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Abstract. Among the various typologies of problems to which Genetic
Programming (GP) has been applied since its origins, symbolic regres-
sion is one of the most popular. A common situation consists in the
prediction of a target time series based on scalar features and other time
series variables collected from multiple subjects. To manage this prob-
lem with GP data needs a panel representation where each observation
corresponds to a collection on a subject at a precise time instant. How-
ever, representing data in this form may imply a loss of information:
for instance, the algorithm may not be able to recognize observations
belonging to the same subject and their recording order. To maintain
the source of knowledge supplied by ordered sequences as time series, we
propose a new approach to GP that keeps instances of the same obser-
vation together in a vector, introducing vectorial variables as terminals.
This new representation allows aggregate functions in the primitive GP
set, included with the purpose of describing the behaviour of vectorial
variables. In this work, we perform a comparative analysis of vectorial
GP (VE-GP) against standard GP (ST-GP). Experiments are conducted
on different benchmark problems to highlight the advantages of this new
approach.

Keywords: Genetic Programming - Vector-based representation - Panel
Data regression.

1 Introduction

Among the several existing typologies of problems to which Genetic Program-
ming (GP) [1] can be applied, symbolic regression is undoubtedly one of the
most popular. The objective of symbolic regression is to find a function that de-
scribes the relationship between inputs and corresponding outputs, developing a



Authors Suppressed Due to Excessive Length

model that can be used to make predictions on new inputs. Of great importance,
belonging to the family of symbolic regression, is panel data forecasting.

A panel dataset is a collection of observations for multiple subjects at different
equal-spaced time intervals [2]. Therefore, if the independent variables among the

M observations measured are Xi,..., X% where i =1,..., M and X%,..., X4
change in time (X;t withi=1,....M, j=K,...,N and t = 1,...,T denot-
ing time series variables) and Y is a dependent variable (Y’ with ¢t = 1,...,T

denoting a target time series variable), we can express the dataset as

i 1 i 1 i 1 i 1
(XY, Xy Xy X Xy X Vi YY)

where i= 1,... M refers to the subject being observed. The interest of panel data
regression lies in predicting dependent variables which are hard to measure. To
clarify, let us consider the example panel reported in Table 1. In this example,

Table 1. Example standard panel dataset.

‘Person ID ‘ Age ‘ Sex‘Year‘ Income ‘
1 |27 1 ]2015] 1600
| 28 | 1 |2016] 1500
| 42| 2 |2015] 1900
| 43 | 2 |2016] 2000
| 44| 2 |2017] 2100
| 34| 1 |2015] 3300

WIN | NN =

individual characteristics are collected for different persons and years in order to
predict the income. The standard GP approach can be easily applied to panel
data regression; however, there can be a potential disadvantage. Data instances
(fitness cases) are treated independently. Therefore the algorithm is not able
to recognize that two (as in lines 1 and 2 in Table 1), or more, observations
belong to the same individual. This situation may result in a loss of knowledge
regarding the time series, that may instead have been useful to effectively model
the target.

The idea behind this work is to design a novel GP system, that we call Vec-
torial GP (VE-GP), able to exploit the source of information provided by the
additional dimension of time of panel datasets. To make the algorithm consider
the whole time-series, we aggregate related data instances referring to the same
entity in a vectorial representation, so that variables that change in time be-
come vectorial variables. Therefore, the panel dataset represented in Table 1 is
transformed into the representation reported in Table 2. In this configuration,
a GP tree can be composed either by scalar terminals (to represent features
such as Sex and Person ID) or by vectorial terminals (for instance to represent
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Table 2. Example vectorial panel dataset.

