized signal pro�le is
s: Let C0 and C1 be two subsets of S de�ned as

C0 = fs 2 Sj j�0(s)j >
n

2
g

and
C1 = fs 2 Sj j�1(s)j >

n

2
g:

When a signal pro�le s 2 Ck is realized the majority of the jurors observe
signal �k: Next, let

�i(s) = �C0(s)
(�0jsi) + �C1(s)
(�1jsi)

where


(�kjsi) = 1 if si = �k

= 0 if si 6= �k:

and �Ck denotes the indicator function of Ck: Note that �i(s) = 1 if and only if si
is a (strict) majority announcement for the pro�le s.
De�ne �i(�js; qi) 2 �A where

�i(a
�
i (�k; qi)js; qi) = 1 if s 2 Ck and k 2 f0; 1g

and

�i(ajs; qi) =
1

2
for each a 2 A if s =2 C0 [ C1:

Let

 (s) = s0 if s = s0 or s = (s0�i; �1) for some i

= s1 if s = s1 or s = (s1�i; �0) for some i

= s otherwise.

Finally, choose � 2]0; 1[ and de�ne a mechanism � as follows: for each a 2 A =
f0; 1g;

�(ajs; q) = (1� �)�(ajh( (s))) + �

n

nX
j=1

�
�j(s)�j(ajs; qj) + (1� �j(s))

1

2

�
:
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To interpret the mechanism, suppose that the jurors announce the pro�le (s; q):
With probability 1 � �; the decision maker will choose action a with probability
�(ajh( (s))): With probability �

n
; one of the jurors will be randomly selected

for \scrutiny." Suppose that juror i is chosen. If �i(s) = 0; the decision maker
randomizes uniformly over a = 0 and a = 1. If �i(s) = 1, then a strict majority
of the jurors have announced the same signal (either �0 or �1) and juror i is a
member of this strict majority. The decision maker now \rewards" juror i for
his majority announcement by choosing action a�i (�0; qi) if s 2 C0 or a

�
i (�1; qi) if

s 2 C1: The mechanism is designed so that, when the jurors' signals are accurate,
the juror who is chosen for scrutiny is rewarded when he truthfully announces his
private information. It is important to note that, in our framework, any scheme
to \reward" an agent typically must utilize all agents' information. Except in
extreme cases, an agent's optimal choice depends nontrivially on his information.
To illustrate the idea of the proof, let � be the mechanism de�ned above and

suppose that agent i with characteristic qi observes signal �1: To prove incentive
compatibility, it su�ces to show that, when �(P ) � 1;X
s�i2S�i

X
�2�

X
a2A

[�(ajs�i; �1; q�i; qi)� �(ajs�i; s0i; q�i; q0i)]ui(a; �; qi)P (�js�i; �1)P (s�ij�1) � 0

for each q�i 2 Q�i; qi 2 Qi; and (s0i; q0i) 2 Si�Qi: The argument relies very heavily
on the fact that

P (�1js1) � 1 and P (s1�ij�1) � 1 when �(P ) � 1:

We �rst claim that by truthfully announcing s0i = �1; juror i cannot bene�t
from lying about his characteristic. To see this, �rst note that, when i truthfully
announces his signal, a misreported characteristic has no e�ect on the action
chosen by the decision maker when another juror is chosen for scrutiny. Indeed,
a misreported characteristic can only a�ect the reward that the decision maker
will choose for juror i if, after having been chosen for scrutiny, juror i receives a
reward. If �(P ) � 1; then P (�1js1) � 1 and P (s1�ij�1) � 1, i.e., juror i believes
that, with very high probability, the true state is �1 and the other jurors have
announced the signal pro�le s1�i: Now suppose that juror i is to be rewarded by
the decision maker. If i announces (�1; qi); the decision maker will, with high
probability, choose the action a�i (�1; qi) that is optimal for (�1; qi): If he announces
(�1; q

0
i); then the decision maker will, with high probability, choose the action

a�i (�1; q
0
i) that is optimal for q

0
i: Assumptions (i) and (ii) guarantee that such a
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lie cannot be pro�table if qi is the true characteristic of juror i. We next show
that, by misreporting s0i = �0; juror i still cannot bene�t from lying about his
characteristic. Since (s1�i; �0) 2 C1 and (s

1
�i; �1) 2 C1; we conclude that neither

i's misreported signal nor i's misreported type can have any e�ect on the action
chosen by the decision maker when s�i = s1�i and juror i is not chosen for scrutiny.
As in the previous case, �(P ) � 1 implies that P (�1js1) � 1 and P (s1�ij�1) � 1
so, again, juror i is concerned with the consequences of his announcement when
the state is �1 and the other jurors have announced the signal pro�le s

1
�i: If i

announces (�1; qi) and if i is chosen for scrutiny, then the decision maker will
choose action a�i (�1; qi) when s�i = s1�i since i agrees with the majority and the
majority has announced �1: If i announces (�0; q

0
i) and if i is chosen for scrutiny,

then the decision maker will randomize over 0 and 1 when s�i = s1�i since i does
not agree with the majority. Again, conditions (i) and (ii) guarantee that i cannot
bene�t from lying.
Finally, we turn to the performance of the mechanism. For su�ciently small

�; X
s

k�(�jh(s))� �(�js; q)kP (s) �
X
s

k�(�jh(s))� �(�jh( (s)))kP (s)

for each q 2 Q: Now s and  (s) di�er only when all but one juror have announced
the same signal, an event of small probability when �(P ) � 1. Consequently,X

s

k�(�jh(s))� �(�jh( (s)))kP (s) � 2
X
i2Jn

�
P (s1�i; �0) + P (s0�i; �1)

�
and, since X

i2Jn

�
P (s1�i; �0) + P (s0�i; �1)

�
� 0 when �(P ) � 1;

we obtain the desired result.

4. The Case of Many Experts

We turn next to the case in which there is an increasing number of experts. Similar
to the case with a �xed �nite number of experts, the basic idea here plays o� the
fact that, as the number of agents increases, any single agent will have little chance
of a�ecting the decision. As in the previous case, the correlation in the agents'
signals allows us to construct a statistical test of the announcement submitted by a
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randomly chosen agent, which he will more likely pass by announcing truthfully if
other agents are announcing truthfully. Again we reward an agent who passes the
test by distorting the decision in favor of that agent's optimal decision with small
probability. There is one new di�culty here, however. As the number of agents
increases, the chance that any given agent is chosen for scrutiny (and the chance
to get his more preferred decision) goes to zero as the number of agents increases.
Therefore, the reward that provides the incentive for truthful revelation goes to
zero. We show, however, that the basic idea can still be employed by showing that
an agent's expected e�ect on the decision goes to zero more quickly than does the
expected reward for truthful announcement.

