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Abstract. In this paper we prove some results on the root-distances and the weighted Lebesgue function

corresponding to orthogonal polynomials for Laguerre type exponential weights.

1. Introduction. Notations. Preliminaries

1.1. In the paper [1] and [2] Eli Levin and Doron Lubinsky investigated certain Laguerre
type orthogonal polynomials. Using their results and our papers [3], [4], [5] we state further
relations for the root-distances. In addition, we obtain a lower estimation for the weighted
Lebesgue function of the weighted Lagrange interpolation with respect to arbitrary point
systems.

1.2. (For Sections 1.1–1.4 cf. [1] and [2].)
Let

(1.1) I = [0, d),

where 0 < d ≤ ∞. Let Q : I → [0,∞) be continuous, and

(1.2) W = exp(−Q)
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be such that all moments
∫
I
xnW (x) dx, n ≥ 0, exists. We call W an exponential weight on

I. For (a fixed) ρ > −1
2
, we set

Wρ(x) := xρW (x), x ∈ I.

The orthonormal polynomial of degree n for W 2 is denoted by pn (W 2, x) or pn(x). That for
W 2
ρ is denoted by pn

(
W 2
ρ , x
)

or pn,ρ(x). So∫
I

pn,ρ(x)pm,ρ(x)x2ρW 2(x) dx = δn,m

and

pn,ρ(x) = γn,ρx
n + · · · ,

where γn,ρ = γn
(
W 2
ρ

)
> 0.

We denote the zeros of pn,ρ by Un
(
W 2
ρ

)
=
{
xkn = xkn

(
W 2
ρ

)}
, where

xnn < xn−1,n < · · · < x2n < x1n.

As in [1] and [2] we define an even weight W ∗ corresponding to the one-sided weight W .
Given I and W as in (1.1) and (1.2), let

I∗ :=
(
−
√
d,
√
d
)

and for x ∈ I∗

Q∗(x) : = Q
(
x2
)
,

W ∗(x) : = exp (−Q∗(x)) .
(1.3)

We say that f : I → (0,∞) is quasi-increasing, if there exists C > 0 such that

f(x) ≤ C f(y), 0 < x < y < d.

The notation

f(x) ∼ g(x)

means that there are positive contants C1, C2 such that for the relevant range of x

C1 ≤ f(x)/g(x) ≤ C2.

Similar notation is used for sequences and sequences of functions.
Throughout, C,C1, C2, c, c1, c2, . . . denotes positive constants independent of n, x, t and

polynomials P of degree at most n. We write C = C(λ), C 6= C(λ) to indicate dependence
on or independence of, a parameter λ. The same symbol does not necessarily denote the
same constant in different occurrences. We denote the set of polynomials of degree ≤ n by
Pn.
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1.3. Following is our class of weights:

Definition 1.1. Let W = e−Q where Q : I → [0,∞) satisfies the following properties:
(a)
√
xQ′(x) is continuous in I, with limit 0 at 0 and Q(0) = 0;

(b) Q′′ exists in (0, d), while Q∗ ′′ is positive in
(

0,
√
d
)

;

(c)

lim
x→d−

Q(x) =∞.

(d) The function

(1.4) T (x) :=
xQ′(x)

Q(x)
, x ∈ (0, d)

is quasi-increasing in (0, d), with

(1.5) T (x) ≥ Λ > 1
2
, x ∈ (0, d).

(e) There exists C1 > 0 such that

(1.6)
|Q′′(x)|
Q′(x)

≤ C1
Q′(x)

Q(x)
, a.e x ∈ (0, d).

There exists a compact subinterval J of I∗, and C2 > 0 such that

(1.7)
Q∗′′(x)

|Q∗′(x)|
≥ C2

|Q∗′(x)|
Q∗(x)

, a.e. x ∈ I∗ \ J.

If the weight W satisfies (a)–(e), then we write W ∈ L (C2+).