‘Person ID‘ Ages ‘Sex‘ Years ‘ Incomes ‘
| 1 | [2728] | 1| [2015,2016] | [1600,1500] |
| 2 |[42,43,44]| 2 |[2015,2016,2017]|[1900,2000,2100]|
|3 | 34 |1 2015 \ 3300 \

Ages and Years). Moreover, the technique we propose adds new functions to the
primitive set, defined with the purpose of describing the behaviour of temporal,
or more generally vectorial, variables. From now on, we use the term time series
to indicate an observation of a vectorial variable, also called time series variable.
Therefore, a time series is a sequence of recorded values, belonging to one entity
and represented as a vector.

The paper is organized as follows: in Section 2, we present previous and
related work and we motivate the novelty of our approach. In Section 3, we
describe VE-GP focusing on the new techniques and approaches we propose in
the different blocks of a GP structure. Test problems and experimental setting
used to explore the performance of VE-GP are presented in Section 4. Sections 5
and 6 describe the result obtained, comparing VE-GP with the standard GP and
discuss the possible limitations of the new approach. Finally, in Section 7, we
conclude with final considerations, and we give ideas for possible future works.

2 Previous and Related Work

Working with time series in GP has always been a challenging problem due to
the inherent difficulty of handling this type of data. Common strategies include
feature extractions to reduce the series into scalar features [3] or element by
element treatment, where each entry of the series is an independent terminal
[4]. However, some previous works explored the idea of keeping the native data
type of time series, the vector. Holladay et al. [5] introduced a vector-based GP
to predict the feature vector of fixed length signals. In this paper, vectors were
possible inputs rather than scalars, and the primitive set included domain de-
pendent functions that act on both of them. A more recent work of Bartashevich
et al. [6] allows vectors as primitives and include vectorial functions such as the
cross and dot product to build GP individuals. Other approaches have been pro-
posed to preserve the ordered essence of time series such as Vera et al. [7]. In
this latter work the authors investigated the serial processing of data where the
time sequence is presented to the algorithm in series so that the elements of a
sequence are processed in the same order as they are recorded.

Starting from the idea of [5] we move further to provide a more exhaustive
vector-based GP. Our VE-GP is less problem-specific and aims at providing
an algorithm able to deal with any naturally ordered variable of any length.
Moreover, in VE-GP we have included new structures that advance the search
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space of the considered problems. VE-GP elevates the capabilities of previously
proposed vector-based approaches and provides a more sophisticated technique.

3 Vectorial GP

VE-GP is built on top of the GPLAB toolbox [8]. GPLAB includes most of
the traditional features usually found in many GP systems. We have chosen it
because its highly modular structure makes it a particularly versatile, generalist
and easily extendable tool, highly suited for testing new elements and techniques.
Moreover, it is written in MATLAB, which provides a particularly appropriate
environment to manage vectors. In the following paragraphs we describe the
primitive set and other particular elements of VE-GP.

Functions of Arity One Since VE-GP is specific for time series variables, we
have integrated the set of classical arity one functions with aggregate functions.
Standard aggregate functions collapse the whole time series variable into a single
value of more significant meaning. They can be included in the primitive set when
we deal with time series prediction based on past time series variables. We even
face problems where the time series target flows simultaneously to the time series
predictors, which means that the time instants, corresponding to the entries of a
vector, are the same for both the target and the predictors. Therefore, specially
meant for this latter problem, we have added cumulative aggregate functions.
These operators applied on a time series return a vector whose entries are the
aggregate values of only previous time values. These versions of the aggregate
function, the standard and the cumulative ones, allow GP to foresee any kind
of time series, from the ones that take place during the recording of data to
the future ones. All the arity one functions can be also easily applied to scalars,
considering them as a vector of 1 x 1 dimension. The primitives of arity one used
by VE-GP are described in Table 3.

Functions of Arity Two Concerning arity two we have included new functions
inspired by classical vector operations. These functions can manage vectors of
different lengths completing the shortest one with the null-element of the func-
tion involved. In the case of a scalar and a vector as inputs we have provided a
specific evaluation in order not to consider scalars as 1 x 1 vectors. The primitives
of arity two used by VE-GP are described in Table 4. The functions VSUMW, V_W,
VprW and VdivW are called standard arity two functions.

