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ABSTRACT
A hierarchy of simplified Hartree-Fock (HF), density functional theory (DFT) methods, and their combinations has been recently proposed
for the fast electronic structure computation of large systems. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small
basis set global hybrid functional (PBEh-3c), and its screened exchange variant (HSE-3c), all augmented with semiclassical correction poten-
tials. Here, we extend their applicability to inorganic covalent and ionic solids as well as layered materials. The new methods have been
dubbed HFsol-3c, PBEsol0-3c, and HSEsol-3c, respectively, to indicate their parent functional as well as the correction potentials. They have
been implemented in the CRYSTAL code to enable routine application for molecular as well as solid materials. We validate the new methods on
diverse sets of solid state benchmarks that cover more than 90 solids ranging from covalent, ionic, semi-ionic, layered, and molecular crystals.
While we focus on structural and energetic properties, we also test bandgaps, vibrational frequencies, elastic constants, and dielectric and
piezoelectric tensors. HSEsol-3c appears to be most promising with mean absolute error for cohesive energies and unit cell volumes of molec-
ular crystals of 1.5 kcal/mol and 2.8%, respectively. Lattice parameters of inorganic solids deviate by 3% from the references, and vibrational
frequencies of α-quartz have standard deviations of 10 cm−1. Overall, this shows an accuracy competitive to converged basis set dispersion
corrected DFT with a substantial increase in computational efficiency.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5123627., s

I. INTRODUCTION

Kohn–Sham density functional theory (DFT) is routinely used
for the fast computation of large systems and will most likely
continue to be the method of choice for the generation of reli-
able geometries in the foreseeable future.1,2 Recently, a hierar-
chy of simplified electronic structure methods designed for con-
sistent structures and noncovalent interactions of large systems
has been developed on the past five years.3 They are designed as
an ideal compromise between cost and accuracy for calculations
on molecular systems of increasing size. Successful applications
include protein-ligand binding affinities,4 large molecular crystals
with shortest intermolecular hydrogen contacts,5 unusual halogen
bonding motifs,6 and screening of zeolite thermodynamics.7 They
are based on the pure Hartree-Fock (HF) method or HF/DFT hybrid

functionals with the target of yielding good structures and reason-
able energetic properties. The key ingredients are (i) the use of
minimal or small-to-medium basis sets expressed in terms of atom-
centered Gaussian-type functions and (ii) the combination of three
(or two) semiclassical atom-pairwise (or triplewise) corrections to
include London dispersion interactions,8–10 to remove the basis set
superposition error (BSSE),11 and to compensate for the basis set
incompleteness error (BSIE) through a short-range (SRB) correc-
tion. This has led to a pseudohierarchical ladder of methods in which
the percentage of Hartree-Fock exchange ranges from 100% (i.e.,
full HF) to 0% [i.e., pure generalized gradient approximated (GGA)
functional] passing through 42% for hybrid HF/DFT functionals and
the basis set size increases from minimal to double-zeta and to triple-
zeta quality. The resulting methods have been dubbed as HF-3c,12

PBEh-3c,13 HSE-3c,14 and B97-3c.15
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The four methods have been successfully applied to study
small-to-large molecules and molecular adducts and have been
extended to periodic systems, in particular, to study molecular crys-
tals.13–16 Although the composite methods cover all elements of the
periodic table, their application to inorganic solids is mainly limited
by the adoption of molecular basis sets. Unmodified molecular basis
sets can be problematic to use in certain solid state calculations17–19

because they usually contain basis functions with low exponents
that can lead to numerical instability and linear dependency
problems.

In this communication, we extend the applicability of three
composite methods to inorganic solids and layered materials. Our
guidelines for the revisions (i) employ exchange-correlation func-
tionals developed for solids (i.e., PBEsol20 and HSEsol21), (ii) reduce
the amount of HF exchange in DFT hybrid methods for a bet-
ter description of electronic properties22–24 (e.g., 25%), and (iii)
apply a simple recipe to make molecular basis sets suitable for
inorganic solids. The revised methods have been tagged with a
label “sol” (as for “solids”) to distinguish them from the orig-
inal ones and are thus denoted as HFsol-3c, PBEsol0-3c, and
HSEsol-3c.

