
11 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Crowd Sourced Semantic Enrichment (CroSSE) for knowledge driven querying of digital resources

Published version:

DOI:10.1007/s10844-019-00559-8

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1726444 since 2020-02-03T21:11:40Z

Noname manuscript No.
(will be inserted by the editor)

Crowd Sourced Semantic Enrichment (CroSSE) for
Knowledge Driven Querying of Digital Resources

Giacomo Cavallo · Francesco Di Mauro ·
Paolo Pasteris · Maria Luisa Sapino · K.
Selcuk Candan

Received: date / Accepted: date

Abstract Today, most information sources provide factual, objective knowledge,
but they fail to capture personalized contextual knowledge which could be used
to enrich the available factual data and contribute to their interpretation, in the
context of the knowledge of the user who queries the system. This would require
a knowledge framework which can accommodate both objective data and seman-
tic enrichments that capture user provided knowledge associated to the factual
data in the database. Unfortunately, most conventional DBMSs lack the flexibili-
ties necessary (a) to prevent the data and metadata, evolve quickly with changing
application requirements and (b) to capture user-provided and/or crowdsourced
data and knowledge for more effective decision support. In this paper, we present
CrowdSourced Semantic Enrichment (CroSSE) knowledge framework which al-
lows traditional databases and semantic enrichment modules to coexist. CroSSE
provides a novel Semantically Enriched SQL (SESQL) language to enrich SQL
queries with information from a knowledge base containing semantic annotations.
We describe CroSSE and SESQL with examples taken from our SmartGround EU
project.

1 Introduction

When making decisions impacting public utility and encouraging and/or enforcing
(possibly unpopular) behavioral rules, public administrators need to rely on data
and knowledge supporting their choices, which can be used to better inform those
citizens who will be affected by such decisions. While the advantages of bringing
scientific data into a uniform integrated platform are clear, in this paper we note
that this only solves part of the problem. We see that, in order to make the data-
bank truly useful for a diverse group of researchers, analysts, and decision makers,
the data needs to be complemented by one or more knowledge-bases that describe

Giacomo Cavallo, Francesco Di Mauro, Paolo Pasteris, Maria Luisa Sapino
Computer Science Department; U. Torino;
E-mail: {cavallo,dimauro,pasteris,mlsapino }@di.unito.it

K. Selçuk Candan
CIDSE; Arizona State University; E-mail: candan@asu.edu

2 Cavallo et al.

the contexts in which the data is queried and explored. Moreover, given that it is
not realistic to assume that tailor-made knowledge-bases will exist for all relevant
contexts, it is critical that such knowledge (ontologies as well as assumptions and
hypotheses) can be extended individually and collaboratively by the users.

In this paper, we present Crowd Sourced Semantic Enrichment (CroSSE), a so-
cial knowledge platform and integrated services supporting semantic enrichment
and content personalization within the context of scientific investigations. We note
that CroSSE is domain independent (i.e., generalizable to many application do-
mains), in that it can be used to annotate and semantically enrich any application
database. More specifically, as we later discuss in Section 4, users of the semantic
annotation tool can associate their semantic annotations and enrichments on any
value on any attribute they find in the original database. While CroSSE platform
is domain independent, in this paper, we describe our work within the context of
the SmartGround - SMART data collection and inteGRation platform to enhance
availability and accessibility of data and infOrmation in the EU territory on Sec-
oNDary Raw Materials - European project, which aims to develop a databank
platform providing access to a broad spectrum of data relevant to decision making
in the context of waste collection and management.

1.1 Use Case: SmartGround

Both urban and mining waste contains materials that can still be useful. The
challenge is to define rational waste management practices which would enable
the re-use of that part of waste which could be recovered from industrial, mining,
and municipal landfills1. The SmartGround platform integrates existing informa-
tion from national and international databanks (national agencies, public bodies
data bases, European statistics) and provides the data to all types of researchers
and decision makers (city level, state level, European level) to perform hypothet-
ical reasoning, possibly within different contexts, representing, for example, the
rules and constraints enforced in different countries. In particular, decision makers
may need to estimate the implications of actions they are considering, or the im-
pacts of new laws (such as enforcing some prohibition, or setting new thresholds
in the definition of allowed activities) which they are planning to enact (“What
would happen if no more than a certain amount of waste can be shipped to some
specific landfill from a given region?”; “Would the available stocking site still be
sufficient?”; “What if some combination of elements in a landfill was considered
dangerous, and its presence would trigger a fine to the manager of the landfill?”;
“How many landfills would be charged high fines?”). Moreover, additional (and
many times ad-hoc) assumptions that may vary from user to user or from location
to location, may be provided as the context: “Assuming that the presence of 〈some
combination of elements〉 in a landfill might pollute the air in a 〈certain number of
kilometers〉 in the neighbourhood, what would be the estimated polluted area, given
the available data about the waste deposits?”.

The SmartGround platform consists of two main modules: (a) A main database
collects the data on the landfills in a relational database and provides the users
with the tools to explore and update its content. (b) A semantic platform collects

1 In Europe, there are from 150.000 to 500.000 very variable landfills. In 2008, 49% of the
almost 3 billion tons of total waste generated in the EU-27 was disposed in dedicated landfills.

Crowd Sourced Semantic Enrichment (CroSSE) 3

and manages the ontological information provided by the users, offering the tools
to perform enriched queries on the main platform database (see Section 5). The
knowledge base at the core of SmartGround consists of rules and ontologies that
formally describe the relationships among key concepts at different levels of ab-
straction. Such knowledge potentially includes observational concepts related to
context, sampling, classification, and measurement. Importantly, users are allowed
to enter concepts into the knowledge base and to relate them to known concepts
or concepts declared by other researchers. See Section 3 for more details.

1.2 Our Contributions: Semantic Tagging and Semantic Query Enrichment

In order to support the above, our Crowd Sourced Semantic Enrichment (CroSSE)
system enables users to enrich the information stored in the databank with their
own knowledge to personalise queries and reasoning tasks. For example the director
of a specific laboratory might be interested in combining the information about the
analysis on a landfill (information stored in the database), with other information
relevant to her but not stored in the database (for example, the data and role in
the laboratory of the person who has signed the analysis report), for querying the
database in the context of her personal knowledge. To support such contextualised
querying process, CroSSE provides a Semantic Tagging Module (see Section 4) in
which users can insert their own knowledge (and possibly share knowledge already
inserted and made available by other users). Such knowledge is represented within
CroSSE in the form of RDF statements [4] and a query engine combines SPARQL
queries on each user’s knowledge base and SQL queries for the data stored in
the relational databank. In [11], we discussed the need for semantic tagging and
contextualised queries to enable crowdsourced participation to decision making
processes, and we provided an overview of the semantics of the enriched queries we
were targeting. In this paper, we introduce the syntax of the contextually enriched
query language SESQL and the system architecture which enables SESQL queries.

2 Related Work

In many application domains, including sciences, there is a strong need to be able to
collaborate through sharing of data, information, and knowledge. Data integration
technologies and crowdsourcing platforms, such as MiNC [1] and LabBook [15],
provide great opportunities in this direction.

Data Integration: In general, there are three types of information-integration
systems. In source-centric systems, the sources are defined in terms of the global
schema and are referred to as local-as-view, or LAV, systems (Information Man-
ifold [16], Emerac [23]). The LAV approach, while flexible, assumes a consistent
integrated view. An alternative approach is to define the global schema in terms
of the sources. This is called global-as-view, or GAV (HERMES [2], SIMS [3],
TSIMMIS [13]), and WEBBASE [9,10]). The third class is a hybrid referred to
as a GLAV system [28]. Orchestra [25] and FICSR [7] are systems that focus on
managing disagreements that arise (at both schema and instance levels) during
data sharing. FICSR creates a data structure that captures all interpretations of a
conflicting database and can provide different views, ranked with users individual
assumptions and preferences, to different users. [29] provides a survey of different
DB integration techniques.

4 Cavallo et al.

Ontology Driven Query Formulation: In [12] authors discuss how reason-
ing on the ontology affects the query answering process in their Ontology-Based
Data Access. ODBA can be implemented as a three level architecture consisting of
the ontology, the data sources, and the mapping between them. The approach in
[22] deals with ontology-driven query formulation, in which the intensional descrip-
tion of a relational database is mapped to a OWL-DL description, the language
in which the domain experts express their specific knowledge. On this common
OWL-DL formalization, the user may formulate ontological queries that are then
translated into the corresponding relational SQL statements. Available ontologies
can be used in web site management and integration scenarios; in particular, [18]
describes a SEmantic portAL (SEAL) which presents a three-layer architecture
encompassing: (a) heterogeneous data sources (DB, XML, HTML); (b) a wrapper
that aggregates the sources in a common data model; (c) integration modules able
to reconcile the data sources. The central aspect of this family of semantic por-
tals (including SmartGround) is the help offered to a community of users, each
one contributing to the global knowledge base while also consuming the common
enriched knowledge. See [27] for a survey of relevant semantic technologies.

