

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Some new results on orthogonal polynomials for Laguerre type exponential weights

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1730482 since 2020-04-14T16:51:30Z
Published version:
DOI:10.1007/s10474-018-0841-8
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

This is the author's final version of the contribution published as:

Giuseppe Mastroianni, Incoronata Notarangelo, László Szili and Péter Vértesi. Some new results on orthogonal polynomials for Laguerre type exponential weights. *Acta Mathematica Hungarica*, 155 (2018), 466–478. DOI: 10.1007/s10474-018-0841-8

The publisher's version is available at:

[https://link.springer.com/article/10.1007/s10474-018-0841-8]

When citing, please refer to the published version.

Link to this full text:

[http://hdl.handle.net/2318/1730482]

This full text was downloaded from iris-AperTO: https://iris.unito.it/

iris-AperTO

University of Turin's Institutional Research Information System and Open Access Institutional Repository

SOME NEW RESULTS ON ORTHOGONAL POLYNOMIALS FOR LAGUERRE TYPE EXPONENTIAL WEIGHTS

G. MASTROIANNI¹,*, I. NOTARANGELO¹,**, L. SZILI²,*** AND P. VÉRTESI³,***

¹DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCES AND ECONOMICS, UNIVERSITY OF BASILICATA, VIA DELL'ATENEO LUCANO 10, 85100 POTENZA, ITALY

²DEPARTMENT OF NUMERICAL ANALYSIS, LORÁND EÖTVÖS UNIVERSITY, H-1117 BUDAPEST, PÁZMÁNY P. SÉTÁNY I/C, HUNGARY DEPARTMENT OF DIFFERENTIAL EQUATIONS, BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS, H-1111 BUDAPEST, EGRY JÓZSEF U. 1., HUNGARY

³ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, H-1364 BUDAPEST, P.O.B. 127, HUNGARY

ABSTRACT. In this paper we prove some results on the root-distances and the weighted Lebesgue function corresponding to orthogonal polynomials for Laguerre type exponential weights.

1. INTRODUCTION. NOTATIONS. PRELIMINARIES

1.1. In the paper [1] and [2] Eli Levin and Doron Lubinsky investigated certain Laguerre type orthogonal polynomials. Using their results and our papers [3], [4], [5] we state further relations for the root-distances. In addition, we obtain a lower estimation for the weighted Lebesgue function of the weighted Lagrange interpolation with respect to arbitrary point systems.

1.2. (For Sections 1.1-1.4 cf. [1] and [2].)

Let

(1.1)
$$I = [0, d),$$

where $0 < d \leq \infty$. Let $Q: I \to [0, \infty)$ be continuous, and

(1.2)
$$W = \exp(-Q)$$

 $^{1991\} Mathematics\ Subject\ Classification.\ 40C05,\ 40D05,\ 40G05,\ 41A05,\ 41A10.$

Key words and phrases. Orthogonal polynomials, exponential weights, Laguerre weights, weighted interpolation, rootdistances, weighted Lebesgue function.

 $^{^{\}ast} The first author was partially supported by University of Basilicata (local funds).$

 $^{^{\}ast\ast}$ The second author was partially supported by University of Basilicata (local funds) and by National Group of Computing Science INdAM–GNCS.

^{***}Research supported by the Hungarian National Scientific Research Foundation (OTKA), No. K115804.

be such that all moments $\int_I x^n W(x) dx$, $n \ge 0$, exists. We call W an exponential weight on I. For (a fixed) $\rho > -\frac{1}{2}$, we set

$$W_{\rho}(x) := x^{\rho} W(x), \quad x \in I$$

The orthonormal polynomial of degree n for W^2 is denoted by $p_n(W^2, x)$ or $p_n(x)$. That for W^2_{ρ} is denoted by $p_n(W^2_{\rho}, x)$ or $p_{n,\rho}(x)$. So

$$\int_{I} p_{n,\rho}(x) p_{m,\rho}(x) x^{2\rho} W^2(x) \, dx = \delta_{n,m}$$

and

$$p_{n,\rho}(x) = \gamma_{n,\rho}x^n + \cdots,$$

where $\gamma_{n,\rho} = \gamma_n \left(W_{\rho}^2 \right) > 0.$

We denote the zeros of $p_{n,\rho}$ by $U_n\left(W_{\rho}^2\right) = \left\{x_{kn} = x_{kn}\left(W_{\rho}^2\right)\right\}$, where

$$x_{nn} < x_{n-1,n} < \dots < x_{2n} < x_{1n}.$$

As in [1] and [2] we define an *even* weight W^* corresponding to the one-sided weight W. Given I and W as in (1.1) and (1.2), let

$$I^* := \left(-\sqrt{d}, \sqrt{d}\right)$$

and for $x \in I^*$

(1.3)
$$Q^*(x) := Q(x^2), W^*(x) := \exp(-Q^*(x)).$$

We say that $f: I \to (0, \infty)$ is quasi-increasing, if there exists C > 0 such that

$$f(x) \le C f(y), \quad 0 < x < y < d.$$

The notation

$$f(x) \sim g(x)$$

means that there are positive contants C_1, C_2 such that for the relevant range of x

$$C_1 \le f(x)/g(x) \le C_2.$$

Similar notation is used for sequences and sequences of functions.