Parametric Aggregate Functions We have introduced parametric aggregate
functions that apply the referring aggregate function only to the values belong-
ing to the time window described by parameters. Regarding standard aggregate
functions, the parameters p and ¢ define respectively the initial and final posi-
tion of the range to be considered. Therefore the standard aggregate function is
applied to the input values of position p,...,g—1, g. To have an admissible range
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Table 3. Description of functions of arity one. The columns represent the primitive
function (first column), MATLAB name (second column) and the outcome of the func-
tion (third column) applied on a given vector v (in this example, v=[1, 2.5, 4.3, 0.7]).

Primitive |MATLAB |pf(v)
function name
(pf)
‘Mean ‘\unean ‘anean([L 2.5,4.3,0.7)) = 2.1 ‘
Max, Min V_max, vmax([1,2.5,4.3,0.7]) = 4.3
V.min vmin([1,2.5,4.3,0.7]) = 0.7
|Sum |v_sum |v_sum([1,2.5,4.3,0.7]) = 8.5 \
|Mode |vmode |vmode([1,2.5,4.3,0.7]) = 0.7 \
|Length [v_length  |V_.length([1,2.5,4.3,0.7]) =4 \
|2-Norm |V_2norm |v_2norm([1,2.5,4.3,0.7]) = 5.1 \
Cumulative |C_mean C-mean([1,2.5,4.3,0.7]) = [1,1.8,2.6,2.1]
mean
Cumulative |C_sum c-sum([1,2.5,4.3,0.7]) = [1, 3.5,7.8,8.5]
sum
Cumulative |Cmax, Ccmax([1,2.5,4.3,0.7]) = [1,2.5,4.3,4.3]
max, min Cmin Ccmin([1,2.5,4.3,0.7]) =[1,1,1,0.7]
Exp, Log,|V_exp, v_exp([1,2.5,4.3,0.7]) = [2.7,12.2,73.7, 2.0]
Cos, Sin, Abs,|V_1og™, V_log([1,2.5,4.3,0.7]) = [0,0.9,1.5, —0.4]
Square, Cube,|V_cos, V_cos([1,2.5,4.3,0.7]) = [0.5, —0.8, —0.4,0.8]
Sart V_sin, V_sin([1,2.5,4.3,0.7]) = [0.8,0.6,—0.9, 0.6]
V_abs, \' abs([l 2.5,4.3,0.7)) = [1 2.5,4.3,0.7]
v2, v3, |[v2(l1,254.3,07]) = [1,6.3, 18.5,0.5]
V_sqrt* v,3([1,25 4.3,0.7)) = [1,15.6,79.5,0.3]
*(protected  |V_sqrt([1,2.5,4.3,0.7]) = [1,1.6,2.1,0.8]
version as [1])

p < q. Concerning cumulative aggregate functions, we remind that the output is
a vector. The ¢ — ith entry of the output depends on the values belonging to the
window described by parameters p and ¢. In this case, p defines how far to look
back from the ¢ position determining the initial value of the range, while ¢ defines
how many values to consider. Thus, the ¢ — ith entry of the output is the aggre-
gate function applied on input values of position i —(p—1),...,i—(p—1)+¢—1.
To have admissible range in this case p > ¢. The primitives of the parametric
aggregate function used by VE-GP are described in Table 5.

It is noteworthy that many of the new functions are not replicable by the
standard GP.
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Table 4. Description of functions of arity two. The columns represent the primitive
function (first column), MATLAB name (second column), the outcome of the function
(third column) applied on a given scalar s and vector v1 and the outcome of the function
(fourth column) applied on two vectors v1 and v2 (in this example, s=0.2, v1=[1, 2.5,
4.3], v2=[0.1, 3.2, 4, 1.1]).