Processing of Semantic Queries: Ontologies describe intensional knowl-
edge in which integrity constraints can be expressed in specific languages such
as Description Logic and in particular the DL-Lite subset, that can guarantee
a very efficient query answering process. In [6] a Tuple Generating Dependency
(TGD) syntax for the rules describing ontological constraints is proposed, with
some restrictions on variable occurrences in the body rules. Since it is difficult to
express queries against complex ontologies, [17] describes a system that automat-
ically infers the user’s query from examples. A key problem in query rewriting is
the expressive power of the rewriting scheme and the soundness and complete-
ness of the supported query reformulation. A somewhat secondary, but important,
problem is the optimization of the rewriting process: [26], for instance, supports
semantic-aware inverted indexing, while in [14], the optimization step is achieved
in terms of conjunctive queries against an ontology to obtain minimal output. The
general problem of ontology based information retrieval is described in [21], not
only in terms of relationship between ontology and relational database schema,
but with a comparison between specific languages (RDF vs OWL1 vs OWL2),
ontology-based tools and database to ontology mapping/transformation tools.

Ontology Management and CrowdSourcing: [20] and [19], focus on
crowdsourcing ontology verification and engineering. They apply ontological ver-
ification to large biomedical ontologies, in which the class hierarchy not only is
the core structure, but is the only semantic relationship created by ontology de-
velopers. Using a crowdsourcing method for ontology verification (in which work-
ers answer computer-generated questions based on ontology axioms) the hierar-
chy verification is subdivided in micro-tasks and the results are measured. In [5]
the problem of ontology based information reuse is oriented to the realization
of knowledge-based digital ecosystems. The authors present techniques based on
linguistic analysis that, starting from the vocabularies contained in each source
ontology and relating them with the initial (or proto) ontology, can facilitate the
process of ontology construction, automating the selection and reuse of existing
data models. [24] presents the NeOn methodology for ontology engineering, which
considers the ontological development as the construction of networks of ontolo-
gies, where resources may be managed by people in different organizations.

Crowd Sourced Semantic Enrichment (CroSSE) 5

landfill

landfill_name city

capitalLF Roma

alpsLF Torino

nordLF Milano

littleLF Campello Monti

mineral

min_name

pyrite

barite

fluorite

gold

asbestos

element

elem_name

cobalt

copper

gold

iron

nickel

mercury

zinc

chem_compound

chem_name

cyanide

elem_contained

landfill_name elem_name

capitalLF copper

capitalLF iron

alpsLF nickel

alpsLF zinc

nordLF mercury

nordLF cobalt

littleLF iron

littleLF zinc

capitalLF sulfur

nordLF chlorine

min_contained

landfill_name min_name

capitalLF barite

alpsLF gold

nordLF asbestos

chem_contained

landfill_name chem_name

capitalLF cyanide

nordLF cyanide

1 * 1*

*

1*

1 *1

*

1

*

1

Fig. 1 Sample fragment of the SmartGround database: this segment of the database represents
a sample data fragment capturing the knowledge of what is contained (in basic terms of
elements, minerals and chemical compounds) in four mine landfills

3 Motivating Application: SmartGround European Project

Within the context of the SmartGround2 European project, introduced in Sec-
tion 1.1, we are developing a databank in which a broad spectrum of data relevant
to decision making in the context of waste management are collected and shared.
The databank integrates information from national and international databanks,
public data bases, and European statistics. In the rest of this paper, we use a small
subset of the SmartGround databank (see Figure 1) as a running example.

In this paper, we note that users of an integrated data store, like SmartGround,
may often need to enrich the data stored in the databank with their own knowl-
edge, to personalise queries and reasoning tasks. For example, a regulator body
might be interested in combining the information about the content of a landfill
(stored in the database) with other information relevant to them but not stored
in the database (e.g., the hazardousness of the waste material in the landfill). To
support such user participation, SmartGround leverages our Crowd Sourced Se-
mantic Enrichment (CroSSE) system3, which includes a semantic tagging module
in which users can insert their own knowledge (and possibly share knowledge al-
ready inserted and made available by other users). This knowledge is represented
in the form of an ontology, expressed in form of RDF statements [4].

Figure 2 provides a sample ontology capturing the classification of the possi-
ble types of waste that can be found in a mine landfill. Some of these concepts
can be a direct reference to the database content (e.g., mineral, element, chemi-
cal compound), while others can be part of the general common knowledge (e.g.,
geographical information) or can be user-defined concepts (e.g., hazardous waste).
The ontology concepts are connected by means of RDF properties which can be
predefined (e.g. type, representing a parent-child relationship) or introduced (and
potentially shared) by the users of the system (e.g., ore assemblage). In this ex-
ample scenario, the ore assemblage property (ideally defined by a user who has

2 http://www.smart-ground.eu/index.php
3 The SmartGround platform, which implement many of the functionalities of the CroSSE,

is available, for registered users, at http://smartground.atosresearch.eu/home.

6 Cavallo et al.

Common Knowledge Alice Knowledge

Fluorite

Barite

Cyanide

Mercury

ore_assemblage
ore_assemblage

Nickel

Zinc

extraction_method
Iron

extraction_method

Copper
type

Cobalt

is_a

4

5

danger_level

danger_level

ore_assemblage
ore_assemblage

FeZn

chemical_symbol
chemical_symbol

Torino

Campello Monti

regional_tax
Piemonte

region

hazardous_waste

Mineral

Chemical

Compound

Element

type

type

region
Roma

regional_tax
Lazio

7%

6%

type

Chlorine
ore_assemblage

Sulfur

Metal

extraction
cost

EddyCurrent

Separator

extraction
costMagnetic

Separator

150 100

Fig. 2 Sample fragment of the SmartGround ontology

a geology background knowledge) associates to a given element/mineral the set
of other elements/mineral found in the types of rock that may also contain the
abovementioned element/mineral (e.g. Nickel can usually be found along Cobalt
or Copper, see Figure 2). This information can be exploited to infer the content of
a landfill even when it is not directly specified in the database. In Figure 2, we see
that the knowledge base has two parts: a “common” part (shared by all users of the
system) and a personalized part consisting of knowledge specific to a user named
“Alice”. We introduce these common and personalized semantic annotations next.

4 Semantic Tagging and Annotations

In CroSSE, we distinguish between (1) data, which are stored in the database and
represent factual information shared by the different partner institutions and taken
as certain knowledge by all the users, and (2) personal, contextual knowledge, which
reflects the users’ interpretation of the data, or the contextual meta-knowledge that
the users might want to use in combination with the stored data.

The factual information, shared by all users, is stored in a (relational) database,
DB. The knowledge base, KB, on the other hand, contains a set of user provided
knowledge statements, which may or may not be shared. Intuitively, the knowledge
in KB enriches (i.e, contextualises and extends) the information already available
in the database and the conclusions that can be drawn from it. Each statement is
annotated with information about its “source”, the users who inserted it into the
system and the users who have chosen to accept this statement as theirs. Given the
set of all possible users, U , the knowledge base can be logically seen as a mapping,
KB : U → P(KB), which associates each user to the set of statements she believes
in; i.e., KB(u) = {s = 〈subj, pred, obj〉 | u believes in s}. Given this, for the user,
u, the knowledge she will rely on while querying the system will be DB ∪KB(u).
With a slight abuse of notation, we use KB for both the mapping which associates

Crowd Sourced Semantic Enrichment (CroSSE) 7

(a) knowledge insertion (b) knowledge exploration

Fig. 3 SmartGround example: (a) inserting a knowledge statement to the user ontology; (b)
exploring the user ontology

Common Knowledge

User X
SC1

SC2

SC3

SC4

SC5

User Y

User Z
SC6

SX1

SX2

SX3
SX4

SY1
SY2

SZ1 SZ2 SZ3
Common Knowledge

User X
SC1

SC2

SC3

SC4

SC5

User Y

User Z
SC6

SX1

SX2

SX3
SX4

SY1
SY2

SZ1 SZ2 SZ3

Fig. 4 (a) A knowledge base with information contributed by multiple users and (b) the
contextualized knowledge base at query time

each user the statements she believes in and as the global set of available knowledge
statements, with the intended meaning that KB =

⋃
u∈U KB(u).

