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Highlights 

 Multivariate protocols for estimating BGA using STRs DNA data are developed; 

 Principal Components Analysis is adopted as exploratory approach; 

 Partial Least Squares Discriminant Analysis and Support Vector Machines are 

used; 

 Efficient discriminant models are obtained for multiple populations; 

 This approach can easily test DNA STRs genotypes from unknown individuals. 

 

 

1. Introduction 
 

DNA profiling of biological evidence such as those recovered from crime scenes, mass-

disaster areas or missing person investigations is one of the most challenging topics in 

forensic sciences[1–3]. Through the years, DNA typing has been more and more 

employed, exploiting large sets of genetic markers that can be simultaneously analyzed 

on a single biological sample or trace, even if containing only a few copies of DNA. 

In the last decade, because of continuous technical developments in forensic genetics, 

DNA analysis moved towards the so-called Next Generation Sequencing (NGS) or Massive 

Parallel Sequencing (MPS). Currently, this technology enables genotyping at a large 

number of Short Tandem Repeats (STRs) loci in addition to an ever growing number of 

further markers such as, for example, autosomal and Y-chromosome Single Nucleotide 

Polymorphisms (SNPs) and mitochondrial DNA (mtDNA) variants[4]. Nowadays, STRs 

markers are widely utilized for personal identification in the interpretation process of 

single source samples and DNA mixtures collected e.g. during crime scene investigation 

activities[5–7]. On the other hand, the more evolutionarily stable SNPs, in the biparental 

and uniparental portions of the genome, are being used to infer the biogeographical 

ancestry and ethnic origins (generally named as BGA) of individuals and degraded 

samples [8–11]. Up to date, while autosomal STRs markers are the elective tool for 
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personal identification, they have been poorly employed as Ancestry Informative Markers 

(AIMs) as STR alleles equal in state occur in diverse populations, mostly because of 

recurrent mutation (homoplasy).  

Bayesian statistics have been applied to estimate the ethnic affiliation of unknown 

genetic profiles[12,13] obtained with autosomal STRs in well-known software such as 

STRUCTURE[14], the Snipper App suite[15] and PopAffiliator 2[16]. These approaches 

perform Bayesian evaluations by inferring the relationships between the allele 

frequencies of specific populations and the alleles observed in the individuals, which are 

recognized as part of such populations. This is done by computing the likelihood values of 

membership to each of the tested population groups, according to their relative allele 

frequencies. An advantage of these methodologies is that prior information about the 

samples can be considered during the advancement the analysis[17]. In the case of multi-

locus genotypes, the power to obtain large amounts of data from a single biological 

sample requires appropriate statistical strategies to extract as precise information as 

possible regarding its ancestry. In this context, multivariate data analysis techniques may 

provide useful advantages to infer ethnic affiliation or ancestry of unknown subjects’ 

genetic profiles. These methods may simultaneously perform specific and sensitive 

discriminations among different groups. Software based on Likelihood Ratios (LR) 

traditionally involve the comparison of only two alternative hypotheses, while 

multivariate techniques may efficiently evaluate several population groups together. 

However, the likelihood-based methods for BGA estimation overcome this issue by 

computing the likelihood of membership to each of the populations under exam[17,18]. 

In the present study, we employ multivariate methodologies such as Sparse and Logistic 

Principal Component Analysis (SL-PCA)[19], Sparse Partial Least Squares-Discriminant 

Analysis (sPLS-DA)[20–22] and Support Vector Machines (SVM)[23–25] on autosomal 

STRs data sets. These multivariate techniques were selected as they turned capable of 

dealing with the nature of the genotypic data, which can be easily binarized. Our goal was 

to develop multivariate approaches for the interpretation of DNA profiles to better 

estimate the biogeographical ancestry information of personal genetic profiles, by 
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building dynamic and flexible models that could be easily modified according to the 

number of tested populations and the number of markers in the profile and the reference 

panel. Our multivariate statistics approach may represent a powerful tool for research 

purposes and the investigative authorities, too.  

 

2. Materials & Methods 

2.1. Datasets 
 

Four different population datasets were selected for this study. All the datasets consisted 

of individual genotypes rather than allele frequencies. In order of decreasing 

heterogeneity, the first dataset was extracted from the NIST U.S. population 

database[26], and consisted of  genotypic data for U.S. African-American (N = 342), Asian 

(N = 97) and Caucasian (N = 361). For this dataset, the following 24 markers were 

selected: D1S1656, D2S441, D2S1338, D3S1358, D5S818, D6S1043, D7S820, D8S1179, 

D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, CSF1PO, 

FGA, Penta D, Penta E, SE33, TH01, TPOX, vWA[26]. Markers F13A01, F13B, FESFPS, LPL 

and Penta C, which are present in the NIST U.S. population database, were not considered 

in this study since they are usually not included in commercially available autosomal STR 

amplification kits commonly used in forensic laboratories.  

