
21 June 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Focus on Robustness with ARFIN organizations

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1728388 since 2020-02-18T22:03:35Z



A Focus on Robustness with ARFIN

organizations

WOA 2019, Parma

Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, Stefano Tedeschi

Università degli Studi di Torino - Dipartimento di Informatica, Torino, Italy



Multiagent Organizations (MAO) in a few words

• MAOs: strategies for decomposing complex organizational goals

into simpler sub-tasks, allocating them to roles.

• Current models target open systems by allocating and enforcing

rights and duties to agents about the tasks to realize.

• Agents’ activities are choreographed by issueing obligations.

• Agents: by adopting roles agents execute the corresponding tasks in

a distributed, coordinated, and regulated fashion.

• Each agent:

• carries out part of the organizational goal,

• depends on the collaboration of others to perform its task.

1



Multiagent Organizations (MAO) in a few words

• MAOs: strategies for decomposing complex organizational goals

into simpler sub-tasks, allocating them to roles.

• Current models target open systems by allocating and enforcing

rights and duties to agents about the tasks to realize.

• Agents’ activities are choreographed by issueing obligations.

• Agents: by adopting roles agents execute the corresponding tasks in

a distributed, coordinated, and regulated fashion.

• Each agent:

• carries out part of the organizational goal,

• depends on the collaboration of others to perform its task.

1



Agents lose sight of the overall process

• They are focussed on the achievement of the assigned sub-goals

• Ignore the place of their goals in the big picture

• Who should give restitution to whom?

• Who is interested in my activities (“stakeholders”)?

Consequences

1. Agents may have the capability of achieving the assigned goals but in

ways that do not fit into the requirements of the specific stakeholder

2. When agents fail, the interested parties have no explicit mechanism

for sorting out what occurred, for a redress

Something is missing ...

2



Agents lose sight of the overall process

• They are focussed on the achievement of the assigned sub-goals

• Ignore the place of their goals in the big picture

• Who should give restitution to whom?

• Who is interested in my activities (“stakeholders”)?

Consequences

1. Agents may have the capability of achieving the assigned goals but in

ways that do not fit into the requirements of the specific stakeholder

2. When agents fail, the interested parties have no explicit mechanism

for sorting out what occurred, for a redress

Something is missing ...

2



Agents lose sight of the overall process

• They are focussed on the achievement of the assigned sub-goals

• Ignore the place of their goals in the big picture

• Who should give restitution to whom?

• Who is interested in my activities (“stakeholders”)?

Consequences

1. Agents may have the capability of achieving the assigned goals but in

ways that do not fit into the requirements of the specific stakeholder

2. When agents fail, the interested parties have no explicit mechanism

for sorting out what occurred, for a redress

Something is missing ...

2



Goals achieved but no proof

• Agents who enter the organization are under the regulation of

norms, that stipulate their rights and duties

• However, there is no guarantee that they will provide the

accompanying proofs, that are induced by their assigned

responsibilities.

Something is missing ...

3



Goals achieved but no proof

• Agents who enter the organization are under the regulation of

norms, that stipulate their rights and duties

• However, there is no guarantee that they will provide the

accompanying proofs, that are induced by their assigned

responsibilities.

Something is missing ...

3



Direction: MAO need “agent responsabilization”

Need of introducing some explicit representation of some relationships

agents have with the others, their mutual “dependences”, and, more

broadly, of the dependence of the organization on its members for what

concerns the realization of the business process.

4



What about Commitments?

C (x , y , r , u)

A social commitment is a promise (to bring about)

from debtor to creditor

The creditor should be the interested party but the choice to create the

commitment and towards whom is totally up to the debtor.

We need a different kind of relationship

An agreement between the parts, respecting a specification inside an

organization, whereby the legitimacy for one agent to ask information

about a subgoal is accepted by both the involved agents

5



What about Commitments?

C (x , y , r , u)

A social commitment is a promise (to bring about)

from debtor to creditor

The creditor should be the interested party but the choice to create the

commitment and towards whom is totally up to the debtor.

We need a different kind of relationship

An agreement between the parts, respecting a specification inside an

organization, whereby the legitimacy for one agent to ask information

about a subgoal is accepted by both the involved agents

5



We resort on the notions of responsibility and accountability.

6



Accountability

(Dubnick and Justice, 2004)

Accountability “emerges as a primary characteristic of governance

where there is a sense of agreement and certainty about the

legitimacy of expectations between the community members.”

(Grant and Keohane, 2005)

“Accountability presupposes a relationship between power-wielders and

those holding them accountable where there is a general recognition of

the legitimacy of (1) the operative standards for accountability and

(2) the authority of the parties to the relationship (one to exercise

particular powers and the other to hold them to account).”

7



Accountability

(Dubnick and Justice, 2004)

Accountability “emerges as a primary characteristic of governance

where there is a sense of agreement and certainty about the

legitimacy of expectations between the community members.”

(Grant and Keohane, 2005)

“Accountability presupposes a relationship between power-wielders and

those holding them accountable where there is a general recognition of

the legitimacy of (1) the operative standards for accountability and

(2) the authority of the parties to the relationship (one to exercise

particular powers and the other to hold them to account).”

7



Accountability and Responsibility

As a consequence, accountability is grounded on perceived/assumed

responsibility, deriving from recognition of legitimacy of exercising

some power, and of the claim-right to hold the responsible to account.

8



Accountability and Robustness

• Accountable software: software that, under given conditions,

provides account of what was achieved or what went wrong.

• System results to be robust, that is capable to keep on working

within acceptable standards despite something abnormal occurs.

9



Exception handling

Exception handling as straightforward special case of accountability,

where the agents have the agreement that the account-taker is always

interested in feedback, on occurrence of some exceptions. Thereby, the

account-giver proactively provides such feedback without waiting for a

request

10



Exception Handling: a special case of accountability

• Exception specification

mechanism captures the

way in which a process is

interested into another

• A process can react to

abnormal events

(exceptions), possibly

encompassing contextual

information provided by

others in their decision

processes

Incident Management as detailed
collaboration

VIP Customer

Ke
y 

Ac
co

un
t M

an
ag

er

Key Account Manager

Customer Has a Problem

Get Problem
Description

Explain
Solution

Answer ReceivedCan Handle it Myself?

Ask 1st Level
Support

Cancel 1st level
support
request

1 day

Invite to recall

1s
t L

ev
el

 S
up

po
rt

 A
ge

nt

1st Level Support Agent

Ask 2nd Level
Support

Handle 1st
Level Issue

Provide
Feedback for

Account
Manager

Answer Received

Result?

Issue

Cancel 2nd level
support request

1 day

Explain failure
1st level support

2n
d 

Le
ve

l S
up

po
rt

 A
ge

nt

2nd Level Support Agent

Result?
Provide

Feedback for
1st Level
Support

Handle 2nd
Level Issue

Answer Received

Insert Into
Product
Backlog

Ask Developer

Ticket Received

Unsure?

Some issues cannot
get fixed right but
should be in next
release

Sometimes opinion
of development is
needed

1 day

Explain failure
2nd level
support

Cancel software
developer
support

So
ft

w
ar

e 
D

ev
el

op
er Examine

Problem

Request From
Support

Provide Feedback
for 2nd Level

Support

1 day
Explain failure

software
developer
support

Yes

No

2nd Level Issue

Issue Resolved

No

Fix in Next Release

Issue Resolved

Ye
s

11



Exception Handling: a special case of accountability

• Exception specification

mechanism captures the

way in which a process is

interested into another

• A process can react to

abnormal events

(exceptions), possibly

encompassing contextual

information provided by

others in their decision

processes

Incident Management as detailed
collaboration

VIP Customer

Ke
y 

Ac
co

un
t M

an
ag

er

Key Account Manager

Customer Has a Problem

Get Problem
Description

Explain
Solution

Answer ReceivedCan Handle it Myself?

