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ABSTRACT

To explore the experimental design space (in terms of frequency and time of milling) nearby the 

milling parameters of Praziquantel (PZQ) polymorph B formation, a rotated Doehlert matrix was 

employed. Three experimental responses were evaluated on ground samples: two quantitative ones, 

the median particle size by Laser Light scattering (LLS) and the drug recovery by HPLC, and a 

qualitative dependent variable, the obtained PZQ crystal form,characterized through X-Ray Powder 

Diffraction (XRPD) and confirmed by Differential Scanning Calorimetry (DSC) and 

Thermogravimetric analysis (TGA). The temperature inside the jars during the milling process was 

continuously monitored by using jars equipped with temperature sensors, allowing to consider the 

solid state obtained in each experimental point in the light of the specific temperature of the 

process. This explorative analysis led to the discovery of a novel PZQ polymorph, named Form C, 

which was produced without degradation and then fully characterized also by means of Synchrotron 

XRPD, Polarimetric, FT-IR, SS-NMR, ESEM, saturation solubility and in vitro dissolution rate 

analyses. Crystal structure was solved from XRPD data and its geometry was optimized by DFT 

calculations (CASTEP). Finally, Form C activity against adult schistosoma mansoni in comparison 

to raw PZQ was tested in vitro, and its physical stability was checked. The new polymorph, 

crystallizing in space group I2/c, physically stable for 2 months, showed a m.p. of 106.84°C and 

displayed excellent biopharmaceutical properties (water solubility of 382.69±9.26 mg/l and fast 

dissolution: t90% of about 50 min), while preserving an excellent activity against adult schistosoma 

mansoni.

KEYWORDS:

Praziquantel; crystalline polymorph; mechanochemistry; Doehlert design; median particle size; drug 

recovery; solubility; bioactivity; crystal structure solution; GIPAW; thermojars.
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INTRODUCTION

Praziquantel (PZQ) (which structure is reported in Figure 1) is the only drug marketed for treatment and in 

so-called preventive chemotherapy against Schistosoma spp. infections [1]. According to the 

Biopharmaceutics Classification System, PZQ belongs to the class II drugs, because of its high permeability 

and low solubility (0.4 mg/mL) [2, 3]. PZQ has also a high first pass metabolism (1-3 h), which converts the 

active R-PZQ into inactive metabolites very rapidly [4,5]. Therefore a high dosage (40 mg/Kg) is required to 

be effective by using big tablets [6]. This fact, combined with the disgusting taste of the drug, results in a 

limited compliance to the therapy, especially in children, representing more than 50% of patients. To 

overcome these problems, a crystalline polymorph of PZQ, which is based on the commercial racemic PZQ 

and obtained by neat grinding in a vibrational mill in suitable process conditions, was recently prepared [7]. 

Its structure was solved from the synchrotron XRPD pattern resulting in a centrosymmetric C2/c unit cell 

with one crystallographically independent molecule. Form B, indexed as TELCEU01 (CCDC 1557658) [7] 

in the Cambridge Structural Database [8], has double solubility and intrinsic dissolution rate (IDR) in 

comparison with raw PZQ [7], and similar in vivo efficacy to the standard PZQ [9].

Figure 1. Chemical structure of Praziquantel (PZQ) with atom numbering.

In this paper, the nearby milling conditions of Form B production will be deeply investigated by using a 

design of experiments (DoE), and in particular a Doehlert design. This design, proposed by Doehlert in 1970 

[10], is an experimental design for second order models providing a uniform shell design. The Doehlert 

matrix, derived from the simplex optimization, has been frequently used in the optimization processes of 

many fields because of the uniformity of the points in the experimental domain that permits to identify a 

response surface by means of a minimum of experiments [11,12]. The comparison among other second-order 

designs (such as Central Composite Design or Box–Behnken) has showed that the Doehlert design is the 

most efficient of the three [13]. The Doehlert matrix has been widely used for optimization of analytical or 
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extraction methods [14,15]; in materials science many of the papers reporting the use of a Doehlert matrix 

involve optimization or explorative analysis of process and/or formulation variables, and quality control in 

the development of pharmaceutical product [16-18]. Not yet documented is the use of such designs in the 

search of new polymorphic forms, and generally very poorly documented nowadays is the use of DoE 

approach in crystal engineering [19] and mechanochemistry [20,21]. In this case the Doehlert design will be 

applied to explore the experimental design space of Form B formation by neat grinding, defined by 2 process 

variables: time and frequency of milling. In fact, while the rules which decide the nature of transformations 

induced by milling are not yet clearly established, it seems that the main physical parameters involved are 

milling intensity and milling temperature (both related to frequency and duration of the milling) [22].

The Doehlert design can be proposed in the classical hexagonal form or in its rotated form, where each point 

is characterized by different values of the selected variables [11], the latter being the experimental design 

chosen for this work. PZQ crystal form at the end of the process was considered as qualitative experimental 

response of the explorative analysis. The median particle size and the drug recovery of the ground samples 

were also studied as a function of the variation of time and frequency of milling. Then the solid state 

obtained in each experimental point was considered in the light of the temperature measured in special 

thermojars in different milling conditions. 

This explorative analysis led to the discovery of an additional PZQ anhydrous polymorph, namely Form C, 

which was obtained in quantitative yield. The new form C was fully characterized by means of Differential 

Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), Synchrotron X-Ray Powder Diffraction, 

(XRPD) Polarimetric and High performance liquid chromatography analyses (HPLC), solid-state NMR 

(SSNMR) and FT-IR studies. Particle morphology was studied by ESEM. Crystal structure was solved from 

XRPD data and its geometry was optimized by GIPAW-DFT calculations. Water saturation solubility and in 

vitro dissolution studies were carried to test biopharmaceutical properties. Finally, its activity against adult 

Schistosoma mansoni in comparison to PZQ was tested in vitro, and its physical stability checked over a 

period of 4 months.

2. Materials and Methods

2.1 Materials 

Praziquantel (PZQ) Ph. Eur. grade ((11bRS)-2-(Cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4-H-

pyrazino[2,1-a]isoquinolin-4-one) was a kind gift from Fatro S.p.A. (Bologna, Italy). PZQ impurity A (2-

Benzoyl-1,2,3,6,7,11b-hexahydro-4-H-pyrazino[2,1-a]isoquinolin-4-one) and impurity B (2-

Cyclohexanecarbonyl-2,3,6,7-tetrahydro-pyrazino[2,1-a]isoquinolin-4-one) were Ph. Eur. grade and obtained 

from Endotherm Gmbh (Saarbruecken, Germany). HiPersolv Chromanorm Methanol (Ph. Eur. for HPLC 

Gradient Grade) and Ethanol (Ph. Eur.) were acquired from Sigma Aldrich. 

2.2. Explorative analysis using Doehlert experimental Design
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Starting Praziquantel (PZQ form A, indexed as TELCEU in the Cambridge Structural Database  (CCDC 

896767) [23] was milled on its own, by neat grinding, in a vibrational mill-Retsch MM400 (Retsch GmbH) 

which was equipped by 2 screw-type zirconium oxide 35 ml jars. Based on earlier studies [7, 24], a powder 

amount of 0.8 g was introduced in each milling jar, three spheres of 15 mm (weighing 10.72 g each) were 

used as milling media and a ceramic material like zirconium oxide was selected for the jars and spheres, 

allowing for a high energy input. 