The second dataset consisted of original unpublished genotypes from Northern and sub-

Saharan African populations analyzed for 16 autosomal STRs loci using the AmpFℓSTR® 

NGM SElect™ PCR Amplification Kit from Thermo Fisher Scientific (D10S1248, vWA, 

D16S539, D2S1338, D8S1179, D21S11, D18S51, D22S1045, D19S433, TH01, FGA, D2S441, 

D3S1358, D1S1656, D12S391, SE33), i.e. 231 Northern Africans (67 Moroccan Berbers, 62 

Algerian Berbers, 60 Libyan Arabs and 42 Northern Egyptians) and 197 sub-Saharan 

Africans (95 Cameroonians, 49 Chadians and 53 Senegalese). All the biological samples 

included in this dataset were randomly collected from informed people, whose genotypes 

were successfully tested for Hardy-Weinberg and linkage equilibrium. The obtained 
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results are currently undergoing publication process. This study ethically complies with 

the ISFG guidelines for the publication of genetic population data [27–29] and was 

formally approved by the Carabinieri Scientific Investigations Department of Rome 

(Italy).The third dataset comprised two central Asian populations genotyped for 15 

autosomal STRs loci using the AmpFℓSTR® IdentifilerTM PCR Amplification Kit panel from 

Applied Biosystems (D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, 

D7S820, TH01, TPOX, CSF1PO, D19S433, D2S1338, D16S539), i.e. 65 unrelated Afghan 

[30] and 103 Iraqi[31] (mainly from central and southern Iraq provinces). 

The fourth dataset comprised two populations genotyped for 16 autosomal STRs loci 

using the AmpFℓSTR® NGM SElect™ PCR Amplification Kit from Thermo Fisher Scientific 

(D10S1248, vWA, D16S539, D2S1338, D8S1179, D2S11, D18S51, D22S1045, D19S433, 

TH01, FGA, D2S441, D3S1358, D1S1656, D12S391, SE33), i.e. 209 unrelated Italian 

individuals[32],  and 287 Eastern Europeans (223 Romanian and 64 Moldavian 

subjects)[33].  

For each dataset, we evaluated the inter-population genetic differentiation using the FST 

statistics (measure of the co‐ancestry for randomly chosen alleles within the same 

subpopulation relative to the  entire population) [34,35] in order to have a convenient 

metrics to objectively measure genetic differentiation among populations when 

estimating BGA of individuals belonging to such populations. FST values were obtained 

using the software STRAF v. 1.0.5[36]. 

 

2.2. Multivariate Statistics 
 

Multivariate models were built on the DNA profiles, where each STR profile was 

converted into a row of zeros and ones by means of an in-house code developed in the R 

software (version 1.1.463)[37] statistical environment. In details, for all the tested 

individuals, a value equal to 1 was reported for the alleles x and y (where x is equal to y in 

case of homozygosity) recorded for a specific marker Z, while a value equal to 0 was 

reported for the other n available alleles of the previously cited marker Z. Consequently, 
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the STRs DNA profile of each individual was converted into a series of zeros and ones (i.e. 

binary dataset). Since the matrices obtained by using such computational approach 

turned to show many zeros as compared to the number of ones, sparse algorithms had to 

be considered when calculating the multivariate models. 

 

SL-PCA, sPLS-DA and SVM multivariate techniques were employed to obtain reliable 

models for the estimation of the BGA information of unknown genetic profiles. 

Multivariate modelling and calculations were carried out in R (version 3.6.0)[37]. The 

following functions and R packages were used in order to build in-house R code for 

computing the different models: sparse logistic Principal Component Analysis[19], 

mixOmics[38] and e1071[39]. In-house developed codes will be available to the readers 

upon requests to the authors. A workflow of the approach employed in this study is 

reported in Figure S1 in the Supplementary Material.   

Initially, SL-PCA was utilized as an exploratory analysis tool to verify the capabilities of 

multivariate statistics in recognizing specific pattern regarding the biogeographical origins 

of the individuals based on their STR profiles, especially when dealing with binary data (as 

reported above). PCA, here employed in the sparse and logistic version reported in [19], is 

one of the most exploited technique in the field of multivariate statistics; it allows to 

graphically represent the information contained into large data matrices by providing 

useful visual representations of data distributions, similarity trends, classes and 

outliers[40]. In practice, PCA evaluates the original data collected for several “objects” 

(i.e. the encoded individuals), by re-modelling them within new Cartesian diagrams. The 

new axes of these diagrams represent the Principal Components (PCs), defined as a linear 

combination of the original variables to make them reciprocally orthogonal.  