Ask 1st Level
Support

Cancel 1st level
support
request

1 day

Invite to recall

1s
t L

ev
el

 S
up

po
rt

 A
ge

nt

1st Level Support Agent

Ask 2nd Level
Support

Handle 1st
Level Issue

Provide
Feedback for

Account
Manager

Answer Received

Result?

Issue

Cancel 2nd level
support request

1 day

Explain failure
1st level support

2n
d 

Le
ve

l S
up

po
rt

 A
ge

nt

2nd Level Support Agent

Result?
Provide

Feedback for
1st Level
Support

Handle 2nd
Level Issue

Answer Received

Insert Into
Product
Backlog

Ask Developer

Ticket Received

Unsure?

Some issues cannot
get fixed right but
should be in next
release

Sometimes opinion
of development is
needed

1 day

Explain failure
2nd level
support

Cancel software
developer
support

So
ft

w
ar

e 
D

ev
el

op
er Examine

Problem

Request From
Support

Provide Feedback
for 2nd Level

Support

1 day
Explain failure

software
developer
support

Yes

No

2nd Level Issue

Issue Resolved

No

Fix in Next Release

Issue Resolved

Ye
s

11



Exception Handling

• The driver of such a process

is the attempt to execute

up to the preset standards,

possibly through

self-regulation, by adapting

either the execution or the

organization itself

• This process heavily relies

on the accounts that the

involved agents are

expected to produce.

Incident Management as detailed
collaboration

VIP Customer

Ke
y 

Ac
co

un
t M

an
ag

er

Key Account Manager

Customer Has a Problem

Get Problem
Description

Explain
Solution

Answer ReceivedCan Handle it Myself?

Ask 1st Level
Support

Cancel 1st level
support
request

1 day

Invite to recall

1s
t L

ev
el

 S
up

po
rt

 A
ge

nt

1st Level Support Agent

Ask 2nd Level
Support

Handle 1st
Level Issue

Provide
Feedback for

Account
Manager

Answer Received

Result?

Issue

Cancel 2nd level
support request

1 day

Explain failure
1st level support

2n
d 

Le
ve

l S
up

po
rt

 A
ge

nt

2nd Level Support Agent

Result?
Provide

Feedback for
1st Level
Support

Handle 2nd
Level Issue

Answer Received

Insert Into
Product
Backlog

Ask Developer

Ticket Received

Unsure?

Some issues cannot
get fixed right but
should be in next
release

Sometimes opinion
of development is
needed

1 day

Explain failure
2nd level
support

Cancel software
developer
support

So
ft

w
ar

e 
D

ev
el

op
er Examine

Problem

Request From
Support

Provide Feedback
for 2nd Level

Support

1 day
Explain failure

software
developer
support

Yes

No

2nd Level Issue

Issue Resolved

No

Fix in Next Release

Issue Resolved

Ye
s

12



ARFIN Organizations

Agent organization

A process being collectively executed by a number of agents. Agents

produce and answer to institutional events, and need to coordinate to

accomplish the organizational goal.

ARFIN organization

A MAO that includes: an accountability specification, a

responsibility distribution, an accountability fitting, and some

norms.

13



JaCaMo + A/R (Baldoni et al., 2018)

JaCaMo + A/R

(Baldoni et al., 2018) proposes to complement the specification of an

organization with accountability and responsibility specifications.

Such an extension provides organizations with an additional

infrastructure that captures who should give account to whom for

certain states of the organization, and who can ask for such feedbacks.

14



JaCaMo + A/R (Baldoni et al., 2018)

JaCaMo + A/R

(Baldoni et al., 2018) proposes to complement the specification of an

organization with accountability and responsibility specifications.

Such an extension provides organizations with an additional

infrastructure that captures who should give account to whom for

certain states of the organization, and who can ask for such feedbacks.

14



Specifying accountabilities

Accountability A(x , y , r , u)

x , the account-giver, is accountable towards y , the account-taker, for

the condition u when the condition r (context) holds.

Accountability specification

It is a set A of accountabilities A(x , y , r , u).

A denotes a set of accountability specifications.

Accountability is grounded on control and expectation:

• expectation is naturally conveyed with the accountability itself;

• (knowlegde) control is recursively verified on the structure of u: x

controls u either directly (it is in position of causing u) or indirectly

by relying on accountabilities.

15



Specifying accountabilities

Accountability A(x , y , r , u)

x , the account-giver, is accountable towards y , the account-taker, for

the condition u when the condition r (context) holds.

Accountability specification

It is a set A of accountabilities A(x , y , r , u).

A denotes a set of accountability specifications.

Accountability is grounded on control and expectation:

• expectation is naturally conveyed with the accountability itself;

• (knowlegde) control is recursively verified on the structure of u: x

controls u either directly (it is in position of causing u) or indirectly

by relying on accountabilities.

15



Specifying responsibilities

Responsibility specification

A responsibility specification R(x , q) expresses an expectation on any

agent playing role x on pursuing condition q (x is entitled and should

have the capabilities of bringing about q).

Responsibility assumption: for playing role x an agent should declare

to accept to be considered in the position of causing q.

R denotes a responsibility distribution, that is a set of responsibility

assumptions.

16



Specifying responsibilities

Responsibility specification

A responsibility specification R(x , q) expresses an expectation on any

agent playing role x on pursuing condition q (x is entitled and should

have the capabilities of bringing about q).

Responsibility assumption: for playing role x an agent should declare

to accept to be considered in the position of causing q.

R denotes a responsibility distribution, that is a set of responsibility

assumptions.

16



Accountability Fitting

Accountability Fitting R A (“R fits A” )

Given:

• A: a set of accountability specifications;

• R: a responsibility distribution;

We say that R A when ∃ A ∈ A such that ∀ A(x , y , r , u) ∈ A,

∃ R(x , q) ∈ R such that, for some actualization q̂, (u/r)/q̂ ≡ >.

Given R(x , a · b · c), A(x , y , d · e, d · a · c),

q is a · b · c , r is d · e, u is d · a · c ,

then (u/r)/q̂ is (d · a · c)/(d · e)/(a · b · c).

17



Accountability Fitting

Accountability Fitting R A (“R fits A” )

Given:

• A: a set of accountability specifications;

• R: a responsibility distribution;

We say that R A when ∃ A ∈ A such that ∀ A(x , y , r , u) ∈ A,

∃ R(x , q) ∈ R such that, for some actualization q̂, (u/r)/q̂ ≡ >.

Given R(x , a · b · c), A(x , y , d · e, d · a · c),

q is a · b · c , r is d · e, u is d · a · c ,

then (u/r)/q̂ is (d · a · c)/(d · e)/(a · b · c).

17



Accountability fitting

Intuitively ...

Accountability fitting captures a properly defined organization that is

guaranteed to properly distribute responsibilities.

Not only the organization owns but it also to “connects” the needed,

distributed control over the goal so as to better support its achievement.

An organization is properly specified when the accountability fitting

R A holds.

R A provides a specification the agents must explicitly conform to,

when enacting organizational roles.

18



Accountability fitting

Intuitively ...

Accountability fitting captures a properly defined organization that is

guaranteed to properly distribute responsibilities.

Not only the organization owns but it also to “connects” the needed,

distributed control over the goal so as to better support its achievement.

An organization is properly specified when the accountability fitting

R A holds.

R A provides a specification the agents must explicitly conform to,

when enacting organizational roles.

18



Accountability fitting

Intuitively ...

Accountability fitting captures a properly defined organization that is

guaranteed to properly distribute responsibilities.

Not only the organization owns but it also to “connects” the needed,

distributed control over the goal so as to better support its achievement.

An organization is properly specified when the accountability fitting

R A holds.

R A provides a specification the agents must explicitly conform to,

when enacting organizational roles.

18



Accountability Fitting with exceptions

Given a set of events U , let E be a set of exceptional events, that is,

E ∩ U = ∅ and each event e ∈ E is complementary to possibly many

events in U .

F ⊆ U × E maps events in U to their corresponding complementary ones

in E .