II. COMPUTATIONAL METHODS
A. Methodologies

The total energy provided by the composite methods can be
written as3

Esol-3c
tot = EHF,DFT/basis

tot + ED3
disp + EgCP

BSSE + ESRB. (1)

The different contributions are discussed in detail below. EHF,DFT/basis
tot

denotes the total energy evaluated at the HF or DFT level of theory in
a fixed basis set expansion. In the present work, we use HF, the global
hybrid functional PBEsol0,20 and the screened exchange hybrid
functional HSEsol.21 The latter two are chosen because they were
specifically devised for solids. We revise the original MINIX basis
set for HFsol-3c and def2-mSVP for PBEsol0-3c and HSEsol-3c (see
later on for details). The total energy is supplemented with an estab-
lished semiclassical London dispersion correction (D3 model).25

D3 is used in the rational (Becke-Johnson) damping variant26 and
includes dipole-dipole, dipole-quadrupole, as well as three-body
triple-dipole terms. While the long-range contributions are deter-
mined by the ab initio computed dispersion coefficients, the short-
range damping includes two empirically optimized parameters. The
removal of the BSSE due to the use of small basis sets with large
BSIE is accomplished through a geometrical counterpoise correction
(gCP). A precomputed element and basis set specific BSIE measure
is used to generate a repulsive atom-pairwise potential with four
free parameters. HF-3c employs an additional short-range basis set
(SRB) correction that corrects the systematic overestimation of bond
lengths involving electronegative elements. The two SRB param-
eters are trained on a set of 107 small molecule structures.12 A
comparison of the method hierarchy with different ingredients is
given in Table I. All functional and basis set specific parameters
were empirically optimized for each revised composite method as
shortly discussed in the Appendix, and their values are reported in
Table IV.

TABLE I. Feature summary of the revised composite methods.

HFsol-3c PBEsol0-3c HSEsol-3c

Method HF PBEsol0 HSEsol

AO basis set sol-MINIX sol-def2-mSVP sol-def2-mSVP
HF exchange % 100 25 25-0a

D3 dispersion Yes Yes Yes
gCP correction Yes Yesb yesb

SRB correction Yes No No

a25% at short-range and 0% at long-range using standard range-separation with
ω = 0.11.14

bDamped variant of gCP correction is used.13

B. Basis set revision
The original composite methods use minimal (MINIX) and

double-zeta quality (def2-mSVP) atomic basis sets for HF and
hybrid DFT, respectively. As previously mentioned, they are based
on molecular basis sets that are not fully suitable for certain solid
state calculations. Therefore, one of the main purposes of the present
work was a revision of these basis sets. To that aim, we applied a
simple recipe based on a rescaling of the exponents of the outermost
uncontracted Gaussian functions. For sake of brevity, more details
about the revision of the basis sets are reported in the supplementary
material.

Basis set exponents have been revised from He to Xe for def2-
mSVP.27 We follow the two steps:

(i) Scale the exponent of the most diffuse Gaussian function to
a value equal or slightly greater than 0.1 Bohr−2 that has
been considered as a lower bound limit to avoid numerical
instability.

(ii) Scale the exponent of the previous Gaussian function by
keeping the original exponent ratio.

Steps (i) and (ii) of this scheme were applied to s and p shells, while
for d and f functions solely, step (i) was applied. For the MINIX
basis set, the same procedure is adopted, where for elements H–Ar,
the orbitals are decontracted before applying the scaling. The revised
basis sets have been implemented in CRYSTAL17 and are explicitly
given in the supplementary material.

C. Computational details
The revised composite methods for solids have been imple-

mented in a development version of the CRYSTAL17 code.17,28

The crystalline orbitals are represented as linear combinations of
Bloch functions, with each of them being built from atom-centered
atomic orbitals (AO), which are expressed in terms of Gaussian-
type-functions. In contrast to plane-wave codes, the implementation
of Fock exchange is easier in terms of AO and well-established in
CRYSTAL since more than three decades.29 CRYSTAL is the ideal
program for large scale solid state applications as it can employ all
point and space group symmetries.30 Furthermore, it scales well on
high-performance computational facilities with up to 30 000 cores,
and electronic structure calculations on 14 000 atoms in the prim-
itive unit cell have been presented recently.31 All calculations for
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TABLE II. Statistical analysis of original and revised composite methods on the benchmark set S66x832 and X23.33,34

