UHWERSITA
| DEGLI STUDI
DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Some new results on orthogonal polynomials for Laguerre type exponential weights

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1730482 since 2020-04-14T16:51:30Z

Published version:
DOI:10.1007/s10474-018-0841-8
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

20 February 2025



UNIVERSITA
DEGLI STUDI
DI TORINO

[[1S AperTO

This is the author’s final version of the contribution published as:

Giuseppe Mastroianni, Incoronata Notarangelo, Laszl6 Szili and Péter Vértesi. Some new
results on orthogonal polynomials for Laguerre type exponential weights. Acta Mathematica
Hungarica, 155 (2018), 466—478. DOI: 10.1007/s10474-018-0841-8

The publisher’s version is available at:
[https://link.springer.com/article/10.1007/s10474-018-0841-8]
When citing, please refer to the published version.

Link to this full text:
[http://hdl.handle.net/2318/1730482]

This full text was downloaded from iris- AperTO: https://iris.unito.it/

iriS—AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository


https://iris.unito.it/

SOME NEW RESULTS ON ORTHOGONAL
POLYNOMIALS FOR LAGUERRE TYPE
EXPONENTIAL WEIGHTS

G. MASTROIANNI! *, I. NOTARANGELO! **, L. SZILI2,*** AND P. VERTESI3,***

'DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCES AND ECONOMICS, UNIVERSITY OF BASILICATA,
VIA DELL’ATENEO LUCANO 10, 85100 POTENZA, ITALY

2DEPARTMENT OF NUMERICAL ANALYSIS, LORAND EOTVOS UNIVERSITY,
H-1117 BUDAPEST, PAZMANY P. SETANY I/C, HUNGARY
DEPARTMENT OF DIFFERENTIAL EQUATIONS, BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS,
H-1111 BUDAPEST, EGRY JOZSEF U. 1., HUNGARY

SALFRED RENYI INSTITUTE OF MATHEMATICS, H-1364 BUDAPEST, P.O.B. 127, HUNGARY

ABSTRACT. In this paper we prove some results on the root-distances and the weighted Lebesgue function
corresponding to orthogonal polynomials for Laguerre type exponential weights.

1. INTRODUCTION. NOTATIONS. PRELIMINARIES

1.1. In the paper [I] and [2] Eli Levin and Doron Lubinsky investigated certain Laguerre
type orthogonal polynomials. Using their results and our papers [3], [1], [5] we state further
relations for the root-distances. In addition, we obtain a lower estimation for the weighted
Lebesgue function of the weighted Lagrange interpolation with respect to arbitrary point
systems.

1.2.  (For Sections 1.1-1.4 cf. [1] and [2].)
Let

(1.1) I =1[0,d),
where 0 < d < oo. Let @ : I — [0,00) be continuous, and

(1.2) W = exp(-Q)
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2 G. MASTROIANNI, I. NOTARANGELO, L. SZILI AND P. VERTESI
be such that all moments [, "W (z)dx, n > 0, exists. We call W an exponential weight on
I. For (a fixed) p > —3, we set

W,(z) =aW(z), =xe€l.

The orthonormal polynomial of degree n for W? is denoted by p, (W?,z) or p,(x). That for
W2 is denoted by p, (W2, ) or pn,(x). So

/ Prp ()i (2) W2 () d = 6
I

and
Pp(T) = Ynpt” + -1,
where v, , = T» (WPQ) > 0.
We denote the zeros of p, , by U, (WPQ) = {n = T (W?) }, where

p

Tnn < Ln—1,n < s < Zop < Tine

As in [1] and [2] we define an even weight W* corresponding to the one-sided weight W.
Given [ and W as in (1.1) and (1.2), let

I .= <—\/E, \/;l>
and for z € I*
Q*(x) :=Q (2%,
W(z) : = exp (=Q(x)).
We say that f: 1 — (0,00) is quasi-increasing, if there exists C' > 0 such that
flz)<Cfly), O<z<y<d.

(1.3)

The notation
f(z) ~ g(x)

means that there are positive contants C, Cs such that for the relevant range of x
Cy < flz)/g(x) < Ch.

Similar notation is used for sequences and sequences of functions.