Scenario 1 (SmartGround Semantic Tags) Remember from Figure 1 that the
SmartGround database includes data about the elements, minerals and/or chemi-
cal compounds that can be found in various landfills. The database, however, does
not capture information about what elements (maybe if co-located with some oth-
ers) might be considered as pollutant as this might depend on local (to the states
or the regions) rules and regulations fixing thresholds for acceptable amounts of
specific elements in space units. Yet, once semantically tagged, the users can query
the SmartGround and obtain information about the existence of pollutant elements
(extracted from the database) in regions of interest. Figure 3 shows insertion of a
statement in the ontology and the knowledge exploration panel, respectively. ♦

The semantic tagging module of CroSSE enables users to extend the knowl-
edge base three distinct ways: (a) Integrated annotations: Users can highlight a
concept of interest and annotate it. Annotations can be of different nature: they
can express properties about the concepts in the knowledge base and possibly used
at query time or can be general notes the user is interested in storing for future
use, for exploration purposes only. (b) Independent annotations: Users can directly
access the semantic module and state their properties to be inserted in the knowl-
edge base. (c) Crowd-sourced annotation: Users can explore the knowledge made
available by their peers, and inherit relevant parts into their own knowledge base.

8 Cavallo et al.

smg:User

smg:Resource smg:Property smg:Statement

userResource /

u
s
e

rP
ro

p
e

rt
y
 /

userStatement / userInherit

rdfs:Class

rd
f:

ty
p

e

rdf:type

rdf:resource

rd
f:

s
u

b
je

c
t

rd
f:

p
re

d
ic

a
te

rd
f:

o
b

je
c
t

rdf:type

smg:Referenceliteral:String
refTitle

refAuthor
refLink

stmReference

userResourceInherit

u
s
e

rP
ro

p
e

rt
y
In

h
e

ri
t

leReference

Fig. 5 CroSSE RDF triple store schema for semantic tagging

Scenario 2 (Knowledge Base) In Figure 4, each circle represents a statement,
while the green box contains all the common statements related to concepts in
the database. The other boxes contain the statements defined by three different
users. In this example, the user Y has inherited the statements SX3 and SX4 from
the user X (dotted arrows). When the user Y submits a Semantically Enriched
SQL query, by default the system uses all her personal statements, as well as the
statements that she inherited from other users and the common statements (see
Figure 4(b)) to retrieve the contextual information. ♦

The knowledge statements are represented in form of RDF triplets: each state-
ment is a triple 〈subject, property, object〉 meaning that the concepts associated
to subject and object are related through the relationship property. For example
〈mercury, is a, hazardous waste〉 states that the element mercury belongs to the
class hazardous waste. Figure 5 illustrates the RDF schema CroSSE uses to rep-
resent the contextual knowledge. This schema allows the storage and querying
of the contextual metadata (i.e., the RDF triples) while differentiating the ones
defined by different users. Each statement, property, and resource is annotated
(reified) with information about its “source”, i.e. the user who inserted it into the
system and the users who have chosen to inherit it. Each statement can also carry
information about the reliability of the source or of the statement itself.

5 Semantically Enriched Query Processing

Query enrichment enables the users to exploit the semantic enrichments to obtain
a more informative result set, which contains data derived by the common/shared
data in the database, along with the one that is available to them in the knowl-
edge base. In particular, CroSSE allows, through a novel SESQL query language
(Figure 6), queries that can replace or extend the results from the database.

5.1 SESQL Overview

SESQL, briefly introduced in [8], offers clauses to help specify (a) the desired type
of enrichment (either addition/removal of attributes in/from the query result table
or use of ontological knowledge in the query filtering condition); (b) the attributes
(from the relational schema) to be enriched; and (c) the ontological properties on
which the enrichment has to be based. An SESQL query consists of two parts, the

Crowd Sourced Semantic Enrichment (CroSSE) 9

terminal:
ENRICH , SCHEMAEXTENSION , SCHEMAREPLACEMENT , REPLACECONSTANT ,
REPLACEVARIABLE , DEFINE , STRICT , KLEVEL , COMMON , PERSONAL , INHERITED ,
AS, STRING;

non terminal:
body , expression , schemaext_exp , schemarep_exp , replacevar_exp ,
replaceconst_exp , klevel , scope , sparql_def , sparql_syntax ,
attribute , property , name , concept , s;

rules:
s → ENRICH body [klevel] [sparql_def]
klevel → KLEVEL(scope ,scope ,scope)
| KLEVEL(scope ,scope)
| KLEVEL(scope)

sparql_def → DEFINE query_name AS "[" sparql_query "]"
body → [STRICT] expression body | [STRICT] expression
expression → schemaext_exp | schemarep_exp | replaceconst_exp
| replacevar_exp

schemaext_exp →
SCHEMAEXTENSION(attribute ,property[,concept])[AS name]
| SCHEMAEXTENSION(attribute ,query_name ,output_set)[AS name]

schemarep_exp →
SCHEMAREPLACEMENT(attribute ,property[,concept])[AS name]
| SCHEMAREPLACEMENT(attribute ,query_name ,output_set)[AS name]

replaceconst_exp → REPLACECONSTANT(label ,const ,property)
| REPLACECONSTANT(label ,const ,query_name)

replacevar_exp → REPLACEVARIABLE(label ,attribute ,property)
| REPLACEVARIABLE(label ,attribute ,query_name)

scope → COMMON | PERSONAL | INHERITED
attribute → STRING const → STRING
property → STRING concept → STRING
name → STRING label → STRING
query_name → STRING output_set → STRING | STRING output_set
sparql_query → ... (defined according to sparql query syntax)

Fig. 6 BNF grammar for the SESQL language

first corresponding to a traditional SQL query and the second specifying the type
of semantic enrichment the user is interested in:

SELECT ... FROM ... WHERE ...
ENRICH [STRICT] ... KLEVEL(...)

The ENRICH clause plays the role of the separator between the two query compo-
nents, the standard SQL part and the enriching statements. In particular, SESQL
enables sequences of enrichments of two distinct but complementary types:

– enrichment by SELECT clause: in this modality, the user leverages information
retrieved from the ontology to extend or replace the values that the output
tuples take for certain specified attributes;

– enrichment by WHERE clause: here, the user leverages the ontology to modify
the condition specified in the WHERE clause; this enables the user to obtain the
results she would have if the specified enrichment was implemented directly on
the database before the execution of the WHERE clause.

In the case of enrichment by SELECT clause, the (optional) STRICT clause limits
the query result set to the elements for which the ontological knowledge is explicitly
expressed into the ontology. If omitted, the “closed world” assumption holds. In the
case of enrichment by WHERE clause, the STRICT clause restricts the scope of
the condition to only the information relevant in the context of the user’s ontology
(see Sections 6 and 7). The KLEVEL clause, on the other hand, enables the user to

10 Cavallo et al.

SQP

Parser
(cup)

Scanner
(jflex)

QueryENRICH

SESQL Query

SQM

KB Wrapper DB Wrapper

Ontology
ExternalDB

Mapping
file

(XML) SupportDB

Query
Result

Semantic Query Parser Semantic Query Module

JOIN Manager

SyntaxTree

QuerySQL QuerySPARQL

Partial Results

M
a
p

p
in

g
 S

o
u

rc
e

J
o

in
 P

a
rt

ia
l
R

e
s
u

lt

Fig. 7 CroSSE semantically enriched query processing

choose the desired scope for the query: in particular, the user, u, can query the
set of RDF statements provided by herself (KBU (x)), a common ontology (KBC),
the set of statements (KBI(u)) inherited from other users, or any combination.
The user selects among these options by specifying one or more of the keywords
“PERSONAL”, “COMMON”, and/or “INHERITED”. If this clause is omitted,
the default scope is the the union of all three scopes.