Dataset Prop. HF-3c HFsol-3c PBEh-3c PBEsol0-3c HSE-3c HSEsol-3c

S66x8a Dist. MARE (%) 0.50 0.39 1.50 0.51 1.50 0.49
BE MAE (kcal/mol) 0.43 0.71 0.50 0.64 0.50 0.66

X23b Vol. MARE (%) 6.46 2.31 3.60 3.18 2.90 2.84
CE MAE (kcal/mol) 2.06 3.03 1.30 1.53 1.30 1.50

aEquilibrium distance (Dist.) and binding energy (BE). This set was part of the D3 and gCP parameter training.
bEquilibrium unit cell volume (Vol.) and cohesive energy (CE).

TABLE III. Mean absolute error of original and revised composite methods on the benchmark set SS20.22

Propertya,b HFb HFsol-3cb PBEsol0b PBEsol0-3cb HSEsolb HSEsol-3cb

LP (Å) 0.07 0.07 0.03 0.03 0.03 0.03
BG (eV) 6.75 6.95 0.78 0.92 0.67 0.77
BM (GPa) 22.05 26.70 9.34 7.93 8.96 7.63

aLattice parameter (LP), bandgap (BG), and bulk modulus (BM).
bUsed in identical basis set expansion as corresponding “3c” methods, but without correction potentials.

both revision and validation purposes were carried out with default
computational parameters.17

III. RESULTS AND DISCUSSION
The performance of the revised composite methods was first

benchmarked against corresponding results of the original meth-
ods for the S66x8 dataset of molecular dimers32 and the X23 set
of molecular crystals.33,34 In addition, a set of 20 simple inorganic
solids22 with cubic structure, dubbed as SS20, was used to compare
them with the uncorrected methods (i.e., HF, PBEsol0, and HSEsol).
Here, lattice constants, bandgaps, and bulk moduli are tested. Lat-
tice parameters have been corrected to remove thermal and zero-
point effects.35 Statistical results of original and revised composite
methods are given in Tables II and III.

For the noncovalently interacting systems S66 and X23, the
uncorrected methods do not yield satisfactory results. All com-
posite methods yield binding energies and equilibrium geometries
competitive to results of state-of-the-art dispersion corrected DFT
(see Table 9 of Ref. 10). The revised (sol) variants significantly
improve the dimer distances and unit cell volumes of molecu-
lar crystals while just slightly deteriorating the binding and cohe-
sive energies, respectively. In particular, HSEsol-3c seems to be
promising with a mean absolute error (MAE) of 1.5 kcal/mol and
a mean absolute relative error in percentage [MARE (%)] of 2.8%
for the X23 lattice energies and unit cell volumes, respectively.
Keeping in mind the minimal basis set leading to a substantial
speed-up, HF-3c and HFsol-3c results are also satisfying (see also
Ref. 16 for broader molecular crystal tests). Overall, the reparam-
eterization keeps the excellent accuracy of the original compos-
ite methods for noncovalently bound systems, which is manda-
tory if the revised methods are intended as generally applicable
methods.

The original composite methods could not be tested on the
SS20 set because the SCF is not converging within standard settings.
In contrast, the revised methods all converged smoothly, which is
important for a readily applicable method. Figure 1 shows the corre-
lation between computed and experimental lattice parameters. As
summarized in Table III, all three revised methods give excellent
results with MAE well below 0.1 Å. Results from PBEsol0-3c and
HSEsol-3c are almost identical, demonstrating that the long-range
Fock exchange is not needed for the properties under considera-
tion. Not unexpectedly, bandgaps are substantially overestimated
by HFsol-3c, whereas hybrid composite methods for solids perform
much better with a MAE below 1 eV, which is close to uncorrected

FIG. 1. Lattice parameters for the SS20 dataset computed with the revised
composite methods compared to experimental reference data.
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functionals. The same holds for the computed bulk moduli with the
accuracy being slightly improved by the correction potentials.

