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ABSTRACT. 

The novel rhenium complexes fac-Re(pdbpy)(CO)3Cl (pdbpy = 4-phenyl-6-(phenyl-2,6-diol)-2,2’-bipyridine), 

1, and fac-Re(ptbpy)(CO)3Cl (ptbpy = 4-phenyl-6-(phenyl-3,4,5-triol)-2,2’-bipyridine), 2, have been 

synthesized and the single crystal X-Ray diffraction (SC-XRD) structure of 1 solved. The electrochemical 

behaviors of the complexes in acetonitrile under Ar and their catalytic performances for CO2 reduction with 

added water and MeOH are discussed. A detailed IR spectroelectrochemical study under Ar and CO2 

atmospheres coupled with DFT calculations allows the identification of reduced species and the interpretation 

of the reduction mechanisms. Comparison between the rhenium complexes and the corresponding Mn 

derivatives Mn(pdbpy)(CO)3Br, 3, and Mn(ptbpy)(CO)3Br, 4, has been also considered. Finally, photo-

stimulated conversion of the CO2 was investigated with catalysts (1, 3-4) under visible light irradiation ( > 420 
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nm) in acetonitrile as solvent. Remarkably, 1 and 3 catalysts were active towards CO2: producing formate with 

good selectivity and turnover number (TON). For example, 3 gives 62% selectivity for HCOO– and a TON of 

80 and the Re compound 1 gives 74% selectivity for HCOO- and a TON of 86. 

Introduction. 

The overall world energy demand is constantly increasing, as well as the anthropogenic emissions of CO2, its 

concentration in the atmosphere, and the associated environmental ravages. Undoubtedly the catalytic 

conversion of CO2 is an attractive option that may allow producing chemicals and fuels upon energy storage, 

and that would help mitigating greenhouse effects in the mid-term (if the gas conversion could be achieved at 

the Gt scale, which remains currently unachieved).1, 2 Worldwide energy data show that solar energy production 

by photovoltaics underwent a remarkable growth during last years, thus favouring the ongoing process of the 

long and complicated transition from fossil fuels to renewable energy.3 However, the approach to produce 

sunlight energy in form of electricity still lacks from the point of view of high-density, long-term stability and 

suffers its intermittent nature and yet unsolved storage issue. The sunlight energy storage/conversion problem 

has not a unique and definitive solution, so that efforts in broadening the type of methodologies of the 

approaches should be pursued. Electrochemical processes driven by solar photovoltaic or direct photochemical 

reductions of CO2 are recently undergoing an impressive upsurge of interests, in the hope to establish an 

efficient and reliable artificial carbon-cycle as energy vector for solar energy conversion.4-9  

The choice of an efficient and selective catalyst for electrochemical reduction of CO2 is mandatory.2 While 

heterogeneous electrocatalysis is a promising approach in terms of durability, stability and improved TON 

efficiencies,10-12 a rational approach based on the design of efficient homogeneous catalyst still has several 

benefits,13, 14 including the possibility to covalently attach the molecular catalysts on the electrode surface.15 

While this paper was under evaluation, Mn and Re catalysts for CO2 electrochemical reduction were chemically 

bonded on different electrode surfaces,16, 17 and new Cu and Mn photocatalysts employed,18 displaying very 

interesting conversions and TONs. In the search of efficient homogeneous catalysts for CO2 reduction many 

groups explored organometallic complexes,19-23 including alternatives to Re bpy-type complexes.24-27 Deronzier 

and co-workers replaced Re with Mn,28 and later we extended the concept of local proton source (first applied 

to iron porphyrins29) to Mn.30-32 Ready (entropically) available local protons greatly enhance the catalytic 
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activity of CO2 reduction. The previously synthesized complex 3, carrying the pdbpy ligand (Scheme 1), 

generates formate via metal hydride species,30, 31 in addition to the classical CO production, even in anhydrous 

acetonitrile. A significant improvement of the catalytic activities has been observed introducing the charge 

through space effect on iron porphyrins, both in electro-33 and photo-catalysis.34 However, the local proton 

source approach, albeit not fully understood, still has some advantages (sometimes unexpected as in the case of 

water oxidation35), like the possibility to change and tune the selectivity. In this paper, whose aim is to highlight 

differences between Mn and Re complexes carrying the same ligand, we explore the photo- and electro-

catalytic activities of novel Re complexes (1 and 2) with pdbpy and ptbpy ligands (Scheme 1) and report the 

mechanism for the CO2 catalytic reduction. We also report for the first time the photocatalytic activities of Mn 

complexes 3 and 4. Comparison with the better-known corresponding Mn complexes helps in the understanding 

of the catalytic activities of such type of catalysts for homogeneous CO2 reduction.  