Throughout, $C, C_1, C_2, c, c_1, c_2, \ldots$ denotes positive constants independent of n, x, t and polynomials P of degree at most n. We write $C = C(\lambda), C \neq C(\lambda)$ to indicate dependence on or independence of, a parameter λ . The same symbol does not necessarily denote the same constant in different occurrences. We denote the set of polynomials of degree $\leq n$ by \mathcal{P}_n .

 $\mathbf{2}$

1.3. Following is our class of weights:

Definition 1.1. Let $W = e^{-Q}$ where $Q : I \to [0, \infty)$ satisfies the following properties: (a) $\sqrt{x}Q'(x)$ is continuous in I, with limit 0 at 0 and Q(0) = 0;

- (b) Q'' exists in (0, d), while $Q^{*''}$ is positive in $(0, \sqrt{d})$;
- (c)

$$\lim_{x \to d^-} Q(x) = \infty.$$

(d) The function

(1.4)
$$T(x) := \frac{xQ'(x)}{Q(x)}, \quad x \in (0, d)$$

is quasi-increasing in (0, d), with

(1.5)
$$T(x) \ge \Lambda > \frac{1}{2}, \quad x \in (0, d).$$

(e) There exists $C_1 > 0$ such that

(1.6)
$$\frac{|Q''(x)|}{Q'(x)} \le C_1 \frac{Q'(x)}{Q(x)}, \quad \text{a.e} \ x \in (0, d).$$

There exists a compact subinterval J of I^* , and $C_2 > 0$ such that

(1.7)
$$\frac{Q^{*''}(x)}{|Q^{*'}(x)|} \ge C_2 \frac{|Q^{*'}(x)|}{Q^{*}(x)}, \quad \text{a.e. } x \in I^* \setminus J.$$

If the weight W satisfies (a)–(e), then we write $W \in \mathcal{L}(C^2+)$.

Examples (cf. [1] and [2]):

(1.8)
$$Q(x) = x^{\alpha}, \ x \in [0, +\infty), \ \alpha > \frac{1}{2};$$

(1.9)
$$Q(x) = \exp_k(x^{\alpha}) - \exp_k(0), \quad x \in [0, +\infty), \quad \alpha > \frac{1}{2}, \quad k \ge 0,$$

where $\exp_0(x) := x$ and for $k \ge 1$

$$\exp_k(x) = \underbrace{\exp(\exp(\exp\cdots\exp(x)))}_{k \text{ times}}$$

is the kth iterated exponential.

An example on the finite interval I = [0, 1) is

(1.10)
$$Q(x) = \exp_k((1-x)^{-\alpha}) - \exp_k(1), \quad x \in [0,1),$$

where $\alpha > 0$ and $k \ge 0$.

1.4. One of the important quantities we need is the Mhaskar–Rakhmanov–Saff number for the weight W_{ρ} denoted by $a_t = a_t(Q)$, defined for t > 0 as the positive root of the equation

$$t = \frac{1}{\pi} \int_{0}^{1} \frac{a_t \, u \, Q'(a_t \, u)}{\sqrt{u \, (1 - u)}} \, du.$$

If xQ'(x) is strictly increasing and continuous, with limits 0 and $+\infty$ at 0 and d respectively, a_t is uniquely defined. Moreover, a_t is an increasing function of $t \in (0, +\infty)$, with

$$\lim_{t \to +\infty} a_t = d.$$

Let us introduce the notation

(1.11)
$$T_n := T(a_n) \qquad (n \in \mathbf{N}).$$

Since $T(x) \ge \Lambda > 1/2$, $x \in (0, d)$ (see (1.5)), thus we have

(1.12)
$$\lim_{n \to +\infty} (n T_n) = +\infty$$

From the important relation

$$Q(a_t) \sim \frac{t}{\sqrt{T(a_t)}}$$

which holds uniformly for t > 0 (see [1, (1.27) and Lemma 3.1]), using the condition $\lim_{x\to d^-} Q(x) = +\infty$ (see Definition (c)) it follows that