4.1. The Setup

Throughout this section, � = f�1; ::; �mg will denote a �xed �nite state space and
A a �xed �nite action space with jAj = N . In addition, let T be a �xed �nite
set that will serve as the set of signals common to all experts (i.e., Si = T for
all i) and let ���

��T denote the set of probability measures � on �� T satisfying

the following condition: for every �; �̂ with � 6= �̂; there exists s 2 T such that
�(sj�) 6= �(sj�̂): Next, let T n denote the cartesian product of n copies of T .

De�nition: Let K; L and M be positive numbers, let n be a positive integer and
let � 2 ���

��T . An aggregation problem �(n;K;M; �; L) is a collection consisting
of the following objects:
(i) For each i 2 Jn; a space of characteristics Q

n
i and a probability measure

P̂ n 2 �Qn (Q
n := Qn1 � � � � �Qnn):

(ii) For each i 2 Jn; a function

uni : A���Qni ! R

satisfying theK-strict maximum condition and bounded byM , i.e., juni (a; �; qi)j �
M for each (a; �; qi) 2 A���Qni :
(iii) A probability measure P n 2 �CI

��Tn satisfying the following conditional
independence condition: for each (�; s1; : : : ; sn) 2 �� T n;

P n(s1; : : : ; sn; �) = Probfesn1 = s1; esn2 = s2; : : : ; esnn = sn; ~� = �g = �(�)
nY
i=1

�(sij�):

14



(iv) Let


̂i(�jsi; qni ) =
"
max
a2A

[uni (a; �; q
n
i )]�

1

N

X
a

uni (a; �; q
n
i )

#
�(�jsi): (4.1)

Then

jj 
̂i(�js0i; q0ni )
jj
̂i(�js0i; q0ni )jj2

� 
̂i(�jsi; qni )
jj
̂i(�jsi; qni )jj2

jj2 � L

for all i 2 f1; : : : ; ng and all (si; qni ); (s0i; q0ni ) 2 T �Qni :

Condition (iii) is a conditional independence assumption. Condition (iv) is a
nondegeneracy assumption that says that 
̂i(�js0i; q0ni ) is not a scalar multiple of

̂i(�jsi; qni ) and that the normalized vectors are \uniformly" bounded away from
each other for all n. In the simple jury example in which (1) � = f�0; �1g; (2)
Si = f�0; �1g; (3) for all n, Qni � C for some �nite set C � [0; 1] and (4) for all
n, uni (a; �; qi) = a(�� qi); condition (iv) is satis�ed for some positive number L if
and only if for each (si; qi); (s

0
i; q

0
i) 2 T �Qni with (si; qi) 6= (s0i; q0i);

qi�(�0jsi)
(1� qi)�(�1jsi)

6= q0i�(�0js0i)
(1� q0i)�(�1js0i)

:

This condition is \generic" in the following sense: for each � 2 ���
��T ; the nonde-

generacy condition is satis�ed for all (q1; : : : ; qjCj) 2 [0; 1]jCj outside a closed set
of Lebesgue measure zero.
An aggregation problem corresponds to an instance of our general model in

which the signal sets of the experts are identical and the stochastic structure
exhibits symmetry.7 We are assuming, as always, that the pro�le of experts
characteristics is a realization of a random vector ~qn and that (~�; ~sn) and ~qn are
stochastically independent so that the joint distribution of the state, signals and
characteristics is given by the product probability measure P n 
 P̂ n:
Let � : �� ! �A denote the planner's choice function. We will assume that

� is continuous at each of the vertices of ��; i.e., � is continuous at �� for each
� 2 �:

7Other more general structures are possible. For example, we could allow for a replica model
in which each replica consists of r cohorts, each of which contains n experts as in McLean and
Postlewaite (2002).
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4.2. The Asymptotic Result

Proposition 2: Let K;M;L and " be positive numbers and let � 2 ���
��T :

There exists an n̂ such that, for all n > n̂ and for each aggregation problem
�(n;K;M; �; L); there exists an incentive compatible mechanism �n satisfying

sup
qn2Qn

X
sn2Sn

k�(�jh(sn))� �n(�jsn; qn)kP (sn) � ":

The proof of Proposition 2 is deferred to section 6, but we will provide an
informal construction of the mechanism and present the idea of the argument for
the asymptotic version of the jury problem. The proof depends crucially on the
fact that, for all su�ciently large n, we can partition T n into m + 1 disjoint sets
Bn
0 ; B

n
1 ; : : : ; B

n
m such that for each i 2 Jn;

Probf~sn 2 Bn
0 j~sni = sig � 0 for all si 2 T

Probf~� = �kj~sn = sng � 1 for all k = 1; : : : ;m and all sn 2 Bn
k

Probf~sn 2 Bn
k j~sni = sig � �(�kjsi) for all k = 1; : : : ;m and all si 2 T

and

Probf(~sn�i; si) 2 Bn
k and (~s

n
�i; s

0
i) 2 Bn

k j~sni = sig � Probf(~sn�i; si) 2 Bn
k j~sni = sig

for each k = 1; : : : ;m and each si;s
0
i 2 T: These sets are used to de�ne the

mechanism. For each i, qi 2 Qni and �; let ani (�; qni ) 2 A denote the optimal action
for expert i in state � when i's characteristic is qni : Formally, let

fani (�; qni )g = argmax
a2A

uni (a; �; q
n
i ):

For each k = 1; : : : ;m and each sn 2 Bn
k , de�ne �

n
i (�jsn; qni ) 2 �A where

�ni (ajsn; qni ) = 1 if a = ani (�k; q
n
i )

= 0 if a 6= ani (�k; q
n
i )

If sn 2 Bn
0 ; de�ne �

n
i (�jsn; qni ) 2 �A where

�ni (ajsn; qni ) =
1

N
for all a 2 A:
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Let

�ni (s
n; qni ) =

mX
k=1

�Bnk (s
n)
i(�kjsni ; qni )

where


i(�jsni ; qni ) =

̂i(�jsni ; qni )
jj
̂i(�jsni ; qni )jj2

and 
̂i(�jsni ; qni ) is de�ned in equation (4.1). Note that 
i(�jsni ; qni ) is not generally
a probability measure on � but it is the case that 0 � 
i(�jsni ; qni ) � 1 for each �.
Next, de�ne

'(sn) = ��k if s
n 2 Bn

k and k = 1; : : : ;m

= h(sn) if sn 2 Bn
0 :

Finally, de�ne a mechanism where for each a 2 A and each (sn; qn) 2 T n �Qn;

�n(ajsn; qn) = (1��)�(aj'(sn))+�
n

nX
j=1

�
�nj (s

n; qnj )�
n
j (ajsn; qnj ) + (1� �nj (s

n; qnj ))
1

N

�
:

The mechanism has a 
avor similar to that of the jury model presented above.
With probability 1 � �; the decision maker will choose action a with probabil-
ity �(aj'(sn)): With probability �

n
; one of the experts will be randomly selected

for \scrutiny." Suppose that expert i is chosen. If sn 2 Bn
k , then the decision

maker behaves as if the true state is �k: In this case, �
n
i (s

n; qni ) = 
i(�kjsni ; qni ):
If sn 2 Bn

k , then the decision maker will randomize uniformly over the actions
a 2 A with probability 1 � 
i(�kjsni ; qni ) while, with probability 
i(�kjsni ; qni ); he
will choose action ani (�k; q

n
i ) which is the best possible action for expert i in state �k

if his true characteristic is qni : The mechanism is designed so that, in the presence
of many experts, the expert who is chosen for scrutiny is rewarded when he truth-
fully announces his private information. Since we need to provide incentives for
truthful announcements with many alternatives, the mechanism requires a more
complex randomizing scheme than that of the jury model where the analogue of

i(�kjsni ; qni ) simply takes the value 0 or 1, depending on whether or not a juror's
announcement agrees with the majority. To illustrate the idea of the proof, let
� be the mechanism de�ned above and suppose that expert i with characteristic
qni 2 Qni observes signal sni = si 2 T: To prove incentive compatibility, it su�ces
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to show that for each s0i 2 T , for each qn0i 2 Qni ; and for each qn�i 2 Qn�i;

X
sn�i

X
a2A

�
�n(ajsn�i; qn�i; si; qni )� �(ajsn�i; qn�i; s0i; qn0i )

� "X
k

ui(a; �k; q
n
i )P (�kjsn�i; si)

#
P (sn�ijsi) � 0:

(4.2)
The properties of the partition enumerated above imply that the expression on
the LHS of inequality (4.2) is approximately equal toX
k

X
sn�i

:(sn�i;si)2Bnk
(sn�i;s

0
i)2Bnk

X
a2A

�
�n(ajsn�i; qn�i; si; qni )� �n(ajsn�i; qn�i; s0i; qn0i )

�
[ui(a; �k; q

n
i )]P (s

n
�ijsi)

(4.3)
so it actually su�ces to prove that expression (4.3) is positive.
If (sn�i; si) 2 Bn

k and (s
n
�i; s

0
i) 2 Bn

k ; then �
n
j (ajsn�i; si; qnj ) = �nj (ajsn�i; s0i; qnj ) for

j 6= i and it follows thatP
k

P
sn�i

:(sn�i;si)2Bnk
(sn�i;s

0
i)2Bnk

P
a2A

�
�n(ajsn�i; qn�i; si; qni )� �(ajsn�i; qn�i; s0i; qn0i )

�
[ui(a; �k; q

n
i )]P (s

n
�ijsi)

� �
n

P
k

[
i(�kjsi; qni )� 
i(�kjs0i; qn0i )]
�
ui(a

n
i (�k; q

n
i ); �k; q

n
i )� 1

N

P
a

uni (a; �k; q
n
i )

� P
sn�i

:(sn�i;si)2Bnk
(sn�i;s

0
i)2Bnk

P (sn�ijsi)

� �
n

P
k

[
i(�kjsi; qni )� 
i(�kjs0i; qn0i )]
�
ui(a

n
i (�k; q

n
i ); �k; q

n
i )� 1

N

P
a

uni (a; �k; q
n
i )

�
�(�kjsi)

= �
n

P
k

[
i(�kjsi; qni )� 
i(�kjs0i; qn0i )] 
̂i(�kjsi; qni ):

The nondegeneracy condition guarantees that this last expression is positive and
the mechanism is incentive compatible.
In the jury case,


̂i(�0jsi; qi) =
qi
2
�(�0jsi)


̂i(�1jsi; qi) =
1� qi
2

�(�1jsi):
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Consequently, P
k

[
i(�kjsi; qi)� 
i(�kjs0i; q0i)] 
̂i(�kjsi; qi) =

[
i(�0jsi; qi)� 
i(�0js0i; q0i)] qi2 �(�0jsi) + [
i(�1jsi; qi)� 
i(�1js0i; q0i)] 1�qi2 �(�1jsi)

and this equation has the following interpretation. In a jury model with many
jurors, the mechanism designer will learn the true state with probability close to 1.
Let r(�; si; qi) denote the probability with which the designer chooses a = 1 when
the estimated state is � and agent i announces (si; qi): When all other agents are
truthful, agent i has little e�ect on the outcome if no agent is chosen for scrutiny.
Furthermore, agent i has little e�ect on the outcome when another agent is chosen
for scrutiny. Hence, when the number of experts is su�ciently large, expert i will
have a strict incentive to tell the truth if he has a strict incentive to tell the truth
when he is chosen for scrutiny. Conditional on being chosen, i's expected payo�
when he truthfully announces (si; qi) will be

�qir(�0; si; qi)�(�0jsi) + (1� qi)r(�1; si; qi)�(�1jsi)

while his expected payo� when when he deceitfully announces (s0i; q
0
i) will be

�qir(�0; s0i; q0i)�(�0jsi) + (1� qi)r(�1; s
0
i; q

0
i)�(�1jsi):

Consequently, he will have a strict incentive to tell the truth if

�qi [r(�0; si; qi)� r(�0; s
0
i; q

0
i)] �(�0jsi)+(1�qi) [r(�1; si; qi)� r(�1; s

0
i; q

0
i)] �(�1jsi) > 0:

In terms of the mechanism �; 
i(�0jsi; qi) represents the probability that juror i
is \rewarded" when the decision maker believes that the true state is �k: Conse-
quently,

r(�0; si; qi) = 
i(�0jsi; qi)(0) + [1� 
i(�0jsi; qi)]
1

2

r(�1; si; qi) = 
i(�1jsi; qi)(1) + [1� 
i(�1jsi; qi)]
1

2

with similar expressions for r(�0; s
0
i; q

0
i) and r(�1; s

0
i; q

0
i): Substituting the de�nitions

of r(�0; si; qi), r(�1; s; q); r(�0; s
0
i; q

0
i) and r(�1; s

0
i; q

0
i) above, we conclude that agent

i will have a strict incentive to tell the truth if

[
i(�0jsi; qi)� 
i(�0js0i; q0i)]
qi
2
�(�0jsi)+[
i(�1jsi; qi)� 
i(�1js0i; q0i)]

1� qi
2

�(�1jsi) > 0

which is precisely what we need.
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5. Discussion