Examples (cf. [1] and [2]):

(1.8) Q(x) = xα, x ∈ [0,+∞), α > 1
2
;

(1.9) Q(x) = expk(x
α)− expk(0), x ∈ [0,+∞), α > 1

2
, k ≥ 0,

where exp0(x) := x and for k ≥ 1

expk(x) = exp(exp(exp · · · exp(x)))︸ ︷︷ ︸
k times

is the kth iterated exponential.
An example on the finite interval I = [0, 1) is

(1.10) Q(x) = expk
(
(1− x)−α

)
− expk(1), x ∈ [0, 1),

where α > 0 and k ≥ 0.
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1.4. One of the important quantities we need is the Mhaskar–Rakhmanov–Saff number for
the weight Wρ denoted by at = at(Q), defined for t > 0 as the positive root of the equation

t =
1

π

1∫
0

at uQ
′(at u)√

u (1− u)
du.

If xQ′(x) is strictly increasing and continuous, with limits 0 and +∞ at 0 and d respec-
tively, at is uniquely defined. Moreover, at is an increasing function of t ∈ (0,+∞), with

lim
t→+∞

at = d.

Let us introduce the notation

(1.11) Tn := T (an) (n ∈ N).

Since T (x) ≥ Λ > 1/2, x ∈ (0, d) (see (1.5)), thus we have

(1.12) lim
n→+∞

(nTn) = +∞

From the important relation

Q(at) ∼
t√
T (at)

,

which holds uniformly for t > 0 (see [1, (1.27) and Lemma 3.1]), using the condition
limx→d−Q(x) = +∞ (see Definition (c)) it follows that

(1.13) lim
n→+∞

n√
Tn

= +∞.

In the sequel, we shall denote the positive Mhaskar–Rakhmanov–Saff number for the
weight W ∗ by a∗t = a∗t

(
Q∗
)
, t > 0. Thus a∗t is defined as the positive root of the equation

t =
1

π

a∗t∫
−a∗t

xQ∗′(x)√
a∗2t − x2

dx =
2

π

1∫
0

a∗t uQ
∗′ (a∗t u)√

1− u2
du =

2

π

1∫
0

a∗ 2
t v Q′ (a∗ 2

t v)√
v(1− v)

dv,

whence ([1, p. 211])

at = a∗ 2
2t (t > 0).
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1.5. Let W ∈ L(C2+), W ∗ is given by (1.3), m = 2n and yk+1,m < ykm (n ∈ N), where

ykm = ykm
(
W ∗2) = a∗mtkm = a∗m cosϑkm, k = 1, 2, . . . , n

are the positive roots of the orthonormal polynomial pm (W ∗2). We define

y0m = a∗m = a∗mt0m, ϑ0m = 0 and yn+1,m = tn+1,m = 0, ϑn+1,m = π/2.

By reformulating [5, Theorem 2.1] and using [2, §2], [1, (2.7)–(2.9)], the Hermite-type
roots ykm’s satisfy

Theorem 1.1. We have if W ∈ L(C2+) then with m = 2n ∈ N

(i) ϑkm − ϑk−1,m ∼
1

(nTn)1/3k2/3
, 1 ≤ k ≤ c1n√

Tn
,

(i1) tk−1,m − tkm ∼
1

(nTn)2/3k1/3
, 1 ≤ k ≤ c1n√

Tn
,

(ii) ϑk+1,m − ϑkm ∼
1

n
,

c1n√
Tn
≤ k ≤ n,

(ii1) tkm − tk+1,m ∼
k

n2
,

c1n√
Tn
≤ k ≤ n.

2. New relations

2.1. Our first relations on the root distances of the Laguerre type roots

xkn
(
W 2
ρ

)
= xkn = anukn = an cos γkn (k = 1, 2, . . . , n; n ∈ N)

are as follows

Theorem 2.1. If W ∈ L(C2+) and x0n = an, xn+1,n = 0, then with n ∈ N

(a) γkn − γk−1,n ∼
1

(nTn)1/3k2/3
, 1 ≤ k ≤ c2n√

Tn
,

(a1) uk−1,n − ukn ∼
1

(nTn)2/3k1/3
, 1 ≤ k ≤ c2n√

Tn
,

(b) γk+1,n − γkn ∼
n− k + 1

n2
,

c2n√
Tn
≤ k ≤ n,

(b1) ukn − uk+1,n ∼
(n− k + 1)k

n3
,

c2n√
Tn
≤ k ≤ n.

