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Abstract. In this contribution, an interpolation problem using radial
basis functions is considered. A recently proposed approach for the search
of the optimal value of the shape parameter is studied. The approach
consists of using global optimization algorithms to minimize the error
function obtained using a leave-one-out cross validation (LOOCV) tech-
nique, which is commonly used for solving machine learning problems. In
this paper, the proposed approach is studied experimentally on classes
of randomly generated test problems using the GKLS-generator, which
is widely used for testing global optimization algorithms. The experi-
mental study on classes of randomly generated test problems is very
important from the practical point of view, since results show the be-
havior of the algorithms for solving not a single test problem, but the
whole class with controllable difficulty, which is the main property of
the GKLS-generator. The obtained results are relevant, since the experi-
ments have been carried out on 200 randomized test problems, and show
that the algorithms are efficient for solving difficult real-life problems
demonstrating a promising behavior.

Keywords: Radial Basis Functions · Global Optimization Algorithms ·
Shape Parameter.
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1 Introduction

Finding an optimal value of the shape parameter is a very important problem
in the Radial Basis Functions (RBF) community. As it has been shown in [5],
the choice of the shape parameter influences both the accuracy and stability in
interpolation using RBFs. Traditionally, there are several ways to choose the
value of the shape parameter in RBF interpolation: ad hoc choices, pre-fixed
constant values (see, e.g., [6, 12]), using local optimization methods (see, e.g.,
[34]), etc. In the recent paper [4], it has been proposed to use global optimization
algorithms for finding a good value of the shape parameter. A well-known Leave-
One-Out Cross Validation technique has been used in order to introduce the
error function, which is the objective function for the optimization problem.
Well-known geometric and information univariate global optimization algorithms
have been modified in order to increase their efficiency while solving this type
of problems. Numerical experiments on several single benchmark test problems
have shown the advantages of the proposed techniques.

In this paper, the algorithms proposed in [4] are studied experimentally on
the classes of randomly generated test problems. The widely used in testing
global optimization algorithms GKLS-generator of randomized test functions is
used for this purpose. It can generate classes of 100 test functions with the same
properties and controllable difficulty, allowing one to perform a more efficient
experimental analysis of numerical algorithms. In this paper, the generator is
used for constructing the objective functions for the interpolation problems,
which are then used for constructing the respective optimization problems. It
should be also noted that the use of classes of randomized test problems allows
one not only to perform more reliable and homogeneous numerical experiments,
but to visualize the results in a more clear way with respect to numerical tables,
using, e.g., graphical representations or statistical notations.

The rest of the paper is organized as follows. In Section 2, RBF interpolation
and the respective optimization problems are stated briefly. In Section 3, nu-
merical algorithms used in this paper and performed experiments are described
briefly. Section 4 presents the obtained results. Finally, Section 5 concludes the
paper.

2 Problem Statement

2.1 Statement of the Interpolation Problem

Let us consider the following interpolation problem. Let the setXn = {x1, ..., xn},
xi ∈ R

s, i = 1, ..., n, xi 6= xj , i, j = 1, ..., n of n interpolation nodes and the
corresponding set Fn = {f(x1), . . . , f(xn)} of values of the function f : Rs → R

be given. Let If : Rs → R be the radial basis function (RBF) interpolant given
as the linear combination of RBFs of the form

If (x) =

n
∑

i=1

ciφε(||x− xi||2), x ∈ R
s, (1)
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where ci, i = 1, ..., n, are unknown real coefficients that can be found from the
interpolation conditions If (xi) = f(xi), i = 1, ..., n, || · ||2 denotes the Euclidean
norm, and φ : R≥0 → R is a strictly positive definite RBF depending on a shape

parameter ε > 0. In this paper, the Gaussian (GA) RBF is used:

φε(r) = e−ε2r2 . (2)

The Leave-one-out cross validation technique for the search of the optimal
value of the shape parameter ε can be briefly described as follows. First, for any
fixed ε and each k = 1, ..., n, the point xk and the respective value f(xk) are ex-
cluded from the sets Xn and Fn, respectively. Then, the partial RBF interpolant
is constructed using only n − 1 remaining nodes and the error of interpolation
at the point xk is calculated. It has been proved in several works (see, e.g., [24])
that this error can be also calculated without solving n interpolation problems
of dimension n− 1 as follows:

ek(ε) = f(xk)− I
[k]
f (xk) =

ck

A−1
kk

, (3)

where ck is the k−th coefficient of the full RBF interpolant If (x) from (1),

I
[k]
f (x) is the partial RBF interpolant calculated using only n − 1 remaining

nodes, and A−1
kk is the inverse diagonal element of the matrix A:

Aij = φε(||xi − xj ||2), i, j = 1, ..., n. (4)