Throughout, C,C4,Cs, ¢, cq,co,... denotes positive constants independent of n,z,t and
polynomials P of degree at most n. We write C' = C'()\), C' # C(\) to indicate dependence
on or independence of, a parameter A\. The same symbol does not necessarily denote the
same constant in different occurrences. We denote the set of polynomials of degree < n by
P
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1.3. Following is our class of weights:

Definition 1.1. Let W = =@ where Q : I — [0, 00) satisfies the following properties:
(a) v/2Q'(z) is continuous in 7, with limit 0 at 0 and Q(0) = 0;
(b) Q" exists in (0,d), while Q*” is positive in (0, \/E),

()

(d) The function
Q@)
(1.4) T(x) = ) € (0,d)

is quasi-increasing in (0, d), with
(1.5) T(z)>A>3, z€(0,d).
(e) There exists C; > 0 such that
" /
Q') o, Q)
Q'(z) Q(x)
There exists a compact subinterval J of I*, and C5 > 0 such that
*// */
Q") 197@)]
Q¥ ()] Q*(x)
If the weight TV satisfies (a)-(e), then we write W € L (C?+).

(1.6)

a.e z € (0,d).

(1.7)

a.e. x € "\ J

Examples (cf. [1] and [2]):

(1.8) Q(z) =2% z€[0,+00), a>1i;
(19) Q) = expy(a) — expy(0), T € [0, +00), a1, k20,
where exp,(z) := z and for k > 1

expy,(z) = exp(exp(exp - - - exp(z)))

~
k times

is the kth iterated exponential.
An example on the finite interval I = [0, 1) is

(1.10) Q) = expy (1 — 2)™) — expe(1), @ €[0,1),
where o« > 0 and k > 0.
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1.4.  One of the important quantities we need is the Mhaskar-Rakhmanov—Saff number for

the weight W, denoted by a;, = a,(Q), defined for ¢t > 0 as the positive root of the equation

1
1 fau@(au)

) Vull-w

If xQ'(x) is strictly increasing and continuous, with limits 0 and +oo at 0 and d respec-
tively, a; is uniquely defined. Moreover, a; is an increasing function of ¢ € (0, +00), with

t du.

lim a; = d.
t—+o00
Let us introduce the notation
(1.11) T, :=T(ay) (n € N).

Since T'(x) > A > 1/2, x € (0,d) (see (1.5)), thus we have

(1.12) lim (n7,) = +o0

n—-+4o0o

From the important relation

Q(at) ~

T(a;)

which holds uniformly for ¢ > 0 (see [I, (1.27) and Lemma 3.1]), using the condition
lim, .4 Q(z) = 400 (see Definition (c)) it follows that

(1.13) lim —— = +oo.

n—+oo /T,

In the sequel, we shall denote the positive Mhaskar-Rakhmanov—Saff number for the
weight W* by aj = a; (Q*), t > 0. Thus aj is defined as the positive root of the equation

a¥

t 1 1
L[ Q) 2 [eiuQ (e 2 [a?eQ (%y)

= — _— xr = _—_— v
) Ja -2 ™/ VI—u? ™/ Vud—v)
,az‘

whence ([1, p. 211])

a; = ay} (t>0).
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1.5. Let W e L(C*+), W* is given by (1.3), m = 2n and ygi1.m < Yem (n € N), where
Ykm = Ykm (W*Q) =aytpm =a,cosVn,, k=12....n
are the positive roots of the orthonormal polynomial p,, (W*?). We define
Yom = Ay = Qo tom, Yom =0 and  Yni1m = tnyim =0, Tpprm = 7/2.

By reformulating [5, Theorem 2.1] and using [2, §2], [I, (2.7)-(2.9)], the Hermite-type
ro0ots Yrm's satisfy

Theorem 1.1. We have if W € L(C?*+) then with m =2n € N

. 1 con
(1) Dk — Tpe1m ~ W’ 1<Ek< T
1 cn
i)t =t ~ —————— 1< k< ,
(1 ) k—1, k (nTn)2/3]€1/3 /—Tn
1 cn
i) Yes1m — T ~ —, <k<n,
(ii) Vi1, k - JT oS
k con

1il) thm — thg1m ~ —5,
(11) k k+1, 2 \/Tn

2. NEW RELATIONS
2.1. Our first relations on the root distances of the Laguerre type roots
Thn (WPZ) = Tgp = Aplgy = Gy COS Yen (k=1,2,...,n; n € N)
are as follows

Theorem 2.1. If W € L(C*+) and xop, = ap, Tny1n =0, then withn € N
1 Con
(&) Yen — Ve—1,n ~ W; 1<k< T

1 Com
1) Upor — Uk ~ —, 1< k< 2
n—k+1 con
(D) Vet1n = Ven ~ ———5—— <k<n,
’ n VT,
(n—k+1)k can

(bl) Ukn — Uk4+1,n ™

)

n3

5

Remark. Theorem 2.1 shows that the order of the distances does not depend on p (cf.