Remark. Theorem 2.1 shows that the order of the distances does not depend on ρ (cf.
(3.1)).
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2.2. As an application of the above theorem we prove a lower estimation on the weighted
Lebesgue function of the weighted Lagrange interpolation on arbitrary point systems.

We need the following definitions.
If Z = {zkn} is an interpolatory matrix on I that is

0 ≤ znn < zn−1,n < · · · < z2n < z1n < d, n ∈ N,

then for f ∈ C(Wρ, I), W ∈ L(C2+), where

C(Wρ, I) :=
{
f ; f is continuous on (0, d) and lim

x→0+
x→d−

f(x)Wρ(x) = 0
}
,

we investigate the weighted Lagrange interpolation defined by

(2.1) Ln
(
f,Wρ, Z, x

)
=

n∑
k=1

f(zkn)Wρ(zkn) gkn(Wρ, Z, x), n ∈ N.

Above

(2.2) gkn(Wρ, Z, x) =
Wρ(x)

Wρ(zkn)
`kn(Z, x), 1 ≤ k ≤ n,

(2.3) `k(x) = `kn(Z, x) =
ωn(Z, x)

ω′n(Z, zkn)(x− zkn)
, 1 ≤ k ≤ n,

and

(2.4) ωn(Z, x) = cn

n∏
i=1

(x− zin), n ∈ N.

The polynomials `k of degree exactly n − 1 (that is `k ∈ Pn−1 \ Pn−2) are the fundamen-
tal functions of the (usual) Lagrange interpolation while functions gk are the fundamental
functions of the weighted Lagrange interpolation.

The classical Lebesgue estimation now has the form∣∣Ln(f,Wρ, Z, x)− f(x)Wρ(x)
∣∣ ≤ {λn(Wρ, Z, x

)
+ 1
}
En−1(f,Wρ),

where the weighted Lebesgue function is

(2.5) λn
(
Wρ, Z, x

)
:=

n∑
k=1

∣∣gkn (Wρ, Z, x)
∣∣, x ∈ R, n ∈ N

and

En−1(f,Wρ) := inf
p∈Pn−1

∥∥(f − p)Wρ

∥∥, n ∈ N,

where ‖ · ‖ is the maximum norm on I.
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Moreover, the weighted Lebesgue constant is

Λn

(
Wρ, Z

)
:=
∥∥λn(Wρ, Z, x

)∥∥.
We state (cf. [5] and its references).

Theorem 2.2. Let W ∈ L(C2+) and let 0 < ε < 1 be fixed. Then for any fixed interpolatory
matrix Z ⊂ I there exists set Hn = Hn(Wρ, ε, Z) with |Hn| ≤ ε such that

(2.6) λn
(
Wρ, Z, x

)
>

1

3840
ε log n if x ∈ [0, an

(
Wρ

)
] \Hn

whenever n ≥ n1.

2.3. We give another application of Theorem 2.1.
Let {zkn} = Un

(
W 2
ρ

)
=
{
xkn
(
W 2
ρ

)}
with

(2.7) gkn
(
Wρ, Un

(
W 2
ρ

)
;x
)

=
Wρ(x)

Wρ

(
xkn
(
W 2
ρ

)) `kn (Un (W 2
ρ

)
, x
)
, 1 ≤ k ≤ n.

Then

Corollary 2.3. The weighted Lebesgue constants satisfy

(2.8) Λn

(
Wρ, Un

(
W 2
ρ

))
∼ n1/2, n ∈ N.

Now let

{zkn} = Un
(
W 2
ρ

)
∪
{
x0n

(
W 2
ρ

)
, xn+1,n

(
W 2
ρ

)}
= Vn

(
W 2
ρ

)
.

Then (cf. [8, Theorem 1])

Corollary 2.4. We have

(2.9) Λn

(
Wρ, Vn

(
W 2
ρ

))
∼ log n, n ∈ N.