(1.13)
$$\lim_{n \to +\infty} \frac{n}{\sqrt{T_n}} = +\infty.$$

In the sequel, we shall denote the positive Mhaskar–Rakhmanov–Saff number for the weight W^* by $a_t^* = a_t^*(Q^*)$, t > 0. Thus a_t^* is defined as the positive root of the equation

$$t = \frac{1}{\pi} \int_{-a_t^*}^{a_t^*} \frac{x \, Q^{*\prime}(x)}{\sqrt{a_t^{*2} - x^2}} \, dx = \frac{2}{\pi} \int_0^1 \frac{a_t^* \, u \, Q^{*\prime}(a_t^* \, u)}{\sqrt{1 - u^2}} \, du = \frac{2}{\pi} \int_0^1 \frac{a_t^{*2} \, v \, Q^\prime\left(a_t^{*2} \, v\right)}{\sqrt{v(1 - v)}} \, dv,$$

whence ([1, p. 211])

$$a_t = a_{2t}^{*2} \qquad (t > 0)$$

1.5. Let $W \in \mathcal{L}(C^2+)$, W^* is given by (1.3), m = 2n and $y_{k+1,m} < y_{km}$ $(n \in \mathbb{N})$, where

$$y_{km} = y_{km} \left(W^{*2} \right) = a_m^* t_{km} = a_m^* \cos \vartheta_{km}, \quad k = 1, 2, \dots, n$$

are the positive roots of the orthonormal polynomial $p_m(W^{*2})$. We define

$$y_{0m} = a_m^* = a_m^* t_{0m}, \ \vartheta_{0m} = 0$$
 and $y_{n+1,m} = t_{n+1,m} = 0, \ \vartheta_{n+1,m} = \pi/2.$

By reformulating [5, Theorem 2.1] and using [2, §2], [1, (2.7)–(2.9)], the Hermite-type roots y_{km} 's satisfy

Theorem 1.1. We have if $W \in \mathcal{L}(C^2+)$ then with $m = 2n \in \mathbb{N}$

(i)
$$\vartheta_{km} - \vartheta_{k-1,m} \sim \frac{1}{(nT_n)^{1/3}k^{2/3}}, \qquad 1 \le k \le \frac{c_1n}{\sqrt{T_n}},$$

(i1) $t_{k-1,m} - t_{km} \sim \frac{1}{(nT_n)^{2/3}k^{1/3}}, \qquad 1 \le k \le \frac{c_1n}{\sqrt{T_n}},$
(ii) $\vartheta_{k+1,m} - \vartheta_{km} \sim \frac{1}{n}, \qquad \frac{c_1n}{\sqrt{T_n}} \le k \le n,$
(ii1) $t_{km} - t_{k+1,m} \sim \frac{k}{n^2}, \qquad \frac{c_1n}{\sqrt{T_n}} \le k \le n.$

2. New relations

2.1. Our first relations on the root distances of the Laguerre type roots

$$x_{kn} \left(W_{\rho}^{2} \right) = x_{kn} = a_{n} u_{kn} = a_{n} \cos \gamma_{kn} \qquad (k = 1, 2, \dots, n; \ n \in \mathbf{N})$$

are as follows

Theorem 2.1. If $W \in \mathcal{L}(C^2+)$ and $x_{0n} = a_n$, $x_{n+1,n} = 0$, then with $n \in \mathbb{N}$

(a)
$$\gamma_{kn} - \gamma_{k-1,n} \sim \frac{1}{(nT_n)^{1/3}k^{2/3}}, \qquad 1 \le k \le \frac{c_2n}{\sqrt{T_n}},$$

(a1) $u_{k-1,n} - u_{kn} \sim \frac{1}{(nT_n)^{2/3}k^{1/3}}, \qquad 1 \le k \le \frac{c_2n}{\sqrt{T_n}},$
(b) $\gamma_{k+1,n} - \gamma_{kn} \sim \frac{n-k+1}{n^2}, \qquad \frac{c_2n}{\sqrt{T_n}} \le k \le n,$
(b1) $u_{kn} - u_{k+1,n} \sim \frac{(n-k+1)k}{n^3}, \qquad \frac{c_2n}{\sqrt{T_n}} \le k \le n.$

Remark. Theorem 2.1 shows that the order of the distances *does not depend* on ρ (cf. (3.1)).

2.2. As an application of the above theorem we prove a lower estimation on the *weighted* Lebesgue function of the weighted Lagrange interpolation on arbitrary point systems.

We need the following definitions.