Time (x1) and frequency (x2) of milling were varied according to an experimental design. In particular, the 

experimental design space around Form B formation (TELCEU01)[7] was explored by means of a rotated 

Doehlert matrix, designed using NEMRODW software [25]. The conditions of polymorph B formation (240 

min at 20 Hz) were chosen as the central point of the Doehlert matrix. The experimental domain and the 

experimental plan are shown in Table 1. For two variables, the Doehlert design consists of one central point 

and six points forming a regular hexagon, and therefore situated on a circle; three additional points were 

considered inside the design space, to reach a total number of 10 experiments. The experiments were carried 

out in random order (also reported in same table) and each milling trial was simultaneously carried out in 

both jars. The room temperature was thermostated at 22°C. As first experimental response of the explorative 

analysis (y1) a qualitative dependent variable was chosen: the obtained PZQ crystal form (as it resulted from 

XRPD analysis, and confirmed by DSC and TGA analyses, according to paragraph 2.2.1.). In addition two 

quantitative variables were selected: the median particle size of the ground samples (y2) (as determined by 

Laser Light Scattering analysis, according to paragraph 2.2.2.) and drug recovery after milling (y3) (as 

determined by HPLC analysis, according to paragraph 2.2.3.). 

After the treatment, the solid products were stored in the dark at 25°C in desiccators over anhydrous calcium 

chloride for further characterisation and processings.

2.2.1. Evaluation of (y1): Solid state analyses 

X-Ray powder diffraction (XRPD)

All ground samples were analyzed by X-ray powder diffraction using a Panalytical X’Pert Pro 

Diffractometer with Ni-filtered Cu Kα radiation (=1.5418 Å), the detector was a RTMS X’celerator. The 

preparation of the samples consisted in pressing about 20-30 mg of powder over a glass slide to have a flat 

surface. The data were collected in a 2 range of 3-40 degree. 

Differential Scanning Calorimetry (DSC)

Each sample was analyzed using a Mettler DSC TA 4000 (Greifensee, Switzerland) connected to a 

calorimetric cell Mettler DSC20 and using STARe software version 9.30 for data analysis. Prior to analysis 

the instrument was calibrated with Indium, Zinc and Lead for the temperature and with Indium for the 
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enthalpy quantification. In each analysis, about 2 mg of the sample was accurately weighted, placed in a 40 

μl aluminum pan with perforated lid and heated 10°C/min from 30 to 160°C under air atmosphere.

Thermogravimetrical Analysis (TGA)

The thermogravimetric analysis was conducted using a Mettler Toledo TGA/SDTA851e: about 10-15 mg of 

the sample accurately weighted were placed in aluminum crucible (100 μL); then the heating was performed 

from 25 to 220°C, with a heating rate of 10°C/min under nitrogen atmosphere. To calculate the weight loss 

from the weight-temperature diagram, STARe software 11.00 was used.

Sample temperature continous measurement during grinding

The temperature inside the jar during the milling process was continuously monitored by using the 

ThermoJar set specific system (InSolido Technologies j.d.o.o., Zagreb, Croatia). It is composed by a PMMA 

jar equipped with a RTD (Pt-100) thermal sensor, a wireless infrared emitter with a dedicated logging system 

and software to collect, analyze and graphic the data (LogOS). The system is completed by another PMMA 

jar which is used to balance the milling system. In this way, the temperature measurements are specifically 

referred to the innert part of the jar, giving a description of its progress during time.The measurements were 

performed every second for 300 min grinding at 15-18-20-22-25 Hz, corresponding to the milling 

frequencies of the explorative analysis. 

The powder temperature at the end of the process (300 min) both in the PMMA jars and in the conventional 

zirconium oxide jars was also measured using a 35XP-A Amprobe K-type thermocouple (Amprobe, Test 

Tools Europe, Glottertal, Germany). 

2.2.2. Evaluation of (y2): Laser Light Scattering Analysis 

The median particle size was measured by laser diffraction technique (Malvern Mastersizer Hydro 2000, 

Malvern Instruments, UK). The samples were dispersed in a small amount of distilled water containing 0.5% 

(w/w) of polysorbate 80 (Sigma Aldrich, Milan, Italy) and sonicated for one min. Sample dispersion was 

then poured in Mastersizer Hydro 2000 dispersion unit containing about 200 ml of water until the 

obscuration reaches a value between 10% and 20%. The analysis were performed in triplicate using a 

dispersion unit controller set to 1800 rpm. Particle size distributions were then calculated using a particle 

refractive index value of 1.700.

2.2.3. Evaluation of (y3): Determination of drug recovery after milling 

The content of PZQ was assayed in each ground sample by means of a reverse-phase HPLC-UV by adapting 

a method already reported in literature [26] and slighlty modified as previosly reported [7]; the system had 

two delivery pumps (LC-10 ADVP, Shimadzu, Japan), an autosampler (SIL-20A, Shimadzu, Japan) a UV-

vis detector (SPD-10Avp, Shimadzu, Japan); the data were acquired at a fixed wavelength of 220 nm using 
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an interface (SCL-10Avp, Shimadzu, Japan) and analyzed with Ez-Star software; the column used was a 

Kinetex 5 µm C18 (150 x 4.60 mm, Phenomenex, Bologna). The mobile phase used was a mixture of 

methanol:water (65:35 v/v), purged at 1 ml/min. Injected volume was 20 l. PZQ retention time was 5.5 min 

while the total run time for each sample was set at 12 min. Prior to analysis, a linear calibration curve with 

r2=0.99996 was obtained for PZQ under these conditions using different concentrations of the drug from 0.3 

to 10 mg/mL. Each day, a standard solution (with a concentration of 2.5 mg/L) was prepared by dissolving 

about 10 mg of PZQ accurately weighted in Methanol of HPLC grade (20 mL) and diluting the solution 

1:200 with the mobile phase. Moreover, two additional calibration curves were obtained respectively for the 

relative impurity indicated in the Eur. Ph. (Ed. 8.0), impurity A (r2=0.9993) and impurity B (r2=0.9994), 

which were identified at the retention time of 3.45 min and 11.2 min. The reference solution did not report 

any of these impurities. Results were averages of four replicates.

2.4. Preparation of New Form C

Form C was obtained by neat grinding using the process conditions of experimental points EXP 3, 6, 8 and 

10 of the experimental design. Nevertheless, the conditions of EXP 10 were taken as the standard ones, due 

to a sligthly higher crystallinity.

2.4.1. Evaluation of Form C

Polarimetric analyses

Optical rotations of the samples were measured on a Polarimeter Jasco P-2000 (Lecco, Italy), with a λ = 589 

nm and a concentration of 1 g/100 ml in ethanol, according to the method reported in literature [27, 28] 

slightly modified by using ethanol in place of CHCl3, as previously described [7].

Synchrotron X-Ray powder diffraction

Form C was analyzed using synchrotron XRPD at Elettra X-ray diffraction beamline (XRD1) [29] in order to 

obtain data suitable for the crystal structure solution and refinement. Diffraction patterns with improved 

resolution and signal to noise ratio have been obtained, compared to the conventional laboratory source 

results. Data were collected in transmission mode packing the powder in borosilicate capillaries with a 

diameter of 300 μm. Patterns were collected at room temperature using a monochromatic wavelength of 

0.700A (17.71 KeV), 200*2000 μm2 spot size on a hybrid-pixel Dectris Pilatus 2M area detector (Dectris 

Ltd., Baden-Daettwil, Switzerland). The patterns were then integrated using Fit2D program [30-31], after 

calibrating the hardware setup with LaB6 standard reference powder (NIST 660a).