We additionally considered a broader set of more than 50 dif-
ferent inorganic solids containing cubic, hexagonal, tetragonal, and
orthorhombic, ionic, and covalent systems (results summarized in
the supplementary material).36,37 While HFsol-3c does not yield rea-
sonable lattice parameters, PBEsol0-3c and HSEsol-3c have MAREs
of 3.3% and 3.4%, respectively, which is similar to typical hybrid
functionals like PW1PW evaluated in larger triple-zeta basis set
expansions. Overall, the revised methods can be successfully applied
to inorganic solids, and, in particular, the two hybrid methods give
results of triple-zeta quality with significantly reduced computa-
tional cost. For instance, a HSEsol-3c calculation on a 64-atom NiO
supercell is more than twice as fast compared to the same func-
tional with a pob-TZVP basis set. See the supplementary material
for further data.

Layered materials are challenging systems because of the com-
bination of strong covalent bonds (intralayer) and weak van der
Waals interactions (interlayer). Here, we test graphite, hexagonal BN
(h-BN), and black phosphorus (black-P) for which high level theo-
retical reference data on the binding energy as well as high-quality
experimental data on structural features are available. When com-
pared to the uncorrected methods, all revised composite methods
provide good structural properties and interlayer energies. However,
the performance seems to be very system specific. For graphite, the
three revised methods provide good results, in particular, HFsol-3c,
while the two hybrid methods give slightly underestimated interlayer
energies. The opposite is observed in the case of h-BN. All three
methods predict an interlayer energy in good agreement with the
diffusion Monte Carlo (DMC),38 while the interlayer lattice param-
eter tends to be underestimated, although the experimental lattice
parameters39 were not back-corrected to the athermal limit. Finally,
for black-P, the interlayer distance is underestimated by the two
hybrids but slightly overestimated by HFsol-3c. In turn, the inter-
layer energy (in meV/atom) computed with PBEsol0-3c and HSEsol-
3c (−163 and 164, respectively) results to be substantially overes-
timated compared to the DMC and coupled-cluster single double
triple coupled cluster singles-and doubles including perturbative
triple excitations [CCSD(T)] estimates (−80 and −92, respectively).
The problematic exfoliation energy of black-P seems to be related to
the damping function of the used dispersion correction as analyzed
in Ref. 40. Incidentally, HFsol-3c (−88) is in excellent agreement
with reference data.40,41

Other important properties of solids are vibrational frequen-
cies, elastic, dielectric, and piezoelectric properties. We tested the
revised composite methods on α-quartz (see the supplementary
material).42–45 As expected, HF in a MINIX basis set is not capable
of describing these properties. On the other hand, PBEsol0-3c and
HSEsol-3c give results in good agreement with the experiment. Espe-
cially, vibrational frequencies have small errors with a MAE of about
8 cm−1 and a standard deviation of 10 cm−1. Notably, for the latter
methods, the cost of the calculation is about 3 times less expensive
than with a triple-zeta basis set as pob-TZVP.

IV. CONCLUSIONS AND PERSPECTIVES
In this work, we have presented a revision of the compos-

ite methods pioneered by Grimme and co-workers12–14 that were

originally designed with specific focus on consistent structures and
interactions of large molecular systems and molecular crystals. Here,
we changed the adopted semilocal functional, revised the basis set
expansions, and refitted the D3 and gCP corrections. The revised
methods, dubbed as “sol-3c” to emphasize the focus on solids, were
benchmarked on different datasets including molecular adducts,
molecular crystals, and a large set of solids including covalent, ionic,
semi-ionic, and layered materials. Different properties were tested
from structures to energetics, from bandgaps to vibrational frequen-
cies and response properties. Overall, the results demonstrate that
the revised methods perform equally well as the original ones and
importantly extend and improve their applicability significantly.

As expected, HFsol-3c shows some drawbacks because of the
known limitations of plain HF and the minimal basis set. We expect
that the best results can be obtained when dealing with molecular
crystals for which structure and energetics are strikingly accurate.
For covalent and ionic solids, the revised HFsol-3c shows a moder-
ately good accuracy for structural features, which can be sufficient
for screening applications. Known deficiencies of HF limit the use of
HFsol-3c for metals and very small-gap systems.