If $Z = \{z_{kn}\}$ is an interpolatory matrix on I that is

$$0 \le z_{nn} < z_{n-1,n} < \dots < z_{2n} < z_{1n} < d, \quad n \in \mathbf{N},$$

then for $f \in C(W_{\rho}, I), W \in \mathcal{L}(C^2+)$, where

$$C(W_{\rho}, I) := \Big\{ f; \ f \text{ is continuous on } (0, d) \text{ and } \lim_{\substack{x \to 0+\\ x \to d-}} f(x) W_{\rho}(x) = 0 \Big\},$$

we investigate the *weighted Lagrange interpolation* defined by

(2.1)
$$L_n(f, W_{\rho}, Z, x) = \sum_{k=1}^n f(z_{kn}) W_{\rho}(z_{kn}) g_{kn}(W_{\rho}, Z, x), \quad n \in \mathbf{N}.$$

 \boldsymbol{n}

Above

(2.2)
$$g_{kn}(W_{\rho}, Z, x) = \frac{W_{\rho}(x)}{W_{\rho}(z_{kn})} \ell_{kn}(Z, x), \quad 1 \le k \le n,$$

(2.3)
$$\ell_k(x) = \ell_{kn}(Z, x) = \frac{\omega_n(Z, x)}{\omega'_n(Z, z_{kn})(x - z_{kn})}, \quad 1 \le k \le n,$$

and

(2.4)
$$\omega_n(Z,x) = c_n \prod_{i=1}^n (x - z_{in}), \quad n \in \mathbf{N}.$$

The polynomials ℓ_k of degree exactly n-1 (that is $\ell_k \in \mathcal{P}_{n-1} \setminus \mathcal{P}_{n-2}$) are the fundamental functions of the (usual) Lagrange interpolation while functions g_k are the fundamental functions of the weighted Lagrange interpolation.

The classical Lebesgue estimation now has the form

$$|L_n(f, W_\rho, Z, x) - f(x) W_\rho(x)| \le \{\lambda_n(W_\rho, Z, x) + 1\}E_{n-1}(f, W_\rho),$$

where the *weighted Lebesgue function* is

(2.5)
$$\lambda_n(W_{\rho}, Z, x) := \sum_{k=1}^n |g_{kn}(W_{\rho}, Z, x)|, \quad x \in \mathbf{R}, \ n \in \mathbf{N}$$

and

$$E_{n-1}(f, W_{\rho}) := \inf_{p \in \mathcal{P}_{n-1}} \left\| (f-p) W_{\rho} \right\|, \quad n \in \mathbf{N},$$

where $\|\cdot\|$ is the maximum norm on I.

Moreover, the *weighted Lebesgue constant* is

$$\Lambda_n(W_\rho, Z) := \|\lambda_n(W_\rho, Z, x)\|.$$

We state (cf. [5] and its references).

Theorem 2.2. Let $W \in \mathcal{L}(C^2+)$ and let $0 < \varepsilon < 1$ be fixed. Then for any fixed interpolatory matrix $Z \subset I$ there exists set $H_n = H_n(W_\rho, \varepsilon, Z)$ with $|H_n| \leq \varepsilon$ such that

(2.6)
$$\lambda_n(W_{\rho}, Z, x) > \frac{1}{3840} \varepsilon \log n \quad if \quad x \in [0, \ a_n(W_{\rho})] \setminus H_n$$

whenever $n \geq n_1$.

2.3. We give another application of Theorem 2.1. Let $\{z_{kn}\} = U_n(W_{\rho}^2) = \{x_{kn}(W_{\rho}^2)\}$ with

(2.7)
$$g_{kn}\left(W_{\rho}, U_{n}\left(W_{\rho}^{2}\right); x\right) = \frac{W_{\rho}(x)}{W_{\rho}\left(x_{kn}\left(W_{\rho}^{2}\right)\right)} \ell_{kn}\left(U_{n}\left(W_{\rho}^{2}\right), x\right), \quad 1 \le k \le n.$$

Then

Corollary 2.3. The weighted Lebesgue constants satisfy

(2.8)
$$\Lambda_n\left(W_\rho, U_n\left(W_\rho^2\right)\right) \sim n^{1/2}, \qquad n \in \mathbf{N}.$$

Now let

$$\{z_{kn}\} = U_n(W_{\rho}^2) \cup \{x_{0n}(W_{\rho}^2), x_{n+1,n}(W_{\rho}^2)\} = V_n(W_{\rho}^2)$$

Then (cf. [8, Theorem 1])

Corollary 2.4. We have

(2.9)
$$\Lambda_n\left(W_\rho, V_n\left(W_\rho^2\right)\right) \sim \log n, \qquad n \in \mathbf{N}.$$

Above

$$\Lambda_n\left(W_{\rho}, V_n\left(W_{\rho}^2\right)\right) = \left\|\sum_{k=0}^{n+1} \left|g_{kn}\left(W_{\rho}, V_n\left(W_{\rho}^2\right); x\right)\right|\right\|,$$

where $\ell_{kn}(V_n, x)$ (in $g_{kn}(V_n, x)$) is based on the n+2 nodes $\{x_{kn}(W_{\rho}^2), 0 \le k \le n+1\}$.