Solid-state NMR measurements 

Solid-state NMR measurements of Form C were performed on a Bruker Avance II 400 instrument operating 

at 100.65 and 40.55 MHz for 13C and 15N nuclei, respectively. Cylindrical 4 mm o.d. zirconia rotors with a 
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sample volume of 80 μL were employed and spun at 12 (13C) and 9 (15N) kHz. All experiments employed the 

RAMP-CP pulse sequence (1H 90◦ pulse=3.05 μs) with the TPPM 1H decoupling with a rf field of 75 kHz 

during the acquisition period. 124 (13C) or 5700 (15N) transients were acquired with 3 (13C) or 4 (15N) ms of 

contact time and a relaxation delays of 20 s. 13C and 15N chemical shifts were referenced with the resonance 

of hexamethylbenzene (13C methyl signal at 17.4 ppm) and NH4SO4 (15N signal at -355.8 ppm with respect to 

CH3NO2).

GIPAW-DFT calculations

Periodic lattice calculations were performed using CASTEP [32] (Academic Release version 17.2) which 

exploits a plane-wave and pseudopotential approach within density functional theory (DFT).[33] The 

absolute chemical shieldings were calculated using the GIPAW algorithm [34] as implemented in the 

CASTEP code.

The geometry optimization and the NMR chemical shielding calculations were carried out employing the 

generalized gradient approximation (GGA) PBE exchange-correlation functional [35] with the semi-

empirical dispersion scheme [36] TS [37] and ultrasoft pseudopotentials which were generated on the fly. 

The plane-wave cut-off energy was set equal to 700 eV, and the Brillouin zone was automatically sampled 

using a Monkhorst-Pack grid with a k-point spacing of 0.05 Å−1.

The geometry optimization was performed starting from the structure of the Form C polymorph determined 

from synchrotron XRPD (space group I2/c, 376 atoms in the unit cell, Z’ = 1), transformed in the equivalent 

space group C2/c (applying the transformation matrix [-1 0 -1, 0 -1 0, 0 0 1] to the 376 atoms in the unit cell, 

Z’ = 1) for an easiest calculation set up. The experimental unit cell parameters were kept fixed during the 

optimization, as they were considered to be of acceptable quality. The convergence tolerances for the total 

energies, forces and displacements were set to 4.00.2•10−64 eV atom−1, 0.015 eV Å−1, and •10−4 Å 0.001Å, 

respectively. The refined structure was used in the subsequent chemical shielding calculation.

The absolute 13C and 15N isotropic chemical shieldings (iso) were calculated using the same functional and 

parameters as those used for the geometry optimization. The plane-wave cut-off energy was set to 800 eV. 

The iso were converted into the corresponding isotropic chemical shifts, iso(calc), using the following 

conversion: iso(calc) = ref − iso. Here, ref is the reference shielding, obtained by plotting the 

experimental chemical shifts iso(exp) against the GIPAW-calculated chemical shieldings. A linear 

regression model with slope constrained to (−1) was applied to find the best fit to the data (see Figures S1 

and S2 in the Supporting Information). The value of σref is determined by the intercept with the y axis [38-

39]. The obtained values of σref are 1712.2 ppm and 190.5 ppm for 13C and 15N, respectively.

FTIR Spectroscopy 
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FTIR spectrum of Form C was acquired at the solid state using a Perkin Elmer System 2000 FT-IR (Perkin-

Elmer, Monza, Italy). The sample was mixed with anhydrous KBr (Anhydrous potassium bromide 

UVASOL, Sigma-Aldrich, Milan, Italy) in an agate mortar and then pressed with an hydraulic press for 2 

min at 10 Ton to obtain homogeneous and transparent discs. The analysis was conducted form 400 to 4000 

cm−1 with a resolution of 2 cm−1 and total scan number of 10.

Morphological analysis

The morphology of Form C was studied by an ESEM (Quanta 200 FEI) which permits the imaging of the 

substance with no prior specimen preparation. The analysis were performed under low-vacuum conditions in 

secondary electrons with a working distance of approximately 13 mm and an accelerating voltage of 20 kV. 

For comparison purposes, a JEOL JSM-5510LV (JEOL LTD, Welwyn Garden City, UK) Scanning Electron 

Microscope was used for imaging raw PZQ and Form B.

Determination of Drug Solubility

To determine the water solubility of Form C, saturated solutions were prepared in distilled water and kept 

under agitation in the dark for 48 hours at 20°C. Subsequently, the solutions were filtered with a membrane 

of 0.2 μm pore size, diluted 1:200 with the mobile phase (65% MeOH - 35% H2O), injected in the HPLC 

instrument and analysed using the method previously described. For each sample, three different analyses 

were conducted and the average was taken as the corresponding data.

In vitro dissolution studies

Nine hundred ml of distilled water kept at 37 ±1°C were used as dissolution medium and uniformity 

conditions were ensured by an impeller (stirring rate 100 rpm). The determination of PZQ concentration was 

performed by using a fiber optic apparatus (HELLMA, Milano, Italy) connected to a UV-spectrophotometer 

(ZEISS, Germany) and managed with an user interface (Aspect Plus, Carl-Zeiss, Oberkochen, Germany). 

Prior to analysis, the peak of the UV-wavelength absorbance of PZQ was identified at 217.10 nm. The 

quantity of the sample to be introduced was calculated in order to achieve the sink conditions (with a total 

concentration ≤0.20 Cs), resulting in 10 mg and the quantity of PZQ dissolved was assayed in continuum for 

60 min (one scan for minute). Each sample was analyzed in triplicate and the resulted mean±SD was 

considered as the final value.

Determination of in vitro activity against adult Schistosoma mansoni

In vitro studies were carried out in accordance with Swiss national and cantonal regulations on animal 

welfare (permission no. 2070) at the Swiss Tropical and Public Health Institute (Basel, Switzerland). Female 

mice (NMRI strain; weight ~ 20–22 g) were purchased from Charles River (Germany), kept under 

environmentally-controlled conditions (temperature ~ 25°C; humidity ~70%; 12-hour light and 12-hour dark 
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cycle) with free access to water and rodent diet and acclimatized for one week before infection. Cercariae of 

Schistosoma mansoni were obtained from infected intermediate host snails (Biomphalaria glabrata). 

For the in vitro studies adult schistosomes obtained via dissection from infected mice were incubated in the 

presence of the test compounds at different concentrations (0.021-0.33 µg/ml) for up to 72 h. Phenotypes 

were monitored at several time points based on motility, viability and morphological alterations under an 

inverse microscope (Carl Zeiss, Germany, magnification 80x) [40]. Parasite viability values of treated and 

untreated worms obtained from microscopic evaluation were averaged (means ± standard deviation) using 

Microsoft Excel software. IC50 values were calculated using CompuSyn software.

Physical stability during storage and ulterior grinding

In order to check possible modifications of solid state within time DSC analyses of Form C were repeated for 

a period of 4 months. During storage time, the solid samples were stored in the dark in desiccators over 

anhydrous calcium chloride at 25°C. Also, the stability of Form C upon grinding for additional 60 min at 25 

Hz was tested by DSC and XRPD.