After the preliminary evaluation of SL-PCA modelling, sPLS-DA and SVM models were 

applied, to assess their predictive capabilities in blind inference of the ethnic affiliation of 

DNA profiles. sPLS-DA is the sparse version of the combination of Partial Least Squares 

(PLS) and Discriminant Analysis (DA) techniques[22,41,42]. In practice, sPLS-regression 

finds the factors that capture the greatest amount of variance in predictor variables by 
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simultaneously modelling those X predictors that optimally correlate the responses of the 

Y matrix. Briefly, the PLS algorithm indicates that the Y responses are proportional to the 

first principal component – named as Latent Variable (LV) – except for some residuals; 

then, residuals turn proportional to the second LV, except for new residuals, etc. 

Afterwards, the slopes of the regression line – named as PLS weights – are calculated as 

residual regression coefficients and indicates the direction of the first LV. The 

variables/predictors are not usually independent and PLS may provide a bilinear 

projection model, plus some residuals. Because of that, PLS admits that some X-data are 

not correlated to Y-responses; these data can represent noise or redundancy, thus 

indicating that PLS tolerates noisy or redundant data, unlike other regression 

methodologies. On the other hand, LDA is a supervised classification method whose goal 

is to discriminate different classes of objects by evaluating the optimal boundaries among 

them. Originally developed by Fisher[20], LDA allows discriminating objects of different 

classes by examining the probability distributions of the classes to which the objects may 

belong. Accordingly, each object is classified in the specific class which shows the highest 

score in terms of probability. Graphically, the probability distributions are expressed as 

ellipses at different probability levels for each class under examination. These ellipses are 

respectively tangential to a point that is located half-way among the class centers and a 

straight delimiter is adopted as a boundary to separate the ellipses and, consequently, 

the different classes. LDA provides a linear function of the variables and maximizes the 

ratio between the variances of each class; weights are adopted to provide the best 

classification of the objects so that LDA can select the direction achieving the maximum 

separation among the given classes.  

Finally, SVM is a Multivariate Data Analysis (also known as Machine Learning) 

methodology usually adopted for pattern recognition tasks. Very concisely, this 

methodology was developed by Vapnik[24] with the aim to provide a decision rule in 

terms of a special type of hyperplanes, defined as “optimal separating hyperplanes” and 

also known as “delimiter” or “margin”[23], capable of recognizing and discriminating the 

objects of different sets or classes. The delimiter is optimized as the distance between the 
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separating decision boundaries (hyperplanes) and the closest objects to these 

hyperplanes, which are defined as support vectors. As reported by Vapnik[24], SVM 

techniques map the objects matrix X into a high-dimensional space called “feature 

space”; then linear or nonlinear functions (such as kernels) may be adopted in order to 

build an optimal separating hyperplane in this space.  

All the multivariate models were assembled adopting the 70% of the available data as 

training set and the remaining 30% of data was employed as evaluation set. Repeated 

double cross-validation procedures were performed by applying a venetian blind design 

and a number of data splits equal to 5 (i.e. 80% of the available data of the training set 

was employed to build the models), in accordance with[43]. Finally, sensitivity and 

specificity parameters were calculated for all the sPLS-DA and SVM models, as follows: (i) 

sensitivity is equal to the proportion of individuals belonging to a specific bio-

geographical origin that are correctly identified as such, while (ii) specificity is equal to the 

proportion of individuals belonging to another bio-geographical origin (with reference to 

the one that is considered by the model) and that are correctly identified as such. 

 

3. Results & Discussion 

3.1. Multivariate Statistics 

3.1.1. SL-PCA Analysis 

 

SL-PCA was first exploited to rapidly investigate the main features in the datasets. For the 

NIST dataset, (Figure 1a), three main clusters corresponding to the African-American, 

Caucasian and Asian individuals were observed in the space of the first two PCs 

(accounting for 88.03% of total variance). A good separation was also observed for the SL-

PCA comparison involving the Northern African and the Sub-Saharan African individuals, 

where the first two PCs accounted for 65.19% of the total variance (Figure 2a). This result 

can be due to the fact that the Sahara Desert acted as a strong geographic barrier to gene 

flow between the cited populations in the last five thousand years[44]. On the contrary, a 
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robust separation could not be observed in the case of less genetically differentiated 

populations such as the Afghan and the Iraqi individuals (Figure 3(a), 77.62% of total 

variance), as well as the Italian and the Romanian subjects (Figure 4(a), 72.18% of total 

variance). 