• An expression u is touched by an exception e ∈ E if for at least one

event w occurring in u, (w , e) ∈ F .

• An accountability relationships A(x , y , r , u) is touched by the

occurrence of event e when w occurs in u and (w , e) ∈ F .

Compliance with exceptions

Let [R A]F be an accountability fitting characterized by F . An

ARFIN organization is compliant with [R A]F if, whenever

A(x , y , r , u) ∈ A is touched by an event e ∈ E , an account about u is

requested to x by default.

19



Accountability Fitting with exceptions

Given a set of events U , let E be a set of exceptional events, that is,

E ∩ U = ∅ and each event e ∈ E is complementary to possibly many

events in U .

F ⊆ U × E maps events in U to their corresponding complementary ones

in E .

• An expression u is touched by an exception e ∈ E if for at least one

event w occurring in u, (w , e) ∈ F .

• An accountability relationships A(x , y , r , u) is touched by the

occurrence of event e when w occurs in u and (w , e) ∈ F .

Compliance with exceptions

Let [R A]F be an accountability fitting characterized by F . An

ARFIN organization is compliant with [R A]F if, whenever

A(x , y , r , u) ∈ A is touched by an event e ∈ E , an account about u is

requested to x by default.

19



Accountability Fitting with exceptions

Given a set of events U , let E be a set of exceptional events, that is,

E ∩ U = ∅ and each event e ∈ E is complementary to possibly many

events in U .

F ⊆ U × E maps events in U to their corresponding complementary ones

in E .

• An expression u is touched by an exception e ∈ E if for at least one

event w occurring in u, (w , e) ∈ F .

• An accountability relationships A(x , y , r , u) is touched by the

occurrence of event e when w occurs in u and (w , e) ∈ F .

Compliance with exceptions

Let [R A]F be an accountability fitting characterized by F . An

ARFIN organization is compliant with [R A]F if, whenever

A(x , y , r , u) ∈ A is touched by an event e ∈ E , an account about u is

requested to x by default.

19



MAO → ARFIN

Complementing a functional decomposition with an accountability fitting

with exceptions [R A]F turns an organization (implemented in

JaCaMo) into a particular kind of ARFIN organization that considers

abnormal situations explicitly.

20



The building house example

an “agreement” by which the a-taker is always interested in
feedback when an exception occurs.

Let E be a set of exceptional events, that is, E ∩U = ∅ and
each event e ∈ E is complementary to some event in U . In
general, the same event e could be considered complementary
to many events in U . Relation F ⊆ U × E maps events in U
to their corresponding complementary ones in E . We say that
an expression u is touched by an exception e ∈ E if for at
least one event w occurring in u, (w, e) ∈ F . By extension,
an accountability relationships A(x, y, r, u) is touched by the
occurrence of event e when w occurs in u and (w, e) ∈ F .
Let [R � A]F be an accountability fitting characterized by
F . An ARFIN organization is compliant with [R � A]F if,
whenever A(x, y, r, u) ∈ A is touched by an event e ∈ E , an
account about u is requested to x by default.

IV. CASE STUDY: THE JACAMO PLATFORM

JaCaMo [5] is a conceptual model and programming plat-
form for multiagent systems that integrates three different
programming dimensions: agents, environments and organi-
zations. It is built on top of three existing platforms, namely
Jason [16] for programming agents, CArtAgO [17] for pro-
gramming environments, and MOISE [18] for programming
organizations. More specifically, Jason is a platform for agent
development based on the AgentSpeak(L) language [19]. An
agent is specified by a set of beliefs, representing both the
agent’s current state and its knowledge about the environment,
a set of goals, and a set of plans, which are courses of actions,
triggered by events, that can be taken by the agent in given cir-
cumstances. CArtAgO, based on the Agents & Artifacts meta-
model [20], is a framework for environment programming
which conceives the environment as a layer encapsulating
functionalities and services that agents can explore and use
at runtime [21]. An environment is programmed as a dynamic
set of artifacts, whose observable states can be perceived by
the agents. Agents can act upon artifacts by executing the
operations that are provided by the artifact usage interfaces.
Finally, Moise implements a programming model for the
organizational dimension. It includes an organization modeling
language, an organization management infrastructure [22] and
a support for organization-based reasoning at the agent level.
A JaCaMo multiagent system is, then, given by an agent
organization, programmed in Moise, organizing autonomous
agents, programmed in Jason, working in a shared, artifact-
based environment, programmed in CArtAgO.

According to [22], the MOISE organizational model,
adopted in JaCaMo, decomposes the specification of an or-
ganization into three dimensions. The structural dimension
specifies roles, groups and links between roles in the orga-
nization. The functional dimension is composed of one or
more schemes that elicit how the global organizational goals
are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed
to the agents. Finally, the normative dimension binds the two
previous dimensions by specifying the role permissions and
obligations for missions.

For what concerns the organization management infrastruc-
ture, JaCaMo provides various kinds of organizational artifacts
that allow encoding the state and behavior of the organization,
in terms of groups, schemes and normative states. Obligations
are issued on the basis of a normative program, written in
NOPL [23]. Norms have the form id : φ → ψ, where id is a
unique identifier of the norm; φ is a formula that determines
the activation condition for the norm; and ψ is the consequence
of the activation of the norm (either a failure or the generation
of an obligation, directed to an agent and concerning a given
goal). Obligations, thus, have a well-defined lifecycle. Once
created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the
state of the world specified by the obligation before a given
deadline. An obligation is unfulfilled when the agent does not
bring it about before the deadline. When the condition φ does
not hold anymore, the state becomes inactive.

house_built

site_prepared floors_laid walls_built . . .

Fig. 1. Excerpt of the functional specification for the building-a-house
example.

The overall goal of having the house built can be decom-
posed in several steps to be executed in sequence. First of all
the site must be prepared, so that the floors can be laid, the
walls built, and so on. The set of all the goals g defined in the
functional decomposition represents the universe of discourse
U . During the execution, the organization issues obligations
in accordance with the specification. In our case, the first
obligation will concern the site_prepared goal and will be
directed to a site preparer agent.

If, for any reason, the site preparer fails in achieving
the goal, such a failure impacts on the whole organization
that remains stuck. For instance, the site preparer may fail
because of bad weather conditions, or because of some missing
materials. These events are not captured by the functional
decomposition of JaCaMo, and hence, a proper reaction to
them is not easily specified.

Complementing a functional decomposition with an ac-
countability fitting [R � A]F turns an organization imple-
mented in JaCaMo into an ARFIN organization. This allows
taking into account abnormal situations explicitly.

Let us consider, for instance, a responsibility declaration:

r : R(site preparer, site_prepared) ∈ R

This fits the accountability relationship

a : A(site preparer, manager,�, site_prepared) ∈ A

Let us assume that such an accountability a is touched by
two exceptional events: missing_material and bad_weather.

an “agreement” by which the a-taker is always interested in
feedback when an exception occurs.

Let E be a set of exceptional events, that is, E ∩U = ∅ and
each event e ∈ E is complementary to some event in U . In
general, the same event e could be considered complementary
to many events in U . Relation F ⊆ U × E maps events in U
to their corresponding complementary ones in E . We say that
an expression u is touched by an exception e ∈ E if for at
least one event w occurring in u, (w, e) ∈ F . By extension,
an accountability relationships A(x, y, r, u) is touched by the
occurrence of event e when w occurs in u and (w, e) ∈ F .
Let [R � A]F be an accountability fitting characterized by
F . An ARFIN organization is compliant with [R � A]F if,
whenever A(x, y, r, u) ∈ A is touched by an event e ∈ E , an
account about u is requested to x by default.