(3.1)).
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2.2.  As an application of the above theorem we prove a lower estimation on the weighted
Lebesgue function of the weighted Lagrange interpolation on arbitrary point systems.

We need the following definitions.

If Z = {2k, } is an interpolatory matrix on I that is

0<zpn < 2Zpe1n < - <29p <21, <d, meN,
then for f € C(W,,I), W € L(C?*+), where

CW,, 1) := {f f is continuous on (0, d) andxli)r&f( ) Wy(x) = 0},
T—d—

we investigate the weighted Lagrange interpolation defined by

(2.1) Lo (f,W,,Z,x) Zf (2n) W, (2kn) Gin (W, Z,x), n € N.
Above
W, (x)

2.2 Z,x) = 2 Z 1<k<
( ) gkn(Wm 7'T> Wp(zkn> gkn( ax)a = k =n,
(2.3) () = (7, 7) = —onlZ: ) 1<k<n

. k — tkn 9 - W;I(Z, an)(x - an)? — 9
and
(2.4) wn(Z,2) = ¢, H(x — Zin), n€N.

i=1
The polynomials ¢; of degree exactly n — 1 (that is ¢, € P,_1 \ P,_2) are the fundamen-
tal functions of the (usual) Lagrange interpolation while functions gy are the fundamental
functions of the weighted Lagrange interpolation.

The classical Lebesgue estimation now has the form

|Lo(f, W, Z,x) = f(2) Wy(z)| < {0 (W,, Z,2) + 1} Epea(f, W),

where the weighted Lebesgue function is

(2.5) MWy, Z,2) = Z‘gkn

reR, neN

and

Balh W) i= af [|(F=p)W,

where || - || is the maximum norm on 1.

n € N,
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Moreover, the weighted Lebesgue constant is
A (Wp, Z) = || A (W,, Z, ) ||
We state (cf. [5] and its references).

Theorem 2.2. Let W € L(C?+) and let 0 < € < 1 be fivred. Then for any fized interpolatory
matriz Z C I there exists set H,, = H,(W,, e, Z) with |H,| < ¢ such that

1 ‘
(2.6) M(W,, Z, ) > @glogn if x€l0, an(W,)]\ Han

whenever n > n;.

2.3.  We give another application of Theorem 2.1.
Let {zpn} = Un (W2) = {@ps (W?2)} with
Wp(@
W, ("E’m (WPQ

(2.7) Gin (Wp, U (W2) 5 ) = ) Uen (U (W2),z), 1<k<n.

Then
Corollary 2.3. The weighted Lebesque constants satisfy

(2.8) Ap (W, U, (W2)) ~ 0%, neN.

Now let
{zn} = Un (W) U {z0n (W)) s @i (W) } = Vi (W) -
Then (cf. [8, Theorem 1])
Corollary 2.4. We have

(2.9) Ap (W, Vi, (sz)) ~ logn, n € N.

Above

n+1

Ao (Wi Vi (7)) = || 3 Jon (195 Vo (192) )|

Y

where g, (Vi,, ) (in ggn(Vy, x)) is based on the n + 2 nodes {xkn (Wg) ,0<k<n+ 1}.
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3. PROOFS

3.1. Proof of Theorem 2.1. First a basic observation: Using [5, Theorem 2.1] and [2,
Theorem 1.4] we have

T (W2) = s (W2) ~ i (W21 ) = s (W24

(3.1) -
k=1,2,....,n—1,

1

that means it is enough to prove the relations when p = —7,

on.
The relation

which we suppose from now

Dn (WEA,$> =pm (W2y), x=y>€[0,d), m=2n.
4
(cf. [1, (1.7)]) shows that

):yzm, k=1,2,...,n; m = 2n.