In summary, this traditional multivariate procedure allowed us to observe the pertinence 

of multivariate statistics in assessing and recognizing the biogeographical ancestry 

information by evaluating the autosomal STRs DNA profiles, only. However, they returned 

unsatisfactory results whenever the populations to be compared showed quite similar 

STR allele frequencies (FST = 0.006 and 0.002, for the Afghans vs. Iraqis and Italians vs. 

Romanians comparisons, respectively). We then sought to assay more sophisticated and 

classification-like multivariate models (such as sPLS-DA and SVM techniques) to possibly 

obtain satisfactory separations between the populations and hence better chances of 

individual assignment.  

 

3.1.2. sPLS-DA and SVM models 

 

Based on results provided by PCA modelling, sPLS-DA was applied to the same 

experimental sets to develop useful discrimination models. The predictive models were 

evaluated in terms of Root Mean Square Error in Cross-Validation (RMSECV)[45], i.e. the 

lower the RMSECV value, the higher the discrimination power of the model. Moreover, 

the number of LVs was determined through the evaluation of further quality parameters 

such as the Predictive Residual Error Sum of Square (PRESS), Q-residuals, Hotelling’s T2, 

Leverages and Y-Studentized residuals[45]. sPLS-DA results for the different datasets are 

reported in Figures 1-4(b). Sensitivity and specificity values were calculated for each sPLS-

DA model, too (Table 1). Firstly, the African-American, Asian and Caucasian affiliations 

showed a satisfactory separation (i.e. over 84%) with the SL-PCA (Figure 1(b)). An average 

error rate equal to 15%, 6% and 16% was observed for the African-American, Asian and 

Caucasian populations, respectively.   
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The Northern African and the Sub-Saharan populations showed a good discrimination 

(Figure 2(b)), in agreement with the relatively high inter-population genetic diversity 

observed (FST = 0.011). An average error rate equal to 6% and 9% was observed for the 

Northern African and the Sub-Saharan individuals, respectively.  

Thirdly, the Afghan and the Iraqi populations showed a better separation than in SL-PCA 

(Figure 3(b)). An average error rate equal to 7% and 13% was observed for the Afghan 

and Iraqi subjects, respectively. This result might be ascribed to the fact that such 

populations are geographically and genetically separated[46,47]. 

Finally, an unsatisfactory result was obtained for the discrimination of the Italian and the 

Romanian populations (Figure 4(b)), i.e. the populations showing the lowest FST value 

among our datasets. In fact, an average error rate equal to 48% and 37% was observed 

for the Italian and Romanian individuals, respectively, so that more consistent Machine 

Learning approaches should be considered. 

In conclusion, sPLS-DA might represent a useful tool for improving the routine estimation 

of the BGA information of autosomal STRs DNA profiles.  

SVM was applied to the experimental datasets and the corresponding sensitivity and 

specificity values are reported in Table 1, too. A 100% accuracy as observed for the 

following tested populations: African-American vs. Asian vs. Caucasian individuals (NIST 

U.S. data), Northern vs. Sub-Saharan individuals and Afghan vs. Iraqi individuals. No 

misclassifications were observed both with the cross-validated training set and the 

extracted test set. On the other hand, an accuracy equal to 89.1% was calculated for the 

SVM model as applied to the Italian vs. Romanian population. In the present case optimal 

sensitivity and specificity values were obtained equal to 87.1% and 90.6%, respectively), 

corresponding to an overall number of 27 misclassifications out of 209 Italian individuals 

and 27 misclassifications out of 287 Romanian subjects. Consequently, SVM turned out to 

be a very powerful model, with high specificity and sensitivity values, for all the ethnic 

groups, thus proving once again the reliability of multivariate statistics to extract BGA 

information from autosomal STRs DNA genetic profiles. Finally, the traditional Bayesian 

approach involving the calculation of likelihood values was used to calculate the 
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sensitivity and specificity values on the same data on which we tested the different sPLS-

DA and SVM models. Similar results were obtained for the prediction of NIST populations 

and Northern vs Sub-Saharan African individuals. However, this approach provided 

slightly worse results than sPLS-DA for the comparison of Italian and Romanian 

individuals, while the specificity and the sensitivity values turned to be significantly lower 

when evaluating the Afghan and the Iraqi subjects. All the results are reported in Table 1. 
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Figure 1. (a.) SL-PCA PC1 vs. PC2 PCA Scores Plot. (b.) sPLS-DA LV1 vs LV2 Scores Plot. Afro-American, Asian and Caucasian individuals are in blue, 

red and green points, respectively. Three main clusters can be observed in the figures. 
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Figure 2 (a.) SL-PCA PC1 vs. PC2 PCA Scores Plot. and (b.) sPLS-DA LV1 vs LV2 Scores Plot for sub-Saharan (blue points) vs.  Northern-African (red 