5.2 Semantically Enriched Query Processing Overview

Figure 7 presents the CroSSE module for semantically enriched query processing.
The module has two sub components: the Semantic Query Parser (SQP) for the
enriched query language and the Semantic Query Module (SQM) that queries the
two relevant data sources and integrates the results. Given the syntax tree created
by SQP from the given SESQL query, the SQM module creates a set of SPARQL
queries to an RDF store to extract the relevant knowledge from the ontology, form-
ing the necessary knowledge tables stored in a supplementary storage, SupportDB.
An exception is raised if there are syntax errors in the SQL or SPARQL queries
or if there are inconsistencies (e.g. the name of the knowledge table is not used
in the enrichment expression). A JOIN Manager is used to combine the results
the created knowledge tables in the SupportDB with data stored in the original
database. A mapping file is used to resolve any naming differences between the
original database and the knowledge tables in SupportDB. The JOIN Manager
first formulates a data-fetching SQL query to be executed in the original database
to fetch the relevant tuples from the original data source into temporary tables
in the SupportDB. In order to generate the results of the SESQL query, the Join
Manager next formulates a data-merging SQL query and executes it on the Sup-
portDB to join the partial results from the database, stored in temporary tables,
with the knowledge tables extracted from the ontology. In the rest of the paper, we
formalize the Semanticaly Enriched SQL (SESQL) language contextually-relevant
query formulation.

6 Enrichment by SELECT Clause

Let Q be a query with A1, . . . , Ar attributes specified in the SELECT clause and
let RES(A1, . . . , Ar) = {〈a11, . . . , a1r〉, . . . , 〈an1 , . . . , anr 〉} be the result of the SQL
query, containing a set of n result tuples. Enrichment by SELECT clause operates
on the results of the SQL query by replacing some of the returned values and/or

Crowd Sourced Semantic Enrichment (CroSSE) 11

Table 1 Temporary tables and the result set for Example 1

elem name danger level elem name elem name danger level

mercury 4 mercury mercury 4
cyanide 5 cobalt cobalt null

chlorine chlorine null

(a) KT (b) TT (c) SESQL result

extending the schema. Let σi denote an enrichment by SELECT clause statement
in the ENRICH clause. This statement is rewritten into a SPARQL query whose
results are then represented in the form of a knowledge table KTi with attributes
VDB ∪VKB , where VDB is a set of attributes from the database and VKB is a set
of attributes containing information extracted from the knowledge base:

– In schema extension, the result is extended with new knowledge attributes,
combining factual data from the DB with ontological information from the
KB, reported in the knowledge table; i.e., RES′ = RES onAi∈VDB

KT.
– In schema replacement, instead, the original factual values specified in Ai are

replaced with the corresponding values from theKB, reported in the knowledge
table; i.e., RES′ = Π({A1,...,Ar}/VDB)∪VKB

(RES onAi∈VDB
KT) .

Note that, as we will see in the examples presented in the rest of this section, the
STRICT policy implementation requires the adoption of an inner join, while a
non-STRICT enrichment is achieved by means of a left outer join4.

6.1 Schema Extension

SESQL provides three ways a schema can be extended. We discuss these next.

6.1.1 SCHEMAEXTENSION(attribute, property)

Intuitively, SCHEMAEXTENSION(attribute, property) is the clause that enables
the user to add an attribute (not coming from the database schema) to the relation
returned by the SQL part of the query, and the ontological properties based on
which the values for the new attribute will be computed. Informally, the enrichment
is obtained by (i) creating a SPARQL query to find the RDF triples containing the
specified property property; (ii) comparing the values of the attribute attribute,
an attribute occurring in the SELECT clause of the SQL query, with the subjects of
the returned RDF triples. In case of match, the corresponding objects are returned
as the values for the new column of the SESQL query result.

Example 1 (Schema Extension) Let us consider the SmartGround scenario re-
ported in Section 3 and let us suppose that the user Alice is interested in knowing
the content (in terms of elements) of a given landfill, ‘nordLF’, using the database
visualized in Figure 1. Let us further assume that she also would like to complete
this information by indicating for each element how dangerous it can be for the
environment (if this information is available), according to the knowledge stored in
the ontology (see Figure 2). She can specify this with the following SESQL query:

4 In case of multiple enrichments by select, each resulting knowledge table is combined with
the others by means of an additional join in the FROM clause of the query.

12 Cavallo et al.

SELECT elem_name
FROM elem_contained
WHERE landfill_name = "nordLF"

ENRICH
SCHEMAEXTENSION(elem_name , danger_level)
KLEVEL(COMMON , PERSONAL)

In this case, the semantic enrichment process proceeds by (i) evaluating the
SCHEMAEXTENSION clause in order to create a SPARQL query to find all the RDF
statements in KB(Alice) containing the specified property danger level and (ii)
comparing the values of the attribute elem name, with the subjects of the returned
statements. Based on the arguments for the KLEVEL clause, the set of statements
involved in the query execution, KB(Alice), will be selected. Given these, the sys-
tem generates the following SPARQL query, which in turn gives the Knowledge
Table KT (see Table 1(a)), listing the danger level of each element according to
Alices’ ontology (see Figure 2), where V = elem name and V ′ = danger level:

SELECT ?elem_name ?danger_level
WHERE{

?stm rdf:subject ?elem_name .
?stm rdf:predicate sg:danger_level .
?stm rdf:object ?danger_level .
?user sg:userStatement ?stm .
filter(regex(str(?user), "Alice") || regex(str(?user), "common"))}

Here, the first three predicates in the WHERE clause specify the statements involving
the danger level property, whereas the last predicate (and the associate filter)
provides the scope of the query, as specified in the KLEVEL clause5. Next, the system
executes the SQL part of the SESQL query, obtaining the Temporary Table TT
(see Table 1(b)), which reports the element contained in landfill ‘nordLF’:

SELECT elem_name
FROM elem_contained
WHERE landfill_name = "nordLF"

Finally, the knowledge table KT and the temporary table TT (both stored in the
Support DB) are joined, in order to obtain the enriched result:

SELECT TT.elem_name , danger_level
FROM TT LEFT JOIN KT ON TT.elem_name = KT.elem_name

Table 1(c) presents the results; i.e., the content of the landfill ‘nordLF’ also in-
dicating, for each element, the relative danger level. In this example, Alice does
not use the keyword “STRICT”; thus, for those data in the database for which
the ontological knowledge regarding the dangerousness for the environment is not
specified (e.g. cobalt), the danger level attribute takes null value in the result.
This is achieved through a left join. ♦

6.1.2 SCHEMAEXTENSION(attribute, property, concept)

In this special case, which we refer to as Boolean schema extension, the result of the
initial SQL query is extended with a new column which can only assume Boolean
values. Intuitively, given a relational attribute attribute (from the schema result-
ing from the SQL query, i.e., listed in the SELECT clause), an ontological property
property and an ontological concept concept, for every value of attribute which
is related to the given concept through the specified property in the ontological
knowledge base, the value true will appear in the extension Boolean column, all
the other values will be associated to the value false.

5 For readability, we used human-readable, descriptive names to the variables in the SPARQL
queries. In reality, in automatically generated queries, these names are not descriptive.

Crowd Sourced Semantic Enrichment (CroSSE) 13

Table 2 Temporary tables and the result set for Example 2

elem name hazardous elem name elem name hazardous

mercury true mercury mercury true
cyanide true cobalt cobalt false

(a) KT (b) TT (c) SESQL result

Example 2 (Boolean Schema Extension) Alice is interested in knowing whether
the elements contained in the landfill ‘nordLF’ can be classified as hazardous or
not, according to the database (Figure 1) and her knowledge base (Figure 2):

SELECT elem_name
FROM elem_contained
WHERE landfill_name = "nordLF"

ENRICH
SCHEMAEXTENSION(elem_name , is_a , HazardousWaste)
KLEVEL(COMMON , PERSONAL)

Similarly to Example 1, the semantic enrichment process proceeds by evaluat-
ing the SCHEMAEXTENSION clause. However, since an additional parameter (Haz-
ardousWaste) has been specified, a different SPARQL query is generated, this time
returning a Boolean result. Namely, for each element in DB which is subject of an
RDF statement in KB(Alice) having property is a and object HazardousWaste,
the variable ‘hazardous’ will be set to “true” (see Table 2(a)):

SELECT ?elem_name ?hazardous
WHERE{

?stm rdf:subject ?elem_name .
?stm rdf:predicate sg:is_a .
?stm rdf:object sg:hazardous_waste .
?user sg:userStatement ?stm .
filter(regex(str(?user), "Alice") || regex(str(?user), "common"))
BIND(true AS ?hazardous)}

Next, the system executes the SQL part of the SESQL query, obtaining the Tem-
porary Table TT (see Table 2(b)), listing the content of the landfill ‘nordLF’.
Finally the knowledge table KT and the temporary table TT are joined:

SELECT elem_name ,
CASE

WHEN hazardous IS NULL
THEN false
ELSE hazardous

END
FROM TT LEFT JOIN KT ON TT.elem_name = KT.elem_name

The semantically enriched result is presented in Table 2(c). The table lists the
contents of the landfill ‘nordLF’ and indicates for each element (in consequence of
the non-STRICT policy) whether they are dangerous or not according to Alice’s
knowledge base. Note that, for the elements (e.g. cobalt) for which the knolwedge
base does not provide any hazard related information (see Figure 2), the value in
the newly added column is set to “false” (closed world assumption). ♦

6.1.3 SCHEMAEXTENSION(attribute set, SPARQL stmt, output set)

This generalizes the schema extension process: here, attribute set denotes the
set of source attributes that will be used for matching the data results of the SQL
query with the knowledge base; SPARQL stmt denotes the user-provided SPARQL
statement to be used for collecting the information from the knowledge base,
and output set denotes the set of attributes for schema extension. The results

14 Cavallo et al.

Table 3 Temporary tables and result set for Example 3

elem name elem name extractionCost elem name extractionCost

copper copper 150 copper 150
iron iron 100 iron 100

zinc 150

(a) TT (b) KT (c) SESQL result

of the SPARQL query are combined into a knowledge table KT with attributes
attribute set ∪ output set and, as described earlier, this table is joined with
the result table, RES(A1, . . . , Ar), of the SQL query to obtain the result set
RES′ = RES onAi∈attribute set KT

SPARQL stmt
attribute set,output set.