IV. CASE STUDY: THE JACAMO PLATFORM

JaCaMo [5] is a conceptual model and programming plat-
form for multiagent systems that integrates three different
programming dimensions: agents, environments and organi-
zations. It is built on top of three existing platforms, namely
Jason [16] for programming agents, CArtAgO [17] for pro-
gramming environments, and MOISE [18] for programming
organizations. More specifically, Jason is a platform for agent
development based on the AgentSpeak(L) language [19]. An
agent is specified by a set of beliefs, representing both the
agent’s current state and its knowledge about the environment,
a set of goals, and a set of plans, which are courses of actions,
triggered by events, that can be taken by the agent in given cir-
cumstances. CArtAgO, based on the Agents & Artifacts meta-
model [20], is a framework for environment programming
which conceives the environment as a layer encapsulating
functionalities and services that agents can explore and use
at runtime [21]. An environment is programmed as a dynamic
set of artifacts, whose observable states can be perceived by
the agents. Agents can act upon artifacts by executing the
operations that are provided by the artifact usage interfaces.
Finally, Moise implements a programming model for the
organizational dimension. It includes an organization modeling
language, an organization management infrastructure [22] and
a support for organization-based reasoning at the agent level.
A JaCaMo multiagent system is, then, given by an agent
organization, programmed in Moise, organizing autonomous
agents, programmed in Jason, working in a shared, artifact-
based environment, programmed in CArtAgO.

According to [22], the MOISE organizational model,
adopted in JaCaMo, decomposes the specification of an or-
ganization into three dimensions. The structural dimension
specifies roles, groups and links between roles in the orga-
nization. The functional dimension is composed of one or
more schemes that elicit how the global organizational goals
are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed
to the agents. Finally, the normative dimension binds the two
previous dimensions by specifying the role permissions and
obligations for missions.

For what concerns the organization management infrastruc-
ture, JaCaMo provides various kinds of organizational artifacts
that allow encoding the state and behavior of the organization,
in terms of groups, schemes and normative states. Obligations
are issued on the basis of a normative program, written in
NOPL [23]. Norms have the form id : φ → ψ, where id is a
unique identifier of the norm; φ is a formula that determines
the activation condition for the norm; and ψ is the consequence
of the activation of the norm (either a failure or the generation
of an obligation, directed to an agent and concerning a given
goal). Obligations, thus, have a well-defined lifecycle. Once
created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the
state of the world specified by the obligation before a given
deadline. An obligation is unfulfilled when the agent does not
bring it about before the deadline. When the condition φ does
not hold anymore, the state becomes inactive.

house_built

site_prepared floors_laid walls_built . . .

Fig. 1. Excerpt of the functional specification for the building-a-house
example.

The overall goal of having the house built can be decom-
posed in several steps to be executed in sequence. First of all
the site must be prepared, so that the floors can be laid, the
walls built, and so on. The set of all the goals g defined in the
functional decomposition represents the universe of discourse
U . During the execution, the organization issues obligations
in accordance with the specification. In our case, the first
obligation will concern the site_prepared goal and will be
directed to a site preparer agent.

If, for any reason, the site preparer fails in achieving
the goal, such a failure impacts on the whole organization
that remains stuck. For instance, the site preparer may fail
because of bad weather conditions, or because of some missing
materials. These events are not captured by the functional
decomposition of JaCaMo, and hence, a proper reaction to
them is not easily specified.

Complementing a functional decomposition with an ac-
countability fitting [R � A]F turns an organization imple-
mented in JaCaMo into an ARFIN organization. This allows
taking into account abnormal situations explicitly.

Let us consider, for instance, a responsibility declaration:

r : R(site preparer, site_prepared) ∈ R

This fits the accountability relationship

a : A(site preparer, manager,�, site_prepared) ∈ A

Let us assume that such an accountability a is touched by
two exceptional events: missing_material and bad_weather.

missing_materials
bad_weather

missing_materials

site preparer

manager

• R(site preparer , site prepared) ∈ R

• A(site preparer ,manager ,>, site prepared) ∈ A

Abnormal situations/exceptions

Let us suppose the site preparer agent may fail because of (1) missing

materials or (2) bad weather.

• Site preparer is touched by the two exceptional events

missing material and bad weather .

• Thus (site prepared ,missing material) ∈ F and

(site prepared , bad weather) ∈ F .

[R A]F characterizes what kinds of exceptional events should be

reported and to who.

21



The building house example

an “agreement” by which the a-taker is always interested in
feedback when an exception occurs.

Let E be a set of exceptional events, that is, E ∩U = ∅ and
each event e ∈ E is complementary to some event in U . In
general, the same event e could be considered complementary
to many events in U . Relation F ⊆ U × E maps events in U
to their corresponding complementary ones in E . We say that
an expression u is touched by an exception e ∈ E if for at
least one event w occurring in u, (w, e) ∈ F . By extension,
an accountability relationships A(x, y, r, u) is touched by the
occurrence of event e when w occurs in u and (w, e) ∈ F .
Let [R � A]F be an accountability fitting characterized by
F . An ARFIN organization is compliant with [R � A]F if,
whenever A(x, y, r, u) ∈ A is touched by an event e ∈ E , an
account about u is requested to x by default.

IV. CASE STUDY: THE JACAMO PLATFORM

JaCaMo [5] is a conceptual model and programming plat-
form for multiagent systems that integrates three different
programming dimensions: agents, environments and organi-
zations. It is built on top of three existing platforms, namely
Jason [16] for programming agents, CArtAgO [17] for pro-
gramming environments, and MOISE [18] for programming
organizations. More specifically, Jason is a platform for agent
development based on the AgentSpeak(L) language [19]. An
agent is specified by a set of beliefs, representing both the
agent’s current state and its knowledge about the environment,
a set of goals, and a set of plans, which are courses of actions,
triggered by events, that can be taken by the agent in given cir-
cumstances. CArtAgO, based on the Agents & Artifacts meta-
model [20], is a framework for environment programming
which conceives the environment as a layer encapsulating
functionalities and services that agents can explore and use
at runtime [21]. An environment is programmed as a dynamic
set of artifacts, whose observable states can be perceived by
the agents. Agents can act upon artifacts by executing the
operations that are provided by the artifact usage interfaces.
Finally, Moise implements a programming model for the
organizational dimension. It includes an organization modeling
language, an organization management infrastructure [22] and
a support for organization-based reasoning at the agent level.
A JaCaMo multiagent system is, then, given by an agent
organization, programmed in Moise, organizing autonomous
agents, programmed in Jason, working in a shared, artifact-
based environment, programmed in CArtAgO.

According to [22], the MOISE organizational model,
adopted in JaCaMo, decomposes the specification of an or-
ganization into three dimensions. The structural dimension
specifies roles, groups and links between roles in the orga-
nization. The functional dimension is composed of one or
more schemes that elicit how the global organizational goals
are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed
to the agents. Finally, the normative dimension binds the two
previous dimensions by specifying the role permissions and
obligations for missions.

For what concerns the organization management infrastruc-
ture, JaCaMo provides various kinds of organizational artifacts
that allow encoding the state and behavior of the organization,
in terms of groups, schemes and normative states. Obligations
are issued on the basis of a normative program, written in
NOPL [23]. Norms have the form id : φ → ψ, where id is a
unique identifier of the norm; φ is a formula that determines
the activation condition for the norm; and ψ is the consequence
of the activation of the norm (either a failure or the generation
of an obligation, directed to an agent and concerning a given
goal). Obligations, thus, have a well-defined lifecycle. Once
created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the
state of the world specified by the obligation before a given
deadline. An obligation is unfulfilled when the agent does not
bring it about before the deadline. When the condition φ does
not hold anymore, the state becomes inactive.

house_built

site_prepared floors_laid walls_built . . .

Fig. 1. Excerpt of the functional specification for the building-a-house
example.

The overall goal of having the house built can be decom-
posed in several steps to be executed in sequence. First of all
the site must be prepared, so that the floors can be laid, the
walls built, and so on. The set of all the goals g defined in the
functional decomposition represents the universe of discourse
U . During the execution, the organization issues obligations
in accordance with the specification. In our case, the first
obligation will concern the site_prepared goal and will be
directed to a site preparer agent.