3. Proofs

3.1. **Proof of Theorem 2.1.** First a *basic observation*: Using [5, Theorem 2.1] and [2, Theorem 1.4] we have

(3.1)
$$x_{kn} \left(W_{\rho}^{2} \right) - x_{k+1,n} \left(W_{\rho}^{2} \right) \sim x_{kn} \left(W_{-\frac{1}{4}}^{2} \right) - x_{k+1,n} \left(W_{-\frac{1}{4}}^{2} \right),$$
$$k = 1, 2, \dots, n-1,$$

that means it is enough to prove the relations when $\rho = -\frac{1}{4}$, which we suppose from now on.

The relation

$$p_n\left(W_{-\frac{1}{4}}^2, x\right) = p_m\left(W^{*2}, y\right), \quad x = y^2 \in [0, d), \quad m = 2n.$$

(cf. [1, (1.7)]) shows that

(3.2)
$$x_{kn} = x_{kn} \left(W_{-\frac{1}{4}}^2 \right) = y_{km}^2, \quad k = 1, 2, \dots, n; \ m = 2n.$$

Our main tool is the formula

(3.3)
$$x_{kn} - x_{k+1,n} = y_{km}^2 - y_{k+1,m}^2 = (y_{km} + y_{k+1,m})(y_{km} - y_{k+1,m}) \sim y_{km} (y_{km} - y_{k+1,m}), \quad 0 \le k \le n,$$

using that

$$y_{km} \le y_{km} + y_{k+1,m} \le 2y_{km}$$

To get (a1) we write by (i1)

(3.4)
$$1 - t_{km} = \sum_{s=0}^{k-1} (t_{sm} - t_{s+1,m}) \sim \frac{1}{(nT_n)^{2/3}} \sum_{s=1}^{k-1} s^{-1/3} \sim \left(\frac{k}{nT_n}\right)^{2/3} \leq \frac{c_3}{T_n}, \qquad 1 \leq k \leq \frac{c_1 n}{\sqrt{T_n}},$$

i.e. in (3.4), $t_{km} \geq \frac{1}{2}$ supposing that $c_3/T_n \leq 1/2$ (say). (This can be attained by a proper $c_1 > 0$ using that $T_n > \frac{1}{2}$ (cf. (1.5)). Summarising, we get with a proper $c_1 > 0$

(3.5)
$$x_{kn} - x_{k+1,n} \sim a_m^* \frac{a_m^*}{\left(nT_n\right)^{2/3} k^{1/3}}, \qquad 1 \le k \le \frac{c_2 n}{\sqrt{T_n}},$$

whence (a1) is immediate (cf. (3.3), $(a_m^*)^2 = a_n$ (see [1, (2.6)]) and (i1)).

To get (b1) we have by (3.4) and (ii1)

(3.6)
$$t_{km} = \sum_{s=1}^{n-k+1} (t_{n-s+1,m} - t_{n-s+2,m}) \sim \\ \sim \sum_{s=k}^{n} \frac{s}{n^2} \sim \frac{(n+1)^2 - k^2}{n^2} = \frac{(n+k+1)(n-k+1)}{n^2} \sim \frac{n-k+1}{n},$$

whence by (3.3) and (ii1)

(3.7)
$$x_{kn} - x_{k+1,n} \sim (a_m^*)^2 \frac{n-k+1}{n} \frac{k}{n^2} = a_n \frac{(n-k+1)k}{n^3}, \qquad \frac{c_1 n}{\sqrt{T_n}} \le k \le n,$$

whence (b1) is immediate.

Using that $\rho = -\frac{1}{4}$ by (3.2) and

$$(a_m^* t_{km})^2 = y_{km}^2 = x_{kn} = a_n u_{kn}$$

we get $1 - t_{km}^2 = 1 - u_{kn}$, which means

(3.8)
$$\sin^2 \vartheta_{km} = 2\sin^2 \frac{\gamma_{kn}}{2}, \qquad 1 \le k \le n.$$