Example 3 (Generalized Schema Extension) Alice needs the extraction costs for
the elements contained in the landfill ‘capitalLF’. Unlike the previous examples,
Alice is interested in only the elements for which this additional information is
made explicit in the ontology and, thus, adopts a STRICT policy:

SELECT elem_name
FROM elem_contained
WHERE landfill_name = "capitalLF"

ENRICH
STRICT SCHEMAEXTENSION(elem_name , costQuery , extractionCost)
DEFINE costQuery AS ${

SELECT ?elem_name ?extractionCost
WHERE {
?elem_name sg:extraction_method ?extractionMethod .
?extractionMethod sg:extraction_cost ?extractionCost }}$

First, the system executes the SQL part of the SESQL query, obtaining the tem-
porary table TT which reports the content of the landfill ‘capitalLF’ (Table 3(a)):

SELECT elem_name
FROM elem_contained
WHERE landfill_name = "capitalLF"

Then, the user written SPARQL query is evaluated, resulting in the knowldge
table KT, shown in Table 3(b), associating to each element the related extraction
cost. As can be seen in Figure 2, this information is indirectly derived from the
extraction method related to each specific element: “eddy current separator” for
copper, with cost 150, and “magnetic separator” for iron, with cost 100. Lastly,
the system joins (this time by means of an inner join) the partial results,

SELECT elem_name , extractionCost
FROM TT JOIN KT ON TT.elem_name = KT.elem_name

providing the output listed in Table 3(c). In this table, the content of the landfill
‘capitalLF’, copper and iron, is associated to the relative cost of extraction. ♦

6.2 Schema Replacement

SCHEMAREPLACEMENT enables the users to replace one or more columns from the
results of the SQL query with other columns, extracted from the knowledge base.
SESQL provides three ways a schema can be replaced. We discuss these next.

Crowd Sourced Semantic Enrichment (CroSSE) 15

Table 4 Temporary tables and result set for Example 4

elem name chemical symbol elem name chemical symbol

iron Fe iron Fe
zinc Zn zinc Zn

(a) KT (b) TT (c) SESQL result

Table 5 Temporary tables and result set for Example 5

city in Piemonte landfill city

Campello Monti true capitalLF Roma
Torino true alpLF Torino

nordLF Milano
littleLF Campello Monti

(a) KT (b) TT

landfill in Piemonte

capitalLF false
alpLF true

nordLF false
littleLF true

(c) SESQL result

6.2.1 SCHEMAREPLACEMENT(attribute, property)

This clause enables the users to replace columns from the results of the SQL query.
The values of the replacing attributes are computed from the knowledge base.
Example 4 (Schema Replacement) Alice is interested in the content of a given
landfill, ‘littleLF’, according to the database in Figure 1 and her knowledge base
in Figure 2; but, instead of the name, she would like to have displayed the chemical
symbol of each element be. She will pose the following SESQL query:

SELECT elem_name
FROM elem_contained
WHERE landfill_name = "littleLF"

ENRICH
STRICT SCHEMAREPLACEMENT(elem_name , chemical_symbol)
KLEVEL(COMMON , PERSONAL)

In this case, the system generates the following SPARQL query according to the
SCHEMAREPLACEMENT clause parameters:

SELECT ?elem_name ?chemical_symbol
WHERE{

?stm rdf:subject ?elem_name .
?stm rdf:predicate sg:chemical_symbol .
?stm rdf:object ?chemical_symbol .
?user sg:userStatement ?stm .
filter(regex(str(?user), "Alice") || regex(str(?user), "common"))

}

The resulting knowledge table contains, for each element, the chemical symbol
(Table 4(a)). Given this, the system executes the SQL part of the query, obtain-
ing the temporary table TT (Table 4(b)), which lists the elements contained in
the landfill ‘littleLF’. Finally, the knowledge and the temporary tables are joined
(again by means of an inner join), giving the results presented in Table 4(c); note
that, unlike the results from the original database, which include the names of the
elements, the enriched results are the form of chemical symbols. ♦

6.2.2 SCHEMAREPLACEMENT(attribute, property, concept)

This version of the SCHEMAREPLACEMENT clause introduces a Boolean attribute and
replaces it over the attribute “attribute” appearing as a parameter of the clause.

16 Cavallo et al.

Example 5 (Boolean Schema Replacement) Alice wants to know whether the land-
fills listed in the database are located in the ‘Piemonte’ region or not, exploiting
the nearest city data, available in DB (Figure 1) and the region/city information
in the knowledge base (Figure 2). She uses the following SESQL query:

SELECT landfill_name , city
FROM landfill

ENRICH
SCHEMAREPLACEMENT(city , region , Piemonte)
KLEVEL(COMMON , PERSONAL)

The system generates a SPARQL query according to the SCHEMAREPLACEMENT

clause parameters, similarly to Example 2.

SELECT ?city ?in_Piemonte
WHERE{

?stm rdf:subject ?city .
?stm rdf:predicate sg:region .
?stm rdf:object sg:piemonte .
?user sg:userStatement ?stm .
filter(regex(str(?user), "Alice") || regex(str(?user), "common"))
BIND(true AS ?in_Piemonte)}

The resulting knowledge table contains a true value for each city in the Piemonte
region (see Table 5(a)). Next, the system executes the SQL part of the SESQL
query, obtaining the temporary table TT (see Table 5(b)), reporting, for each
landfill, its nearest city. Finally, the knowledge and the temporary tables are joined:

SELECT landfill_name ,
CASE

WHEN in_Piemonte IS NULL
THEN false
ELSE in_Piemonte

END
FROM TT LEFT JOIN KT ON TT.city = KT.city

Results are presented in Table 5(c): as we see here, the semantically enriched table
reports, for each landfill, whether it is situated in the Piemonte region or, not. ♦

6.2.3 SCHEMAREPLACEMENT(attribute set, SPARQL stmt, output set)

This clause generalizes the schema replacement process with a user provided
SPAQRL statement, as in Section 6.1.3. However, unlike SCHEMAEXTENSION
discussed in that section, in this case, the original attributes in the attribute set

are removed from the result:

RES′′ = Π({A1,...,Ar}/attribute set)∪output set(RES
′)

Example 6 (Generalized Schema Replacement) Alice is interested in the taxation
(in percentage) imposed on each landfill by the corresponding region. Since, as can
be seen in Figure 2, this information is indirectly associated to each landfill, Alice
provides the SPARQL component of the SESQL query on her own:

SELECT landfill_name , city
FROM landfill

ENRICH
SCHEMAREPLACEMENT(city , taxQuery , tax)
DEFINE taxQuery AS [

SELECT ?city ?tax
WHERE{

?city sg:region ?reg .
?reg sg:region_tax ?tax }]

Crowd Sourced Semantic Enrichment (CroSSE) 17

Table 6 Temporary tables and the result set for Example 6

landfill name city city tax landfill name tax

capitalLF Roma Roma 6 capitalLF 6
alpsLF Torino Torino 7 alpsLF 7
nordLF Milano Campello Monti 7 nordLF null
littleLF Campello Monti littleLF 7

(a) TT (b) KT (c) SESQL result

Given this, the system first executes the SQL query obtaining the temporary table
TT (Table 6(a)) which associates to each landfill its nearest city:

SELECT landfill_name , city
FROM landfill

After evaluating the SPARQL query provided by the user, the system joins the
resulting knowledge table KT (Table 6(b)) with the temporary table TT. The
resulting table (Table 6(c)) provides for each landfill the regional tax, according
to the location of the nearest city. Since this information may not be available for
every city (e.g., ‘Milano’) and since the user has not specified STRICT enrichment,
some values are null (e.g., ‘nordLF’). ♦

7 Enrichment by WHERE Clause

As we introduced earlier in Section 5.1, enrichment process may also be applied
to the WHERE clause before the condition evaluations. In particular, two types of
enrichment by WHERE clause are possible:

– In replacement of constants, some of the constants in the user’s SQL query are
replaced by other (related) values obtained from the knowledge base.