Informational requirements of the mechanism

In constructing a mechanism of the sort we analyze, the decision maker needs
to know some, but not all the data of the problem. Importantly, the decision
maker does not need to know the experts' biases, that is, their preferences: these
are elicited by the mechanism. The experts have an incentive to truthfully an-
nounce that part of their private information independently of whether or not
they truthfully announce their information about the state. To employ the mech-
anism the decision maker needs only to set the probability that he will scrutinize a
randomly chosen agent. He would like to choose the smallest probability that will
provide each agent with the incentive to reveal truthfully. When agents' signals
have varying precision, the decision maker needs to know the minimum precision
of the signals to determine the optimal probability of scrutiny. If the decision
maker believes that the minimum precision is low, he will need to scrutinize with
higher probability than if he believes the minimum precision to be high. The deci-
sion maker does not need to know which expert has that minimum precision or the
distribution of the precisions of the signals. In other words, the decision maker
can always be conservative and scrutinize with su�ciently high probability so
that the experts will have incentives to truthfully reveal their private information.
Higher probabilities of scrutiny will still provide incentives to reveal truthfully,
but at a higher cost of distorting his decisions. In summary, the decision maker
needs to know nothing about the agents' preferences, and very little about their
information in order to employ the sort of mechanism we analyze.
The mechanism is similarly informationally undemanding on the informed

agents. Truthful revelation gives an agent increased probability of getting his
preferred outcome should he be scrutinized, while misreporting his information
gives the agent a chance of a�ecting the decision maker's choice in the absence of
scrutiny. To weigh these, an agent needs to know, roughly, the number of agents
and the minimum precision of other agents' signals. The chance that he is scru-
tinized depends on the number of other agents, and the chance that he passes
scrutiny depends on the minimum precision of their signals. The chance that he
will a�ect the outcome in the absence of scrutiny similarly depends on the number
of other agents and the precision of their signals. He needs to know neither of
these perfectly, and most importantly, he does not need to know anything about
other agents' preferences.

20



Informational size

Our results bear a resemblance to those in McLean and Postlewaite (2002)
(MP). That paper considered allocations in pure exchange economies in which
agents had private information. The paper introduced a notion of informational
size and showed (roughly) that when agents were informationally small, e�cient
allocations could be approximated by incentive compatible mechanisms. Those
results are somewhat similar to our results in that we show that a decision rule that
depends on private information can be approximated by an incentive compatible
mechanism in some circumstances. If one used the notion of informational size,
the experts are informationally small in the circumstances that a decision rule can
be closely approximated.
While there is a resemblance between the results in MP and the current paper,

there are important di�erences. First, MP deals with pure exchange economies,
so agents can be given incentives to reveal truthfully private information through
transfers of goods. In the current paper there do not exist goods that can be used
for transfers; incentives have to be provided by distorting the choice rule.
More importantly, in the current paper experts have private information about

their own preferences, as did agents in the pure exchange economies in MP. There
is an important di�erence, however. In a pure exchange economy with monotonic
preferences, the mechanism designer knows that independent of preferences, he
can construct outcomes that reward truthful revelation: simply give an agent
strictly more of all goods. The preferences in the current paper are not restricted
in this way and for a mechanism to reward or punish an expert, the expert's
utility function must be elicited. Finally, MP show only that e�cient outcomes
can be approximated by incentive compatible allocations. Restriction to e�cient
outcomes is relatively innocuous when all relevant parties are included in the
e�ciency calculation. However, we treat the case in which a non-participant {
the decision-maker { is not a disinterested party. In our motivating example of
the commanding o�cer eliciting information from his �eld o�cers, the choice
function of interest was to attack the enemy if their strength was not too great.
This may be ine�cient from the �eld o�cers' perspective since they may prefer
not attack under any circumstances. The current paper provides guidance to a
decision maker who has a stake in the outcome, while MP does not.

Conditionally dominant strategy mechanisms

The mechanisms that we construct in Propositions 1 and 2 actually satisfy an
incentive compatibility requirement that is stronger than the \traditional" notion
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of interim Bayesian incentive compatibility as de�ned above. In particular, our
mechanism � satis�es the following condition: for each i, each (si; qi) 2 Si � Qi;
each (s0i; q

0
i) 2 Si �Qi; and each function b�i : S�i ! Q�i;X

s�i2S�i

X
�2�

X
a2A

[�(ajs�i; si; b�i (s�i) ; qi)� �(ajs�i; s0i; b�i (s�i) ; q0i)]ui(a; �; qi)P (�; s�ijsi) � 0:

(5.1)

Since the random vectors
�
~�; ~s
�
and ~q are stochastically independent, it is

clear that this condition is stronger than interim incentive compatibility. In our
model, we formulate a revelation game in which expert i announces his type,
i.e., a pair, (si; qi), where si is his signal about the state and qi is the expert's
personal characteristic. The equilibrium of the mechanism requires, as usual, that
no expert's expected utility would increase by announcing an incorrect signal when
other experts are truthfully announcing their signals. The equilibrium requirement
for the expert's characteristic, however, is stronger: it requires that, conditional
on truthful announcement of signals, truthful announcement of his characteristic
be optimal regardless of other experts' announcements.
There are many problems in which agents have multidimensional private in-

formation and it is useful to know whether their information can be decomposed
into distinct parts, with some parts being more easily extracted than other parts.
It is well-understood that mechanisms for which truthful revelation is a dominant
strategy are preferable to those for which truthful revelation is only Bayesian in-
centive compatible. Much of mechanism design uses the weaker notion of incentive
compatibility only because of the nonexistence of dominant strategy mechanisms
that will accomplish similar goals. Dominant strategy mechanisms have many
advantages: they are not sensitive to the distribution of players' characteristics,
players have no incentive to engage in espionage to learn other players' character-
istics and players need to know nothing about other players' strategies in order
to determine their own optimal play. If mechanisms exist for which truthful an-
nouncement of some component of a player's information is a dominant strategy,
these advantages will accrue at least to certain parts of a player's information.
Formally, consider a revelation game � with n players whose (�nite) type sets

are (Ti)
n
i=1. As usual, T = T1 � � � � � Tn: We say that (T

1
i ; T

2
i ) is a decomposition

of Ti if Ti = T 1i � T 2i , and that f(T 1i ; T 2i )gni=1 is a decomposition of T if (T 1i ; T 2i )
is a decomposition of Ti for i = 1; : : : ; n. Let x : T ! A be a mechanism and
f(T 1i ; T 2i )gni=1 be a decomposition of T; and consider functions fdi : Ti ! T 2i gni=1;
denote by d�i(t�i) the collection fdj(tj)gj 6=i. We say x is a conditionally dominant

22



strategy mechanism with respect to T 2 := T 21 � � � � � T 2n if for each i, for each
(t1i ; t

