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Abstract 17 

Exposure to air pollution – and particularly to particulate matter (PM) – is strongly 18 

associated with higher risk of neurodevelopmental disorders, poor mental health and 19 

cognitive defects. In animal models, disruption of CNS development and disturbances of 20 

adult neurogenesis contribute to PM neurotoxicity.  Recent studies show that gestational 21 

PM exposure not only affects embryonic neurodevelopment, but also disturbs postnatal 22 

brain growth and maturation, by interfering with neurogenic/gliogenic events, myelination 23 

and synaptogenesis. Similarly, adult neurogenesis is affected at many levels, from neural 24 

stem cell amplification up to the maturation and integration of novel neurons in the adult 25 

brain parenchyma. The underlying mechanisms are still by and large unknown. Beyond 26 

microglia activation and neuroinflammation, recent studies propose a role for novel 27 

epigenetic mechanisms, including DNA methylation and extracellular vesicles-associated 28 

microRNAs.  29 
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Exposure to air pollution is increasingly acknowledged as one of the main contributors to 30 

the global disease burden [1]. It has been estimated that in 2016 91% of the world 31 

population was living in places where the WHO air quality guidelines levels were not met 32 

(https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-33 

health). Among the key air pollutants that pose health risks, particulate matter (PM) is one 34 

of the most widespread. PM is a heterogeneous mixture of small solid or liquid particles 35 

released into the atmosphere during combustion processes or emitted by industrial 36 

activities and natural sources. PM generally comprises water soluble and insoluble 37 

components, including inorganic compounds, polycyclic aromatic hydrocarbons, heavy 38 

metals and other toxic substances, and microbial components, such as bacteria and their 39 

products of degradation (e.g. lipopolysaccharide) and viruses [2]. PM is defined according 40 

to its aerodynamic diameter, with coarse PM smaller than 10 μm (PM10) and fine and 41 

ultrafine PM smaller than 2.5 (PM2.5) or 0.1 (PM0.1) μm, respectively. Thanks to their small 42 

size, when inhaled, PM particles have the capability to percolate through the respiratory 43 

tract. While PM10 is trapped in the upper airways, PM2.5 reaches the lungs and deposits in 44 

the alveolar area. Ultrafine particles could even penetrate into the blood circulation and 45 

overcome the blood-brain-barrier (BBB) [3,4], or pass through the nasal mucosa and 46 

directly enter the brain [5,6]. Of note, inhaled nanoparticles have been shown to cross the 47 

placental barrier and to deposit in the fetal tissues in animal models [7], suggesting a 48 

possible mother-to-fetus transfer of airborne ultrafine PM. 49 

Chronic exposure to air pollution has been consistently associated with risk of 50 

cardiovascular and respiratory diseases, and different types of cancer [1]. Increasing 51 

evidence also indicates that the central nervous system (CNS) is a target for air pollution. 52 

In utero and early child exposure to high levels of air pollution, and in particular to PM, is 53 

associated with higher risk of neurodevelopmental disorders, long-lasting behavioral 54 

alterations and cognitive defects [8,9]. Moreover, during adulthood, chronic PM exposure 55 

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health)
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health)
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has been associated with poor mental health, increased risk of onset and worsening of 56 

depression [9], while both short and long term exposure has been associated with 57 

cognitive/memory deterioration [10,11]. 58 

Most studies in animal models that aimed at establishing a causative link between air 59 

pollution and anatomical/functional CNS alterations, and at unveiling the underlying 60 

mechanisms, are focused on the effects of PM. In rodents, PM exposure results in 61 

neurodevelopmental, cognitive and behavioral alterations reminiscent of those observed in 62 

humans, whose extent and duration depend on PM size, doses and timing of exposure  63 