points) subjects. 
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Figure 3. (a.) SL-PCA PC1 vs. PC2 PCA Scores Plot. and (b.) sPLS-DA LV1 vs. LV2 Scores Plot for Afghans (blue points) vs. Iraqis (red points).  Jo
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Figure 4. (a.) SL-PCA PC1 vs. PC2 PCA Scores Plot and (b.) sPLS-DA LV1 vs. LV2 Scores Plot for the Italian (blue points) vs.  Romanian subjects (red 

points). 
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Table 1. Sensitivity and specificity values for sPLS-DA, SVM and Bayesian* models. The results are relative to the models validated by 

using a cross-validation strategy involving 5 cancellation groups and a venetian blind design. Similar results were obtained when 

testing the models on external validation datasets. 

 
Afro-American 

(NIST U.S.) 

Caucasian  (NIST 

U.S.) 

Asian                       

(NIST U.S.) 

Northern vs                 

Sub-Saharan 

African 

Afghan vs. Iraqi 
Italian vs. 

Romanian 

Model 

sPL

S-

DA 

SVM 

Baye

sian 

sPL

S-

DA 

SVM 

Baye

sian 

sPL

S-

DA 

SV

M 

Baye

sian 

sPL

S-

DA 

SVM 

Baye

sian 

sPL

S-

DA 

SVM 

Baye

sian 

sPL

S-

DA 

SV

M 

Baye

sian 

Sensit

ivity 

85.

1% 

100.

0% 

87.3

% 

94.

2% 

100.

0% 

95.8

% 

84.

5% 

10

0% 

83.2

% 

94.

4% 

100.

0% 

91.9

% 

93.

8% 

100.

0% 

46.9

% 

52.

2% 

87.

1% 

46.4

% 

Specifi

city 

92.

1% 

100.

0% 

93.6

% 

85.

0% 

100.

0% 

84.9

% 

89.

8% 

10

0% 

88.1

% 

93.

3% 

100.

0% 

94.2

% 

95.

7% 

100.

0% 

50.5

% 

64.

4% 

90.

6% 

48.4

% 

* The calculation for the “Bayesian” model were performed using STRUCTURE software (version 2.3.4), whose parameters were, as follows: 

Length of Burnin Period: 100000; Number of MCMC reps after Burnin: 100000; No Admixture Ancestry model; Independent Allele 

Frequencies. 
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4. Conclusions 
 

The present proof-of-concept study demonstrates the capability of multivariate statistics 

approaches to predict the population affiliation of autosomal genetic profiles that can be 

commonly recovered from any source, including crime scenes, mass-disaster and missing 

person investigations. sPLS-DA and SVM techniques drastically improved PCA, by 

providing optimal discrimination results (i.e. showing the lowest sensitivity value equal to 

84%) and being capable of assessing the group affiliation of the examined DNA profiles 

according to their autosomal STRs loci. The predictive power of such multivariate 

techniques turned extremely high, indicating that the adoption of multivariate models 

may represent a powerful and useful tool for the investigative authorities to ease their 

decision processes when estimating the BGA of individuals. Future perspectives include 

the application of these multivariate strategies in discriminating even more locally-

restricted populations. Further research studies with sPLS-DA and SVM techniques are 

already planned and will be performed in our laboratories using Next Generation 

Sequencing (NGS)/Massive Parallel Sequencing (MPS), by combining their data with the 

autosomal STRs results or developing the cited multivariate approaches on other forensic 

genetic markers such as Y-STR and SNPs. Moreover, an open-source and free-of-charge 

app is currently under development aiming to allow analysts to perform the described 

approaches for their routine BGA investigations. 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



19 
 

Acknowledgements 

This work was supported by: Sapienza University of Rome (grant n. RM11715C77B03CDC 

to FC); University of Pavia strategic theme “Towards a governance model for international 

migration: an interdisciplinary and diachronic perspective” (MIGRAT-IN-G) (OS); the 

Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza 

Program (2018–2022), Dept. of Biology and Biotechnology "L. Spallanzani", University of 

Pavia (OS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



20 
 

References 
[1] P. Gill, H. Haned, O. Bleka, O. Hansson, G. Dørum, T. Egeland, Genotyping and 

interpretation of STR-DNA: Low-template, mixtures and database matches-Twenty years of 
research and development., Forensic Sci. Int. Genet. 18 (2015) 100–17. 
doi:10.1016/j.fsigen.2015.03.014. 

[2] A. Amorim, B. Budowle, Handbook of Forensic Genetics, WORLD SCIENTIFIC (EUROPE), 
2016. doi:10.1142/q0023. 