 

Scheme 1. Complexes investigated. (M=Re, X=Cl): 1, Re(pdbpy)(CO)3Cl; 2, Re(ptbpy)(CO)3Cl; (M=Mn, 

X=Br); 3, Mn(pdbpy)(CO)3Br; 4: Mn(ptbpy)(CO)3Br 

 

Results and Discussion 

Synthesis and structure 

The novel rhenium complexes fac-Re(pdbpy)(CO)3Cl (pdbpy = 4-phenyl-6-(phenyl-2,6-diol)-2,2'-

bipyridine), 1 and fac-Re(ptbpy)(CO)3Cl (ptbpy=4-phenyl-6-(phenyl-3,4,5-triol)-2,2-bipyridine), 2, have been 

synthesized according to the procedure reported in the experimental section. Single-crystal X-Ray diffraction 

data of 1 has been obtained from yellow prismatic crystal, grown by slow evaporation under dark conditions 
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Cyclic voltammetry of 2 Re(ptbpy)(CO)3Cl, under Ar in anhydrous MeCN (Fig.4) exhibits three consecutive 

reduction processes. The first peak (at Ep= –1.38 V vs. Ag/AgCl) corresponds to the formation of the radical 

anion [Re(ptbpy)(CO)3Cl]–, and differently from 1, shows a certain degree of chemical irreversibility (higher 

scan rates improves the reversibility). We were unable to completely remove water from compound 2 (a little 

amount of water has been always found during NMR characterization), resulting in a less reversible 0/1– 

reduction, as well as altering the CV under CO2. Furthermore, reproducibility of the CVs was an issue on GCE 

(glassy carbon electrode) because of the adsorption of reduction products or side-products causing an 

inactivation of the electrode surface. Similarly to 1, two other reduction peaks are seen at –1.77 and –2.13 V vs. 

Ag/AgCl. 

The electrochemical behavior of 2 in anhydrous MeCN under CO2 atmosphere (Fig. 4) shows a net catalysis 

already at the first reduction peak. As mentioned above, this is due to small amounts of water retained in the 

more hydrophilic solid sample of 2. Significant improvement is observed when MeOH or large amount (5%) of 

water are added. The CV peak currents decrease after consecutive CVs, but GCE cleaning restores the original 

CV with high catalytic current.  
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CV reversibility, because of the quite different time scales of CV and IR-SEC.31 The longer time scale in IR-

SEC experiments allows ligand exchange between Cl– and a solvent molecule and the subsequent 

rearrangement to 1d (Scheme 2). The decrease in intensity of the OH stretches at 3318 cm–1 (inset in Fig. 5) 

suggests that 1d is a species originated from a reductive single deprotonation of the starting complex 1, i.e. 1d 

is formulated as ([Re(CO)3(pdbpy−H+)]). A similar reductive deprotonation has already been observed for the 

analogous Mn complex.31 

 

2050 2000 1950 1900 1850 1800
0.00

0.05

0.10

0.15

0.20

3600 3400 3200

0.00

0.01

0.02

A
b

so
rb

an
ce

 / cm-1

3358

A
b

so
rb

a
n

ce

 / cm-1

2023

2010

2017

2002

1918

1901

1879

 

Figure 5. IR-Spectroelectrochemical reduction of a 2.9 mM solution of 1 in MeCN / 0.1 M Bu4NPF6 under Ar 

at the first reduction wave (final potential –1.4 V vs. Ag/AgCl). The inset shows the decrease of νOH. 