[12–17]. Mechanistically, disruption of CNS development and of adult neurogenesis were 64 

found to contribute to PM detrimental effects, suggesting the occurrence of similar events 65 

in humans. 66 

In this review, we summarize recent advancements toward the understanding of the 67 

cellular and molecular mechanisms mediating PM effects on the developmental and adult 68 

neurogenesis and gliogenesis, discuss limitations of the available studies and highlight 69 

persisting open issues. 70 

 71 

In utero and neonatal exposure to PM induces neurodevelopmental alterations in 72 

animal models  73 

In mice, chronic prenatal exposure to high levels of fine and ultrafine PM was reportedly 74 

associated with reduced brain weight and ventriculomegaly at birth and during the first 75 

postnatal period [13,18]. This is the outcome of the disruption of specific and diverse 76 

neurodevelopmental events. Exposure to diesel exhaust particles (DEP) in mouse 77 

pregnant dams throughout gestation resulted, in the offspring, in increased cortical (i.e. 78 

prefrontal cortex) and hippocampal (i.e. dentate gyrus, DG) volumes at embryonic day 79 

(E)18, which switched to decreased cortical volume and normalized hippocampal size in 80 

postnatal day (P)30 males (but not in females), compared to untreated animals [19]. 81 
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Similarly, maternal inhalation of carbon black nanoparticles (produced by the incomplete 82 

combustion of petroleum products) resulted in an initial increase of parvalbumin-positive 83 

(+) neurons in the uppermost layers of the motor cortex, followed by a large reduction at 84 

later time points [20]. These results suggest that gestational PM exposure may 85 

differentially affect distinct phases of brain development and cause an initial tissue 86 

overgrowth – possibly due to neural stem cell (NSC)/progenitor over-expansion - followed 87 

by postnatal regressive events. Thus, the effects on CNS development of in utero PM 88 

exposure can be persistent and extend beyond the embryonic period. In line with this 89 

interpretation, two recent studies [12,21] have shown that chronic prenatal exposure to 90 

high dosages of PM2.5 resulted in increased neuronal and astrocyte apoptosis in the cortex 91 

and distinct hippocampal subregions, including the DG, of the offspring at P14-P30. 92 

Postnatal hippocampal neurogenesis and astrogliogenesis appeared also dramatically 93 

reduced, due to the suppression of NSC proliferation in the subgranular zone (SGZ). 94 

Similarly, parenchymal astro- and oligo-dendroglia amplification was affected, as indirectly 95 

assessed by the large decrease of the proliferation marker PCNA in the cortex of P1-P30 96 

offspring [21]. In agreement with this finding, gestational chronic exposure to fine and 97 

ultrafine particles has been associated with precocious myelination and premature 98 

oligodendroglia proliferation/differentiation switch in the corpus callosum of the adolescent 99 

offspring [13,22]. Dendritic complexity [15] and number of asymmetric excitatory synapses 100 

impinging on hippocampal neurons were also significantly reduced in adolescent (P14) 101 

mice prenatally exposed to PM2.5. The remaining synapses showed altered -and possibly 102 

compensatory- features, including increased number of presynaptic vesicles, thickened 103 

postsynaptic density and decreased synaptic space [12].  104 

Thus, gestational PM exposure not only affects embryonic neurodevelopment, but also 105 

disturbs postnatal brain growth and maturation, by interfering with neurogenic/gliogenic 106 

events, myelination and synaptogenesis. Pregnancy appears to be a particularly 107 
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vulnerable time window, since neonatal exposure had milder effects, and mostly affected 108 

myelination [23,24] and expression of synaptic proteins [14]. 109 

 110 

PM exposure disturbs adult neurogenesis in animal models 111 

In the adult mouse brain, generation of new neurons continues in the subventricular zone 112 

(SVZ) of the lateral ventricles and in the SGZ of the hippocampus [25]. Adult neurogenesis 113 

in the SVZ cannot be detected in humans, whereas controversial evidence has been 114 

provided about the generation of new neurons in the adult human hippocampus [26–28]. 115 