[3] M. Kayser, P. De Knijff, Improving human forensics through advances in genetics, genomics 
and molecular biology, Nat. Rev. Genet. 12 (2011) 179–192. doi:10.1038/nrg2952. 

[4] V. Pereira, A. Freire-Aradas, D. Ballard, C. Børsting, V. Diez, P. Pruszkowska-Przybylska, J. 
Ribeiro, N.M. Achakzai, A. Aliferi, O. Bulbul, M.D.P. Carceles, S. Triki-Fendri, A. Rebai, D.S. 
Court, N. Morling, M.V. Lareu, Á. Carracedo, C. Phillips, Development and validation of the 
EUROFORGEN NAME (North African and Middle Eastern) ancestry panel, Forensic Sci. Int. 
Genet. (2019). doi:10.1016/j.fsigen.2019.06.010. 

[5] P. Gill, C.H. Brenner, J.S. Buckleton, A. Carracedo, M. Krawczak, W.R. Mayr, N. Morling, M. 
Prinz, P.M. Schneider, B.S. Weir, DNA commission of the International Society of Forensic 
Genetics: Recommendations on the interpretation of mixtures, Forensic Sci. Int. 160 (2006) 
90–101. doi:10.1016/j.forsciint.2006.04.009. 

[6] B. Budowle, A.J. Onorato, T.F. Callaghan, A. Della Manna, A.M. Gross, R.A. Guerrieri, J.C. 
Luttman, D.L. McClure, Mixture Interpretation: Defining the Relevant Features for 
Guidelines for the Assessment of Mixed DNA Profiles in Forensic Casework, J. Forensic Sci. 
54 (2009) 810–821. doi:10.1111/j.1556-4029.2009.01046.x. 

[7] D. Taylor, J.-A. Bright, J. Buckleton, J. Curran, An illustration of the effect of various sources 
of uncertainty on DNA likelihood ratio calculations, Forensic Sci. Int. Genet. 11 (2014) 56–
63. doi:10.1016/j.fsigen.2014.02.003. 

[8] P.M. Vallone, A.E. Decker, J.M. Butler, Allele frequencies for 70 autosomal SNP loci with 
U.S. Caucasian, African-American, and Hispanic samples, Forensic Sci. Int. 149 (2005) 279–
286. doi:10.1016/j.forsciint.2004.07.014. 

[9] H. Boonyarit, S. Mahasirimongkol, N. Chavalvechakul, M. Aoki, H. Amitani, N. Hosono, N. 
Kamatani, M. Kubo, P. Lertrit, Development of a SNP set for human identification: A set 
with high powers of discrimination which yields high genetic information from naturally 
degraded DNA samples in the Thai population, Forensic Sci. Int. Genet. 11 (2014) 166–173. 
doi:10.1016/j.fsigen.2014.03.010. 

[10] J.M. Butler, Advanced Topics in Forensic DNA Typing: Methodology, Elsevier, 2012. 
doi:10.1016/C2011-0-04189-3. 

[11] C. Phillips, C. Santos, M. Fondevila, Á. Carracedo, M.V. Lareu, Inference of Ancestry in 
Forensic Analysis I: Autosomal Ancestry-Informative Marker Sets, in: 2016: pp. 233–253. 
doi:10.1007/978-1-4939-3597-0_18. 

[12] C.H. Brenner, Some mathematical problems in the DNA identification of victims in the 2004 
tsunami and similar mass fatalities, Forensic Sci. Int. 157 (2006) 172–180. 
doi:10.1016/j.forsciint.2005.11.003. 

[13] C.H. Brenner, B.S. Weir, Issues and strategies in the DNA identification of World Trade 
Center victims, Theor. Popul. Biol. 63 (2003) 173–178. doi:10.1016/S0040-5809(03)00008-

Jo
ur

na
l P

re
-p

ro
of



21 
 

X. 

[14] L. Porras-Hurtado, Y. Ruiz, C. Santos, C. Phillips, Á. Carracedo, M. V. Lareu, An overview of 
STRUCTURE: applications, parameter settings, and supporting software, Front. Genet. 4 
(2013). doi:10.3389/fgene.2013.00098. 

[15] C. Santos, C. Phillips, A. Gomez-Tato, J. Alvarez-Dios, Á. Carracedo, M.V. Lareu, Inference of 
Ancestry in Forensic Analysis II: Analysis of Genetic Data, in: 2016: pp. 255–285. 
doi:10.1007/978-1-4939-3597-0_19. 