Primitive @~ |MATLAB |pf(s,vl) pf(v1i,v2)
function name
(pf)
Element-wise |VSUMW vsuMw(0.2, [1,2.5,4.3]) = [1.2,2.7,4.5] vsuMw([1,2.5,4.3],[0.1,3.2,4,1.1]) =
sum [1.1,5.7,8.3, 1.1]
Element-wise [V V(0.2 [1,2.5,4.3]) = [-0.8, —2.3, —4.1]  |[v_w([1,2.5,4.3],[0.1,3.2,4,1.1]) =
0.9,-0.7,0.3 — 1.1]
Element-wise |[VprW vprw(0.2,[1,2.5,4.3]) = [0.2,0.5,0.9] vprW([1,2.5,4.3],[0.1,3.2,4,1.1]) =
product [0.1,8,17.2,1.1]
Scalar VscalprW Vscalpri(0.2,[1,2.5,4.3]) = 1.6 VscalprW([1,2.5,4.3],[0.1,3.2,4,1.1]) =
26.4
Element-wise |[vdivii* VAivin(0.2, [1,2.5,4.3]) = [0.2,0.08,0.05]  [vdivw([1,2.5,4.3],[0.1,3.2,4,1.1]) =
division *(protected [10,0.8,1.1,0.9]
version as [1])
Scalar  Divi-|VscaldiviW® |Vscaldivi(0.2,[1,2.5,4.3]) = 0.3 Vscaldivi([1,2.5,4.3],[0.1,3.2,4,1.1]) =
sion *(protected 12.8
version as [1])

Initialization Given the new representation in VE-GP, several challenges arise.
Firstly, a big number of scalar inputs can cause a poor initial representation of
new functions and terminals, as such barely used during the evolutionary process.
Secondly, it is possible to obtain final solutions whose output is a scalar and
not a vector because many of the integrated functions collapse a vector into a
scalar. We have designed a different initialization strategy which releases unique
and innovative characteristics of VE-GP during the evolution. The strategy is
resumed in the procedure described in Figure 1.

The motivation behind the second rule is to ensure a representative amount
of trees in the initial population whose output is not a scalar. Similarly, the
third rule ensures trees where the new functions are meaningfully used. In our
opinion, the initialization strategy that we propose does not introduce significant
bias in the evolutionary process, contrarily, it aims to aid VE-GP to free its full
potential during the evolution.

We have furthermore initialized the values of the parameters for the aggregate
functions. Because a time series variable can have a different length among fitness
cases, we have randomly set p and ¢ between 1 and the maximum time series
length for all the parametric aggregate functions.
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Table 5. Description of parametric aggregate functions. The columns represent the
primitive function (first column), MATLAB name (second column), the outcome of
the function (third column) applied on a given vector. For standard functions p is the
initial position while q is the final position of the range, instead for cumulative functions
p is the number of backward steps to be made in order to determine the initial position
of the range while ¢ is the amplitude of the range (in this example, v=[1, 2.5, 4.3, 0.7,

1.6], (p,q)=(2,3) for standard functions, (p,q)=(3,2) for cumulative functions).
Primitive |MATLAB |pf, q(v)
function name
(pf)
|Mean in [p,q] |[V-mean, 4 |Vmeans 3([1,2.5,4.3,0.7,1.6]) = 3.4
Max in [p,q],|V-maxp,q, Vmaxz3([1,2.5,4.3,0.7,1.6]) = 4.3
Min in [p,q] |Vaminggq Voming3([1,2.5,4.3,0.7,1.6]) = 2.5
|Sum in [p,q] |V_sum, 4 |V_sums,3([1,2.5,4.3,0.7,1.6]) = 6.8
Cumulative |V_Cmeanp, |V-Cmeans»([1,2.5,4.3,0.7,1.6]) =[0,1,1.8,3.4,2.5]

mean in [p,q]

Cumulative |V_Cmaxpq, |V-Cmaxs2([1,2.5,4.3,0.7,1.6]) =10,1,2.5,4.3,4.3]
max in [p,q],|V-Cmingq V_Cminsz2([1,2.5,4.3,0.7,1.6]) = [0,1,1,2.5,0.7]
Cumulative

min in [p,q]

Cumulative |V_Csumy,q V_Csums2([1,2.5,4.3,0.7,1.6]) = [0,0, 3.5,6.8, 5]

sum in [p,q]

Create an empty population P (the initial population) of size N.