The transition from 1 to 1d (bands at 2010, 1901 and 1879 cm–1, see Fig. 5 and Scheme 2) proceeds via the 

formation of other intermediate species, as revealed by the presence of νCO at 2017 and 2002 cm–1, which 

finally converge into the peak at 2010 cm–1. Two possible intermediates could be involved in the 

transformation.20, 40 The band at 2002 cm–1 is attributed the radical anion 1a (1998 cm–1 observed for the 

analogous complex with unsubstituted bipyridine),40 and the band at 2017 cm–1 could be due to the 

corresponding radical 1b obtained by substitution of Cl– by MeCN (2011 cm–1 observed for bpy analogue).40 In 

conclusion, 1d is the predominant species at the end of the first reduction in IR-SEC time scale experiments. 

IR-SEC experiments with Et4NCl (tetraethylammonium chloride) have been performed with the aim of 

stabilizing the radical anion 1a by decreasing the rate of Cl– loss. The IR-SEC (Fig. 6) shows slightly shifted 
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absorptions, and the starting νCO at 2020, 1916 and 1894 cm–1 of 1 are transformed, after reduction at the first 

wave, into νCO at 2006, 1993, 1894 and 1874 cm–1. These four absorption bands can be seen as a sum of IR 

spectra of the species 1d and additional product(s). The band 1993 can be ascribed to the anion 

[Re(CO)3(pdbpy)MeCN]– (1c) which is formed in limited amount due to close reduction potentials of 1 and 1b. 

Formation of analogous [Re(CO)3(bpy)MeCN]– with bands 1986, 1868, 1852 cm–1 was observed during 

reduction of [Re(CO)3(bpy)Cl] in similar conditions.40 IR bands at 2002, 1891, 1871(sh) cm–1 appearing in the 

early stage of the electrolysis can be assigned to the radical anion 1a (DFT computed at 1999, 1892 and 1875 

cm–1) formed as intermediate. Also, a band at 2017 cm–1 attributable to the neutral radical 1b (DFT computed at 

2017, 1917, 1899 cm–1) appears temporarily. The corresponding experimental values for [Re(bpy)(CO)3Cl]•– 

and [Re(bpy)(CO)3(MeCN)]• in MeCN were reported to be 1998, 1885, 1866 cm–1 and 2011, 1895(br) cm–1, 

respectively,40 in excellent agreement with calculations. The presence of Et4NCl partially suppresses the Cl– 

dissociation, but eventually in a longer time scale the 1e reduction still ends in the conversion to 1d. 
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Figure 6. IR spectroelectrochemistry of 1 in MeCN/0.1 M Et4NCl under Ar at the first reduction wave (final 

potential –1.4 V vs. Ag/AgCl).  
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Complex Experimental νCO (cm–1) DFT (cm–1) 

[Re(pdbpy)(CO)3Cl] (1) 2023, 1918, 1901 2021, 1921, 1902 

[Re(bpy)(CO)3Cl] 2021, 1914, 1897a 2017, 1911, 1901 

[Re(pdbpy)(CO)3Cl]‒ (1a) 2002, 1891, 1871sh 1999, 1892, 1875 

[Re(pdbpy)(CO)3MeCN] (1b) 2017 2017, 1917, 1899 

[Re(bpy)(CO)3MeCN] 2011, 1895(br)a 2007, 1898, 1892 

[Re(pdbpy)(CO)3MeCN]‒ (1c) 1993 1989, 1890, 1869 

[Re(pdbpy‒H)(CO)3] (1d) 2010, 1901, 1879 2008, 1901, 1888 

[Re(pdbpy‒H)(CO)3]
‒ (1g) 1985, 1865, 1850 1986, 1870, 1861 

[Re(pdbpy‒2H)(CO)3]
‒ (1h) 2002, 1890 1997, 1888, 1871 

a from ref.40 

 

Table 1. Selected experimental (IR-SEC) and calculated νCO frequencies of 1 and other related complexes from 
IR spectroelectrochemistry in MeCN and DFT computed data. 
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Scheme 2. Electrochemical reductive mechanism for 1 under Ar. 
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IR-SEC of 1 in anhydrous acetonitrile under Ar at the second reduction wave (Fig. 7) shows that the bands at 

2010, 1901 and 1879 cm–1 are replaced by 2002, 1985, 1890, 1865 and 1850 cm–1. The species (1d), formed 

after the first reduction, undergoes further reduction (Scheme 2) leading to species (1g) (1985, 1868 and 1850 

cm–1) which could subsequently generate (1h) (2002 and 1890 cm–1) after loss of ½ H2 (where the charge may 

now formally be localized on the oxygen atom). 
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Figure 7. IR spectroelectrochemistry of 1 in MeCN/0.1 M Bu4NPF6 under Ar at the second reduction wave 

(final potential –1.7 V vs. Ag/AgCl).  