[16] L. Pereira, F. Alshamali, R. Andreassen, R. Ballard, W. Chantratita, N.S. Cho, C. Coudray, J.-
M. Dugoujon, M. Espinoza, F. González-Andrade, S. Hadi, U.-D. Immel, C. Marian, A. 
Gonzalez-Martin, G. Mertens, W. Parson, C. Perone, L. Prieto, H. Takeshita, H. Rangel 
Villalobos, Z. Zeng, L. Zhivotovsky, R. Camacho, N.A. Fonseca, PopAffiliator: online 
calculator for individual affiliation to a major population group based on 17 autosomal 
short tandem repeat genotype profile, Int. J. Legal Med. 125 (2011) 629–636. 
doi:10.1007/s00414-010-0472-2. 

[17] C. Santos, C. Phillips, A. Gomez-Tato, J. Alvarez-Dios, Á. Carracedo, M.V. Lareu, Inference of 
Ancestry in Forensic Analysis II: Analysis of Genetic Data., Methods Mol. Biol. 1420 (2016) 
255–85. doi:10.1007/978-1-4939-3597-0_19. 

[18] L. Porras-Hurtado, Y. Ruiz, C. Santos, C. Phillips, Á. Carracedo, M. V. Lareu, An overview of 
STRUCTURE: Applications, parameter settings, and supporting software, Front. Genet. 4 
(2013). doi:10.3389/fgene.2013.00098. 

[19] S. Lee, J.Z. Huang, J. Hu, Sparse Logistic Principal Components Analysis for binary data, 
Ann. Appl. Stat. 4 (2010) 1579–1601. doi:10.1214/10-AOAS327SUPP. 

[20] M. Barker, W. Rayens, Partial least squares for discrimination, J. Chemom. 17 (2003) 166–
173. doi:10.1002/cem.785. 

[21] D. Ballabio, V. Consonni, Classification tools in chemistry. Part 1: linear models. PLS-DA, 
Anal. Methods. 5 (2013) 3790. doi:10.1039/c3ay40582f. 

[22] K.-A. Lê Cao, D. Rossouw, C. Robert-Granié, P. Besse, A Sparse PLS for Variable Selection 
when Integrating Omics Data, Stat. Appl. Genet. Mol. Biol. 7 (2008). doi:10.2202/1544-
6115.1390. 

[23] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, B. Scholkopf, Support vector machines, IEEE 
Intell. Syst. Their Appl. 13 (1998) 18–28. doi:10.1109/5254.708428. 

[24] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer New York, New York, NY, 
2000. doi:10.1007/978-1-4757-3264-1. 

[25] M. Forina, Fondamenta per la Chimica Analitica, 2012. 
http://www.sisnir.org/sisnir/download/fondamenta-per-la-chimica-analitica. 

[26] C.R. Hill, D.L. Duewer, M.C. Kline, M.D. Coble, J.M. Butler, U.S. population data for 29 
autosomal STR loci, Forensic Sci. Int. Genet. 7 (2013) e82–e83. 
doi:10.1016/j.fsigen.2012.12.004. 

[27] Á. Carracedo, J.M. Butler, L. Gusmão, A. Linacre, W. Parson, L. Roewer, P.M. Schneider, 
New guidelines for the publication of genetic population data, Forensic Sci. Int. Genet. 7 
(2013) 217–220. doi:10.1016/j.fsigen.2013.01.001. 

[28] A. Carracedo, J.M. Butler, L. Gusmão, A. Linacre, W. Parson, L. Roewer, P.M. Schneider, 
Update of the guidelines for the publication of genetic population data, Forensic Sci. Int. 

Jo
ur

na
l P

re
-p

ro
of



22 
 

Genet. 10 (2014) A1–A2. doi:10.1016/j.fsigen.2014.01.004. 

[29] L. Gusmão, J.M. Butler, A. Linacre, W. Parson, W. Parson, P.M. Schneider, A. Carracedo, 
Revised guidelines for the publication of genetic population data, Forensic Sci. Int. Genet. 
30 (2017) 160–163. doi:10.1016/j.fsigen.2017.06.007. 

[30] A. Berti, F. Barni, A. Virgili, G. Iacovacci, C. Franchi, C. Rapone, A. Di Carlo, C.M. Oddo, G. 
Lago, Autosomal STR Frequencies in Afghanistan Population, J. Forensic Sci. 50 (2005) 1–3. 
doi:10.1520/jfs2005237. 

[31] F. Barni, A. Berti, A. Pianese, A. Boccellino, M.P. Miller, A. Caperna, G. Lago, Allele 
frequencies of 15 autosomal STR loci in the Iraq population with comparisons to other 
populations from the middle-eastern region, Forensic Sci. Int. 167 (2007) 87–92. 
doi:10.1016/j.forsciint.2006.03.005. 