RESULTS AND DISCUSSION

The experimental design space nearby the milling conditions of formation of PZQ polymorph B was 

examined with the help of a rotated Doehlert matrix to check the influence of operating parameters on the 

solid state and median particle size of PZQ, when neat ground by its own. The 10 experiments were 

performed in double (since the mills allows the set-up of two jars at the same time) varying time and 

frequency of milling, following the randomized order proposed in Table 1. The experimental responses are 

reported in Table 1, while a graphical illustration of the experimental design space, with the y1 results in each 

experimental point, is presented in Figure 2. Finally, a picture with y2 results will be reported in Figure 5.
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Table 1. Doehlert design (2 factors) for neat grinding of PZQ: experimental domain, experimental plan, 

randomization and responses.

Independent variables 
Lower level
(coded -1)

Upper level
(coded +1)

Milling time (min) x1 180 300
Milling frequency (Hz) x2 15 25

Dependent variables

PZQ crystal form* y1

Median particle size (µm)** y2

Drug recovery after milling (%)*** y3

Exp. 
Random

order
X1 X2

Milling
time
(min)

Milling 
frequency

(Hz)

y1
y2

(µm)
(mean±S.D)

y3

(%)
(mean±S.D.)

1 6 0.966 0.259 298 21 B 68.00±3.29 99.01±0.14

2 2 -0.966 -0.259 182 19 B 71.85±5.03 98.32±0.34

3 10 0.259 0.966 256 25 C 55.46±4.01 99.04±0.02

4 3 -0.259 -0.966 225 15 M 40.44±4.57 99.64±0,04

5 9 0.707 -0.707 282 16 M 47.19±3.09 99.32±0.16

6 4 -0.707 0.707 198 24 C 58.06±0.48 99.38±0.11

7 1 0.000 0.000 240 20 B 77.44±3.99 99.55±0.05

8 5 -0.433 -0.250 214 19 C 54.17±5.22 99.71±0.13

9 7 0.433 -0.250 266 19 M 40.80±0.34 99.16±0.23

10§ 8 0.000 0.500 240 23 C 57.33±3.44 99.42±0.10

*characterized by XRPD analysis and confirmed by DSC and TGA analyses. Letters in italic font indicate a 
solid product with reduced crystallinity degree (corresponding to ligth colors in Figure 2). The presence of 
Form B is reported as B, Form C as C, while M correspond to mixtures of different crystalline forms and 
amorphous solid. ** determined by Laser Light Scattering; *** assessed by HPLC analysis; 
§ process conditions taken as the standard ones for Form C
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Figure 2. Distribution of the experiments in the rotated Doehlert design for two variables and different PZQ 
crystal forms otbatined in each experimental point (y1): Blue circles indicate Praziquantel Form B, Red 
circles Form C; ligth (blue and red) colors  indicate a reduced crystallinity degree of Form B and C, 
respectively; Green cyrcles designate miscellaneaus of solid forms (mixture of amorphous and other crystal 
forms).

As clearly visible in Figure 2, it was possible to divide the 10 experiments in three groups, based on the solid 

state results (y1). In the central zone of the hexagonal design space (EXP1, 2 and EXP 7 -central point of the 

design-) the presence of Form B, as the exclusive phase, with the characteristic XRPD pattern, endothermic 

peak at about 110 °C and absence of weigth loss upon heating, was attested. Furthermore, in correspondence 

of EXP 3, 6, 8 and 10, mainly located in the upper part of the design space, a different XRPD pattern was 

found and an unique melting peak at about 106-107° C without water loss, suggesting the presence of 

another unknown anhydrous phase (later referred as Form C). Finally, in EXP 4, 5 and 9, placed in the lower 

zone of the experimental domain, mixtures of starting/amorphous/ hydrate/ polymorphic PZQ were obtained. 

In Figure 3 three XRPD patterns, representative of each group, are proposed; besides the complete list of 

XRPD patterns is depicted in Figure S3a,b,c and main DSC/TGA data are reported in Table S1.
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Figure 3 XRPD diffractograms representing the 3 solid states (y1) found in the design space compared to 
commercial PZQ; arrows highlight peculiar signals of each solid form. 

These results highligthed that PZQ solid state changes dramatically in response to little changes in time and 

frequency of milling. Indeed, as also showed in Figure 2, to reach a stable phase composition it is necessary 

a certain energy input. For example EXP 2, ground for a minor period of time, showed a reduced degree of 

crystallinity and lower reproducibility (of the results obtained from the two jars) than EXP 1 and 7 processed 

longer. Analogosly, in the second set of experiments (Form C), EXP 6 and 8, performed using lower 

frequency and/or milling time, did not provide constant results and the melting enthalpy was generally lower 

(these experiments are indicated with lighter colors in Figure 2). Finally, the bottom of the experimental 

domain (corresponding to lower mechanical energy input) corresponded to uncomplete solid trasfomations. 

This set was in fact charcterized by multiple coexhisting phases: amorphous-nanocrystalline PZQ, traces of 

original PZQ (peculiar with respect to the other groups), hydrated phases (even small amounts of moisture in 

non-formally hydrated materials or in the laboratory environment can promote the formation of hydrate 

forms, as reported by several authors [41-44], and PZQ suffers from higroscopicity [45], and possibly an 

additional anhydrous polymorph not yet mentioned in the literature (having a weak melting endotherm at 

98°C). As for this latter, given its limited concentration in the samples and the simultaneous presence of 

different solid phases herein, it was not possible to evince an exclusive pattern to distinguish an additional 

PZQ form. In addition, the weak endotherm may be also due to orginal PZQ form shifted to lower 

temperatures via the Gibbs-Thompson effect [46]. 
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The measurement of powder temperature inside the jars in different milling conditions permitted to give 

additional explainations for the results of this explorative analysis for y1. Powder temperature inside the jars 

was continously monitored (from 0 to 300 min) by means of special PMMA jars equipped by a temperature 

sensor. The results are shown in Figure 4. This was to check possible increase of temperature inside the jars 

(starting from a thermostated room temperature of 22°C), during the grinding process, since it is widely 

known that the impact and friction of the milling media with each others and the jars can induce an increase 

of powder temperature. The trend was the following: the temperature rapidly increased in the first 100 

minutes of grinding, slowly reaching a plateau, even when milling for 5 hours. When grinding was 

performed at the highest frequency (25 Hz), the temperature reached after 180 minutes the maximum value 

of 39°C, and remained quite constant till the end of the process, while when grinding at 15 Hz the 

temperature never went beyond 33°C. These temperature data are in good agreement with the measurements 

performed with a thermocouple in the same vibrational mill [47] and by other authors [48]. As expected, the 

end temperatures detected in the jars made of zirconium oxide (having a different hardenss and heat capacity 

in comparision to PMMA) and in the PMMA jar were different,  being slightly higher  those measured inside 

zirconia jars  (in particular, after 5 h at at 25 Hz and 15 Hz the reached temperature was ranging about 44°C 

and 35°C, respectively). Nevertheless the PMMA jars were useful in that they provided a description of 

temperature progress over time, otherwise impossible in the conventional zirconium jars.

Figure 4. Temperature inside the jars during grinding at different frequencies measured using thermojars 
(according to paragraph. 2.2.1.).