Thus, while adult hippocampal neurogenesis is implicated in cognitive processes and 116 

mood regulation in rodents [29], whether this occurs also in adult humans is highly 117 

debated. Nevertheless, adult neurogenesis in rodents recapitulates many aspects of the 118 

developmental neurogenic/gliogenic events. Therefore, the study of the mechanisms 119 

mediating PM-induced perturbations of the adult neurogenic niches is still of interest, as it 120 

can unveil critical toxicity processes operating in both developing and mature CNS. 121 

In a recent study, acute exposure to fine DEP caused an impairment of adult neurogenesis 122 

in mice. This effect was gender-specific, with males showing fewer newly-generated 123 

neurons in SGZ, SVZ and olfactory bulb (OB), compared to control animals, and females 124 

displaying fewer new neurons only in the OB [30]. Reduced neurogenesis was a 125 

consequence of decreased proliferation of NSCs/progenitors, reduced survival of 126 

immature neurons, and altered specification/differentiation of newborn elements (i.e. 127 

reduced fraction of newborn cells expressing the mature neuronal marker NeuN 3 weeks 128 

after their generation [30]). Moreover, life-long exposure to concentrated water-soluble 129 

subfraction of PM0.2 dramatically reduced the number of SGZ newborn neurons -but not of 130 

newborn astrocytes- in adult male rats, which also showed contextual memory defects and 131 

depressive behaviors [16]. Thus, PM appears to negatively modulate the neurogenic 132 

events at many levels, from NSCs division up to the maturation and integration of novel 133 
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neurons in the adult brain parenchyma. In line with this view, chronic inhalation of 134 

ammonium sulfate, the major inorganic component in PM2.5 (as resulting from the reaction 135 

of ammonia, mostly originating from animal farming and synthetic fertilizers, with sulfur 136 

dioxide emitted by the burning of fossil fuels [31]), diminished the dendritic complexity of 137 

immature neurons in the DG of aged rats [32]. However, in this latter study, no alteration of 138 

SGZ/SVZ NSC/progenitor proliferation and of the specification of their derivatives could be 139 

detected, highlighting a specific neurotoxicity of the distinct components of PM. 140 

 141 

Proposed mechanisms underlying the effects of PM on neurogenesis and 142 

gliogenesis  143 

In rodents, neuroinflammation accompanied by microglia and astrocyte activation were 144 

cardinal effects of PM exposure, whenever it occurs [12–16,19,20,23,24,30]. 145 

Pharmacological treatments aimed at blocking microglia polarization – such as the 146 

peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone - protected 147 

against PM-induced suppression of SGZ proliferation and rescued the number of newborn 148 

neurons, indicating a major role of microglia reactivity in the negative modulation of adult 149 

hippocampal neurogenesis [30]. Nevertheless, mechanistically, which activated microglia 150 

phenotype (i.e. proregenerative M2 vs. neurotoxic M1 vs. “dark microglia” [33]) is favored 151 

upon/after PM exposure and how microglia activation inhibits the neurogenic events 152 

remain obscure. Beyond the release of high levels of pro-inflammatory cytokines or 153 

reactive oxygen species, that can inhibit NSC/progenitor proliferation and alter the 154 

specification and survival of their derivatives [34], an interesting hypothesis is that PM-155 

induced microglia activation could result in increased phagoptosis (i.e. the engulfment of 156 

immature viable neurons [35]). In line with this hypothesis, Bolton and colleagues [19] 157 

reported increased microglia-neuron physical interactions in the cortex of the offspring of 158 