IR-SEC spectra of 1 in MeCN under CO2-saturated solutions at the first reduction peak are quite similar to 

those obtained under Ar atmosphere, with a small exception of the growth of a peak at 1684 cm–1 (Fig. S5), 

assigned to the presence of HCO3
–/CO3

2– species.40 During the reduction at the second peak under CO2, IR-SEC 

at early stage (Fig. S6) rapidly reach a steady-state situation (Fig. 8): the bands at 2010, 1901 and 1875 cm–1, 

close to those found for (1d) (2010, 1901, 1879 cm–1; Fig. 5, Table 1), remain almost unchanged, while new 

strong νCO bands at 1684, 1645 (HCO3
–/CO3

2– system40) increase continuously. Under these conditions 

stationary concentration of (1g) is too small to be detected: only a weak shoulder of its strong absorption is 

present at 1985 cm–1 (Figs. S6 and Fig. 8). 
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Figure 8. IR spectroelectrochemistry of 1 in MeCN/0.1 M Bu4NPF6 under CO2: steady state established at 

continuing electrolysis at the second reduction wave (final potential –1.7V vs Ag/AgCl). 

It is interesting to underline that passing from 3 (Mn(pdbpy)) to 1 (Re(pdbpy)), the same ligand has an 

important effect on the electrochemical properties: the hydride formation in Re is apparently supressed. No 

formate production has been observed during exhaustive electrolysis (see below). 

The active catalytic species are supposed to be the radical anion (1g) and/or the anion (1h), obtained by loss of 

½ H2 from (1g). By analogy with the Muckerman and Schaefer mechanism,41 CO production may involve a 

carbonate-bridged complex. In that paper the authors highlighted the affinity of Re with O atom, allowing the 

CO2 insertion into the carbonate-bridged complex. O atom in 1 is close to Re, resulting in the formation of a 

Re-O bond of the entropically favoured intermediate (1d), which is reduced to 1g (Scheme 3). Preliminary DFT 

calculations suggest that an alternative mechanistic pathway, not involving carbonate-bridged intermediate, 

may also be possible for 1. A CO2 insertion into the Re-O bond of the reduced species 1g (or 1h) is feasible, 

and results into carbonate species (Figure S7) that may further react with a second CO2 molecule leading to CO 

and CO3
2– as products. 
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Scheme 3. Proposed mechanism of the electrochemical reduction of CO2 into CO with 1 as catalyst (similar 

to the mechanism proposed in reference 41). 

Controlled Potential Electrolysis (CPE) 

Bulk electrolysis with 1 and 2 under CO2 were performed upon setting the potential at values slightly 

negative to the first and second reductions, with and without added Brønsted acids (water and methanol, 5%). 

Table 2 summarizes the results obtained during these CPE experiments. A CO2 flow of 30 mL min–1 was kept 

constant during the experiments, CO and H2 were identified by gas chromatography, and formate, if present, 

was assessed by NMR spectroscopy at the end of the experiments. In MeCN/H2O at the first reduction (–1.5 V 

vs. Ag/AgCl, Fig.9a) the TONCO for 1 (7.5) is lower than the TONCO of the corresponding Mn complex 3 

(28).31 The fact that TONCO for 2 (E = –1.6 V vs. Ag/AgCl) increases to 11.4 also suggests that 1 is a less active 

electrocatalyst. The situation is inverted at the second peak potential, where TONCO of 1 rises to 14.1 (E = –1.7 

V vs. Ag/AgCl, Fig.9b), whereas TONCO of 2 drops to a very low value of 2 (E = –1.9 V vs. Ag/AgCl) (Table 

4). This is due to the above-mentioned adsorption phenomena onto the GCE that quickly passivate the electrode 

surface. As in cyclic voltammetry experiments, simple mechanical cleaning of the electrode could restore the 

catalytic activity. Figure 9 also highlights the good electrocatalytic properties of 1 over time. 