Above

Λn

(
Wρ, Vn

(
W 2
ρ

))
=
∥∥∥n+1∑
k=0

∣∣gkn (Wρ, Vn
(
W 2
ρ

)
;x
)∣∣∥∥∥,

where `kn (Vn, x) (in gkn(Vn, x)) is based on the n+ 2 nodes
{
xkn
(
W 2
ρ

)
, 0 ≤ k ≤ n+ 1

}
.
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3. Proofs

3.1. Proof of Theorem 2.1. First a basic observation: Using [5, Theorem 2.1] and [2,
Theorem 1.4] we have

(3.1)
xkn
(
W 2
ρ

)
− xk+1,n

(
W 2
ρ

)
∼ xkn

(
W 2
− 1

4

)
− xk+1,n

(
W 2
− 1

4

)
,

k = 1, 2, . . . , n− 1,

that means it is enough to prove the relations when ρ = −1
4
, which we suppose from now

on.
The relation

pn

(
W 2
− 1

4
, x
)

= pm
(
W ∗2, y

)
, x = y2 ∈ [0, d), m = 2n.

(cf. [1, (1.7)]) shows that

(3.2) xkn = xkn

(
W 2
− 1

4

)
= y2

km, k = 1, 2, . . . , n; m = 2n.

Our main tool is the formula

xkn − xk+1,n = y2
km − y2

k+1,m = (ykm + yk+1,m)(ykm − yk+1,m) ∼
∼ ykm (ykm − yk+1,m) , 0 ≤ k ≤ n,

(3.3)

using that

ykm ≤ ykm + yk+1,m ≤ 2ykm.

To get (a1) we write by (i1)

1− tkm =
k−1∑
s=0

(tsm − ts+1,m) ∼ 1

(nTn)2/3

k−1∑
s=1

s−1/3 ∼

∼
(

k

nTn

)2/3

≤ c3

Tn
, 1 ≤ k ≤ c1n√

Tn
,

(3.4)

i.e. in (3.4), tkm ≥ 1
2

supposing that c3/Tn ≤ 1/2 (say). (This can be attained by a proper

c1 > 0 using that Tn >
1
2

(cf. (1.5)). Summarising, we get with a proper c1 > 0

(3.5) xkn − xk+1,n ∼ a∗m
a∗m

(nTn)2/3 k1/3
, 1 ≤ k ≤ c2n√

Tn
,

whence (a1) is immediate (cf. (3.3), (a∗m)2 = an (see [1, (2.6)]) and (i1)).
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To get (b1) we have by (3.4) and (ii1)

(3.6)

tkm =
n−k+1∑
s=1

(tn−s+1,m − tn−s+2,m) ∼

∼
n∑
s=k

s

n2
∼ (n+ 1)2 − k2

n2
=

(n+ k + 1)(n− k + 1)

n2
∼ n− k + 1

n
,

whence by (3.3) and (ii1)

(3.7) xkn − xk+1,n ∼ (a∗m)2 n− k + 1

n

k

n2
= an

(n− k + 1)k

n3
,

c1n√
Tn
≤ k ≤ n,

whence (b1) is immediate.

Using that ρ = −1
4

by (3.2) and

(a∗mtkm)2 = y2
km = xkn = anukn

we get 1− t2km = 1− ukn, which means

(3.8) sin2 ϑkm = 2 sin2 γkn
2
, 1 ≤ k ≤ n.

By (3.8) sinϑkm =
√

2 sin γkn
2

whence

sinϑk+1 − sinϑk = 2 sin
ϑk+1 − ϑk

2
· cos

ϑk+1 + ϑk
2

=

=
√

2
(

sin
γk+1

2
− sin

γk
2

)
=
√

2 · 2 · sin γk+1 − γk
4

· cos
γk+1 + γk

4
.

Now by cos ϑk+1+ϑk
2

≈ cosϑk = tk and cos γk+1+γk
4
≈ cos γk

2
≥ cos π

4
=
√

2
2

, we get

(3.9) (ϑk+1,m − ϑkm) tkm ∼ γk+1 − γk, 0 ≤ k ≤ n.