2
i ) 2 Ti; for each (t̂1i ; t̂2i ) 2 Ti; and for each fdj (�)gj 6=i;X

t�i

�
ui(x(t

1
�i; d�i(t�i); t

1
i ; t

2
i ); t

1
i ; t

2
i ; t�i)� ui(x(t

1
�i; d�i(t�i); t̂

1
i ; t̂

2
i ); t

1
i ; t

2
i ; t�i)

�
P (t�ijt1i ; t2i ) � 0:

If Ti = T 2i for all i, then the notion of conditional dominant strategy coincides
with the notion of dominant strategy for games of incomplete information (see,
for example, the discussion in Cremer and McLean (1985), pp349-350.)
It is easy to verify that in our setup � is a conditionally dominant strategy

mechanism with respect to Q if and only if it satis�es inequality (5.1). This result
follows from the fact that the utility of expert i does not depend on his opponents'
personal characteristics q�i and the random vectors (~�; ~s) and ~q are stochastically
independent.
Mechanisms satisfying the conditional dominant strategy property with respect

to some part of the asymmetric information are less sensitive to the informational
assumptions underlying Bayes equilibria. For this reason, the \maximal" decom-
position (that is, the decomposition that makes T 2 as \large" as possible) for
which there exist incentive compatible mechanisms that are conditionally domi-
nant strategy with respect to T 2 is of interest.

Group manipulation

This paper uses Bayes equilibrium as the solution concept, as does much of
the literature on implementation in asymmetric information games. A drawback
of many of the games that employ Bayes equilibrium to implement, or virtually
implement, social choice functions is that they are susceptible to manipulation
by coalitions: even a pair of agents can gain dramatically by colluding.8 The
mechanism used in this paper is not immune to coalitional manipulation, but
it is far less sensitive to it. The probability that an agent can get his most
desired alternative if he is scrutinized o�sets the probability that he can alter the
decision maker's choice in the absence of scrutiny. When there is a �xed �nite
number of agents, the probability that an agent can a�ect the decision maker's
choice in the absence of scrutiny becomes arbitrarily small as signals become
increasingly accurate, which allows the decision maker to choose the probability
of scrutiny to be small. The probability that any coalition with fewer than a
majority of the agents can a�ect the outcome will similarly be vanishingly small

8See, for example, Jackson (2001) and Abreu and Sen (1991).
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as signals become su�ciently accurate. Consequently, even small probabilities of
scrutiny will make manipulation unpro�table for coalitions with fewer than half
the agents when signals are very accurate. Similarly, when the number of agents
gets large, the minimal size coalition that will �nd coordinated deviations from
truthful announcement increases without bound.

Conditional independence of experts' information

In both the �nite case and the large numbers case we assumed that experts'
information was conditionally independent. This is primarily for pedagogical rea-
sons and the logic underlying the mechanism does not depend crucially on the
assumption. Suppose that the accuracy of the experts' signal is �xed. The ex-
pected number of experts who receive the same signal is higher for the typical
case of conditionally correlated signals than when the signals are conditionally
independent. It follows that in the case of correlated signals the probability that
any single expert will be pivotal in the �nal decision decreases relative to the case
of conditional independence. Hence the expert's gain from misreporting his signal
decreases. At the same time the probability that the expert's signal is in the
majority increases. And this makes truthful revelation more pro�table. To sum
up, allowing correlation across signals increases the bene�ts of truthful revelation
and decreases the bene�ts from misreporting, thus permitting the decision maker
to decrease the probability of scrutiny.9

Uniform convergence

To simplify the exposition we assumed that the experts know the social choice
rule �. However, our results extend to the case in which the experts are uncertain
about the rule that the decision maker is implementing. For example, suppose
that the social planner has a personal characteristic that a�ects his payo�, but is
unknown to the experts. Clearly, the planner would like to condition the choice
of the choice rule � on his private information.
In Propositions 1 and 2 we provided conditions under which there exists an

incentive compatible mechanism that converges to the social choice rule �. Notice
that these conditions do not depend on �. In other words, we have a uniform
convergence over the set of social choice rules. This implies that the planner can
approximately implement a set of rules, one for each of his types.

9Of course, there are cases in which the correlation among the signals helps the agents make
pro�table coalitional deviations. For example, suppose that there are two groups of experts and
the signals are perfectly correlated within each group. It is possible that all the agents in a
certain group have an incentive to lie about their signals.
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Costly information acquisition

Agents in our model are exogenously informed. There may be a serious prob-
lem with the type of mechanism we analyze if agents must make investments to
acquire information. For both the �nite population model and the increasing
number of agents model, it is agents' minimal e�ect on the posterior beliefs that
determine the decision that allows the extraction of agents' information at low
cost. However, agents have little or no incentive to invest in information if that
information will have minimal e�ect on the posterior beliefs.

Multiple equilibria and weak Virtual Bayesian Implementation

As we mentioned in our discussion of the related literature, our approach
to the aggregation of expert opinions is very much related to virtual Bayesian
implementation. To clarify this relationship, de�ne a social choice function f :
S ! �(A) where f(s) = �(�jh(s)). Following the de�nitions in Serrano and Vohra
(2005), the rule f is virtually Bayesian implementable if for every " > 0; there
exists a social choice function f " : S�Q! �(A) such that f " is exactly Bayesian
implementable and

sup
q2Q

max
s2S

jj�(�jh(s))� f "(�js; q)jj < ":

To be precise, Serrano and Vohra stipulate that supq2Qmaxs2S maxa2A jf(s)(a)�
f "(s; q)(a)j < "; but this is inconsequential. To say that f " is exactly Bayesian
implementable means that there exists a mechanism consisting of message spaces
M1; ::;Mn and an outcome function G :M1�� � ��Mn ! �(A) with the following
property: every Bayes-Nash equilibrium of the associated game of incomplete
information induces an outcome distribution on A that coincides with f ": Hence,
the rule f is virtually Bayesian implementable if every Bayes-Nash equilibrium
of the game of incomplete information associated with f " induces an outcome
distribution on A that is close to f for all pro�les in S. A weaker notion of virtual
Bayesian implementation would only require that every Bayes-Nash equilibrium
of the game of incomplete information associated with f " induce an outcome
distribution on A that is close to f on a subset of Ŝ � S with P (Ŝ) � 1: A third,
still weaker notion would only require that there exists a Bayes-Nash equilibrium
of the game of incomplete information associated with f " that induces an outcome
distribution on A that is close to f on a subset of Ŝ � S with P (Ŝ) � 1:
Recall that X

s2S
jj�(�jh(s))� �(�js; q)jjP (s) � "
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implies that
Probfjj�(�jh(~s))� �(�j~s; q)jj �

p
"g > 1�

p
":