– In replacement of variables, one or more of the attributes in the database are
replaced by other (related) information extracted from the knowledge base.

Depending on whether they appear in positive or negative conditions, the replaced
values contribute in the query processing by extending or restricting the domain
of the involved variable: positive conditions (such as equality) are considered as
satisfied (i.e. true) whenever they are satisfied by at least one of the replacement
values, while negative conditions (such as non-equality) are considered as satisfied
(i.e. true) whenever they are not satisfied by any of the replacement values. If the
SESQL query follows a non-STRICT policy, the original condition is combined
with the one produced by the enrichment. In case of STRICT policy, instead, only
the condition resulting from the enrichment contributes to the result6.

7.1 Replacement of Constants

SESQL provides two distinct ways constants in the query can be replaced:

– REPLACECONSTANT(label, const, property)

– REPLACECONSTANT(label, const, SPARQL stmt)

Let us consider the following SESQL query:

6 In case of multiple enrichments, each additional condition is combined in the WHERE clause
of the rewritten query (see example 10).

18 Cavallo et al.

SELECT . . .
FROM . . .
WHERE . . . $label{θ(A, ‘c’)} . . .

ENRICH
REPLACECONSTANT(label, ‘c’, [property | Q])

The syntax $label{. . .} is used to mark the predicate(s) which will be subject to
replacement. In the above example, only one constant, ‘c’, in only one predicate,
θ(A, ‘c’), has been marked for replacement. In general, the user can specify multiple
replacement conditions and mark more than one query predicate for constant
replacement. REPLACECONSTANT clause is then used for specifying how the constant
in the correspondingly labeled predicate will be replaced.

Let KTc(V) be the knowledge table from a SPARQL query, either automati-
cally generated from the RDF property property or provided by the user in the
form of query Q (note that, this knowledge table is constrained to have one single
attribute containing the values to be used for constant replacement). Depending
on the nature of the predicate θ, the condition in a non-STRICT scenario will be
rewritten as follows:

– A = ‘c’: This condition will be rewritten as

A IN ({c}
⋃

SELECT V FROM KTc)

– A 6= ‘c’: This condition will be rewritten as

A NOT IN ({c}
⋃

SELECT V FROM KTc)

– A < ‘c’, A ≤ ‘c’: These conditions will be rewritten, respectively, as

A < MAX ({c}
⋃

SELECT V FROM KTc)
A <= MAX ({c}

⋃
SELECT V FROM KTc)

– A > ‘c’, A ≥ ‘c’: These conditions will be rewritten, respectively, as

A > MIN ({c}
⋃

SELECT V FROM KTc)
A >= MIN ({c}

⋃
SELECT V FROM KTc)

The STRICT counterpart of the rules above, is obtained by dropping the “{c}
⋃

”
part. We next provide several examples.

Example 7 (Replacement of Constant) Alice is interested in the landfills which
contain nickel. But, instead of just relying on the data in the database, she also
wants to consider those landfills that are likely to contain nickel as implied by the
‘ore assemblage’ property, which associates to a given element, the other elements
that are usually found in the type of rocks (and hence in the mining waste) from
which that element is extracted. To combine these results, she thus adopts a non-
STRICT policy. She can formulate this using the following SESQL query against
the database in Figure 1 and her knowledge base in Figure 2.

SELECT landfill_name ,
FROM elem_contained
WHERE $label1{elem_name = "nickel"}

ENRICH
REPLACECONSTANT(label1 , nickel , oreAssemblage)
KLEVEL(COMMON , PERSONAL)

As discussed earlier, the syntax $label{. . .} within the SQL query is used to mark
the predicate(s) in the query which will be subject to replacement (in this example,
the use provided label is label1). The semantic enrichment process starts by eval-
uating the REPLACECONSTANT clause in order to create a SPARQL query to find all
the RDF statements in KB(Alice) having ‘nickel’ as subject and ore assemblage

as property. To achieve this, the system produces the following SPARQL query,
which generates the knowledge table KT presented in Table 7(a):

Crowd Sourced Semantic Enrichment (CroSSE) 19

Table 7 Temporary table and the result set for Example 7

element landfill name landfill name

cobalt capitalLF alpLF
copper alpLF

nordLF

(a) KT (b) SESQL result (c) Results without enrichment

SELECT ?element
WHERE{

?stm rdf:subject sg:nickel .
?stm rdf:predicate sg:ore_assemblage .
?stm rdf:object ?element .
?user sg:userStatement ?stm .
filter(regex(str(?user), "Alice") || regex(str(?user), "common"))

}

Given the resulting knowledge table, the WHERE clause in the SQL part of the
query is then rewritten in order to involve both the original condition and the one
resulting from the enrichment (under the non-STRICT policy), according to the
rules detailed above (where the disjunction implements the set membership):

SELECT landfill_name
FROM elem_contained
WHERE elem_name = "nickel" OR elem_name IN(SELECT element FROM KT)

Table 7(b) presents the SESQL results under semantic enrichment, listing the
name of the landfills where nickel can be found (directly or potentially, according
to the ore assemblage property). As a comparison, consider Table 7(c), which
illustrates the result of the corresponding SQL query executed on the database
without enrichment: as we can see, without semantic enrichment, the result is
missing several landfills, namely the ones where nickel is not explicitly reported. ♦

Example 8 (Generalized Replacement of Constant) Alice is interested in the land-
fills which contain hazardous chemical compounds, according to the database in
Figure 1 and her knowledge base in Figure 2:

SELECT landfill_name , chem_name
FROM chem_contained
WHERE $label1{chem_name = "hazardous"}

ENRICH
STRICT REPLACECONSTANT(label1 , hazardous , dangerQuery)
KLEVEL(COMMON , PERSONAL)
DEFINE dangerQuery AS [

SELECT ?chem_name
WHERE { ?chem_name sg:is_a sg:hazardous_waste }]

The DEFINE clause, here, allows the user to provide a SPARQL query to be used for
constructing the knowledge table. This query is executed on the knowledge base
specified by Alice in the KLEVEL clause. The resulting knowledge table, KT , is
presented in Table 8(a), and lists the chemical compounds indicated as hazardous
in Alice’s ontology (see Figure 2). Finally, the condition labeled label1 in the SQL
query is rewritten according to the rules presented earlier:

SELECT landfill_name , chem_name
FROM chem_contained
WHERE chem_name IN(SELECT chem_name FROM KT)

The result of the SESQL query is presented in Table 8(b). This table is populated
by retrieving the list of hazardous chemical compounds from Alice’s knowledge
base (as reported in the knowledge table) and by using this information to extract
from the database the list of landfills in which those compounds are contained. ♦

20 Cavallo et al.

Table 8 Temporary table and the result set for Example 8

chem name landfill name chem name

cyanide capitalLF cyanide
nordLF cyanide

(a) KT (b) SESQL result

7.2 Replacement of Variables

The user can enrich the WHERE clause also by replacing attributes, rather than the
constants in the query. Similarly to the replacement of constants, SESQL provides
two distinct ways variables in the query can be replaced:

– REPLACEVARIABLE(label, attribute, property)

– REPLACEVARIABLE(label, attribute, SPARQL stmt)

Let us consider the following SESQL query:

SELECT . . .
FROM . . .
WHERE . . . $label{θ(A,B)} . . .