By (3.8) $\sin \vartheta_{km} = \sqrt{2} \sin \frac{\gamma_{kn}}{2}$ whence

$$\sin \vartheta_{k+1} - \sin \vartheta_k = 2\sin \frac{\vartheta_{k+1} - \vartheta_k}{2} \cdot \cos \frac{\vartheta_{k+1} + \vartheta_k}{2} =$$
$$= \sqrt{2} \left(\sin \frac{\gamma_{k+1}}{2} - \sin \frac{\gamma_k}{2} \right) = \sqrt{2} \cdot 2 \cdot \sin \frac{\gamma_{k+1} - \gamma_k}{4} \cdot \cos \frac{\gamma_{k+1} + \gamma_k}{4}.$$
Now by $\cos \frac{\vartheta_{k+1} + \vartheta_k}{2} \approx \cos \vartheta_k = t_k$ and $\cos \frac{\gamma_{k+1} + \gamma_k}{4} \approx \cos \frac{\gamma_k}{2} \ge \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2},$ we get

(3.9)
$$(\vartheta_{k+1,m} - \vartheta_{km}) t_{km} \sim \gamma_{k+1} - \gamma_k, \qquad 0 \le k \le n.$$

(We omitted some obvious details.) By (3.9) we get (a) (or (b)) using Theorem 1.1 (i), (ii); (3.4) and (3.6). \Box

3.2. **Proof of Theorem 2.2.** First we formulate some other relations applied later. Let $I_n(\varepsilon) = [\varepsilon a_n, (1 - \varepsilon)a_n], 0 < \varepsilon < 1$ fixed. Then

(3.10)
$$x_{kn} - x_{k+1,n} \sim \frac{a_n}{n}, \quad x_{kn}, \ x_{k+1,n} \in I_n(\varepsilon).$$

Indeed, by $u_{kn} = t_{km}^2$ (again $\rho = -\frac{1}{4}$)

$$u_k \in [\varepsilon, 1-\varepsilon]$$
 iff $t_k \in \left[\sqrt{\varepsilon}, \sqrt{1-\varepsilon}\right]$,

whence using that

$$u_{kn} - u_{k+1,n} \sim t_{km}(t_{km} - t_{k+1,m}), \quad t_{km} \sim 1 \text{ and } t_{km} - t_{k+1,m} \sim \frac{1}{n}$$

(cf. [5, (3.9)]) we get (3.10).

Moreover, by [2, (1.13) and (1.17)], using (3.10) and the relations $x_{kn} \sim a_n - x_{kn} \sim a_n$ whenever $x_{kn} \in I_n(\varepsilon)$, we get

(3.11)
$$|p'_{n\rho}(x_{kn})W_{\rho}(x_{kn})| \sim \frac{n}{a_n^{3/2}}, \qquad x_{kn} \in I_n(\varepsilon).$$

Finally, we quote [2, Theorem 1.2] saying that

(3.12)
$$\sup_{x \in I} |p_{n\rho}(x)| W(x) \left(x + \frac{a_n}{n^2}\right)^{\rho} \sim \left(\frac{n}{a_n}\right)^{1/2}, \qquad x \in I.$$

Using relations (3.10)–(3.12), we can prove Theorem 2.2. as we did in [5, §3.4–3.10]. We can omit the details. \Box

3.3. **Proof of Corollary 2.3.** By [1, (1.15)] and [8, Lemma 1] we can restrict ourselves to the interval $[0, a_n]$.

Fix $n \in \mathbf{N}$ and the point $x \in [x_{j+1,n}, x_{j,n}] =: \Delta x_{jn} \ (0 \le j \le n;$ obviously j = j(n)). Even more, by [2, Theorem 1.3], we can suppose that x is "far" from the nodes, namely

(3.13)
$$|x - (x_{jn} + x_{j+1,n})/2| \le |\Delta x_{jn}|/4.$$

Then by (2.5), (2.7) and [2, Theorem 1.3] we have

(3.14)
$$\lambda_n \left(W_{\rho}, U_n \left(W_{\rho}^2 \right), x \right) \sim \sum_{k=1}^{n'} \frac{\left| \bigtriangleup u_{kn} \right|}{\left| u_{jn} - u_{kn} \right|} \left(\frac{u_{kn}(1 - u_{kn})}{u_{jn}(1 - u_{jn})} \right)^{1/4}.$$

Here and hereafter for a fixed index j we use the notation

$$\sum_{k=1}^{n'} a(k,j) = \sum_{\substack{k=1\\k\neq j}}^{n} a(k,j)$$

Moreover we used the fact that the *j*th term of the sum (2.5) has the same order as the *l*th ones, whenever $|l - j| \leq c$ (see [2, Theorem 1.3]).

Let from now

$$\sum_{k=1}^{n} \cdots = \sum_{k=1}^{cn-1} \cdots + \sum_{k=cn}^{n} \cdots =: S_2 + S_1.$$

In order to estimate S_1 and S_2 , we distinguish several cases.