Complex E [V] T [min] Acid [5%] TONCO ηCO [%]

1 –1.5 
120 
270 
270 

- 
H2O 

MeOH 

2.2 
7.5 
4.0 

60 
76 
52 

1 –1.7 
150 
300 
240 

- 
H2O 

MeOH 

2.9 
14.1 
4.4 

49 
88 
64 

2 –1.6 
270 
250 
170 

- 
H2O 

MeOH 

6.6 
11.4 
5.9 

98 
100 
100 

2 –1.9 
170 
100 
130 

- 
H2O 

MeOH 

3.7 
2 

0.7 

70 
70 
60 
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Figure 10. TON values vs. time during photochemical irradiation experiments for Mn(pdbpy)(CO)3Br (3), 

Re(pdbpy)(CO)3Cl (1) and Mn(ptbpy)(CO)3Br (4). Reaction conditions: 5 µM Cat. + 0.2mM Ir(ppy)3 + 0.05M 

TEA + MeCN/CO2 + >420 nm light 

 

 TONH2 (CS) TONCO (CS) TONHCOO– (CS)

Re(pdbpy) (1) 
4 (3.3%) 

12.5 (8%)a 
26 (22.3%) 
53 (34%)a 

86 (74.4%) 
90 (58%)a 

Mn(pdbpy) (3) 
3 (2.5%) 

16 (11.2%)a 
46 (35.5%) 
30 (21%)a 

80 (62.0%) 
97 (67.8%)a 

Mn(ptbpy) (4) 5 (5.7%) 24 (30.9%) 50 (63.4%) 

Table 3. TON from photo-irradiation (24h) of solutions of 1, 3 and 4 (5 μM) in MeCN in the presence of 

Ir(ppy)3 (0.2 mM) and TEA (0.05 M). a: in the presence of 0.5 M H2O as an acid co-substrate. 

 

Concluding Remarks 

This contribution provides further insights into the role of a local proton source in CO2 reduction catalysts by 

investigating the electrochemical and spectroscopic features of the novel rhenium complexes 

Re(pdbpy)(CO)3Cl, 1, and Re(ptbpy)(CO)3Cl (ptbpy = 4-phenyl-6-(phenyl-3,4,5-triol)-2,2’-bipyridine), 2 under 

inert atmosphere as well as under CO2. Comparison between the rhenium complexes and the corresponding Mn 

derivatives Mn(pdbpy)(CO)3Br, 3, and Mn(ptbpy)(CO)3Br, 4, has been also considered. Although the 

electrochemical behaviour of 1 in anhydrous MeCN under Ar atmosphere resembles that of a common 

Re(bpy)(CO)3Cl system, DFT calculations suggest that pdbpy in 1– slightly facilitates the release of Cl– from 

the complex, when compared to [Re(bpy)(CO)3Cl]– in the same conditions. Another interesting difference of 1 

with respect to other bipyridine-based rhenium catalysts is the presence of small catalytic activity already at the 

first reduction peak in anhydrous MeCN under CO2 atmosphere. We surmise that the catalytic activity after the 

first reduction is associated with the lower energy required for the release of Cl–. The addition of H2O and 

MeOH enhances the reactivity of 1 with CO2 on the first and particularly on the second reduction peak. 

Compound 2 shows similar behavior at first CV cycles, but in a longer time the adsorption phenomena alter the 

catalysis. The hygroscopic behavior of 2 does not allow a clean comparison. 
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Spectroelectrochemical (IR and UV/Vis) investigation coupled with DFT calculations allows the 

identification of reduced species and interpretation of the reduction mechanisms. Controlled Potential 

Electrolysis of 1 and 2 under CO2 in MeCN/H2O at the first reduction (–1.5 V vs. Ag/AgCl) shows that the 

TONCO of 1 (7.5) is lower than the TONCO of 2 (E = –1.6 V vs. Ag/AgCl), which is probably altered by the 

water retained in 2. At this potential there are no evidences of adsorption phenomena by 2. Conversely, at the 

second peak potential, where increased catalytic performances are expected, TONCO of 1 rises to 14.1 (E = –1.7 

V vs. Ag/AgCl), whereas TONCO of 2 drops to a very low value of 2 (E = –1.9 V vs. Ag/AgCl) due to 

passivation of the electrode surface. These data apparently suggest that the local proton source effects are more 

pronounced for Mn in comparison with Re complexes. 