(We omitted some obvious details.) By (3.9) we get (a) (or (b)) using Theorem 1.1 (i), (ii);
(3.4) and (3.6). �

3.2. Proof of Theorem 2.2. First we formulate some other relations applied later. Let
In(ε) =

[
εan, (1− ε)an

]
, 0 < ε < 1 fixed. Then

(3.10) xkn − xk+1,n ∼
an
n
, xkn, xk+1,n ∈ In(ε).

Indeed, by ukn = t2km (again ρ = −1
4
)

uk ∈ [ε, 1− ε] iff tk ∈
[√
ε,
√

1− ε
]
,
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whence using that

ukn − uk+1,n ∼ tkm(tkm − tk+1,m), tkm ∼ 1 and tkm − tk+1,m ∼
1

n

(cf. [5, (3.9)]) we get (3.10).

Moreover, by [2, (1.13) and (1.17)], using (3.10) and the relations xkn ∼ an − xkn ∼ an
whenever xkn ∈ In(ε), we get

(3.11)
∣∣p′nρ(xkn)Wρ

(
xkn
)∣∣ ∼ n

a
3/2
n

, xkn ∈ In(ε).

Finally, we quote [2, Theorem 1.2] saying that

(3.12) sup
x∈I

∣∣pnρ(x)
∣∣W (x)

(
x+

an
n2

)ρ
∼
(
n

an

)1/2

, x ∈ I.

Using relations (3.10)–(3.12), we can prove Theorem 2.2. as we did in [5, §3.4–3.10]. We can
omit the details. �

3.3. Proof of Corollary 2.3. By [1, (1.15)] and [8, Lemma 1] we can restrict ourselves to
the interval [0, an].

Fix n ∈ N and the point x ∈ [xj+1,n, xj,n] =: 4xjn (0 ≤ j ≤ n; obviously j = j(n)). Even
more, by [2, Theorem 1.3], we can suppose that x is ”far” from the nodes, namely

(3.13)
∣∣x− (xjn + xj+1,n

)
/2
∣∣ ≤ |4xjn| /4.

Then by (2.5), (2.7) and [2, Theorem 1.3] we have

(3.14) λn
(
Wρ, Un

(
W 2
ρ

)
, x
)
∼

n∑′

k=1

∣∣4ukn∣∣∣∣ujn − ukn∣∣
(
ukn(1− ukn)

ujn(1− ujn)

)1/4

.

Here and hereafter for a fixed index j we use the notation
n∑′

k=1

a(k, j) =
n∑
k=1
k 6=j

a(k, j)

Moreover we used the fact that the jth term of the sum (2.5) has the same order as the lth
ones, whenever |l − j| ≤ c (see [2, Theorem 1.3]).

Let from now
n∑′

k=1

· · · =
cn−1∑′

k=1

· · ·+
n∑′

k=cn

· · · =: S2 + S1.

In order to estimate S1 and S2, we distinguish several cases.



ORTHOGONAL POLYNOMIALS FOR LAGUERRE TYPE WEIGHTS 11

A. First we suppose that 0 < ujn ≤ c < 1. Let

vKn = un−K+1,n, |4vKn| = vK+1,n − vKn (0 < K ≤ n)

and vJn = un−J+1,n (0 ≤ J ≤ n). By (b1) of Theorem 2.1 we have (J > K, say)

|vJn − vKn| ∼
1

n2

J∑
s=K

s ∼ |J −K| |J +K|
n2

and

vKn ∼
K∑
s=1

s

n2
∼ K2

n2
.

We can write as follows

S1 ∼
cn∑′

K=1

4vKn
|vJn − vKn|

(
vKn
vJn

)1/4

∼
∑
K≤J/2

· · ·+
∑′

J/2≤K<2J

· · ·+
cn∑

K=2J

· · · ∼

∼
(
n2

J2

)5/4 J∑
K=1

K

n2

(
K2

n2

)1/4

+ log 2J +
cn∑

K=2J

K

n2

(
n2

K2

)3/4(
n2

J2

)1/4

∼

∼ 1 + log (2J) +
(n
J

)1/2

≤ c n1/2.

(For example, the second sum can be estimated by Theorem 2.1 as follows∑′

J/2≤K<2J

· · · ≤ c
∑′

J/2≤K<2J

K

n2
· n2

|K + J | |K − J |
·
(
K

J

)1/4

∼

∼
∑′

J/2≤K<2J

1

|K − J |
∼ log (2J)

using that now 0 < vJn ≤ c < 1 and K ∼ J .)