If, for any reason, the site preparer fails in achieving
the goal, such a failure impacts on the whole organization
that remains stuck. For instance, the site preparer may fail
because of bad weather conditions, or because of some missing
materials. These events are not captured by the functional
decomposition of JaCaMo, and hence, a proper reaction to
them is not easily specified.

Complementing a functional decomposition with an ac-
countability fitting [R � A]F turns an organization imple-
mented in JaCaMo into an ARFIN organization. This allows
taking into account abnormal situations explicitly.

Let us consider, for instance, a responsibility declaration:

r : R(site preparer, site_prepared) ∈ R

This fits the accountability relationship

a : A(site preparer, manager,�, site_prepared) ∈ A

Let us assume that such an accountability a is touched by
two exceptional events: missing_material and bad_weather.

an “agreement” by which the a-taker is always interested in
feedback when an exception occurs.

Let E be a set of exceptional events, that is, E ∩U = ∅ and
each event e ∈ E is complementary to some event in U . In
general, the same event e could be considered complementary
to many events in U . Relation F ⊆ U × E maps events in U
to their corresponding complementary ones in E . We say that
an expression u is touched by an exception e ∈ E if for at
least one event w occurring in u, (w, e) ∈ F . By extension,
an accountability relationships A(x, y, r, u) is touched by the
occurrence of event e when w occurs in u and (w, e) ∈ F .
Let [R � A]F be an accountability fitting characterized by
F . An ARFIN organization is compliant with [R � A]F if,
whenever A(x, y, r, u) ∈ A is touched by an event e ∈ E , an
account about u is requested to x by default.

IV. CASE STUDY: THE JACAMO PLATFORM

JaCaMo [5] is a conceptual model and programming plat-
form for multiagent systems that integrates three different
programming dimensions: agents, environments and organi-
zations. It is built on top of three existing platforms, namely
Jason [16] for programming agents, CArtAgO [17] for pro-
gramming environments, and MOISE [18] for programming
organizations. More specifically, Jason is a platform for agent
development based on the AgentSpeak(L) language [19]. An
agent is specified by a set of beliefs, representing both the
agent’s current state and its knowledge about the environment,
a set of goals, and a set of plans, which are courses of actions,
triggered by events, that can be taken by the agent in given cir-
cumstances. CArtAgO, based on the Agents & Artifacts meta-
model [20], is a framework for environment programming
which conceives the environment as a layer encapsulating
functionalities and services that agents can explore and use
at runtime [21]. An environment is programmed as a dynamic
set of artifacts, whose observable states can be perceived by
the agents. Agents can act upon artifacts by executing the
operations that are provided by the artifact usage interfaces.
Finally, Moise implements a programming model for the
organizational dimension. It includes an organization modeling
language, an organization management infrastructure [22] and
a support for organization-based reasoning at the agent level.
A JaCaMo multiagent system is, then, given by an agent
organization, programmed in Moise, organizing autonomous
agents, programmed in Jason, working in a shared, artifact-
based environment, programmed in CArtAgO.

According to [22], the MOISE organizational model,
adopted in JaCaMo, decomposes the specification of an or-
ganization into three dimensions. The structural dimension
specifies roles, groups and links between roles in the orga-
nization. The functional dimension is composed of one or
more schemes that elicit how the global organizational goals
are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed
to the agents. Finally, the normative dimension binds the two
previous dimensions by specifying the role permissions and
obligations for missions.

For what concerns the organization management infrastruc-
ture, JaCaMo provides various kinds of organizational artifacts
that allow encoding the state and behavior of the organization,
in terms of groups, schemes and normative states. Obligations
are issued on the basis of a normative program, written in
NOPL [23]. Norms have the form id : φ → ψ, where id is a
unique identifier of the norm; φ is a formula that determines
the activation condition for the norm; and ψ is the consequence
of the activation of the norm (either a failure or the generation
of an obligation, directed to an agent and concerning a given
goal). Obligations, thus, have a well-defined lifecycle. Once
created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the
state of the world specified by the obligation before a given
deadline. An obligation is unfulfilled when the agent does not
bring it about before the deadline. When the condition φ does
not hold anymore, the state becomes inactive.

house_built

site_prepared floors_laid walls_built . . .

Fig. 1. Excerpt of the functional specification for the building-a-house
example.

The overall goal of having the house built can be decom-
posed in several steps to be executed in sequence. First of all
the site must be prepared, so that the floors can be laid, the
walls built, and so on. The set of all the goals g defined in the
functional decomposition represents the universe of discourse
U . During the execution, the organization issues obligations
in accordance with the specification. In our case, the first
obligation will concern the site_prepared goal and will be
directed to a site preparer agent.

If, for any reason, the site preparer fails in achieving
the goal, such a failure impacts on the whole organization
that remains stuck. For instance, the site preparer may fail
because of bad weather conditions, or because of some missing
materials. These events are not captured by the functional
decomposition of JaCaMo, and hence, a proper reaction to
them is not easily specified.

Complementing a functional decomposition with an ac-
countability fitting [R � A]F turns an organization imple-
mented in JaCaMo into an ARFIN organization. This allows
taking into account abnormal situations explicitly.

Let us consider, for instance, a responsibility declaration:

r : R(site preparer, site_prepared) ∈ R

This fits the accountability relationship

a : A(site preparer, manager,�, site_prepared) ∈ A

Let us assume that such an accountability a is touched by
two exceptional events: missing_material and bad_weather.

missing_materials
bad_weather

missing_materials

site preparer

manager

• R(site preparer , site prepared) ∈ R

• A(site preparer ,manager ,>, site prepared) ∈ A

Abnormal situations/exceptions

Let us suppose the site preparer agent may fail because of (1) missing

materials or (2) bad weather.

• Site preparer is touched by the two exceptional events

missing material and bad weather .

• Thus (site prepared ,missing material) ∈ F and

(site prepared , bad weather) ∈ F .

[R A]F characterizes what kinds of exceptional events should be

reported and to who.

21



The building house example

an “agreement” by which the a-taker is always interested in
feedback when an exception occurs.

Let E be a set of exceptional events, that is, E ∩U = ∅ and
each event e ∈ E is complementary to some event in U . In
general, the same event e could be considered complementary
to many events in U . Relation F ⊆ U × E maps events in U
to their corresponding complementary ones in E . We say that
an expression u is touched by an exception e ∈ E if for at
least one event w occurring in u, (w, e) ∈ F . By extension,
an accountability relationships A(x, y, r, u) is touched by the
occurrence of event e when w occurs in u and (w, e) ∈ F .
Let [R � A]F be an accountability fitting characterized by
F . An ARFIN organization is compliant with [R � A]F if,
whenever A(x, y, r, u) ∈ A is touched by an event e ∈ E , an
account about u is requested to x by default.

IV. CASE STUDY: THE JACAMO PLATFORM

JaCaMo [5] is a conceptual model and programming plat-
form for multiagent systems that integrates three different
programming dimensions: agents, environments and organi-
zations. It is built on top of three existing platforms, namely
Jason [16] for programming agents, CArtAgO [17] for pro-
gramming environments, and MOISE [18] for programming
organizations. More specifically, Jason is a platform for agent
development based on the AgentSpeak(L) language [19]. An
agent is specified by a set of beliefs, representing both the
agent’s current state and its knowledge about the environment,
a set of goals, and a set of plans, which are courses of actions,
triggered by events, that can be taken by the agent in given cir-
cumstances. CArtAgO, based on the Agents & Artifacts meta-
model [20], is a framework for environment programming
which conceives the environment as a layer encapsulating
functionalities and services that agents can explore and use
at runtime [21]. An environment is programmed as a dynamic
set of artifacts, whose observable states can be perceived by
the agents. Agents can act upon artifacts by executing the
operations that are provided by the artifact usage interfaces.
Finally, Moise implements a programming model for the
organizational dimension. It includes an organization modeling
language, an organization management infrastructure [22] and
a support for organization-based reasoning at the agent level.
A JaCaMo multiagent system is, then, given by an agent
organization, programmed in Moise, organizing autonomous
agents, programmed in Jason, working in a shared, artifact-
based environment, programmed in CArtAgO.