1
4
Our main tool is the formula

(3 3) Tkn — Tk+1n = y;?;m - yiﬂ,m = (ykm + yk+1,m)(ykm - yk+1,m) ~
‘ ~ Ykm (ykm - yk—l-l,m) s 0 < k < n,
using that

Ykm S Ykm + Yk+1,m S 2ykm
To get (al) we write by (il)

k—1 1 k—1
1-— tkm - Z (tsm - ts+1,m) ~ —2/3 Z 5_1/3 ~
s=0 (TlTn) s=1
(3.4)
K 2/3<C3 1<k< 8l
nT, - T, - VT

i.e. in (3.4), tkm > 3 supposing that c;/T,, < 1/2 (say). (This can be attained by a proper
¢1 > 0 using that T,, > % (cf. (1.5)). Summarising, we get with a proper ¢; > 0

*

Qa Con
3.5 Thn, — Thp1m ~ Ay ————, 1<k< ,
( ) k k+1, (nTn)Z/?) kl/g /Tn

whence (al) is immediate (cf. (3.3), (a%,)* = a, (see [1, (2.6)]) and (i1)).
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To get (bl) we have by (3.4) and (iil)

n—k+1
tk‘m - Z (tn—s+1,m - tn—s+2,m) ~
(3.6) . =
Zs (n+1?—-k (m+k+1)n—k+1) n—-k+1
n? n? B n? n o
s=k
whence by (3.3) and (iil)
Lon—k+1k n—k+1)k an
BT wm (@) PR oA DE S <ksn

whence (b1) is immediate.
Using that p = —1 by (3.2) and

(a’:ntkm>2 = yzm = Tkn = ApUkn
we get 1 —¢2 =1 — uy,, which means
(3.8) sin? ¥y, = 2sin’ /%, 1<k<n.

By (3.8) sin ¥, = v/2sin %= whence

sin g1 — sinvy, = QSin%'coskﬂTﬂ _

= \/§ <sin %;1 — sin %) = \/§ -2 -sin —%H4_ 2Ly cos —%HJ— ’Yk.

D1 +9
Now by COSkHTJrk ~ cos )y, = t;, and COSW ~coslE > cost = Y2 we get

2
(3.9) (Pt1,m — Doem) tom ~ Ve+1 — Vs 0<k<n.

(We omitted some obvious details.) By (3.9) we get (a) (or (b)) using Theorem 1.1 (i), (ii);
(3.4) and (3.6). O

3.2. Proof of Theorem 2.2. First we formulate some other relations applied later. Let
I,(g) = [ean, (1 —€)a,], 0 < e <1 fixed. Then

(310) Tkn — Tk+1n ™ g’ Tkny Thtin € In<€)

Indeed, by uy, = t3,, (again p = —1)
up € [e,1—¢] iff t, € [Ve,V1—¢,
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whence using that
1
Uk — U1 ~ tom(Eem — thsim)s teom ~ 1 and tgm — tpsam ~ -
(cf. [5, (3.9)]) we get (3.10).
Moreover, by [2, (1.13) and (1.17)], using (3.10) and the relations zx, ~ a, — Tg, ~ a,

whenever xy, € I,(¢), we get
n

(3.11) ‘p;p(xkn)Wp(xkn)‘ ~ W’ T € In().
Finally, we quote [2, Theorem 1.2] saying that
4o o\ 172
(3.12) swléll)‘pnp(:cﬂ W(x) (x + ﬁ) ~ <a) , xel.

Using relations (3.10)—(3.12), we can prove Theorem 2.2. as we did in [5, §3.4-3.10]. We can
omit the details. [

3.3. Proof of Corollary 2.3. By [l, (1.15)] and [8, Lemma 1] we can restrict ourselves to
the interval [0, a,).

Fix n € N and the point © € [241,2;,] = Az}, (0 < j < n; obviously j = j(n)). Even
more, by [2, Theorem 1.3], we can suppose that z is "far” from the nodes, namely

Then by (2.5), (2.7) and [2, Theorem 1.3] we have

|Aukn (ukn(l - ukn))1/4

Ujn (1 — wjn)

(3.14) Ao (W, Uy, Zn T,

Jn ukn’

Here and hereafter for a fixed index j we use the notation

> alk.g) =3 alk.j)
k=1 k=1
k#j

Moreover we used the fact that the jth term of the sum (2.5) has the same order as the ith
ones, whenever |l — j| < ¢ (see [2, Theorem 1.3]).