1. Generate nl trees in P using Ramped Half-and-Half initialization algorithm
(RHH) [1];

2. Generate n2 trees in P using RH H such that each tree always generates an output
which is a vector:
(a) randomly generate a tree ¢ by means of RH H;
(b) randomly select a standard primitive function pf of arity two;
(c) randomly select a vector-terminal v;
(d) create the following tree, using post-fix notation, (pft v);

3. Generate n3 trees in P using RH H where aggregate primitive functions are forced
to receive a vector-terminal as an input.

Fig. 1. Proposed initialization strategy.
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Genetic Operators VE-GP includes a new type of mutation. Besides the clas-
sical one there is the mutation of aggregate function parameters. This operator
allows parameters to evolve so that the most informative window where to ap-
ply the relative aggregate function is found. Firstly, the algorithm searches the
tree for parametric aggregate functions and randomly selects one. Secondly, a
random parameter is chosen and mutated according to the procedure reported
in Table 6. Every time a genetic operator requires a new tree, parameters are
set according to the initialization default values.

Table 6. Parameters mutation.

Standard aggregate functions param-
eters p,q

Cumulative aggregate function pa-
rameters p,q

— Random selection of p or g;

— If p randomly change it from 1 to g¢;

— If ¢ randomly change it from p to the
maximum time series length.

— Random selection of p or g;

— If p randomly change it from 1 to the
maximum time series length;

— If ¢ randomly change it from 1 to p.

4 Experiments

4.1 Benchmark Problems

We have tested the proposed VE-GP against a standard GP system (ST-GP)
on four benchmark problems. To investigate the competitiveness of VE-GP we
have chosen a first problem where the target does not involve the new primitive
functions in order to see if VE-GP is penalized by having unnecessary func-
tions and structures. Three more problems include some of the new functions
in the target, and they are meant to show the performances of both algorithms
considering that ST-GP can just try to approximate the new functions at its
best.

Korns5 This benchmark problem is inspired by Korns problem number five
for symbolic regression [9]. We have chosen to involve four variables of random
numbers between -50 and 50 as the input, named X1, X2, X3, X4 respectively.
Differently from the true Korns problem number five, the latter variable X4 for
our experiment is a vector of length 10. The target expression is:

K5 =vsuMi(3.0,Vpri(2.13,V_1og(X4))).

The dataset for VE-GP consists of 1000 instances, while for ST-GP it consists
of 10000 instances because we have vertically untied the variable X4 and the
target K5 to have the classical panel data representation.
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Benchmarkl This benchmark problem is a new one that makes use of the aggre-
gate functions implemented to produce the target. The vectorial dataset consists
of 100 instances, where each instance is composed by four features: a random
number between -10 and 10, another random number between -10 and 10, a
vector of random numbers between 10 and 40 of length 10, and a vector of ran-
dom numbers between -5 and 5 of length 10. Naming the variables in order as
X1,X2, X3 and X4 the target reads as follows:

Bl=vw (VSUMW(X4, V_mean(X3)),Vv_W(Vscalprw(X3, X4), X2)> .

Conversely, for the scalar dataset, we have vertically untied the vectorial features
so that it consists of 1000 instances.

Benchmark2 This benchmark problem involves the cumulative functions de-
scribed in the previous section. The vectorial dataset is the same used for the
previous benchmark B1, while the target is now

B2 = vprwW (VdivW(VSUMW(XS, X1),V_Cmean(X4)), X2>.
Again for the scalar dataset we have vertically untied the vectorial variables.