Hence, our notion of implementation corresponds precisely to this third, weakest
notion of virtual Bayesian implementation where f(s) corresponds to �(�jh(s))
and �(�js; q) corresponds to f "(�js; q). This form of weak virtual Bayesian imple-
mentation has certain strengths and weaknesses relative to the stronger extant
de�nition of virtual Bayesian implementation. Our weak implementation concept
does not require that the social choice rule satisfy Bayesian monotonicity, mea-
surability, virtual monotonicity or related assumptions. Instead, agents need only
be informationally small as de�ned in McLean and Postlewaite (2002), a feature
of the probability structure that is not related to the properties of �: On the other
hand, there may be several equilibria associated with the mechanism �; not all of
which are good approximations of � in our sense. Indeed, these other equilibria
may be preferred by the experts to the truthful revelation equilibrium. Consider
the example in the introduction with a commander trying to extract information
from his �eld o�cers. All �eld o�cers reporting that the enemy is strong might be
an equilibrium preferred by all �eld o�cers to the truthful equilibrium. It is often
the case that mechanisms of the type we analyze can be augmented so nontruthful
announcements will no longer be equilibria while the truthful equilibria remain.10

Whether or not this is possible in our framework is interesting but beyond the
scope of the present paper.

Commitment

In our mechanism, the decision maker elicits truthful announcement and then
uses the announced types to choose an element of A. Our mechanism is quite
standard in that, for each (s; q) pro�le, we construct a random variable (e.g., a
\spinner") taking values in A and whose distribution is precisely �(�js; q): How-
ever, a potential problem of commitment may arise: will the decision maker, after
eliciting the type pro�le (s; q); actually choose the outcome using the measure
�(�js; q); rather than his \ideal" measure �(�jh(s)) = �(�jP�(�js))? This com-
mitment question will also arise in the virtual Bayesian implementation context
described above: will the decision maker, after eliciting the type pro�le s; actually
choose the outcome using the approximating measure f "; rather than his \ideal"
measure f? Perhaps it is helpful to decompose the commitment question into two
stages. The decision maker must build the \right" spinner, and then abide by the

10See, for example, Postlewaite and Schmeidler (1986).
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spinner's realization. The �rst stage could be eliminated by allowing the agents
perform a jointly controlled lottery (Aumann, Maschler and Stearns (1968)) that
mimics �. In this way, the decision maker does not make random choices. How-
ever, the decision maker must still commit to choosing the outcome of the jointly
controlled lottery.
We assume the decision maker can commit to outcomes he does not like ex post

(e.g., an outcome that is optimal for one of the experts.) This ability to commit
is crucial, since as pointed out in the introduction, experts may have a dominant
strategy to report a given signal in the absence of commitment. However, for
some problems (such as the jury problem) it may be natural that an outcome rule
is chosen prior to the experts receiving information, which essentially implements
the necessary commitment. The sort of mechanism we analyze might also be used
by a single decision maker for a sequence of decision problems with groups of
informed agents who play only one time (for example the jury problem). In such
cases reputational concerns might provide the decision maker with the incentive
to follow the mechanism's prescribed outcome but this more complex strategic
formulation requires an analysis that is beyond the scope of this paper.

6. Proofs

6.1. Proof of Proposition 1

Choose " > 0 and let � be the mechanism de�ned after the statement of Propo-
sition 1 with 0 < � < "

4
:

Part 1: There exists � 2]0; 1[ such that, for all P satisfying �(P ) > �;X
s

k�(�jh(s))� �(�js; q)kP (s) < " for all q 2 Q:

Proof : Let

H(ajs; q) =
nX
j=1

�
�j(s)�j(ajs; qj) + (1� �j(s))

1

2

�
so that

�(�js; q) = (1� �)�(�jh( (s))) + �

n
H(�js; q):
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Therefore, P
s

k�(�jh(s))� �(�js; q)kP (s) �

P
s

k�(�jh(s))� �(�jh( (s)))kP (s) + �
P
s



�(�jh( (s)))� 1
n
H(�js; q)



P (s):
Next, observe that

�
X
s





�(�jh( (s)))� 1

n
H(�js; q)





P (s) � 2� < "

2

and that P
s

k�(�jh(s))� �(�jh( (s)))kP (s)

=
P
i2Jn



�(�jh(s1�i; �0))� �(�jh(s1))


P (s1�i; �0) + P

i2Jn



�(�jh(s0�i; �1))� �(�jh(s0))


P (s0�i; �1)

� 2
P
i2Jn

�
P (s1�i; �0) + P (s0�i; �1)

�
:

Since
P

i2Jn

�
P (s1�i; �0) + P (s0�i; �1)

�
! 0 as �(P )! 1; it follows that there exists

� 2]0; 1[ such that
P

s k�(�jh(s))� �(�jh( (s)))kP (s) < "
2
whenever �(P ) > �:

Therefore, �(P ) > � implies thatX
s

k�(�jh(s))� �(�js; q)kP (s) < ":

Part 2: In this part, we establish incentive compatibility. Suppose that juror i
observes signal �1: A mirror image argument can be applied when juror i observes
signal �0:

Step 1 : There exists a �0i such that, for all P satisfying �(P ) > �0i and for all
q�i 2 Q�i and all qi; q0i 2 Qi;X
s�i2S�i

X
�2�

X
a2A

[�(ajs�i; �1; q�i; qi)� �(ajs�i; �1; q�i; q0i)]ui(a; �; qi)P (�js�i; �1)P (s�ij�1) � 0:
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Proof : For each a 2 A;P
s�i2S�i

:(s�i;�1)2C1

P
�2�

[ui(a
�
i (�1; qi); �; qi)� ui(a; �; qi)]P (�js�i; �1)P (s�ij�1)

� [ui(a�i (�1; qi); �1; qi)� ui(a; �1; qi)]

when �(P ) � 1: Hence, there exists a �0i such that, for all P satisfying �(P ) > �0i;X
s�i2S�i

:(s�i;�1)2C1

X
�2�

[ui(a
�
i (�1; qi); �; qi)� ui(a; �; qi)]P (�js�i; �1)P (s�ij�1) �

K

2

whenever a 6= a�i (�1; qi): Next, note that

�(ajs�i; �1; q�i; qi)��(ajs�i; �1; q�i; q0i) =
�

n
�i(s�i; �1) [�i(ajs�i; �1; qi)� �i(ajs�i; �1; q0i)] :

If (s�i; �1) =2 C0 [ C1; then

�

n
�i(s�i; �1) [�i(ajs�i; �1; qi)� �i(ajs�i; �1; q0i)] =

�

n
�i(s�i; �1)

�
1

2
� 1
2

�
= 0:

If (s�i; �1) 2 C0; then
�i(s�i; �1) = 0:

If (s�i; �1) 2 C1; then
�i(s�i; �1) = 1

Therefore,P
s�i2S�i

P
�2�

P
a2A

[�(ajs�i; �1; q�i; qi)� �(ajs�i; �1; q�i; q0i)]ui(a; �; qi)P (�js�i; �1)P (s�ij�1)

= �
n

P
s�i2S�i

:(s�i;�1)2C1

P
�2�

P
a2A

[�i(ajs�i; �1; qi)� �i(ajs�i; �1; q0i)]ui(a; �; qi)P (�js�i; �1)P (s�ij�1)

= �
n

P
s�i2S�i

:(s�i;�1)2C1

P
�2�

[ui(a
�
i (�1; qi); �; qi)� ui(a

�
i (�1; q

0
i); �; qi)]P (�js�i; �1)P (s�ij�1) � 0:
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Step 2 : There exists a �00i such that, for all P satisfying �(P ) > �00i and for all
q�i 2 Q�i and all qi; q0i 2 Qi;X
s�i2S�i

X
�2�

X
a2A

[�(ajs�i; �1; q�i; qi)� �(ajs�i; �0; q�i; q0i)]ui(a; �; qi)P (�js�i; �1)P (s�ij�1) � 0:

Proof : If �(P ) � 1; then P (�1js1) � 1 and P (s1�ij�1) � 1: Since �(P ) � 1
implies thatP
s�i2S�i

P
�2�

P
a2A

[�(ajs�i; �1; q�i; qi)� �(ajs�i; �0; q�i; q0i)]ui(a; �; qi)P (�js�i; �1)P (s�ij�1)

�
P
a2A

�
�(ajs1�i; �1; q�i; qi)� �(ajs1�i; �0; q�i; q0i)

�
ui(a; �1; qi)

for all qi; q
0
i 2 Qi and all q�i 2 Q�i; it su�ces to prove thatX
a2A

�
�(ajs1�i; �1; q�i; qi)� �(ajs1�i; �0; q�i; q0i)

�
ui(a; �1; qi) > 0

for all qi; q
0
i 2 Qi and all q�i 2 Q�i: Since (s

1
�i; �0) 2 C1 and (s

1
�i; �1) 2 C1; it

follows that, for all j 6= i;

�j(s
1
�i; �0) = 1 = �j(s

1
�i; �1)

and that
�j(�js1�i; �1; qj) = �j(�js1�i; �0; qj):

Therefore,

�
n

�
�j(s

1
�i; �1)�j(ajs1�i; �1; qj) + (1� �j(s

1
�i; �1))

1
2

�
��
n

�
�j(s

1
�i; �0)�j(ajs1�i; �0; qj) + (1� �j(s

1
�i; �0))

1
2

�
= �

n

�
�j(ajs1�i; �1; qj)� �j(ajs1�i; �0; qj)

�
= 0

whenever j 6= i: Next, note that

�i(s
1
�i; �0) = 0 and �i(s

1
�i; �1) = 1:
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Combining these observations, we obtain

�(ajs1�i; �1; q�i; qi)� �(ajs1�i; �0; q�i; q0i)

= �
n

�
�i(s

1
�i; �1)�i(ajs1�i; �1; qi) + (1� �i(s

1
�i; �1))

1
2

�
��
n

�
�i(s

1
�i; �0)�i(ajs1�i; �0; q0i) + (1� �i(s

1
�i; �0))

1
2

�
= �

n

�
�i(ajs1�i; �1; qi)� 1

2

�
so that P

a2A

�
�(ajs1�i; �1; q�i; qi)� �(ajs1�i; �0; q�i; q0i)

�
ui(a; �1; qi)

= �
n

�
ui(a

�
i (�1; qi); �1; qi)� 1

2

P
a2A

ui(a; �1; qi)

�
� �

n
K
2
:

6.2. Proof of Proposition 2

The proof of Proposition 2 relies on the following technical result whose proof is a
summary of results found in McLean and Postlewaite (2002) and (2006). To ease
the burden on the reader, we provide a self contained proof of the lemma in the
appendix.

Lemma 1: For every � > 0; there exists an n̂ > 0 such that, for all n > n̂;
there exists a partition Bn

0 ; B
n
1 ; : : : ; B

n
m of T

n such that
(i) For each i 2 Jn and si 2 T;X

sn�i
:(sn�i;si)2Bn0

P (sn�ijsi) � n�2

(ii) For each i 2 Jn and si; s0i 2 T;
mX
k=1

X
sn�i

:(sn�i;si)2Bnk
(sn�i;s

0
i)=2Bnk

P (sn�ijsi) � n�2
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(iii) For each k = 1; : : : ;m; and for each sn 2 Bn
k ;

jj��k � h(sn)jj � �:

Choose " > 0: Let � and � be positive numbers satisfying

� <
"

4
;

Kjj�(�jsi)jj2
L2

2
� 4m�M > 0;

and11 for each k = 1; : : : ;m,

jjh(sn))� ��k jj � � ) k�(�jh(sn))� �(�j��k)k �
"

2
:

Let n̂ be an integer such that, for all n > n̂; the following three conditions are
satis�ed :

1

n2
<
�

2�
N � 1
N

��
Kjj�(�jsi)jj2

L2

2
� 4mM�

�
� 4M

�n
> 0

and there exists a collection Bn
0 ; B

n
1 ; : : : ; B

n
m of disjoint subsets of Sn satisfying

the conditions of the lemma with � = �:
We now de�ne the mechanism. For each i, qni 2 Qni and �; let a

n
i (�; q

n
i ) 2 A;

�ni (�jsn; qni ) 2 �A; 
i(�kjsni ; qni ); 
̂i(�kjsni ; qni ); �ni (sn; qni ); and '(sn) be de�ned as
they are in Section 4.2. As in Section 4.2, de�ne a mechanism �n as follows: for
each a 2 A and each (sn; qn) 2 T n �Qn;

�n(ajsn; qn) = (1��)�(aj'(sn))+�
n

nX
j=1

�
�nj (s

n; qnj )�
n
j (ajsn; qnj ) + (1� �nj (s

n; qnj ))
1

N

�
:

First, we record a few facts that will be used throughout the proof.