[32] A. Berti, F. Brisighelli, A. Bosetti, E. Pilli, Allele frequencies of the new European Standard 
Set (ESS) loci in the Italian population, Forensic Sci. Int. Genet. 5 (2011) 548–549. 
doi:10.1016/j.fsigen.2010.01.006. 

[33] A. Benvisto, F. Messina, A. Finocchio, L. Popa, M. Stefan, G. Stefanescu, C. Mironeanu, A. 
Novelletto, C. Rapone, A. Berti, A genetic portrait of the South-Eastern Carpathians based 
on autosomal short tandem repeats loci used in forensics., Am. J. Hum. Biol. 30 (2018) 
e23139. doi:10.1002/ajhb.23139. 

[34] B.S. Weir, C.C. Cockerham, Estimating F-Statistics for the Analysis of Population Structure, 
Evolution (N. Y). (2006). doi:10.2307/2408641. 

[35] K.E. Holsinger, B.S. Weir, Genetics in geographically structured populations: Defining, 
estimating and interpreting FST, Nat. Rev. Genet. 10 (2009) 639–650. 
doi:10.1038/nrg2611. 

[36] A. Gouy, M. Zieger, STRAF—A convenient online tool for STR data evaluation in forensic 
genetics, Forensic Sci. Int. Genet. 30 (2017) 148–151. doi:10.1016/j.fsigen.2017.07.007. 

[37] R Core Team, R: A language and environment for statistical computing, (2015). 
https://www.r-project.org/. 

[38] F. Rohart, B. Gautier, A. Singh, K.A. Lê Cao, mixOmics: An R package for ‘omics feature 
selection and multiple data integration, PLoS Comput. Biol. 13 (2017). 
doi:10.1371/journal.pcbi.1005752. 

[39] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, C. Chang, C. Lin, Package 
‘e1071’ - Misc Functions of the Department of Statistics, Probability Theory Group 
(Formerly: E1071), TU Wien, (2019). https://cran.r-
project.org/web/packages/e1071/e1071.pdf (accessed October 7, 2019). 

[40] R. Bro, A.K. Smilde, Principal component analysis, Anal. Methods. 6 (2014) 2812–2831. 
doi:10.1039/C3AY41907J. 

[41] K.-A. Lê Cao, S. Boitard, P. Besse, Sparse PLS discriminant analysis: biologically relevant 
feature selection and graphical displays for multiclass problems., BMC Bioinformatics. 12 
(2011) 253. doi:10.1186/1471-2105-12-253. 

[42] S. Wold, M. Sjöström, L. Eriksson, PLS-regression: a basic tool of chemometrics, Chemom. 
Intell. Lab. Syst. 58 (2001) 109–130. doi:10.1016/S0169-7439(01)00155-1. 

[43] P. Filzmoser, B. Liebmann, K. Varmuza, Repeated double cross validation, J. Chemom. 23 
(2009) 160–171. doi:10.1002/cem.1225. 

Jo
ur

na
l P

re
-p

ro
of



23 
 

[44] E. D’Atanasio, B. Trombetta, M. Bonito, A. Finocchio, G. Di Vito, M. Seghizzi, R. Romano, G. 
Russo, G.M. Paganotti, E. Watson, A. Coppa, P. Anagnostou, J.-M. Dugoujon, P. Moral, D. 
Sellitto, A. Novelletto, F. Cruciani, The peopling of the last Green Sahara revealed by high-
coverage resequencing of trans-Saharan patrilineages., Genome Biol. 19 (2018) 20. 
doi:10.1186/s13059-018-1393-5. 

[45] M. Forina, S. Lanteri, M.C.C. Oliveros, C.P. Millan, Selection of useful predictors in 
multivariate calibration, Anal. Bioanal. Chem. 380 (2004) 397–418. doi:10.1007/s00216-
004-2768-x. 

[46] S. Dogan, C. Gurkan, M. Dogan, H.E. Balkaya, R. Tunc, D.K. Demirdov, N.A. Ameen, D. 
Marjanovic, A glimpse at the intricate mosaic of ethnicities from Mesopotamia: Paternal 
lineages of the Northern Iraqi Arabs, Kurds, Syriacs, Turkmens and Yazidis, PLoS One. 
(2017). doi:10.1371/journal.pone.0187408. 

[47] J. Di Cristofaro, S. Buhler, S.A. Temori, J. Chiaroni, Genetic data of 15 STR loci in five 
populations from Afghanistan., Forensic Sci. Int. Genet. 6 (2012) e44-5. 
doi:10.1016/j.fsigen.2011.03.004. 

 

  

Jo
ur

na
l P

re
-p

ro
of



24 
 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of