Benchmark3 This benchmark problem includes parametric aggregate functions.
Therefore the evolution of parameters is integrated in VE-GP. The variables
involved are five: X1 is a vector of length 20 of random numbers between 10 and
30, X2 is a random number between 50 and 60, X 3 is a random number between
5 and 10, X4 is a random number between -2 and 2, and X5 is a random number
between 0 and 1. The target is:

B3 = VvSUMW(VprW(V_Cmins,3(X1),vdivi(X2, X3)), X4).

The dataset for VE-GP consists of 100 instances, while for ST-GP it consists of
1000 instances because, as for the other problems, we have vertically untied the
vectorial variables.

4.2 Parameters and Statistical Test

The experimental parameters used in all the problems are provided in Tables 7
and 8. They were essentially the same for both ST-GP and VE-GP to facilitate
the comparison between the techniques. We should remark that the choice of
new terminal functions between cumulative or standard version depends on the
chosen recording time of the time series involved. Fitness is calculated as the
Root Mean Square Error (RMSE) between the output and the target. Since
the output of trees built by VE-GP is supposed to be a vector, for this latter
algorithm we have calculated the RMSE vertically disbanding both output and
target; in this way the measures of fitness are ensured to be comparable between
the two techniques. Moreover, when a VE-GP tree wrongly produces scalars as
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an output, each scalar is replicated until the length of the corresponding target
to make it a vector. We have decided to penalize these trees by multiplying their
fitness for a huge constant (100).

We have tested both techniques on a total of 50 runs, each of which considers a
different training and test data partition; from now on the term test set stands for
unseen data. In particular, at the beginning of a VE-GP run, 70% of the instances
are randomly selected as the training set, while the remaining ones form the test
set. We have kept the same division for ST-GP with correspondence of the
observations, so that time series are not split. We have performed a set of tests
to analyse the statistical significance of the results. At first, the Kolmogorov-
Smirnov test has shown that final fitness data are not normally distributed
and hence we have opted for a rank-based statistic. Test decision for the null
hypothesis of no difference in performance between ST-GP and VE-GP has been
calculated with the Wilcoxon Rank Sum Test on the final test fitness. We have
opted for it because it is a non parametric test and considers the median which
is more robust than the mean to outliers. In order to quantify the assuming
difference in performance between the two approaches, we have even used a
Vargha Delaney A-test which is an index of effect size [10].

5 Results

In this section, we analyse the performance achieved by the two algorithms on
the four problems. The evolution fitness plot (Figure 2) shows the best fitness
in each generation for the training and the test set, median of 50 runs. Besides
evolution plots, there are boxplots based on the test fitness at the end of evo-
lution. The statistical test comparing final test fitness between both techniques
can be found in Table 9. In this table, p is the p-value of the Wilcoxon test
with a 5% level of significance. The term A represents the value of the Vargha
Delaney A-test. The test returns a number between 0 and 1, representing the
probability that a randomly selected observation from the first sample is bigger
than a randomly selected observation from the second sample. In our specific
case, the first sample is formed by the best fitness found by ST-GP while the
second sample is composed of the best fitness found by VE-GP. It is important
to remember that fitness is measured via RMSE, therefore, the lower it is, the
better performance it means. Vargha and Delaney in [10] provided a suggested
threshold for interpreting the size of the difference: 0.5 means no difference at
all, up to 0.56 indicates a small difference, up to 0.64 indicates medium and
anything over 0.71 is large. The same intervals apply below 0.5.

Firstly, if we consider the K5 benchmark, there is no significant disparity in
performance between the algorithms. This confirms our expectation since the
target of the problem does not involve the new functions; the difference between
techniques, thus, it is just in data representation. The VE-GP algorithm more-
over is not affected by unnecessary improvement of the initialization step and
by the extension of the primitive set. Table 9 and Figure 3 show differently
that VE-GP outperforms ST-GP for B1, B2, and B3. Moreover, Figure 2 reveals
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Table 7. Standard GP parameters.