Fact 1: For all sn�i; q
n
�i; s

n
i ; q

n
i ; s

n0
i and q

n0
i ;X

a

�
�n(ajsn�i; qn�i; sni ; qni )� �(ajsn�i; qn�i; sn0i ; qn0i )

� "X
�2�

uni (a; �; q
n
i )P (�jsn�i; sni )

#
� �2M:

11Recall that the mapping � : �� ! �A is continuous at �� for each � 2 �:
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This follows from the observation thatP
a

j
�
�n(ajsn�i; qn�i; sni ; qni )� �(ajsn�i; qn�i; sn0i ; qn0i )

� �P
�2�

uni (a; �; q
n
i )P (�jsn�i; sni )

�
j

�
P
a

j�n(ajsn�i; qn�i; sni ; qni )� �(ajsn�i; qn�i; sn0i ; qn0i )j
P
�2�

juni (a; �; qni )jP (�jsn�i; sni ) � 2M

Fact 2: For all sni and s
n0
i ,

mX
k=1

j�(�kjsni )� Probf(~sn�i; sni ) 2 Bn
k ; (~s

n
�i; s

n0
i ) 2 Bn

k j~sni = sni gj � 2�

To see this, simply duplicate the calculations in the proof of Claim 1, p.2444,
in McLean and Postlewaite (2002), then use parts (i) and (ii) of Lemma 1 to
deduce that

mX
k=1

j�(�kjsni )� Probf~sn 2 Bn
k j~sni = sni gj � � +

1

n2
:

Consequently, part (ii) of Lemma 1 and the assumption that n�2 < �=2 imply
that

mP
k=1

j�(�kjsni )� Probf(~sn�i; sni ) 2 Bn
k ; (~s

n
�i; s

n0
i ) 2 Bn

k j~sni = sni gj

� � + 1
n2
+

mP
k=1

Probf(~sn�i; sni ) 2 Bn
k ; (~s

n
�i; s

0
i) =2 Bn

k j~sni = sni g

� � + 2
n2
< 2�:

Fact 3 : For all sni ; q
n
i ; s

n0
i and q

n0
i ;X

k

[
i(�kjsni ; qni )� 
i(�kjsn0i ; qn0i )] 
̂i(�kjsni ; qni ) �
�
N � 1
N

�
Kjj�(�jsni )jj2

L2

2

First, note that


̂i(�jsni ; qni ) =
�
uni (a

n
i (�; q

n
i ); �; q

n
i )� 1

N

P
a

uni (a; �; q
n
i )

�
�(�jsni )

�
�
N�1
N

�
K�(�jsni )
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for each � 2 �: Therefore,

jj
̂i(�jsni ; qni )jj2 �
�
N � 1
N

�
Kjj�(�jsni )jj2:

To complete the argument, observe thatX
k

[
i(�kjsni ; qni )� 
i(�kjsn0i ; qn0i )] 
̂i(�kjsni ; qni )

= jj
̂i(�jsni ; qni )jj2
X
k

[
i(�kjsni ; qni )� 
i(�kjsn0i ; qn0i )] 
i(�kjsni ; qni )

=
jj
̂i(�jsni ; qni )jj2

2
[jj
i(�kjsni ; qni )� 
i(�kjsn0i ; qn0i )jj2]

2

�
�
N � 1
N

�
Kjj�(�jsni )jj2

L2

2

Part 1: First we will prove that the mechanism is incentive compatible. For
each a; sn�i; si and q

n
i ; let

vi(a; s
n
�i; si; q

n
i ) =

X
�2�

uni (a; �; q
n
i )P (�jsn�i; si):

We will show that for each si; s
0
i 2 T and for each qni ; qn0i 2 Qni ;X

sn�i

X
a2A

�
�n(ajsn�i; qn�i; si; qni )� �(s�i; q

n
�i; s

0
i; q

n0
i )
� �
vi(a; s

n
�i; si; q

n
i )
�
P (sn�ijsi) � 0:

Claim 1 :X
sn�i

:(sn�i;si)2Bn0

X
a

�
�n(ajsn�i; qn�i; si; qni )� �(ajsn�i; qn�i; s0i; qn0i )

� �
vi(a; s

n
�i; si; q

n
i )
�
P (sn�ijsi) � �

2M

n2

Proof of Claim 1 : Applying Fact 1 and (i) of the main Lemma, we conclude
thatP

sn�i
:(sn�i;si)2Bn0

P
a

�
�n(ajsn�i; qn�i; si; qni )� �(ajsn�i; qn�i; s0i; qn0i )

� �
vi(a; s

n
�i; si; q

n
i )
�
P (sn�ijsi)

� �2M

2664 P
sn�i

:(sn�i;si)2Bn0

P (sn�ijsi)

3775 � �2M
n2
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Claim 2 :P
k

P
sn�i
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k and (s
n
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0
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it follows thatP
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where the last two inequalities follow from Facts 2 and 3.
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Proof of Claim 3 : This follows from Fact 1 and part (ii) of the main Lemma
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Part 2: We now show that , for all n > n̂;
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qn2Qn

X
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2
+ 2� < ":

7. Appendix

Proof of Lemma 1: For each sn 2 T n, let f(sn) denote the \empirical frequency
distribution" that sn induces on T . More formally, f(sn) is a probability measure
on T de�ned for each ŝ 2 T as follows:

f(sn)(ŝ) =
jfi 2 Jnjsni = ŝgj

n
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(We suppress the dependence of f on n for notational convenience.)
Choose � > 0: For each 
 > 0 and 1 � k � m, let

B

k = fsnjjjf(sn)� �(�j�k)jj < 
g

where �(�j�k) denotes the conditional distribution on T given �k: (We suppress
the dependence of B


k on n for notational convenience.) Applying the argument
in the appendix to Gul and Postlewaite(1992) (see the analysis of their equation
(9)), it follows that there exists � > 0 and an integer n1 such that B

�
1 ; : : : ; B

�
m

are disjoint (because the conditional distributions �(�j�1); : : : ; �(�j�m) are distinct)
and for all n > n1,

sn 2 B�
k ) jjP�(�jsn)� ��k jj < � for all k � 1.

Furthermore, there exists an n2 such that, for all n > n2 and for each i, each
sn 2 T n and each s0 2 T;
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4
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0) 2 B�
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Finally, there exists an n3; such that for all n > n3;

zn � 2jT j exp[
�n�2
8jT j2 ] <

1

n2
:

Let n̂ = maxfn1; n2; n3g and suppose that n > n̂. De�ne B�
0 = T nn[B�

1 [� � �[B�
m]:

Claim 1: For each i and for each ŝ 2 T;

Probf~sn 2 B�
0 j~sni = ŝg � zn

Proof of Claim 1: First, note that
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We will now borrow an argument from McLean and Postlewaite (2006) to bound
the RHS of this equality using a classic large deviations result due to Hoe�ding.
For each k; the conditional independence assumption implies that

Probf~sn 2 B
�
2
k j~sni = ŝ; ~� = �kg = Probf(~sn�i; ŝ) 2 B

�
2
k j~� = �kg
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�
4
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where the last inequality is an application of Theorems 1 and 2 in Hoe�ding
(1963). Combining these observations, we deduce that
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� 1�
mP
k=1

(1� zn)�(�kjŝ) = zn:
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=
mP
k=1

mP̀
=1

Probf~sn =2 B
�
2
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