A comparison of these process temperatures and PZQ glass transition temperature permits to draw some 

remarks of this explorative analysis in relation to y1, remembering that amorphisation mainly occurs when 

milling is performed well below the glass transition temperature (Tg) of the system (the pure drug in this 
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case), while polymorphic transformations mainly occur when milling is carried out above [49]. As we 

already reported [47], glass transition of melt-quenched PZQ is 37.70 °C. In a milling-induced amorphous 

material, which migth correspond to an enhanced molecular mobility, this value may decrease [22,50]. This 

means that grinding at frequency 20-25 Hz permits to go well beyond Tg, whereas at 15 Hz powder 

temperature is ranging about Tg. This gives reason of the polymorphic outcome at higher frequency of 

milling (EXP 1, 3, 7, 10), where the temperature is around 40°C, and of the amorphous content detected in 

powder samples processed at lower time of milling (correponding to a temperature slightly lower than 40°C 

EXP 2, 6, 8). This also explains the high variability of the powder processed at lower frequencies 

(corresponding to EXP 9, 5, 4). In fact, in these experimental conditions, the powder temperature is in the 

PZQ Tg range, thus the behavior of the system highly depends on the milling conditions, increasing the 

uncertainty of the milling outcome [49]. 

Median particle size of the ground products (y2)

As a second experimental response (y2), the median particle size of the powder processed in different 

operating conditions was evaluated by LLS, with the aim of further characterisizing the solid products and of 

searching for a possible correlation between the different forms obtained by milling and the powder particle 

size. The median particle sizes of ground samples were comprised between 40 and 80 μm (as reported in 

Table 1 and depicted in Figure 5), differently from raw PZQ, having a median size of 23.99 μm with a 

slightly hinted bimodal shape distribution (see Figure S4 in Supplementary information). Even though a 

precise division could not be based on the particle size distribution, a certain correlation between crystal 

form and median particle size could be identified as following: the samples composed of Form B presented 

the biggest sizes, ranging around a d(0.5) of 72 μm while in the case of polymorph C the d(0.5) was smaller 

(around 56 μm). The lowest d(0.5) values were found in the case of the mixtures (around 42 μm). This was a 

further confirmation that depending on the process conditions, in this design space, the obtained solid 

products were divisible in three groups. 
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Figure 5. d(0.5) values and error bars (n=3) for the 10 ground samples (x axis reports the numbers of the 
experimental trial, blue circles indicate PZQ Form B, red circles Form C and green cyrcles designate mixture 
of solid forms (mixture of amorphous and other crystal forms).

Drug recovery after grinding PZQ by its own (y3)

In the whole experimental domain, PZQ showed a degradation value of less than 1% with the only exception 

of EXP 2 (1.68%±0.34), as assessed by HPLC analysis and reported in Table 1 All ground samples were in 

accordance with the PZQ monograph in the Eur. Ph. (Ed. 8.0). This means that y3 is almost constant in the 

studied design space and is not influenced by the variation of time and frequency of milling.

This also means that a high energy mechanical action (such as a protracted grinding for 182-298 min) on 

pure PZQ is capable of inducing changes in its physical state, either amorphisation or conversions between 

polymorphic crystalline forms, without producing significant chemical degradation. This is in contrast to its 

documented tendency to degrade when coground in presence of specific excipients [24,47,51]. In 

consideration of the different temperature detected in the jars (Figure 4) it is also evident that the heat is not 

the main responsible for drug degradation, in agreement to previous findings [47].
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Evaluation of form C

The second part of this paper deals with the evaluation of Form C, which could be achieved in the conditions 

of EXP 3, 6, 8 and 10 of the experimental design. Nevertheless, the conditions of EXP 10 (240 min at 23 Hz) 

were taken as the standard ones, due to the highest crystallinity (see bold characters in Table 1). As 

anticipated in Table 1, in the case of for EXP 10 the drug recovery was of 99.42%.

At the DSC analysis, Form C shows the presence of a single well defined endotherm at 106.84 °C 

(ΔH=71.06 J/g), clearly distinct from Form B and commercial PZQ (Figure 6). No other thermal event was 

observed in this DSC curve. Form C anhydrous nature was testified by the lack of weight loss in the TGA 

analysis (reported in Table S1). 

Figure 6. DSC traces of Form C (red), B (blue) and commercial PZQ (black).

Form C exhibited some differences in the habitus morphology (Figure 7) comparing to Form B and raw 

PZQ: the particles were agglomerated in groups, without any sign of the needle-shape like of raw PZQ or 

little whiskers of Form B, previously reported [7]. As also evident form these images, and in agrement with 

previous LLS findings, the neat grinding of PZQ in these process conditions led to the formation of 

agglomerates having dimensions larger than commercial PZQ particles’.  
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Figure 7. ESEM images of Form C (EXP 10) [magnification 50X, 250 x, 500x, 1000x] compared to 
Scanning Electron Micrographs of Form B (EXP 7) [mag. 80x, 2200x in the frame] and commercial PZQ 
[mag. 151x, 2200x in the frame]. 
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The XRPD pattern of Form C, even if generally similar to Form B, was characterized by reflections at 6.98, 

8.55, 12.76, 13.96, 15.42, 16.52, 18.12, 19.82, 21.62, 22.57, 26.15, 27.65 and 28.92° of 2 as reported in 

Figure 3 (see vertical dotted lines), which highlight the differences between the forms.

The crystal structure of Form C was solved from the synchrotron X-ray powder diffraction data, depicted in 

Figure 8. The cell was indexed using EXPO2014 [52] and TOPAS V5 [53] was used for the simulated 

annealing process, using Form B as the model. The annealing process led to a Rietveld refinement with Rwp 

of 2.5%, also shown in Figure 8. The resulting centrosymmetric monoclinic cell (reported in Figure 9) has 

space group I2/c and the following parameters: a=22.02(2) Å, b=5.910(1) Å, c=26.980(2) Å, =90°, β= 

109.765(4)°, density =1.26 g/cm3 and volume 3304(2) Å3. All the diffraction patterns obtained from different 

Form C batches showed the same profile and no additional spurious peaks have been found. CCDC 1878799 

contains the supplementary crystallographic data for Form C. These data can be obtained free of charge from 

The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.
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Figure 8. Rietveld refinement profile fit of Form C: in black the experimental pattern (collected using 
synchrotron radiation 0.700 Å), in red the calculated one. Residuals are displayed in blue and reflection ticks 
Atom: C….17 have been simulated from structure solution, and are reported in green.
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Figure 9. Capped stick representation of the proposed strucure and crystal packing for Form C racemic 
mixture. The monoclinic centrosymmetric unit cell hosts 8 molecules, one crystallographically independent, 
in a I2/c space group.

The cell has one crystallographically independent molecule in the asymmetric unit, as also confirmed in the 
13C CPMAS SSNMR spectrum (Figure 10) in which the differences between the packing of Form B and C 

are clearly visible. Even more evident the differences with commercial PZQ. In fact, similarly to Form B, in 

Form C only one set of resonances is visible, while raw PZQ is characterized by splitted signals, clearly 

evident in particular for the heterocyclic carbonyl at 164 ppm. The powder was also highly crystalline, as 

testified by very sharp peaks. 13C chemical shift are listed in Table 2 with assignments and atom numering in 

chemical structure of PZQ is reported in Figure 1.
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Figure 10. (top) 13C (100.65 MHz) CPMAS spectra with principal group assignments of commercial PZQ 

(a) Form B (b), Form C (c) recorded at 12 kHz; (bottom) 15N (40.55 MHz) spectra of commercial PZQ (a) 

Form B (b), Form C (c) recorded at 9 KHz.
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Table 2. Experimental and calculated 13C and 15N isotropic chemical shifts for the polymorph Form C of 
PZQ, with the corresponding assignments for each site in the asymmetric unit. The GIPAW-calculated 

chemical shielding are also reported.