ENRICH
REPLACEVARIABLE(label, B, [p | Q])

This query is similar to the REPLACECONSTANT one, except that what is marked
for replacement here is not a constant, but a query attribute. Consequently, the
resulting knowledge table KTB(V, V ′), will have two attributes, V corresponding
to the values to matched against the original table and V ′ corresponding to the
replacement values from the knowledge base, obtained using a SPARQL query
either automatically generated (thus involving the RDF property property), or
written by the user (referred to as the query Q). Therefore, the rewrite semantics
(under the non-STRICT enrichment policy) also needs to reflect this:

– A = B: This condition will be rewritten as

A IN (SELECT V ′ FROM KTB WHERE V = B) OR A = B

– A 6= B: This condition will be rewritten as

A NOT IN (SELECT V ′ FROM KTB WHERE V = B) AND A 6= B

– A < B, A ≤ B: These conditions will be rewritten, respectively, as

A < MAX (SELECT V ′ FROM KTB WHERE V = B) OR A < B

A <= MAX (SELECT V ′ FROM KTB WHERE V = B) OR A ≤ B

– A > B, A ≥ B: These conditions will be rewritten, respectively, as

A > MIN (SELECT V ′ FROM KTB WHERE V = B) OR A > B

A >= MIN (SELECT V ′ FROM KTB WHERE V = B) OR A ≥ B

The STRICT counterpart of the rules above, is obtained by dropping the last term
of each rule.

Example 9 (Replacement of Variable) Alice is interested in pairs of landfills which
share at least one element. As in earlier examples, she would like to leverage the
ore assemblage property to consider those elements that are not directly reported
in the database. She can formulate the following SESQL query against the database
in Figure 1 and her knowledge base in Figure 2:

Crowd Sourced Semantic Enrichment (CroSSE) 21

Table 9 Temporary table and the result set for Example 9

waste1 waste2 land1 land2 elem

nickel cobalt capitalLF littleLF iron
nickel copper alpsLF littleLF zinc
zinc barite alpsLF nordLF cobalt
zinc fluorite alpsLF capitalLF copper

sulfur chlorine capitalLF nordLF chlorine

(a) KT (b) SESQL result

land1 land2 elem

capitalLF littleLF iron
alpsLF littleLF zinc

(c) Results without enrichment

SELECT e1.landfill_name AS land1 , e2.landfill_name AS land2 ,
e1.elem_name AS elem
FROM elem_contained AS e1 , elem_contained AS e2
WHERE $label1{e1.elem_name = e2.elem_name} AND e1.landfill_name <>

e2.landfill_name
ENRICH

REPLACEVARIABLE(label1 , e2.elem_name , ore_assemblage)

In this case, the condition marked by the user has two variable names, corre-
sponding to attributes from the two input relations. The REPLACEVARIABLE clause
identifies that the variable, e2.elem name, is to be replaced with information com-
ing from the knowledge base. In particular, the replacement involves RDF state-
ments in KB(Alice) having ore assemblage as the property. Thus, the system
first produces the following SPARQL query, which generates the knowledge table
KT (visualized in Table 9(a)) with two attributes, waste1 and waste2, which are
related in Alice’s ontology by means of the ore assemblage property.

SELECT ?waste1 ?waste2
WHERE{

?stm rdf:subject ?waste1 .
?stm rdf:predicate sg:ore_assemblage .
?stm rdf:object ?waste2 .
?user sg:userStatement | sg:userInherit ?stm
filter(regex(str(?user), "Alice") || regex(str(?user), "common"))

}

Given the resulting knowledge table, the labeled condition in the SQL is rewritten
according to the rules detailed above:

SELECT e1.landfill_name AS land1 , e2.landfill_name AS land2 ,
e1.elem_name AS elem
FROM elem_contained AS e1 , elem_contained AS e2
WHERE (e1.elem_name = e2.elem_name
OR e1.elem_name IN(

SELECT waste2 FROM KT WHERE waste1 = e2.elem_name))
AND e1.landfill_name <> e2.landfill_name

Table 9(b) presents the SESQL results obtained under variable replacement.
The table lists pairs of landfills which share at least one element (either based on
the data in the database or, potentially, according to the knowledge implied by
the ore assemblage property). As a comparison, Table 9(c) illustrates the result of
the corresponding SQL query to the database without enrichment: as we can see,
without semantic enrichment, the result contains only those pairs of landfills for
which the shared elements are explicitly listed in the data tables. ♦

Note that, in the above example, we replaced the variable using a simple property
based predicate. More complex user provided SPARQL statements can also be
used (as in constant replacement), as specified earlier.

Example 10 (Generalized Replacement of Variable) Similarly to Example 9, Alice
is interested in retrieving the landfills which share at least one element (again

22 Cavallo et al.

Table 10 Temporary tables and result set for Example 10

waste1 waste2 elem name land1 land2 elem

nickel cobalt zinc capitalLF littleLF iron
nickel copper nickel alpsLF littleLF zinc
zinc barite iron alpsLF nordLF cobalt
zinc fluorite cobalt alpsLF capitalLF copper

copper
mercury

(a) KT1 (b) KT2 (c) SESQL Result

by also relying on the ‘ore assemblage’ property), but this time restricting the
results by considering only the elements that are classified as ‘Metals’, according
to the common knowledge. In order to obtain these results, Alice has to define
a twofold enrichment in the SESQL query. The first, generalized replacement of
variable, deals with the part of the query regarding the ore assemblage property,
while the second, Generalized replacement of constant, addresses the limitation on
the kind of elements desired (i.e., only metals). In both of these enrichments, Alice
formulates the SPARQL part of the SESQL query on her own:

SELECT e1.landfill_name AS land1 , e2.landfill_name AS land2 ,
e1.elem_name AS elem

FROM elem_contained AS e1 , elem_contained AS e2
WHERE $label1{e1.elem_name = e2.elem_name} AND e1.landfill_name <>

e2.landfill_name AND $label2{e1.elem_name = "metal"}
ENRICH

REPLACEVARIABLE(label1 , e2.elem_name , oreQuery)
DEFINE oreQuery AS [

SELECT ?waste1 ?waste2
WHERE{ ?waste1 sg:ore_assemblage ?waste2 .

?waste1 rdf:type sg:metal }]
STRICT REPLACECONSTANT(label2 , metal , metalQuery)
DEFINE metalQuery AS [

SELECT ?elem_name
WHERE { ?elem_name sg:is_a sg:metal }]

Given this query, the system first executes the SPARQL subqueries, obtaining
two knowledge tables: KT1 associates to each element those elements that might
be present in the same waste product (see Table 10(a)); KT2 lists the elements
classified as metals in the common ontology (see Table 10(b)). These knowledge
tables are then leveraged to formulate the following enriched SQL query:

SELECT e1.landfill_name AS land1 , e2.landfill_name AS land2 ,
e1.elem_name AS elem

FROM elem_contained AS e1 , elem_contained AS e2
WHERE (e1.elem_name = e2.elem_name OR e1.elem_name IN(

SELECT waste2 FROM KT1 WHERE e2.elem_name = waste1))
AND e1.elem_name IN(SELECT elem_name FROM KT2)
AND e1.landfill_name <> e2.landfill_name

The result of the enriched query is reported in Table 10(c). The table lists pairs of
landfills which share at least one metal (either based on the data in the database
or according to the knowledge implied by the ore assemblage property). When we
compare this with the results presented in the previous example, we see that the
pair of landfills that share “chlorine” has been dropped, since “chlorine” is not a
metal. ♦

Crowd Sourced Semantic Enrichment (CroSSE) 23

8 Semantically Enriched Query Processing Revisited

As we have seen earlier in Section 5.2 (“Semantically Enriched Query Processing
Overview”), CroSSE integrates multiple data sources: (a) the original database
contains pre-enrichment facts (organized in a relational database) and (b) the on-
tology store contains user provided enrichments (organized within an RDF store).
A third database, referred to as the support database (or SupportDB) is used for
stitching together the various data components to be presented to the end user.
While, in general, the ontology store and the support database are physically co-
located as part of the CroSSE software platform, the original database tends to
be physically and logically (in terms of data model and access interface) separated
from the other two. Consequently, the amount of data transferred from the original
database to the semantic query module, SQM, and stored in the support database
is one of the key performance bottlenecks for the system.

Consider, for instance, the enrichment by SELECT clause under STRICT policy
(Section 6): in this case an SQL query is sent to the original database to obtain
relevant tuples, which are then stored in a temporary table, TT, in the support
database. TT is then joined with a knowledge table, KT, which stores the relevant
knowledge extracted from the RDF store. We note, in this section, that the amount
of data fetched from the original database can be significantly reduced if the SQL
query to the original database is expanded to include, as a filter condition, the
values of the join attribute in the KT table. This is analogous to implementing a
semi-join and limits the tuples that need to be exchanged to only those that will
be useful when combining TT and KT in the last phase. As we see in Table 11,
sample queries Q1 through Q6 discussed in this paper benefit from this rewriting.