On the other hand, composite methods based on hybrid func-
tionals for solids and a double-zeta quality basis set (i.e., PBEsol0-3c
and HSEsol-3c) show consistently good performance over all sys-
tem classes, and the structural, chemical, and physical properties of
solids are very well described. We expect that they can also be safely
applied to small-gap and metallic systems, in particular, HSEsol-3c,
which is based on a screened Coulomb exchange functional. They
are overall well-suited for a broad range of applications in solid state
chemistry and physics.

Work is in progress to apply these methods to porous materi-
als7 and metal-organic frameworks. The accuracy of hybrid compos-
ite methods combined with their computational efficiency is ideal
for high-throughput screenings. Further improvements can be fore-
seen by the inclusion of the D4 dispersion correction46,47 or a more
specific refitting of the parameters based on solid state reference
data.

SUPPLEMENTARY MATERIAL

Details of the revision of the def2-SVP and MINIX basis sets
and the modified basis sets in CRYSTAL format, all computed data
for the X23, SS20, and POB datasets and results for the struc-
ture, vibrational frequencies, elastic, dielectric, and piezoelectric
properties of α-quartz are included in the supplementary material.
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APPENDIX: SEMICLASSICAL CORRECTIONS
AND REFITTING

Revised composite methods required a careful reparameter-
ization because of the different exchange-correlation functionals
adopted and the basis sets’ revision. Therefore, both D3 and the gCP

J. Chem. Phys. 151, 121101 (2019); doi: 10.1063/1.5123627 151, 121101-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5123627#suppl
https://doi.org/10.1063/1.5123627#suppl
https://doi.org/10.1063/1.5123627#suppl
https://doi.org/10.1063/1.5123627#suppl
https://doi.org/10.1063/1.5123627#suppl


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

TABLE IV. Summary of all empirical parameters of the revised composite methods.

D3 gCP

a1 a2 s8 α β σ η

HSEsol-3c 0.520 4.939 0.000a 0.294 1.957 1.000a 1.428
PBEsol0-3c 0.536 4.645 0.000a 0.275 1.965 1.000a 1.369
HFsol-3c 0.417 2.915 0.237 1.155 1.176 0.129 1.153

SRB s γ
0.03b 0.70b

aValue not optimized.
bValue taken from original HF-3c parameterization.12

specific parameters were reoptimized by using the S66x8 dataset.32

In order to achieve more flexibility with the D3/gCP corrections,
the fitting procedure was applied simultaneously to the D3 and gCP
part.

For PBEsol0-3c and HSEsol-3c methods, we redetermined the
parameters in the Becke-Johnson damping function for the D3
correction,

ED3
disp = −1

2∑AB ∑n=6,8
sn

CAB
n

RAB
n f
(n)

damp(RAB). (A1)

Here, CAB
n denotes the nth-order dispersion coefficient (orders = 6,

8) for each atom pair AB, RAB is their internuclear distances, and sn
are the order-dependent scaling factors. The rational Becke-Johnson
damping function is

f (n)damp(RAB) = Rn
AB

Rn
AB + (a1RAB

0 + a2)n . (A2)

The damping function incorporates radii for atomic pairs RAB
0

= √CAB
8 /CAB

6 and functional-specific parameters a1 and a2 that
have been refitted in the present work. In addition, the Axilrod-
Teller-Muto48,49 (ATM) three-body dipole-dipole-dipole term is
also included.

The gCP correction is given by the atom-pairwise potential,

EgCP
BSSE =

σ
2 ∑AB

VgCP
A (RAB) f gCP

damp(RAB). (A3)

The difference in atomic energy between a large (nearly complete)
basis set and the target basis set for each free atom is used as a mea-
sure to generate the repulsive potential VgCP

A with fitting parameters
α, β, and η. As originally proposed for the PBEh-3c and HSE-3c
methods, the value of σ, s6, and s8 was fixed to 1.00, 1.00, and 0.00,
respectively.

Note that for the D3 correction in HFsol-3c [see Eq. (A1)], we
only modified the s8 scaling factor reducing it by a factor of 0.7 as
proposed for the original HF-3c method in Ref. 16, all other param-
eters were unchanged. The parameters of the short range correction
for HF were not re-evaluated, and gCP is used in its undamped
variant.

The whole sets of refitted values for the three revised composite
methods are reported in Table IV.
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