13C
Atom Group

δiso(exp) / ppm δiso(calc) / ppm σiso / ppm

7’ C=O 173.3 173.8 −2.6

4 C=O 163.4 163.1 8.2

7a Cq 135.1 137.8 33.4

11a Cq 134 136.8 34.5

8 CH(ar.) 129.1 131.0 40.2

11 CH(ar.) 127.5 129.4 41.8

10 CH(ar.) 127.1 128.5 42.8

9 CH(ar.) n.a.a 127.9 43.4

11b CH(aliph.) 55.5 56.1 115.1

3 CH2 50.1 49.3 121.9

1 CH2 45.5 43.8 127.5

1’ CH(aliph.) 41.8 40.5 130.7

6 CH2 37.7 35.3 135.9

2' CH2 29.6 28.1 143.1

7 CH2 29.1 27.4 143.8

6' CH2 27.4 27.3 143.9

3' CH2 26.8 25.5 145.7

4'5’ CH2 25.4 24.5 146.7

5'4’ CH2 n.a.a 23.4 147.9
15N

2 N 84.8 84.5 106.0

5 N 99.2 99.5 91.0

aResonances are indistiguishable.

GIPAW-DFT calculations were performed on the proposed crystal structure of Form C. In particular, the 

geometry optimization was initiated from the structure determined from the XRPD pattern (376 atoms) and 

the refined structure was used for the chemical shift calculation. As reported in Figure 11 the geometry-
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optimized structure was almost completely superimposable with the one form the XRPD data and the 

simulated XRPD were identical (Figure 12). 

Figure 11. Overlay of the crystal structure of the polymorph C of PZQ from XRPD data and its geometry-
optimized crystal structure by DFT calculations (in green). An all-atom root-mean-square value of 0.176 Å 
was obtained by the comparison of the two crystal structures, using the software Mercury (CCDC, v3.10) 
[54]. The positions of the hydrogen atoms were ignored.
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Figure 12. Comparison of the XRPD patterns of Form C crystal structure: in black, the simulation obtained 

from the DFT-optimized structure; in red, the simulated powder diffractogram of the Form C using the 

experimental crystal structure. Both simulations were carried out with Mercury by setting a wavelength of 

0.700Å.

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357



24

The calculated chemical shifts aided in assigning the resonances, and more importantly, they are a 

fundamental tool of the NMR crystallography approach since they provide correlation between the XRPD 

structure and the experimental one.[55-57] Indeed, we exploit them to reinforce the synchrotron XRPD data, 

by assessing whether the calculated 13C, 15N chemical shifts of the X-ray structure match the experimental 

ones that have been obtained from the above CPMAS experiments. Table 2 reports the assigned 13C, 15N 

resonances, as well as the corresponding calculated values. From the comparison of the experimental and 

computed 13C chemical shifts, a root mean square deviation of 1.7 ppm is obtained. This overall value 

represents the agreement between the 13C chemical shifts of the X-ray structure and those obtained 

experimentally. In an effort to rationalize this value, we note that Beran et al.[58] have recently assessed that 

GIPAW PBE 13C chemical shifts can be calculated with a root mean square error of 2.2 ppm. Therefore, as 

our rmsd value is within this error, we can conclude that the X-ray determined structure correctly represent 

the crystal structure that corresponds to the SSNMR data. Finally, Figure 13 shows the graphical comparison 

between calculated and experimental 13C chemical shifts: the data are linearly correlated with slope of 1.02 

and a Pearson’s correlation coefficient of 0.9996, thus demonstrating excellent agreement between 

calculation and experiment.
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Figure 13. Plot of the GIPAW-calculated 13C isotropic chemical shifts against the experimental 
13C isotropic chemical shifts. The line of best fit is δiso(calc) = 1.02[δiso(exp)] – 1.80, and the 

Pearson’s correlation coefficient is 0.9996.
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The crystal structure suggested a racemic nature for Form C, which was confirmed by polarimetric analysis, 

presenting an [] of 0.0144±0.0295 (n=3) and XRPD. 

The FT-IR spectrum of Form C, (Figure 14), was very similar to that of Form B, highlighting the close 

relationship between the polymorphs produced by neat grinding, while putting in light the differences with 

that of raw PZQ. In particular, for the region corresponding to the stretching of the carbonyl groups, 

indicated in the frame of Figure 14, also in the case of Form C, the conformers were in the anti position, as 

demonstrated by the lower frequency difference in ν(CO) between the carbonyl groups (1642 and 1631 

cm−1), whereas commercial PZQ showed the two signals at 1651 and 1626 cm−1 due to the syn conformation 

in accordance to previous literature [7, 59]. FT-IR spectroscopy was hence not useful for distinguishing 

between the two forms C and B, yet was helpful to discrimin easily both of them from commercial PZQ. 

In addition, this analysis was a suitable tool because it attested the identical conformation of the two 

polymorphic varieties formed by dry grinding. This confirmed PZQ conformational flexibility [23] and 

supported the idea that, also in the case of PZQ, dry milling allowed a polymorphic conversion via an 

amorphous intermediate. It is in fact reported that amorphous PZQ possesses as well an anti-conformation of 

the two carbonyl groups [60]. This assumption is also in agreement with the mechanism of phase transition 

during mechanochemical reactions proposed by Shakhtshneider [61] and supported by several authors 

[42,43]. Moreover, it is worthy of note that even in a previous study of cocrystal formation by liquid assisted 

grinding, the PZQ isomer having anti orientation was shown to be preferred over the syn-isomer  [23]. 

Figure 14. FT-IR spectra of the three PZQ polymorphic varieties

The water saturation solubility at 20°C of Form C was assessed and compared to raw PZQ and Form B, 

resulting in the most soluble form with 382.69 ± 9.26 mg/L (mean ±s.d.; n=5), while raw PZQ was 140.30 ± 
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9.25 mg/L and Form B 281.31 ± 8.32 mg/L (figure 15) . In agreement with these findings, also the 

dissolution performance of Form C at 37°C was better than raw PZQ, both in the entity and rate of 

dissolution, reaching the 90% of drug dissolved in about 50 min.. 

Figure 15. Water saturation solubility at 20°C of the anhydrous forms of PZQ.

In vitro antischistosomal activity of Form C (against Schistosoma Mansoni adult) was then tested, resulting 

in an IC50 of 0.21464 μM (r= 0.97485 μM) after 72h, which is similar to PZQ’s one (0.1. μM) [62]. This 

testifies the maintaining of the Form C activity, even though the extensive grinding performed for its 

production. This fact also attests that the conformational polymorphism does not affect its activity, in a 

similar way to what has already been found in the case of form B [7]. 

Form C was unchanged for 2 months, while after three months it started to slowly recrystallize in PZQ 

commercial form (Figure 16), as visible from the weak endotherm detected at 135.81°C, with a downward 

shift due to the small crystallite size. This is quite typical of polymorphic forms produced by milling, which 

are almost always less stable than the starting (unmilled) form [22]. With respect to previously discovered 

Form B also produced by milling, which was stable for more than one year, the polymorph C is characterized 

by a dramatically lower physical stability. These findings are in agreement with its lowest melting point and 

highest water solubility among anhydrous PZQ polymorphs, and to the fact that metastable state generated 

by milling can recrystallize more or less rapidly upon storage.
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Figure 16. DSC curves of Form C on aging. From top to down: Fresh sample and samples after 1, 2, 3, 4 

months.