According to [22], the MOISE organizational model,
adopted in JaCaMo, decomposes the specification of an or-
ganization into three dimensions. The structural dimension
specifies roles, groups and links between roles in the orga-
nization. The functional dimension is composed of one or
more schemes that elicit how the global organizational goals
are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed
to the agents. Finally, the normative dimension binds the two
previous dimensions by specifying the role permissions and
obligations for missions.

For what concerns the organization management infrastruc-
ture, JaCaMo provides various kinds of organizational artifacts
that allow encoding the state and behavior of the organization,
in terms of groups, schemes and normative states. Obligations
are issued on the basis of a normative program, written in
NOPL [23]. Norms have the form id : φ → ψ, where id is a
unique identifier of the norm; φ is a formula that determines
the activation condition for the norm; and ψ is the consequence
of the activation of the norm (either a failure or the generation
of an obligation, directed to an agent and concerning a given
goal). Obligations, thus, have a well-defined lifecycle. Once
created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the
state of the world specified by the obligation before a given
deadline. An obligation is unfulfilled when the agent does not
bring it about before the deadline. When the condition φ does
not hold anymore, the state becomes inactive.

house_built

site_prepared floors_laid walls_built . . .

Fig. 1. Excerpt of the functional specification for the building-a-house
example.

The overall goal of having the house built can be decom-
posed in several steps to be executed in sequence. First of all
the site must be prepared, so that the floors can be laid, the
walls built, and so on. The set of all the goals g defined in the
functional decomposition represents the universe of discourse
U . During the execution, the organization issues obligations
in accordance with the specification. In our case, the first
obligation will concern the site_prepared goal and will be
directed to a site preparer agent.

If, for any reason, the site preparer fails in achieving
the goal, such a failure impacts on the whole organization
that remains stuck. For instance, the site preparer may fail
because of bad weather conditions, or because of some missing
materials. These events are not captured by the functional
decomposition of JaCaMo, and hence, a proper reaction to
them is not easily specified.

Complementing a functional decomposition with an ac-
countability fitting [R � A]F turns an organization imple-
mented in JaCaMo into an ARFIN organization. This allows
taking into account abnormal situations explicitly.

Let us consider, for instance, a responsibility declaration:

r : R(site preparer, site_prepared) ∈ R

This fits the accountability relationship

a : A(site preparer, manager,�, site_prepared) ∈ A

Let us assume that such an accountability a is touched by
two exceptional events: missing_material and bad_weather.

an “agreement” by which the a-taker is always interested in
feedback when an exception occurs.

Let E be a set of exceptional events, that is, E ∩U = ∅ and
each event e ∈ E is complementary to some event in U . In
general, the same event e could be considered complementary
to many events in U . Relation F ⊆ U × E maps events in U
to their corresponding complementary ones in E . We say that
an expression u is touched by an exception e ∈ E if for at
least one event w occurring in u, (w, e) ∈ F . By extension,
an accountability relationships A(x, y, r, u) is touched by the
occurrence of event e when w occurs in u and (w, e) ∈ F .
Let [R � A]F be an accountability fitting characterized by
F . An ARFIN organization is compliant with [R � A]F if,
whenever A(x, y, r, u) ∈ A is touched by an event e ∈ E , an
account about u is requested to x by default.

IV. CASE STUDY: THE JACAMO PLATFORM

JaCaMo [5] is a conceptual model and programming plat-
form for multiagent systems that integrates three different
programming dimensions: agents, environments and organi-
zations. It is built on top of three existing platforms, namely
Jason [16] for programming agents, CArtAgO [17] for pro-
gramming environments, and MOISE [18] for programming
organizations. More specifically, Jason is a platform for agent
development based on the AgentSpeak(L) language [19]. An
agent is specified by a set of beliefs, representing both the
agent’s current state and its knowledge about the environment,
a set of goals, and a set of plans, which are courses of actions,
triggered by events, that can be taken by the agent in given cir-
cumstances. CArtAgO, based on the Agents & Artifacts meta-
model [20], is a framework for environment programming
which conceives the environment as a layer encapsulating
functionalities and services that agents can explore and use
at runtime [21]. An environment is programmed as a dynamic
set of artifacts, whose observable states can be perceived by
the agents. Agents can act upon artifacts by executing the
operations that are provided by the artifact usage interfaces.
Finally, Moise implements a programming model for the
organizational dimension. It includes an organization modeling
language, an organization management infrastructure [22] and
a support for organization-based reasoning at the agent level.
A JaCaMo multiagent system is, then, given by an agent
organization, programmed in Moise, organizing autonomous
agents, programmed in Jason, working in a shared, artifact-
based environment, programmed in CArtAgO.

According to [22], the MOISE organizational model,
adopted in JaCaMo, decomposes the specification of an or-
ganization into three dimensions. The structural dimension
specifies roles, groups and links between roles in the orga-
nization. The functional dimension is composed of one or
more schemes that elicit how the global organizational goals
are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed
to the agents. Finally, the normative dimension binds the two
previous dimensions by specifying the role permissions and
obligations for missions.

For what concerns the organization management infrastruc-
ture, JaCaMo provides various kinds of organizational artifacts
that allow encoding the state and behavior of the organization,
in terms of groups, schemes and normative states. Obligations
are issued on the basis of a normative program, written in
NOPL [23]. Norms have the form id : φ → ψ, where id is a
unique identifier of the norm; φ is a formula that determines
the activation condition for the norm; and ψ is the consequence
of the activation of the norm (either a failure or the generation
of an obligation, directed to an agent and concerning a given
goal). Obligations, thus, have a well-defined lifecycle. Once
created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the
state of the world specified by the obligation before a given
deadline. An obligation is unfulfilled when the agent does not
bring it about before the deadline. When the condition φ does
not hold anymore, the state becomes inactive.

house_built

site_prepared floors_laid walls_built . . .

Fig. 1. Excerpt of the functional specification for the building-a-house
example.

The overall goal of having the house built can be decom-
posed in several steps to be executed in sequence. First of all
the site must be prepared, so that the floors can be laid, the
walls built, and so on. The set of all the goals g defined in the
functional decomposition represents the universe of discourse
U . During the execution, the organization issues obligations
in accordance with the specification. In our case, the first
obligation will concern the site_prepared goal and will be
directed to a site preparer agent.

If, for any reason, the site preparer fails in achieving
the goal, such a failure impacts on the whole organization
that remains stuck. For instance, the site preparer may fail
because of bad weather conditions, or because of some missing
materials. These events are not captured by the functional
decomposition of JaCaMo, and hence, a proper reaction to
them is not easily specified.

Complementing a functional decomposition with an ac-
countability fitting [R � A]F turns an organization imple-
mented in JaCaMo into an ARFIN organization. This allows
taking into account abnormal situations explicitly.

Let us consider, for instance, a responsibility declaration:

r : R(site preparer, site_prepared) ∈ R

This fits the accountability relationship

a : A(site preparer, manager,�, site_prepared) ∈ A

Let us assume that such an accountability a is touched by
two exceptional events: missing_material and bad_weather.

missing_materials
bad_weather

missing_materials

site preparer

manager

• R(site preparer , site prepared) ∈ R

• A(site preparer ,manager ,>, site prepared) ∈ A

Abnormal situations/exceptions

Let us suppose the site preparer agent may fail because of (1) missing

materials or (2) bad weather.

• Site preparer is touched by the two exceptional events

missing material and bad weather .

• Thus (site prepared ,missing material) ∈ F and

(site prepared , bad weather) ∈ F .

[R A]F characterizes what kinds of exceptional events should be

reported and to who. 21



The building house example

• Extending the functional

decomposition by enriching

goal specifications with

the list of the respective

relevant exceptional events

that could thwart goal

achievement.