\ K5 |B1 |B2 |B3 \
|Runs |50 |50 |50 |50 \
|Population  [500 500 500 500 \
|Generations  |100 100 100 100 \
Training- 70%-30% of vectorial in-|70%-30% of vectorial in-|70%-30% of vectorial in-|70%-30% of vectorial in-
Testing di-|stances stances stances stances

vision

tors

Genetic opera-

Crossover, probability 0.9-
Mutation, probability 0.1

Crossover, probability 0.9-
Mutation, probability 0.1

Crossover, probability 0.9-
Mutation, probability 0.1

Crossover, probability 0.9-
Mutation, probability 0.1

Initialization

Ramped Half-and-Half [1],
max depth 6

Ramped Half-and-Half [1],
max depth 6

Ramped Half-and-Half [1],
max depth 6

Ramped Half-and-Half [1],
max depth 6

Functions set |plus, minus, times, pro-|plus, minus, times, pro-|plus, minus, times, pro-|plus, minus, times, pro-
tected div as [1] tected div as [1] tected div as [1] tected div as [1]

Terminals set |Input variables, random|Input variables, random|Input variables, random|Input variables, random
numbers numbers numbers numbers

Selection for|Lexicographic =~ Parsimony|Lexicographic Parsimony |Lexicographic ~ Parsimony|Lexicographic =~ Parsimony

reproduction |Pressure [11], tournament|Pressure [11], tournament|Pressure [11], tournament|Pressure [11], tournament
size=10 size=10 size=10 size=10

Elitism Replication probability 0.1,|Replication probability 0.1,|Replication probability 0.1,|Replication probability 0.1,
best individual is kept best individual is kept best individual is kept best individual is kept

Maximum 17 17 17 17

depth

an increasing error for the ST-GP test set on both B1 and B2 problems which
means that overfitting is occurring. Therefore ST-GP is not able to understand
the underlying relationship between the data. This phenomenon does not hap-
pen to VE-GP that increases in fitness during generation for both training and
test data. A notable observation that emerges from the B2 evolution plot is the
growing amplitude of percentiles. This consideration stresses the fact that every
time ST-GP tries to extract the implicit relationship between data it fails, re-
maining stuck to high error levels. Concerning B3, the difficulty of finding the
correct window of time emerges even from VE-GP, where percentiles show the
presence of runs not able to overcome ST-GP in 50 generations. Nevertheless, at
the end of the evolutionary process, every VE-GP model outperforms the ST-GP
ones that stabilize at high error suggesting the idea of no future improvements.
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Table 8. Vectorial GP parameters.

\ K5 |B1 |B2 |B3 \
|Runs |50 |50 |50 |50 \
|Population 500 1500 1500 500 \
|Generations  |100 100 100 100 \
Training- 70%-30% of instances 70%-30% of instances 70%-30% of instances 70%-30% of instances
Testing di-

vision

Genetic opera-
tors

Crossover, probability 0.9-
Mutation, probability 0.1

Crossover, probability 0.9-
Mutation, probability 0.1

Crossover, probability 0.9-
Mutation, probability 0.1

Crossover, probability
0.5-Mutation,  probability
0.1-Mutation of parameters,
probability 0.4

Initialization

30% Ramped Half-and-Half
[1], 70% Ramped Half-and-
Half with forced initializa-
tion

30% Ramped Half-and-Half
[1], 70% Ramped Half-and-
Half with forced initializa-
tion

30% Ramped Half-and-Half
[1], 70%Ramped Half-and-
Half with forced initializa-
tion

30% Ramped Half-and-Half
[1], 70%Ramped Half-and-
Half with forced initializa-
tion

Functions set

VSUMW, V._W, VprW,

VSUMW, V._W, VprW,

VSUMW, V_W, VprW,

VSUMW, V._W, VprW,

VdivW, V._.mean, V_.max, |VdivW, V_mean, V_max, |VdivW, V_Cmean, VdivW, V_Cmeanpqg,
V_min, V_sum Vmin, V_sum VscalprW |[V_Cmax, V_Cmin, V_Csum |V_Cmaxpqg, V_-Cminpqg,
V_Csumpgq