When Form C was subjected to a further grinding for 60 min at 25 Hz, the DSC traces and XRPD pattern 

(Figure S5) also evidenced the formation of a certain amount of Form B in a sample mainly composed of 

Form C, still persistent. This means that, both on aging at ambient temperature (in a desiccator in the dark) 

and by milling again for further 60 min, the metastable form C converts into the most stable triclinic P-1 

PZQ (CCDC 896767 [23]). Interestingly enough, the formation of Form B, which presumably is the 

metastable form closer to Form C according to Ostwal’s rule of stages [63], is only possible by 4-5 h of 

milling only starting from commercial PZQ by non-interrupted continuous grinding. This confirms the 

general knowledge [22] that that milling process often induces a rich pattern of non-equilibrium 

transformations.

Conclusions

The performed work demonstrates that the application of DoE methodology in mechanochemistry is well 

suited for obtaining new polymorphic varieties, allowing the experimentalist to carefully consider every 

single factor affecting neat grinding reactions to drive the formation of the desired crystal form. Besides the 
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monitoring of the temperature inside the milling jars is an useful tool to understand and predict the end point 

of mechanochemical reactions. The new praziquantel polymorphic variety, Form C, found during the 

explorative analysis, represents the third anhydrous crystal of this drug. It can be obtained by neat grinding 

of the drug by its own, without any solvent addition, and it is otherwise inaccessible by conventional crystal 

engineering methods. The multidisciplinary approach applied for its characterization has permitted to 

successfully solve its crystal structure from Synchrotron XRPD, to propose a mechanism of formation 

induced by mechanochemical conditions and to highlight the strengths and weaknesses of the Form C of 

Praziquantel, the drug of choice for the Schistosomiasis treatment. 
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Figure legends 

Figure 1. Chemical structure of Praziquantel (PZQ) with atom numbering.

Figure 2. Distribution of the experiments in the rotated Doehlert design for two variables and different PZQ 
crystal forms otbatined in each experimental point (y1): Blue circles indicate Praziquantel Form B, Red 
circles Form C; ligth (blue and red) colors  indicate a reduced crystallinity degree of Form B and C, 
respectively; Green cyrcles designate miscellaneaus of solid forms (mixture of amorphous and other crystal 
forms).

Figure 3 XRPD diffractograms representing the 3 solid states (y1) found in the design space compared to 
commercial PZQ; arrows highlight peculiar signals of each solid form.

Figure 4. Temperature inside the jars during grinding at different frequencies  measured using thermojars 
(according to paragraph. 2.2.1.).

Figure 5. d(0.5) values and error bars (n=3) for the 10 ground samples (x axis reports the numbers of the 
experimental trial, blue circles indicate PZQ Form B, red circles Form C and green cyrcles designate mixture 
of solid forms (mixture of amorphous and other crystal forms).

Figure 6. DSC traces of Form C (red), B (blue) and commercial PZQ (black).

Figure 7. ESEM images of Form C (EXP 10) [magnification 50X, 250 x, 500x, 1000x] compared to Scanning 
Electron Micrographs of Form B (EXP 7) [mag. 80x, 2200x in the frame] and commercial PZQ [mag. 151x, 
2200x in the frame]. 

Figure 8. Rietveld refinement profile fit of Form C: in black the experimental pattern (collected using 
synchrotron radiation 0.700 Å), in red the calculated one. Residuals are displayed in blue and reflection 
ticks Atom: C  17 have been simulated from structure solution, and are reported in green.

Figure 9. Capped stick representation of the proposed strucure and crystal packing for Form C racemic 
mixture. The monoclinic centrosymmetric unit cell hosts 8 molecules, one crystallographically independent, 
in a I2/c space group.

Figure 10. (top) 13C (100.65 MHz) CPMAS spectra with principal group assignments of commercial PZQ (a) 
Form B (b), Form C (c) recorded at 12 kHz; (bottom) 15N (40.55 MHz) spectra of commercial PZQ (a) Form B 
(b), Form C (c) recorded at 9 KHz.

Figure 11. Overlay of the crystal structure of the polymorph C of PZQ from XRPD data and its geometry-
optimized crystal structure by DFT calculations (in green). An all-atom root-mean-square value of 0.176 Å 
was obtained by the comparison of the two crystal structures, using the software Mercury (CCDC, v3.10) 
(Macrae et al., 2008). The positions of the hydrogen atoms were ignored.

Figure 12. Comparison of the XRPD patterns of Form C crystal structure: in black, the simulation obtained 
from the DFT-optimized structure; in red, the simulated powder diffractogram of the Form C using the 
experimental crystal structure. Both simulations were carried out with Mercury by setting a wavelength of 
0.700Å.



Figure 13. Plot of the GIPAW-calculated 13C isotropic chemical shifts against the experimental 13C isotropic 
chemical shifts. The line of best fit is δiso(calc) = 1.02[δiso(exp)] – 1.80, and the Pearson’s correlation 
coefficient is 0.9996.

Figure 14. FT-IR spectra of the three PZQ polymorphic varieties

Figure 15. Water solubility at 20°C of the anhydrous forms of PZQ.

Figure 16. DSC curves of Form C on aging. From top to down: Fresh sample and samples after 1, 2, 3, 4 
months.
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Figure S1. Plot of the experimental 13C chemical shifts against the GIPAW-calculated 13C 
chemical shieldings (iso) to determine σref. The slope of the line of best fit was constrained to 
−1, which gives an intercept of 171.2 ± 0.4 ppm. The Pearson’s correlation coefficient is 0.9991.
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Figure S2. Plot of the experimental 15N chemical shifts against the GIPAW-calculated 13C 
chemical shieldings (iso) to determine σref. The slope of the line of best fit was constrained to 
−1, which gives an intercept of 190.5 ± 0.3 ppm. The Pearson’s correlation coefficient is 0.9980.



Figure S3a: XRPD patterns of the EXP 1, 2, 7 compared to raw PZQ and Form B.



Figure S3b: XRPD patterns of the EXP 3, 6, 8, 10 (Form C), compared to raw PZQ and Form B. 



Figure S3c: XRPD patterns of the EXP 4, 5, 9 compared to raw PZQ and Form B and EXP 10 (Form C)

Table S1 : Averaged Results of DSC and TGA analyses of the 10 samples produced in different milling 

conditions, according to the Doehlert matrix. 

EXP H endothermal 
event (J/g)

Peak temperature
(°C)

Weight loss 
(%)

Dehydration 
temperature (°C)

1 62.58 110.51 0.00 -
2 36.39 109.60 0.00 -
3 74.92 106.50 0.00 -
4 4.94

86.88
98.62
132.81

0.00 -

5 15.05
60.59
8.29

70.27
109.61
136.76

1.35 70

6 88.78 134.16 0.00 -
7 63.91 110.34 0.00 -
8 55.64 106.51 0.00 -
9 13.05

56.54
74.73
111.89

1.35 70



10 71.06 106.84 0.00 -

Figure S4. Particle size distribution of raw PZQ

Figure S5. Physical stability of Form C upon milling (60 min at 25 Hz): PXRD pattern (left), and DSC 
curves (right) of: fresh sample (bottom) and ground sample (up). 



Table 1. Doehlert design (2 factors) for neat grinding of PZQ: experimental domain, experimental plan, 

randomization and responses.