• The responsible agent will

be asked to report either

the successful achievement

or the exception causing

the failure.

Thus, we have that (site_prepared, missing_material) ∈ F and
(site_prepared, bad_weather) ∈ F . The fitting, thus, charac-
terizes what kinds of exceptional events should be reported
and to who.

To integrate the accountability fitting into JaCaMo we
propose to extend the functional decomposition as exemplified
in the following listing.

1 <functional-specification>
2
3 <scheme id="build_house_sch">
4
5 <goal id="house_built">
6 <plan operator="sequence">
7 <goal id="site_prepared" ttf="20 minutes">
8 <exceptions>
9 <exception id="missing_material" />

10 <exception id="bad_weather" />
11 </exceptions>
12 </goal>
13 <goal id="floors_laid" ttf="25 minutes">
14 <exceptions>
15 <exception id="bad_weather" />
16 ...
17 </exceptions>
18 </goal>
19 <goal id="walls_built" ttf="40 minutes" />
20 ...
21 </plan>
22 <catch>
23 <goal id="weather_emergency" handles="bad_weather">
24
25 <plan operator="..."> ... </plan>
26 </goal>
27 <goal id="materials" handles="missing_material">
28 <plan operator="sequence">
29 <goal id="materials_got" ttf="10 minutes" />
30 ...
31 </plan>
32 </goal>
33 </catch>
34 </goal>
35
36 ...
37
38 </scheme>
39
40 </functional-specification>

Listing 1. Functional specification of building-a-house enriched with
exception handling specification.

We propose to enrich goal specifications (see, e.g., Listing 1
Line 7) with the list of the respective relevant exceptional
events that could thwart goal achievement (Lines 9 and 10).
In case an obligation for a goal is created, the responsible agent
will be asked to report either the successful achievement or
the exception causing the failure. The specification includes
also which handlers will be activated to tackle exceptional
situations. For instence, starting from Line 22 in Listing 1,
all the handlers for exceptions that could occur in the scope
of the achievement of house_built are defined. Handlers are
modeled as goals to be achieved in alternative to the failed
one. Notice that the achievement of such goals could, in turn,
recursively cause other exceptional events, exactly as in Java
the execution of a catch block can throw exceptions on it own.
In our example, the bad_weather exception is handled by the
goal weather_emergency (Line 24).

As explained previously, exception handling is a special case
of accountability where the agents have the agreement that the

account-taker is always interested in feedback, on occurrence
of some exception. Thereby, the account-giver proactively
provides such feedback without waiting for a request. The
account provided by an agent, about the reasons of a failure,
is used by the organization to produce new obligations (of a
different kind with respect to the one that was not satisfied),
aimed at the achievement of recovery goals. The explicit
specification of recovery goals inside the specification of an
organization is a somewhat strong approach. A possile, softer
alternative would leave to the account-taker the decision of
how to use the information provided by the account-giver.

V. RELATED WORKS

In software engineering, robustness is usually gained by en-
suring (at design time) that exceptional events will be reported
to the right components, that is, those components that can
handle them properly. The purpose is to reverse the control
flow of the program until a proper handling mechanism is
found for the given exception. However, as pointed out in [24],
traditional exception handling models do not address some key
characteristics of MAS, such as openness, heterogeneity, agent
encapsulation, and distribution. In particular, such models
usually assume that software elements are collaborative and
that code can be inspected in the scope of handling a given
exception. Agent autonomy requires that each agent in a MAS
is considered as a “black box”. At the same time, as already
underlined, collaboration cannot be given for granted.

There has been an increasing recognition of the importance
of an adequate treatment of exceptions in agent-based software
– a survey of the most relevant proposals can be found in
[24]. Indeed, one of the main challenges in open distributed
systems is the possible occurrence of unexpected events,
which need to be properly handled in order to ensure the
good functioning of the system. The authors of [24] conclude
that in order to be suitable for MAS, an exception handling
mechanism should leverage on both the proactivity of agents
and the environment in which agents are situated. The paper
identifies some interesting research directions and preliminary
experiments, but no complete model is proposed. A more
concrete architecture is proposed in [25], whose main focus,
however, is on the development of exception-ready agents (i.e.,
agents able to distinguish normal from exceptional situations
depending on their knowledge and to adapt their behavior
accordingly), rather than on providing a global mechanism for
exception handling in the execution of a distributed process.

Mallya and Singh, in [26], propose an approach for mod-
eling exceptions via commitment-based protocols. A social
commitment C(x, y, p, q) denotes the fact that an agent x
(debtor) commits towards an agent y (creditor) to bring about
a consequent condition q if an antecedent condition p holds.
Commitments have a well-defined lifecycle, formalized in
[27], and can be manipulated by agents through a set of
standard operations. A protocol is defined in terms of a set of
commitments that can be created by the involved agents and
whose evolution determines the possible runs of the protocol.
In the paper, the authors propose to deal with anticipated

22



The building house example

an “agreement” by which the a-taker is always interested in
feedback when an exception occurs.

Let E be a set of exceptional events, that is, E ∩U = ∅ and
each event e ∈ E is complementary to some event in U . In
general, the same event e could be considered complementary
to many events in U . Relation F ⊆ U × E maps events in U
to their corresponding complementary ones in E . We say that
an expression u is touched by an exception e ∈ E if for at
least one event w occurring in u, (w, e) ∈ F . By extension,
an accountability relationships A(x, y, r, u) is touched by the
occurrence of event e when w occurs in u and (w, e) ∈ F .
Let [R � A]F be an accountability fitting characterized by
F . An ARFIN organization is compliant with [R � A]F if,
whenever A(x, y, r, u) ∈ A is touched by an event e ∈ E , an
account about u is requested to x by default.

IV. CASE STUDY: THE JACAMO PLATFORM

JaCaMo [5] is a conceptual model and programming plat-
form for multiagent systems that integrates three different
programming dimensions: agents, environments and organi-
zations. It is built on top of three existing platforms, namely
Jason [16] for programming agents, CArtAgO [17] for pro-
gramming environments, and MOISE [18] for programming
organizations. More specifically, Jason is a platform for agent
development based on the AgentSpeak(L) language [19]. An
agent is specified by a set of beliefs, representing both the
agent’s current state and its knowledge about the environment,
a set of goals, and a set of plans, which are courses of actions,
triggered by events, that can be taken by the agent in given cir-
cumstances. CArtAgO, based on the Agents & Artifacts meta-
model [20], is a framework for environment programming
which conceives the environment as a layer encapsulating
functionalities and services that agents can explore and use
at runtime [21]. An environment is programmed as a dynamic
set of artifacts, whose observable states can be perceived by
the agents. Agents can act upon artifacts by executing the
operations that are provided by the artifact usage interfaces.
Finally, Moise implements a programming model for the
organizational dimension. It includes an organization modeling
language, an organization management infrastructure [22] and
a support for organization-based reasoning at the agent level.
A JaCaMo multiagent system is, then, given by an agent
organization, programmed in Moise, organizing autonomous
agents, programmed in Jason, working in a shared, artifact-
based environment, programmed in CArtAgO.

According to [22], the MOISE organizational model,
adopted in JaCaMo, decomposes the specification of an or-
ganization into three dimensions. The structural dimension
specifies roles, groups and links between roles in the orga-
nization. The functional dimension is composed of one or
more schemes that elicit how the global organizational goals
are decomposed into subgoals and how these subgoals are
grouped in coherent sets, called missions, to be distributed
to the agents. Finally, the normative dimension binds the two
previous dimensions by specifying the role permissions and
obligations for missions.