In reductive electrochemical experiments it is interesting to note that while Mn(pdbpy) gives the hydride with 

subsequent production of formate, the corresponding Re(pdbpy) undergoes a different reaction pathway and no 

formate is produced upon catalytic cycles. It is only during photochemical experiments, under different reaction 

conditions, that significant formate TON values are obtained, thus showing that the coordination of the pdbpy 

ligand to Re and Mn alter the selectivity of the reaction products.  

 

Experimental Section 

NMR spectra were recorded on a JEOL Eclipse 400 spectrometer (1H operating frequency 400 MHz) at 298 

K. 1H and 13C chemical shifts are reported relative to TMS (δ=0) and referenced against solvent residual peaks. 

IR-ATR spectra were collected on a Fourier transform Equinox 55 (Bruker) spectrophotometer equipped with 

an ATR device; resolution was set at 2 cm–1 for all spectra. A spectral range of 400–4000 cm–1 was scanned, 

using KBr as a beam splitter. 

 

The pdbpy and tpbpy ligands were synthesized accordingly to the Kröhnke reaction between an α,β-

unsaturated substrate (chalcone) and pyridinium salt carried out in methanol in presence of large excess of 

ammonium acetate, as already reported by some of us.30, 31 All reagents were purchased from Sigma-Aldrich 

and used as received. Solvents were freshly distilled and purged with Ar before use. 

Synthesis of [Re(pdbpy)(CO)3Cl] (1). [Re(CO)5Cl] (0.500 mmol, 1 equiv) and pdbpy (0.501 mmol, 1.01 eq) 

were refluxed for 3 hours in anhydrous toluene (20 mL) while stirring. Alternatively, reaction proceeded in a 

sealed flask for microwave reactor and evolved at 130 °C for an hour. After cooling of the reaction mixture to 
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room temperature, petroleum ether was added to precipitate the yellow product, which was then centrifuged, 

filtered and washed once with cold diethyl ether (yield 75 %). 

1H-NMR: [400 MHz, (CD3)2SO]: δ/ppm 9.60 (s, 1H), 9.56 (s, 1H), 9.05 (t, J = 8.8 Hz, 2H), 9.01 (s, 1H), 8.35 

(t, J = 7.4 Hz, 1H), 8.11 (d, J = 7.8 Hz, 2H), 7.85 (s, 1H), 7.73 (t, J = 6.3 Hz, 1H), 7.60 (m, 3H), 7.15 (t, J = 7.5 

Hz, 1H: ), 6.45 (t, J = 7.5 Hz, 2H). (Fig. S11a) 

13C-NMR: [400 MHz, (CD3)2SO]: δ/ppm = 198.87, 194.61, 191.23, 160.25, 157.47, 156.99, 156.70, 156.58, 

153.00, 150.25, 140.24, 135.61, 131.10, 129.89, 129.46, 128.77, 128.19, 126.73, 125.46, 120.09, 118.03, 

107.35, 106.64. 

IR-ATR: ν/cm–1 = 3244, 2022, 1911, 1885. 

Synthesis of [Re(ptbpy)(CO)3Cl] (2). The reaction proceeded similarly to [Re(pdbpy)(CO)3Cl]. 

([Re(CO)5Cl] (0.500 mmol, 1 equiv) and ptbpy (0.501 mmol, 1.01 eq) were refluxed for 3 hours in anhydrous 

toluene (20 mL) while stirring (yields 70%). 

1H-NMR: [400 MHz, (CD3)2SO]: δ/ppm =9.06 (d, J = 7.47 Hz, 2H), 8.96 (s, 1H), 8.35 (t, J = 8.57 Hz, 1H), 

8.15-8.18 (m, 2H),7.96 (s, 1H), 7.75 (t, J = 7.03, 1H), 7.59-7.62 (m, 3H), 6.54 (d, J= 27.97 Hz, 2H). (Fig.S11b). 

13C-NMR: [400 MHz, (CD3)2SO]: δ/ppm = 196.92, 194.41,191.76, 181.02, 164.59, 157.43, 156.86, 153.19, 

150.47, 146.5, 140.28, 135.66, 135.61, 133.04, 131,29, 129.89, 128.38, 127.90, 125.96,124.86, 120.26, 109.34.  

IR-ATR: ν/cm–1: 3226, 2026, 1913, 1877. 