Independent variables 
Lower level
(coded -1)

Upper level
(coded +1)

Milling time (min) x1 180 300
Milling frequency (Hz) x2 15 25

Dependent variables

PZQ crystal form* y1

Median particle size (µm)** y2

Drug recovery after milling (%)*** y3

Exp. 
Random

order
X1 X2

Milling
time
(min)

Milling 
frequency

(Hz)

y1
y2

(µm)
(mean±S.D)

y3

(%)
(mean±S.D.)

1 6 0.966 0.259 298 21 B 68.00±3.29 99.01±0.14

2 2 -0.966 -0.259 182 19 B 71.85±5.03 98.32±0.34

3 10 0.259 0.966 256 25 C 55.46±4.01 99.04±0.02

4 3 -0.259 -0.966 225 15 M 40.44±4.57 99.64±0,04

5 9 0.707 -0.707 282 16 M 47.19±3.09 99.32±0.16

6 4 -0.707 0.707 198 24 C 58.06±0.48 99.38±0.11

7 1 0.000 0.000 240 20 B 77.44±3.99 99.55±0.05

8 5 -0.433 -0.250 214 19 C 54.17±5.22 99.71±0.13

9 7 0.433 -0.250 266 19 M 40.80±0.34 99.16±0.23

10§ 8 0.000 0.500 240 23 C 57.33±3.44 99.42±0.10

*characterized by XRPD analysis and confirmed by DSC and TGA analyses. Letters in italic font indicate a 
solid product with reduced crystallinity degree (corresponding to ligth colors in Figure 2). The presence of 
Form B is reported as B, Form C as C, while M correspond to mixtures of different crystalline forms and 
amorphous solid. ** determined by Laser Light Scattering; *** assessed by HPLC analysis; 
§ process conditions taken as the standard ones for Form C



Table 2. Experimental and calculated 13C and 15N isotropic chemical shifts for the polymorph Form C of 

PZQ, with the corresponding assignments for each site in the asymmetric unit. The GIPAW-calculated 

chemical shielding are also reported.

13C
Atom Group

δiso(exp) / ppm δiso(calc) / ppm σiso / ppm

7’ C=O 173.3 173.8 −2.6

4 C=O 163.4 163.1 8.2

7a Cq 135.1 137.8 33.4

11a Cq 134 136.8 34.5

8 CH(ar.) 129.1 131.0 40.2

11 CH(ar.) 127.5 129.4 41.8

10 CH(ar.) 127.1 128.5 42.8

9 CH(ar.) n.a.a 127.9 43.4

11b CH(aliph.) 55.5 56.1 115.1

3 CH2 50.1 49.3 121.9

1 CH2 45.5 43.8 127.5

1’ CH(aliph.) 41.8 40.5 130.7

6 CH2 37.7 35.3 135.9

2' CH2 29.6 28.1 143.1

7 CH2 29.1 27.4 143.8

6' CH2 27.4 27.3 143.9

3' CH2 26.8 25.5 145.7

4'5’ CH2 25.4 24.5 146.7

5'4’ CH2 n.a.a 23.4 147.9
15N

2 N 84.8 84.5 106.0

5 N 99.2 99.5 91.0

aResonances are indistiguishable.



checkCIF/PLATON report 

Structure factors have been supplied for datablock(s) PZQFormC

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE
FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED
CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.        CIF dictionary        Interpreting this report

Datablock: PZQFormC 

Bond precision: C-C = 0.0122 A Wavelength=0.70000

Cell: a=22.017(15) b=5.910(1) c=26.980(2)
alpha=90 beta=109.765(4) gamma=90

Temperature: 298 K

Calculated Reported
Volume 3304(2) 3304(2)
Space group I 2/c I2/c 
Hall group -I 2yc -I 2xc 
Moiety formula C19 H24 N2 O2 C19 H24 N2 O2
Sum formula C19 H24 N2 O2 C19 H24 N2 O2
Mr 312.40 312.40
Dx,g cm-3 1.256 1.256
Z 8 8
Mu (mm-1) 0.078 0.075
F000 1344.0 336.0
F000’ 1344.49
h,k,lmax 10,2,13
Nref 208 
Tmin,Tmax
Tmin’

Correction method= Not given

Data completeness= 0.000 Theta(max)= 

R(reflections)= wR2(reflections)= 

S = Npar= 

The following ALERTS were generated. Each ALERT has the format
       test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

http://www.iucr.org/iucr-top/cif/cif_core/definitions/index.html
http://journals.iucr.org/services/cif/checking/checkcifreport.html


 Alert level B
PLAT340_ALERT_3_B Low Bond Precision on  C-C Bonds ...............    0.01219 Ang.  

 Alert level C
REFI015_ALERT_1_C  _refine_ls_shift/su_max is missing
            Maximum shift/s.u. ratio after final refinement cycle.
            The following tests will not be performed
            SHFSU_01
THETM01_ALERT_3_C  The value of sine(theta_max)/wavelength is less than 0.500
            Calculated sin(theta_max)/wavelength =    0.4886
PLAT127_ALERT_1_C Implicit Hall Symbol  Inconsistent with Explicit     -I 2xc       
PLAT410_ALERT_2_C Short Intra H...H Contact  H11      ..H13      .       1.94 Ang.  
                                                      x,y,z  =      1_555 Check 

 Alert level G
ABSMU01_ALERT_1_G  Calculation of _exptl_absorpt_correction_mu
                not performed for this radiation type.
PLAT092_ALERT_4_G Check: Wavelength Given is not Cu,Ga,Mo,Ag,In Ka    0.70000 Ang.  
PLAT793_ALERT_4_G Model has Chirality at C11         (Centro SPGR)          S Verify
PLAT860_ALERT_3_G Number of Least-Squares Restraints .............        132 Note  

   0  ALERT level A = Most likely a serious problem - resolve or explain
   1  ALERT level B = A potentially serious problem, consider carefully
   4  ALERT level C = Check. Ensure it is not caused by an omission or oversight
   4  ALERT level G = General information/check it is not something unexpected

   3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   1 ALERT type 2 Indicator that the structure model may be wrong or deficient
   3 ALERT type 3 Indicator that the structure quality may be low
   2 ALERT type 4 Improvement, methodology, query or suggestion
   0 ALERT type 5 Informative message, check

http://journals.iucr.org/services/cif/checking/PLAT340.html
http://journals.iucr.org/services/cif/checking/prefilter.html#REFI_015
http://journals.iucr.org/services/cif/checking/THETM_01.html
http://journals.iucr.org/services/cif/checking/PLAT127.html
http://journals.iucr.org/services/cif/checking/PLAT410.html
http://journals.iucr.org/services/cif/checking/ABSMU_01.html
http://journals.iucr.org/services/cif/checking/PLAT092.html
http://journals.iucr.org/services/cif/checking/PLAT793.html
http://journals.iucr.org/services/cif/checking/PLAT860.html


It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the
minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement
strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more
serious problems it may be necessary to carry out additional measurements or structure
refinements. However, the purpose of your study may justify the reported deviations and the more
serious of these should normally be commented upon in the discussion or experimental section of a
paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify
outliers and unusual parameters, but every test has its limitations and alerts that are not important
in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no
aspects of the results needing attention. It is up to the individual to critically assess their own
results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals 

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs
submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied 
Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta
Crystallographica Section C or E or IUCrData, you should make sure that full publication checks
are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals 

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to
CIF submission.

PLATON version of 18/02/2019; check.def file version of 18/02/2019 

http://journals.iucr.org/services/cif/checking/checkform.html
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