For what concerns the organization management infrastruc-
ture, JaCaMo provides various kinds of organizational artifacts
that allow encoding the state and behavior of the organization,
in terms of groups, schemes and normative states. Obligations
are issued on the basis of a normative program, written in
NOPL [23]. Norms have the form id : φ → ψ, where id is a
unique identifier of the norm; φ is a formula that determines
the activation condition for the norm; and ψ is the consequence
of the activation of the norm (either a failure or the generation
of an obligation, directed to an agent and concerning a given
goal). Obligations, thus, have a well-defined lifecycle. Once
created, an obligation is active. It becomes fulfilled when the
agent, to which the obligation is directed, brings about the
state of the world specified by the obligation before a given
deadline. An obligation is unfulfilled when the agent does not
bring it about before the deadline. When the condition φ does
not hold anymore, the state becomes inactive.

house_built

site_prepared floors_laid walls_built . . .

Fig. 1. Excerpt of the functional specification for the building-a-house
example.

The overall goal of having the house built can be decom-
posed in several steps to be executed in sequence. First of all
the site must be prepared, so that the floors can be laid, the
walls built, and so on. The set of all the goals g defined in the
functional decomposition represents the universe of discourse
U . During the execution, the organization issues obligations
in accordance with the specification. In our case, the first
obligation will concern the site_prepared goal and will be
directed to a site preparer agent.

If, for any reason, the site preparer fails in achieving
the goal, such a failure impacts on the whole organization
that remains stuck. For instance, the site preparer may fail
because of bad weather conditions, or because of some missing
materials. These events are not captured by the functional
decomposition of JaCaMo, and hence, a proper reaction to
them is not easily specified.

Complementing a functional decomposition with an ac-
countability fitting [R � A]F turns an organization imple-
mented in JaCaMo into an ARFIN organization. This allows
taking into account abnormal situations explicitly.

Let us consider, for instance, a responsibility declaration:

r : R(site preparer, site_prepared) ∈ R

This fits the accountability relationship

a : A(site preparer, manager,�, site_prepared) ∈ A

Let us assume that such an accountability a is touched by
two exceptional events: missing_material and bad_weather.

missing_materials
bad_weather

missing_materials

site preparer

manager

materials

• The specification includes

which handlers will be

activated to tackle the

abnormal situations

(exception handlers).

• Handlers are modelled as

goals to be achieved in

alternative to the failed one

(the goal of the agent who

receives the exception).

Thus, we have that (site_prepared, missing_material) ∈ F and
(site_prepared, bad_weather) ∈ F . The fitting, thus, charac-
terizes what kinds of exceptional events should be reported
and to who.

To integrate the accountability fitting into JaCaMo we
propose to extend the functional decomposition as exemplified
in the following listing.

1 <functional-specification>
2
3 <scheme id="build_house_sch">
4
5 <goal id="house_built">
6 <plan operator="sequence">
7 <goal id="site_prepared" ttf="20 minutes">
8 <exceptions>
9 <exception id="missing_material" />

10 <exception id="bad_weather" />
11 </exceptions>
12 </goal>
13 <goal id="floors_laid" ttf="25 minutes">
14 <exceptions>
15 <exception id="bad_weather" />
16 ...
17 </exceptions>
18 </goal>
19 <goal id="walls_built" ttf="40 minutes" />
20 ...
21 </plan>
22 <catch>
23 <goal id="weather_emergency" handles="bad_weather">
24
25 <plan operator="..."> ... </plan>
26 </goal>
27 <goal id="materials" handles="missing_material">
28 <plan operator="sequence">
29 <goal id="materials_got" ttf="10 minutes" />
30 ...
31 </plan>
32 </goal>
33 </catch>
34 </goal>
35
36 ...
37
38 </scheme>
39
40 </functional-specification>

Listing 1. Functional specification of building-a-house enriched with
exception handling specification.

We propose to enrich goal specifications (see, e.g., Listing 1
Line 7) with the list of the respective relevant exceptional
events that could thwart goal achievement (Lines 9 and 10).
In case an obligation for a goal is created, the responsible agent
will be asked to report either the successful achievement or
the exception causing the failure. The specification includes
also which handlers will be activated to tackle exceptional
situations. For instence, starting from Line 22 in Listing 1,
all the handlers for exceptions that could occur in the scope
of the achievement of house_built are defined. Handlers are
modeled as goals to be achieved in alternative to the failed
one. Notice that the achievement of such goals could, in turn,
recursively cause other exceptional events, exactly as in Java
the execution of a catch block can throw exceptions on it own.
In our example, the bad_weather exception is handled by the
goal weather_emergency (Line 24).

As explained previously, exception handling is a special case
of accountability where the agents have the agreement that the

account-taker is always interested in feedback, on occurrence
of some exception. Thereby, the account-giver proactively
provides such feedback without waiting for a request. The
account provided by an agent, about the reasons of a failure,
is used by the organization to produce new obligations (of a
different kind with respect to the one that was not satisfied),
aimed at the achievement of recovery goals. The explicit
specification of recovery goals inside the specification of an
organization is a somewhat strong approach. A possile, softer
alternative would leave to the account-taker the decision of
how to use the information provided by the account-giver.

V. RELATED WORKS

In software engineering, robustness is usually gained by en-
suring (at design time) that exceptional events will be reported
to the right components, that is, those components that can
handle them properly. The purpose is to reverse the control
flow of the program until a proper handling mechanism is
found for the given exception. However, as pointed out in [24],
traditional exception handling models do not address some key
characteristics of MAS, such as openness, heterogeneity, agent
encapsulation, and distribution. In particular, such models
usually assume that software elements are collaborative and
that code can be inspected in the scope of handling a given
exception. Agent autonomy requires that each agent in a MAS
is considered as a “black box”. At the same time, as already
underlined, collaboration cannot be given for granted.

There has been an increasing recognition of the importance
of an adequate treatment of exceptions in agent-based software
– a survey of the most relevant proposals can be found in
[24]. Indeed, one of the main challenges in open distributed
systems is the possible occurrence of unexpected events,
which need to be properly handled in order to ensure the
good functioning of the system. The authors of [24] conclude
that in order to be suitable for MAS, an exception handling
mechanism should leverage on both the proactivity of agents
and the environment in which agents are situated. The paper
identifies some interesting research directions and preliminary
experiments, but no complete model is proposed. A more
concrete architecture is proposed in [25], whose main focus,
however, is on the development of exception-ready agents (i.e.,
agents able to distinguish normal from exceptional situations
depending on their knowledge and to adapt their behavior
accordingly), rather than on providing a global mechanism for
exception handling in the execution of a distributed process.

Mallya and Singh, in [26], propose an approach for mod-
eling exceptions via commitment-based protocols. A social
commitment C(x, y, p, q) denotes the fact that an agent x
(debtor) commits towards an agent y (creditor) to bring about
a consequent condition q if an antecedent condition p holds.
Commitments have a well-defined lifecycle, formalized in
[27], and can be manipulated by agents through a set of
standard operations. A protocol is defined in terms of a set of
commitments that can be created by the involved agents and
whose evolution determines the possible runs of the protocol.
In the paper, the authors propose to deal with anticipated

23



Conclusions

• Robustness in software systems is “the ability of a software to keep

an ‘acceptable’ behavior [...] in spite of exceptional or unforeseen

execution conditions (such as the unavailability of system resources,

communication failures, invalid or stressful inputs, etc.).”

• Accountability is a non-functional requirement of a software

system, that has a positive impact on system robustness, since it

captures an infrastructure for analysing the organization’s

performance and take action if deemed necessary

• Beyond exceptions, accountability is an enabler for organization

adaptation, both in structure and in strategies

24



References i

References

Baldoni, M., Baroglio, C., Boissier, O., May, K. M., Micalizio, R., and

Tedeschi, S. (2018).

Accountability and responsibility in agent organizations.

In PRIMA 2018: Principles and Practice of Multi-Agent Systems,

21st International Conference, volume 11224 of Lecture Notes in

Computer Science, pages 261–278. Springer.

Dubnick, M. J. and Justice, J. B. (2004).

Accounting for accountability.

Annual Meeting of the American Political Science Association.

25



References ii

Grant, R. W. and Keohane, R. O. (2005).

Accountability and Abuses of Power in World Politics.

The American Political Science Review, 99(1).

26


	References