The experimental setup is similar to that previously reported.31 Electrochemical experiments were 

performed using a Metrohm Autolab 302n potentiostat; acetonitrile was freshly distilled and purged with argon 

before use, tetrabutylammonium hexafluorophosphate (Bu4NPF6, Sigma–Aldrich, 98%), employed as 

supporting electrolyte, was recrystallized twice from ethanol and dried before use. The reference electrode 

Ag/AgCl (KCl 3M) was employed. Under these experimental conditions the redox couple Fc+/Fc is located at 

E1/2= 0.35V (ΔEp= 56mV). 

DFT calculations were performed as previously reported,31 employing the B3LYP method coupled with the 

basis set def2TZVP for heavy metals and def2SVP for lighter elements. IR-SEC spectroelectrochemistry 

were performed in a OTTLE cell,42 analogously as previously reported.31  
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Quantitative analysis of CO2 reduction products. CO was detected and quantified using an Agilent 490 

Micro GC gas chromatograph equipped with a CP-Molsieve 5 Å columns, which was kept at 85°C and at a 

pressure of 21 psi, with a thermal conductivity detector. The carrier gas was He. The backflush vent option time 

was set to 4.5 s. A second module equipped with a CP-Molsieve 5 Å column using Ar as carrier gas was used 

for H2 analysis. The gas inside the measurement cell was sampled for 30 s every three minutes to fill the Micro 

GC 10 µL sample loop, and eventually 500 nL were injected into the column for the analyses. We used Ar, He, 

CO2 pure gases (>99.9995%) from Sapio for the operation, and two different certified standard concentrations 

of CO and H2 in Ar matrix (Rivoira) for calibration (Fig. S8). Detection limits for CO and H2 were 1 ppmv and 

0.5 ppmv, respectively. Formate production was quantitatively evaluated using NMR spectroscopy. 

Single-Crystal X-ray diffraction. Data for compound 1 have been collected on a Gemini R Ultra 

diffractometer using graphite-monochromated Mo Ka radiation (k = 0.71073 Å) with the ω-scan method. Cell 

parameters were retrieved using CrysAlisPro43 software, and the same program has been used for performing 

data reduction, with corrections for Lorenz and polarizing effects. Scaling and absorption corrections were 

applied by the CrysAlisPro multi-scan technique. The structure was solved by Patterson Function using 

Sir201444 and refined with full-matrix least-squares on F2 using SHELXL45. All non-hydrogen atoms were 

anisotropically refined. Hydrogen atoms were calculated and riding on the corresponding atom. Structural 

illustrations have been drawn with Mercury.46 The crystallographic data for 1 have been deposited within the 

Cambridge Crystallographic Data Centre as supplementary publications under the CCDC number 1857181. 

This information can be obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cifcode CCDC. 

 

Photocatalytic experiments. Irradiation of either CO2- or argon-saturated 3.5 mL solution containing the 

catalyst, the photosensitizer and the sacrificial electron donor were conducted in a closed 1 cm × 1 cm quartz 

suprasil cuvette (Hellma 117.100F-QS) equipped with home-designed headspace glassware for further gaseous 

product quantification. A Newport LCS-100 solar simulator, equipped with an AM1.5 G standard filter 

allowing 1 Sun irradiance and combined with a Schott GG420 longpass filter and a 2-cm-long glass (OS) cell 

filled with deionized water to prevent catalyst absorbance and to cut off infrared and low ultraviolet, was used 

as the light source and was placed at right angle of the sample. In these experiments, gaseous products analysis 
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was performed with an Agilent Technology 7820A gas chromatography (GC) system set with a CarboPLOT P7 

capillary column (25 m length and 25 mm inner diameter) and a thermal conductivity detector. Calibration 

curves for H2 and CO were established separately. Formate was quantified with a Dionex ICS-1100 Ionic 

Chromatography System equipped with a IonPac AS15 column (KOH 20 mM as eluent). UV-Visible 

absorption spectra were recorded with an Analytik Jena Specord 600 spectrophotometer. Emission quenching 

measurements were conducted with a Cary Eclipse fluorescence spectrophotometer (Agilent Technologies), 

with the excitation wavelength set at 420 nm. Emission intensities used for the Stern-Volmer analysis were 

taken at 517 nm, i.e. the emission maximum of Ir(ppy)3. 
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