Let from now
cn— 1

z -3 N S,

k=cn

In order to estimate S and S, we dlstmguish several cases.
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A. First we suppose that 0 < u;, <c < 1. Let
UKkn = Un—K+1,n; |A’UKn| = VK+1,n — UKn (O <K < n)

and vy, = Up—y+1, (0 < J < n). By (bl) of Theorem 2.1 we have (J > K, say)

- 1 ] — K||J + K|
O — vkl ~ = D 5~ > and
n e n
"5 K2
VKn ™ 2 T e

s=1

We can write as follows

Cn/ A’UKn VUKn 14 ! -
51~;1 (%> S e Y Y e

‘an - UKn| K<J/2 J/2<K<2J K=2J
2\t I g e\ VA K 2\ 2\ VA
~(5) X)) w2 5(6) (5) -
K=1 K=2J

1/2
~1+log (2J) + (%) <cnt/?
(For example, the second sum can be estimated by Theorem 2.1 as follows

/ / K n2 K 1/4
< . = ~
2. <e D 1K+ J[|K — J] (J>

J/2<K<2J J2<K<2J

>

J2<K<2J

~ log (2.J)

|K —J]|

using that now 0 < vy, <c¢<1land K ~ J.)

B. If 0 < wj, < cbut |ug, —ujn| > ¢ (where 0 < ¢; < ¢ < 1), using that now

n

S, = Z e

k=cn
|ukn_ujn|zcl

we get by analogue consideration as before that S; < c.
Similarly one can obtain:

C.If0< e €ujp <y <1, then 51 ~ logn.
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D. Let |u;n, — ugn| > ¢1. Then by arguments as in Part A we have

Sl ~ nl/z, Co, (nTn)l/G, lf

Wjp, ~ n2 3 < Ujn < Cqy 1 — 1wy ~ (nTn)72/3, respectively.
Using that T,, < n*~¢ (see [7, (3.38)]), we get

S <c <n1/2 + (n . nz’e)l/(j) < en'/?,

cn

E. We estimate Sy = Z/ If ujn > co then using Theorems 1.1 and 2.1 further the
k=1
argument in [1, Part 4.7] we get that Sy ~ (nTn)I/G. Now let 0 < uj, < cp < €1 < Upp,

k <c¢n. Then

cn

B 1/4 cn
S, < Z |U‘Aukn (u;m(l Ukn)) < nl/2 Z‘Aukn} ~ pl/2 (by i, ~ 1).

in — ukn| uln(]- — uln) k=1

Summarizing the points A—E, we obtain Corollary 2.3. [J

3.4. Proof of Corollary 2.4. The argument is similar to the ones in Part 3.3, so we only
sketch it.
We suppose that & € [z, T1,] and moreover x satisfies (3.13). Then

A (W, Vi (W2) 1) ~

n
- Z’ ||$]n - xn—‘,—l,n’ |xjn - x0n| |€kn (WQ } + Z e~
k=

1 Lkn — CE?’L—i-l,n| |$kn — Zon | k=0,n+1

el ukn(l - uk;n) |an - ulml ujn(l - ujn)

Z (U]n U]n) )3/4 |Aukn‘
1 ukn 11— uk‘n) |ujn - uknl

considering that the second sum can be considered by > --- (cf. [1, Part 4.8], say).
k=1,n

As before we write
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a. Suppose 0 < u;, < c < 1. Then

cn/ 3/4 , cn
glwz(%) ‘A“Kn“wz...+ )RR DR

k=1 \UVKn ’UJ"_UK” K<J/2 J)2<K<2] K=2J
ng 1/4 J K TL2 3/4 cn K J2 3/4 TL2 7/4
(%) Bl e D50 () -
K—1 K=2J

~ 1+log(2J)+ 1.

The cases b. and c. correspond to B. and C. and give

S <c and S1 ~ logn, respectively.

d. Let |uj, — ugn| > ¢1. Then by (3.15) and using

Win + 1 — wip S|

we get

cn AUKn cn K n2 3/4 1 n 1
51§02|3—/4|N2ﬁ(ﬁ) NWZKU?SC'

K=1 Ukn K=1

e. The estimation of Sy is analogous to the Part 4.8 in [1], whence we get that
Sy ~ logn.
So we get (2.9). O

Acknowledgement. The authors thank to the referee for the very thorough and conscien-
tious work.
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