10

A. First we suppose that $0 < u_{jn} \le c < 1$. Let

$$v_{Kn} = u_{n-K+1,n}, \quad |\Delta v_{Kn}| = v_{K+1,n} - v_{Kn} \quad (0 < K \le n)$$

and $v_{Jn} = u_{n-J+1,n}$ ($0 \le J \le n$). By (b1) of Theorem 2.1 we have (J > K, say)

$$|v_{Jn} - v_{Kn}| \sim \frac{1}{n^2} \sum_{s=K}^{J} s \sim \frac{|J - K| |J + K|}{n^2}$$
 and
 $v_{Kn} \sim \sum_{s=1}^{K} \frac{s}{n^2} \sim \frac{K^2}{n^2}.$

We can write as follows

$$S_{1} \sim \sum_{K=1}^{cn} \frac{\Delta v_{Kn}}{|v_{Jn} - v_{Kn}|} \left(\frac{v_{Kn}}{v_{Jn}}\right)^{1/4} \sim \sum_{K \leq J/2} \dots + \sum_{J/2 \leq K < 2J} \dots + \sum_{K=2J}^{cn} \dots \sim \\ \sim \left(\frac{n^{2}}{J^{2}}\right)^{5/4} \sum_{K=1}^{J} \frac{K}{n^{2}} \left(\frac{K^{2}}{n^{2}}\right)^{1/4} + \log 2J + \sum_{K=2J}^{cn} \frac{K}{n^{2}} \left(\frac{n^{2}}{K^{2}}\right)^{3/4} \left(\frac{n^{2}}{J^{2}}\right)^{1/4} \sim \\ \sim 1 + \log (2J) + \left(\frac{n}{J}\right)^{1/2} \leq c n^{1/2}.$$

(For example, the second sum can be estimated by Theorem 2.1 as follows

$$\sum_{J/2 \le K < 2J}' \dots \le c \sum_{J/2 \le K < 2J}' \frac{K}{n^2} \cdot \frac{n^2}{|K+J| |K-J|} \cdot \left(\frac{K}{J}\right)^{1/4} \sim \sum_{J/2 \le K < 2J}' \frac{1}{|K-J|} \sim \log(2J)$$

using that now $0 < v_{Jn} \leq c < 1$ and $K \sim J$.)

B. If $0 \le u_{jn} \le c$ but $|u_{kn} - u_{jn}| \ge c_1$ (where $0 < c_1 < c < 1$), using that now

$$S_1 = \sum_{\substack{k=cn\\|u_{kn}-u_{jn}|\ge c_1}}^n \cdots,$$

we get by analogue consideration as before that $S_1 \leq c$.

Similarly one can obtain:

C. If $0 < c_1 \le u_{jn} \le c_2 < 1$, then $S_1 \sim \log n$.

D. Let $|u_{jn} - u_{kn}| \ge c_1$. Then by arguments as in Part **A** we have

$$S_1 \sim n^{1/2}, \ c_2, \ (nT_n)^{1/6}, \ \text{if}$$

 $u_{jn} \sim n^{-2}, \ c_3 \leq u_{jn} \leq c_4, \ 1 - u_{jn} \sim (nT_n)^{-2/3}, \ \text{respectively}.$

Using that $T_n < n^{2-\varepsilon}$ (see [7, (3.38)]), we get

$$S_1 \le c \left(n^{1/2} + \left(n \cdot n^{2-\varepsilon} \right)^{1/6} \right) \le c n^{1/2}.$$

E. We estimate $S_2 = \sum_{k=1}^{cn} \cdots$. If $u_{jn} \ge c_0$ then using Theorems 1.1 and 2.1 further the argument in [4, Part 4.7] we get that $S_2 \sim (nT_n)^{1/6}$. Now let $0 < u_{jn} < c_0 < c_1 \le u_{kn}$, $k \le cn$. Then

$$S_2 \le \sum_{k=1}^{cn} \frac{\left| \triangle u_{kn} \right|}{\left| u_{1n} - u_{kn} \right|} \left(\frac{u_{kn}(1 - u_{kn})}{u_{1n}(1 - u_{1n})} \right)^{1/4} < n^{1/2} \sum_{k=1}^{cn} \left| \triangle u_{kn} \right| \sim n^{1/2} \qquad (by \ u_{1n} \sim 1).$$

Summarizing the points A-E, we obtain Corollary 2.3. \Box

3.4. **Proof of Corollary 2.4.** The argument is similar to the ones in Part **3.3**, so we only sketch it.