B. If 0 ≤ ujn ≤ c but |ukn − ujn| ≥ c1 (where 0 < c1 < c < 1), using that now

S1 =
n∑

k=cn
|ukn−ujn|≥c1

· · · ,

we get by analogue consideration as before that S1 ≤ c.

Similarly one can obtain:

C. If 0 < c1 ≤ ujn ≤ c2 < 1, then S1 ∼ log n.
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D. Let |ujn − ukn| ≥ c1. Then by arguments as in Part A we have

S1 ∼ n1/2, c2, (nTn)1/6 , if

ujn ∼ n−2, c3 ≤ ujn ≤ c4, 1− ujn ∼ (nTn)−2/3 , respectively.

Using that Tn < n2−ε (see [7, (3.38)]), we get

S1 ≤ c
(
n1/2 +

(
n · n2−ε)1/6

)
≤ c n1/2.

E. We estimate S2 =
cn∑′
k=1

· · · . If ujn ≥ c0 then using Theorems 1.1 and 2.1 further the

argument in [4, Part 4.7] we get that S2 ∼ (nTn)1/6. Now let 0 < ujn < c0 < c1 ≤ ukn,
k ≤ c n. Then

S2 ≤
cn∑′

k=1

∣∣4ukn∣∣
|u1n − ukn|

(
ukn(1− ukn)

u1n(1− u1n)

)1/4

< n1/2

cn∑
k=1

∣∣4ukn∣∣ ∼ n1/2 (by u1n ∼ 1).

Summarizing the points A–E, we obtain Corollary 2.3. �

3.4. Proof of Corollary 2.4. The argument is similar to the ones in Part 3.3, so we only
sketch it.

We suppose that x ∈ [xnn, x1n] and moreover x satisfies (3.13). Then

(3.15)

λn
(
Wρ, Vn

(
W 2
ρ

)
;x
)
∼

∼
n∑′

k=1

|xjn − xn+1,n| |xjn − x0n|
|xkn − xn+1,n| |xkn − x0n|

∣∣`kn (Un (W 2
ρ

)
, x
)∣∣+

∑
k=0,n+1

· · · ∼

∼
n∑′

k=1

ujn(1− ujn)

ukn(1− ukn)

∣∣4ukn∣∣
|ujn − ukn|

(
ukn(1− ukn)

ujn(1− ujn)

)1/4

=

=

n∑′

k=1

(
ujn(1− ujn)

ukn(1− ukn)

)3/4
∣∣4ukn∣∣
|ujn − ukn|

considering that the second sum can be considered by
∑
k=1,n

· · · (cf. [4, Part 4.8], say).

As before we write
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a. Suppose 0 < ujn ≤ c < 1. Then

S1 ∼
cn∑′

K=1

(
vJn
vKn

)3/4
∣∣4vKn∣∣∣∣vJn − vKn∣∣ ∼ ∑

K≤J/2

· · ·+
∑′

J/2≤K≤2J

· · ·+
cn∑

K=2J

· · · ∼

∼
(
n2

J2

)1/4 J∑
K=1

K

n2

(
n2

K2

)3/4

+ log (2J) +
cn∑

K=2J

K

n2

(
J2

n2

)3/4(
n2

K2

)7/4

∼

∼ 1 + log (2J) + 1.

The cases b. and c. correspond to B. and C. and give

S1 ≤ c and S1 ∼ log n, respectively.

d. Let |ujn − ukn| ≥ c1. Then by (3.15) and using

ujn(1− ujn) ≤
(
ujn + 1− ujn

2

)2

=
1

4
,

we get

S1 ≤ c
cn∑
K=1

∣∣4vKn∣∣
v

3/4
Kn

∼
cn∑
K=1

K

n2

(
n2

K2

)3/4

∼ 1

n1/2

n∑
K=1

1

K1/2
≤ c.

e. The estimation of S2 is analogous to the Part 4.8 in [4], whence we get that

S2 ∼ log n.

So we get (2.9). �
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