Terminals set |Input variables, random|Input variables, random|Input variables, random|Input variables, random
numbers numbers numbers numbers

Selection for|Lexicographic =~ Parsimony|Lexicographic Parsimony |Lexicographic ~ Parsimony|Lexicographic =~ Parsimony

reproduction |Pressure [11], tournament|Pressure [11], tournament|Pressure [11], tournament|Pressure [11], tournament
size=10 size=10 size=10 size=10

Elitism Replication probability 0.1,|Replication probability 0.1,|Replication probability 0.1,|Replication probability 0.1,
best individual is kept best individual is kept best individual is kept best individual is kept

Maximum 17 17 17 17

depth

Table 9. Statistical results of final test fitness comparison.

K5 B1 B2 B3
p=0.14 p=6.79-10""% p=108-1077 p=134-10""2
A =041 A=1 A=085 A=0091

6 Discussion

There is one issue that deserves attention. We have observed that VE-GP re-
veals its potential when the aggregate functions involved in the target generate
variable values among fitness cases. To clarify the statement, we have considered
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Fig. 2. ST-GP and VE-GP fitness evolution plots. The bars represent the first and the
third quartile. K5 through a) and b), B1 through ¢) and d), B2 through e) and f) and
B3 through g) and h) .

the following benchmark problem
BBN = vSUMW(—5.41, VvprW(4.9, VdivW(VSUMW(Vmax(X4), X3), X1)))

where X1 and X2 are random numbers between 0 and 1, X3 is a vector of
random numbers between -1 and 1 of length 10 and X4 is a vector of ran-
dom numbers between 2 and 3 of length 10. In this case, the vectorial term
V_max(X4) returns a value close to 3 for all the observations. Therefore ST-GP
can approximate it with a constant despite the absence among primitives of the
aggregate functions. We have investigated the performances of both GP method
on this problem as before. The Wilcoxon rank test on the final fitness of the test
set returns a p-value equal to 0.12 demonstrating that there is no difference in
performances as expected.

The vector based approach of VE-GP suggests further developments and
different applications from what we have treated in this paper. Although this
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Fig. 3. ST-GP and VE-GP fitness boxplots for test set.

work is specially meant for time-series vectors, the technique is in fact usable for
every dataset that involves variables whose suitable representation is a vector.
Moreover, we can even think about a matricial approach of genetic programming.
Some variables, in fact, may change in space and time. Therefore, a matrix is
a suitable representation for its records. Additionally, it is possible to group
vectorial variables to catch intra-records dependencies. As for the VE-GP, we will
introduce new functions inspired by classical matrix operations such as matrix
row by column multiplication or determinant and we will enhance the different
blocks of GP structure in order to exploit this new representation.

7 Conclusion

The objective of this paper was to study the potential of a new approach of
genetic programming to predict panel data. VE-GP is able to deal with different
data structures, heterogeneous both in source and scale. Therefore it is possible
to preserve the true nature of sequential variables, and it is no longer necessary to
untie them in a classical panel dataset. The main contribution of this approach is
however the capability to extract the most informative features of the behaviour
of a time series variable during the evolution.

In order to characterize suitable problems for VE-GP we have chosen bench-
mark problems in which the algorithm would perform well. However, the idea of
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VE-GP approach was suggested by panel datasets that represents many prob-
lems which stem from the real world. Therefore, to claim that VE-GP reveals
advantages, we plan to apply it on already studied real problems so that it will
be possible to compare the new results with the ones of previous works [12].

Future efforts should be made to develop a matricial approach of genetic
programming in order to analyse how the algorithm behaves when posed with
a different group of fitness cases belonging to the same datasets. By means of
VE-GP we have investigated the first way of combining records and we would
like to move further towards a single record containing all the observations as
the training set.
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