We suppose that $x \in [x_{nn}, x_{1n}]$ and moreover x satisfies (3.13). Then

(3.15)

$$\lambda_{n} \left(W_{\rho}, V_{n} \left(W_{\rho}^{2}\right); x\right) \sim \\
\sim \sum_{k=1}^{n'} \frac{|x_{jn} - x_{n+1,n}| |x_{jn} - x_{0n}|}{|x_{kn} - x_{0n}|} \left|\ell_{kn} \left(U_{n} \left(W_{\rho}^{2}\right), x\right)\right| + \sum_{k=0,n+1} \cdots \sim \\
\sim \sum_{k=1}^{n'} \frac{u_{jn}(1 - u_{jn})}{u_{kn}(1 - u_{kn})} \frac{|\Delta u_{kn}|}{|u_{jn} - u_{kn}|} \left(\frac{u_{kn}(1 - u_{kn})}{u_{jn}(1 - u_{jn})}\right)^{1/4} = \\
= \sum_{k=1}^{n'} \left(\frac{u_{jn}(1 - u_{jn})}{u_{kn}(1 - u_{kn})}\right)^{3/4} \frac{|\Delta u_{kn}|}{|u_{jn} - u_{kn}|}$$

considering that the second sum can be considered by $\sum_{k=1,n} \cdots$ (cf. [4, Part 4.8], say).

As before we write

12

a. Suppose $0 < u_{jn} \leq c < 1$. Then

$$S_{1} \sim \sum_{K=1}^{cn} \left(\frac{v_{Jn}}{v_{Kn}}\right)^{3/4} \frac{\left|\Delta v_{Kn}\right|}{\left|v_{Jn} - v_{Kn}\right|} \sim \sum_{K \leq J/2} \dots + \sum_{J/2 \leq K \leq 2J} \dots + \sum_{K=2J}^{cn} \dots \sim$$
$$\sim \left(\frac{n^{2}}{J^{2}}\right)^{1/4} \sum_{K=1}^{J} \frac{K}{n^{2}} \left(\frac{n^{2}}{K^{2}}\right)^{3/4} + \log\left(2J\right) + \sum_{K=2J}^{cn} \frac{K}{n^{2}} \left(\frac{J^{2}}{n^{2}}\right)^{3/4} \left(\frac{n^{2}}{K^{2}}\right)^{7/4} \sim$$
$$\sim 1 + \log\left(2J\right) + 1.$$

The cases **b.** and **c.** correspond to **B.** and **C.** and give

 $S_1 \le c$ and $S_1 \sim \log n$, respectively.

d. Let $|u_{jn} - u_{kn}| \ge c_1$. Then by (3.15) and using

$$u_{jn}(1-u_{jn}) \le \left(\frac{u_{jn}+1-u_{jn}}{2}\right)^2 = \frac{1}{4},$$

we get

$$S_1 \le c \sum_{K=1}^{cn} \frac{\left| \triangle v_{Kn} \right|}{v_{Kn}^{3/4}} \sim \sum_{K=1}^{cn} \frac{K}{n^2} \left(\frac{n^2}{K^2} \right)^{3/4} \sim \frac{1}{n^{1/2}} \sum_{K=1}^{n} \frac{1}{K^{1/2}} \le c.$$

e. The estimation of S_2 is analogous to the Part 4.8 in [4], whence we get that

$$S_2 \sim \log n.$$

So we get (2.9). \Box

Acknowledgement. The authors thank to the referee for the very thorough and conscientious work.

References

- [1] E. Levin and D. Lubinsky, Orthogonal polynomials for exponential weights $x^{2\rho}e^{-2Q(x)}$ on [0, d), J. of Approx. Theory, **134** (2005), 199–256.
- [2] E. Levin and D. Lubinsky, Orthogonal polynomials for exponential weights $x^{2\rho}e^{-2Q(x)}$ on [0,d), II, J. of Approx. Theory, **139** (2006), 107–143.
- [3] P. Vértesi, An Erdős-type convergence process in weighted interpolation. I (Freud-type weights), Acta Math. Hungar., 91 (2001), 195–215.
- [4] L. Szili and P. Vértesi, An Erdős-type convergence process in weighted interpolation. II (Exponential weights on [-1, 1]), Acta Math. Hungar., 98(1-2) (2003), 129–162.

- [5] P. Vértesi, Notes on orthogonal polynomials for exponential weights (Root-distances, weighted Lebesgue function), Acta Math. Hungar., 119(4) (2008), 381–392.
- [6] G. Szegö, Orthogonal Polynomials, AMS Coll. Publ., Vol. 23, Providence, 1967.
- [7] E. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer-Verlag, New York-Berlin-Heidelberg, 2001.
- [8] J. Szabados, Weighted Lagrange and Hermite–Fejér interpolation on the real line, Journal of Inequalities and Applications, 1 (1997), 99–123.