PM-exposed dams. 159 
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Notably, upon prenatal and neonatal PM exposure, microglia activation and astrogliosis 160 

occurred predominantly in males [19,23,24,36]. Consistently, neuroinflammation was more 161 

pronounced in males than in females upon exposure to DEP during adulthood [37], in line 162 

with a more marked reduction of adult neurogenesis [30]. This suggests that sex-163 

dependent factors, including the hormonal background, may influence the individual’s 164 

vulnerability to PM effects. Interestingly, microglia activation and neuroinflammation 165 

extended well beyond PM-exposure, when it occurred in utero, in line with a priming action 166 

of air pollution. 167 

Moreover, what is the trigger for microglia and astrocyte activation remains elusive. Fine 168 

and ultrafine particles could enter the CNS and directly stimulate glial reactivity. Given the 169 

relatively small extension of the olfactory mucosa, it is likely that in humans – at difference 170 

with rodents - the main entrance route for PM is the blood. In line with this view, astroglia 171 

reactivity was observed predominantly around blood vessels [38]. Nevertheless, glial cells 172 

and NSCs/progenitors may be reached by a plethora of other factors – and even cells- 173 

from the periphery, thanks to the disruption of BBB integrity and increased leakage 174 

induced by PM exposure [13,16]. Among these elements, pulmonary cell-derived 175 

extracellular vesicles (EVs) may represent important lung-to-brain mediators of PM effects 176 

[39,40]. EVs are lipid bilayer-delimited particles, actively released from cells in response to 177 

stress. After internalization within target cells, EVs deliver their content, including proteins, 178 

lipids and miRNAs, and profoundly influence the recipient cell molecular state and function 179 

[41]. Interestingly, recent studies [39,40] showed that, in humans, the miRNA cargo of 180 

plasma EVs released following PM exposure has a signature relevant for the modulation of 181 

glial cell reactivity (e.g. miR-9, involved in microglia activation and neuroinflammation [42]) 182 

and NSC/progenitor functions (e.g. miR-128, miR-302, let-7 and miR-9, regulating neural 183 

precursor proliferation and neurogenesis [43]; miR-21, miR-9, miR-200, miR-17, miR-7, 184 

miR-302c, limiting oligodendroglia differentiation or enriched in immature oligodendrocyte 185 
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precursors [44]). Finally, a novel epigenetic mechanism possibly mediating PM effects on 186 

developmental and adult neurogenesis may be the regulation of DNA methylation in NSCs 187 

and their derivatives, that has been shown to be responsive to extrinsic signals and to 188 

influence multiple aspects of neurogenesis from stem cell maintenance up to 189 

synaptogenesis [45]. This hypothesis is corroborated by the observation of increased DNA 190 

methyltransferase DNMT1 in the brains of male mice perinatally exposed to DEP [46]. 191 

Notably, in human placenta, PM exposure was associated with altered methylation level of 192 

DNA repair and clock genes [47,48], which are also essential for adult and developmental 193 

neurogenesis [49–51].  194 

 195 

Concluding remarks and open issues  196 

Convincing evidence, obtained in animal models, shows that CNS development and adult 197 

neurogenesis are profoundly impacted by PM exposure throughout life, with significant 198 

behavioral and cognitive alterations. This field of research is still in its infancy and 199 

strenuous efforts are still needed to clarify the precise mechanisms by which PM affects 200 

neurodevelopmental events and adult neurogenesis, and the molecular substrates of 201 

gender and time window -specific differences in PM sensitivity. Available mechanistic 202 

studies have frequently exploited heterogeneous PM dosages, composition, administration 203 

modalities and timing. This scenario has so far impeded a complete understanding of the 204 

processes subserving PM effects. Nevertheless, research on the effects of PM on other 205 

systems has greatly advanced in the last years and identified interesting candidate 206 

mechanisms that could be also at the basis of PM neurotoxicity.  207 
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Figure legend 449 

Figure 1. PM-induced alterations detected in the adult mouse brain following in-450 

utero or adult exposure. Orange boxes (above) include the proposed underlying 451 

mechanisms. BBB, blood-brain barrier; CC, corpus callosum; DG/SGZ, hippocampal 452 

dentate gyrus/subgranular zone; EV, extracellular vesicles; NSCs, neural stem cells; OPC, 453 

oligodendrocyte precursor cell; PM, particulate matter; PV, parvalbumin. 454 
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