Optimization opportunities are not only limited to the enrichment by SELECT

clause. In fact, the amount of data that needs to be transferred is especially high
when implementing enrichment of WHERE requests: As we have seen in Section 7.1,
for example, when replacing constants, we need to execute a query of type

SELECT Ai FROM ET
WHERE Ai IN(SELECT V FROM KT)

where the external table ET is available in the original database, whereas the
knowledge table KT is located locally in the support database. A naive execution
strategy would first pull ET in its entirety to the support database in the form of
a temporary table, TT, and execute the above query locally. This, however, will
likely require significant data transfer from the original database to the support
database. Here, we note that this can be avoided by rewriting the query sent to
the original database as

SELECT Ai FROM ET
WHERE Ai IN(k1, . . . , kn)

where k1, . . . , kn are the results of the inner SELECT clause – which is nothing but
the list of semantic annotations extracted from the RDF store using a SPARQL
query. Note that this formulation not only reduces the amount of data fetched
from the original database, but also eliminates the need to create a knowledge
table in the support database. As we see in Table 11, sample queries Q7 and Q8
discussed earlier in this paper can benefit from this rewriting strategy.

Unfortunately, this strategy does not work when replacing variables. This is
because, as we have seen in Section 7.2, variable replacement requires a nested
query such that the filter condition of the inner SELECT clause requires data from

24 Cavallo et al.

Table 11 Query rewriting

Query number
STRICT Policy
(not optimized)

STRICT Policy
(optimized)

Q1 to Q6 TT = SELECT Ai FROM ET TT = SELECT Ai FROM ET
WHERE Ai IN(k1, . . . , kn)

Q7,Q8 SELECT Ai FROM ET
WHERE Ai IN(SELECT V FROM KT)

SELECT Ai FROM ET
WHERE Ai IN(k1, . . . , kn)

both the locally-available knowledge table, KT, and an external table, ET, avail-
able at the original database. Therefore, executing this query requires pulling the
relevant external data from the original database and populating a local tempo-
rary table, TT, on which such a query can be executed. We note that, even in
this case, we can reduce the amount of data fetched from the original database
by requesting only the data entries that will join with the knowledge table, KT,
using a semi-join style filtering step. For example, to implement Q9 in Section 7.2,
instead of fetching the complete elem contained table from the original database,
we can create a temporary table, TT, by executing the following query:

TT = SELECT elem_name , landfill_name
FROM elem_contained
WHERE elem_name IN("nickel","zinc", "sulfur") OR

elem_name IN("cobalt", "copper", "barite", "fluorite", "
chlorine")

This query returns all the relevant tuples because the only tuples in the
elem contained table that are relevant to the query are the ones that match the
waste1 or waste2 attributes of the knowledge table, KT, reported in Table 9(a).

9 Conclusions

In this paper, we introduced Crowd Sourced Semantic Enrichment (CroSSE), a
crowdsourced knowledge platform supporting semantic enrichment and context-
aware data access for scientific investigations. The semantic tagging module pro-
vides a set of functionalities that implement the belief-based knowledge expansion,
allowing each user the possibility to (a) explore the common meta-knowledge,
which is shared among all users; (b) extend common knowledge according to her
domain of expertise (in particular by means of RDF statements connecting existing
concepts through suggested properties and/or by defining new concepts and new
properties); and (c) borrow (part of) the knowledge inserted by other users, pos-
sibly leading to an enrichment of the common knowledge. The SESQL language
allows users to enrich a relational databank with semantic tagging information
and poses contextualised queries to support contextualised data analysis. Many of
the key functionalities of CroSSE have been deployed in the domain of tracking
secondary raw materials in the context of the SmartGround project.

Acknowledgements The research is partially supported by EU grants #641988 and #690817
and NSF grant #1633381. We thank project partners, especially our colleagues from the Earth
Sciences Department at the University of Torino, P. Rossetti, G. Dino, and G. Biglia.

References

1. Minc: A social platform for fostering educational interactions, 2017.

Crowd Sourced Semantic Enrichment (CroSSE) 25

2. S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query processing in
the sims information mediator. In SIGMOD, pages 137–148, 1996.

3. Y. Arens, C. Knoblock, and C. Hsu. Query processing in the sims information mediator.
In AAAI, 1996.

4. D. Beckett, editor. RDF/XML Syntax Specification (Revised). W3C Recommendation.
2004.

5. E. G. Caldarola, A. Picariello, and A. M. Rinaldi. An approach to ontology integration
for ontology reuse in knowledge based digital ecosystems. In MEDES, 2015.

6. A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced processing for ontological queries. Proc.
VLDB Endow., 3(1-2):554–565, Sept. 2010.

7. K. S. Candan, H. Cao, Y. Qi, and M. L. Sapino. System support for exploration and
expert feedback in resolving conflicts during integration of metadata. VLDB Journal,
17(6):22–119, 2008.

8. G. Cavallo, F. Di Mauro, P. Pasteris, M. L. Sapino, and K. S. Candan. Contextually-
enriched querying of integrated data sources. In ICDE18 Workshops, 2018.

9. H. Davulcu, J. Freire, M. Kifer, and I. Ramakrishnan. A layered architecture for querying
dynamic web content. In SIGMOD, 1999.

10. H. Davulcu, M. Kifer, G. Yang, and I. Ramakrishnan. Design and implementation of the
physical layer in webbases: The xrover experience. In DOOD, 2000.

11. F. Di Mauro, P. Pasteris, M. L. Sapino, K. S. Candan, G. A. Dino, and P. Rossetti.
Crowdsourced semantic enrichment for participatory e-government. In Proceedings of the
8th International Conference on Management of Digital EcoSystems, MEDES 2016.

12. F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancinu, A. Poggi, R. Rosati, M. Riccardo,
Ruzzi, and D. Savo. Optimizing query rewriting in ontology-based data access. In EDBT,
2013.

13. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajararnan, Y. Sagiv, J. Ullman,
V.Vassalos, and J. Widom. The tsimmis approach to mediation: Data models and lan-
guages. JIIS, 2, 1997.

14. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization. 2011
IEEE 27th International Conference on Data Engineering, pages 2–13, 2011.

15. E. Kandogan, M. Roth, P. M. Schwarz, J. Hui, I. G. Terrizzano, C. Christodoulakis, and
R. J. Miller. Labbook: Metadata-driven social collaborative data analysis. In Int. Conf
on Big Data 2015.

16. A. Levy. The information manifold approach to data integration. IEEE Intelligent Sys-
tems, pages 1312–16, 1998.

17. L. Lim, H. Wang, and M. Wang. Semantic queries by example. In Proceedings of the 16th
International Conference on Extending Database Technology (EDBT 2013), 2013.

18. A. Maedche, S. Staab, R. Studer, Y. Sure, and R. Volz. Seal – tying up information
integration and web site management by ontologies. IEEE Data Engin. Bulletin, 2002.

19. J. Mortensen, P. R. A. andM. A. Musen, and N. F. Noy. Crowdsourcing ontology verifi-
cation. In ICBO, pages 40–45, 2013.

20. J. Mortensen, M. Musen, and N. Noy. Developing crowdsourced ontology engineering
tasks: An iterative process. In CrowdSem, pages 79–88, 2013.

21. K. Munir and M. S. Anjum. The use of ontologies for effective knowledge modelling and
information retrieval. Applied Computing and Informatics, 2017.

22. K. Munir, M. Odeh, and R. Mcclatchey. Ontology-driven relational query formulation
using the semantic and assertional capabilities of OWL-DL. Know.-Based Syst., 35:144–
159, Nov. 2012.

23. S.Kambhampati, E. Lambrecht, U. Nambiar, Z. Nie, and G. Senthil. Optimizing recursive
information gathering plans in emerac. JIIS, pages 22–119, 2004.

24. M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi. Ontology Engineering
in a Networked World, chapter 2. Springer, 2012.

25. N. E. Taylor and Z. G. Ives. Reconciling while tolerating disagreement in collaborative
data sharing. In SIGMOD, 2006.

26. J. Tekli, R. Chbeir, A. J. Traina, C. Traina, K. Yetongnon, C. R. Ibanez, M. A. Assad,
and C. Kallas. Full-fledged semantic indexing and querying model designed for seamless
integration in legacy rdbms. Data and Knowledge Engineering, 117, 2018.

27. G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Za-
kharyaschev. Ontology-based data access: A survey. In IJCAI-18.

28. L. Xu and D. W. Embley. Combining the best of global-as-view and local-as-view for data
integration. In ISTA, pages 123–136, 2002.

29. P. Ziegler and K. R. Dittrich. Data Integration - Problems, Approaches, and Perspectives,
chapter 3. 2007.