As a consequence, the value of the shape parameter ε can be fixed in order
to minimize the error function Er(ε) that can be defined, e.g., as follows:

Er(ε) = max
k=1,...,n

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

. (5)

2.2 Statement of the Optimization Problem

In this paper, the value of the shape parameter ε is fixed by solving the following
optimization problem (see [4] for a detailed discussion): it is required to find the
point ε∗ and the corresponding value Er∗ such that

Er∗ = Er(ε∗) = minEr(ε), ε ∈ [0, εmax], (6)

where εmax is large enough (in our experiments εmax was set equal to 20).
The function Er(ε) can be multiextremal, non-differentiable and hard to

evaluate even at one value of ε, since each its computation requires to reconstruct
the interpolant (1). It is supposed that Er(ε) satisfies the Lipschitz condition
over the interval [0, εmax]:

|Er(ε1)− Er(ε2)| ≤ L|ε1 − ε2|, ε1, ε2 ∈ [0, εmax], (7)

where L, 0 < L < ∞, is the Lipschitz constant. Since the function Er(ε) can be
ill-conditioned for small ε (see, e.g., [3, 5, 7]), then the Lipcshitz constant L can
be very large.
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There exist a lot of algorithms for solving global optimization problems
(see, e.g., [1, 2, 14] for parallel optimization, [9, 13] for dimensionality reduction
schemes, [10, 11, 25] for numerical solution of real-life optimization problems, [21]
for simplicial optimization methods, [15, 35, 36] for stochastic optimization meth-
ods, [16, 17, 22, 32] for univariate Lipschitz global optimization, [23] for interval
branch-and-bound methods, etc. Among them, there can be distinguished two
groups of algorithms: nature-inspired metaheuristic algorithms (as, for instance,
genetic algorithm, firefly algorithm, particle swarm optimization, etc. (see, e.g.,
[31])) and deterministic mathematical programming algorithms (as, for instance,
geometric or information algorithms from [20, 30, 33]). Even though metaheuris-
tic algorithms are used often in practice for solving difficult multidimensional
problems, it has been shown in [18, 19, 29] that for solving ill-conditioned univari-
ate problems (6),(7), deterministic algorithms are more efficient. In particular,
in [4], it has been shown on a class of benchmarks and two real-world problems
that information global optimization algorithms can be successfully used for this
purpose. In this paper, these algorithms are studied experimentally on classes of
test problems generated by the GKLS-generator of test problems (see [8] for its
description).

The GKLS-generator of test problems is widely used in practice for testing
global optimization algorithms (see, e.g., [1, 21, 31]). It generates classes of 100
randomized multidimensional test problems with the controllable difficulty and
a full knowledge about all local and global minimizers (including their positions
and their regions of attraction). In this paper, the GKLS-generator is used to
generate two-dimensional test functions fi(x), x ∈ R

2, for the interpolation
problem (1). Then, the generated test functions are evaluated at a uniform grid
in order to generate n interpolation nodes. Two classes of test functions were
used: the “simple” and “difficult”4 two-dimensional test classes from [26], since
they are used frequently for testing global optimization algorithms. In Figure 1,
an example of the GKLS-type test function is presented. The behavior of this
function is typical for the functions from both the classes generated by the
GKLS-generator.

3 Algorithms and Organization of Experiments

For each test problem, 128 interpolation nodes are generated on a uniform grid
in the square [−1, 1]× [−1, 1]. Hereinafter, the Information global optimization
algorithm with Optimistic Local Improvement LOOCV-GOOI from [4] is used
for solving (6) as one of the best global optimization algorithms. This algorithm
is a locally-biased version of the information global optimization algorithm with
“Maximum-Additive” local tuning and optimistic local improvement from [4].

4 Traditionally, terms “simple” and “difficult” are related to the difficulty of locating
the global minimizer and are used for testing global optimization algorithms and not
interpolation methods. In this paper, these terms are used only to distinguish these
two classes and not to indicate the difficulty of the interpolation problem.
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Fig. 1. An example of the GKLS-type test function.

In particular, the main advantage of this method with respect to the original in-
formation global optimization algorithm from [32] consists of the ill-conditioned
region refinement and restriction of the search interval. Since it is well known that
for small values of the parameter ε, the function Er(ε) becomes ill-conditioned
(see, e.g., [3]), then it could be reasonable to study better the region with the
small values of ε. For this purpose, the algorithm is launched first on the whole
search interval (the Preliminary Search step). Then, the global search is per-
formed on the first subinterval (the Ill-Conditioned Region Refinement step).
Finally, after the preliminary search and the ill-conditioned region refinement,
the search interval is restricted in a neighborhood of the best obtained values
of ε. After that, the search is continued over the restricted interval (the Main
Search step). The standard exhaustive LOOCV method using uniform grids of
the values of ε as well as the local minimization algorithm LOOCV-min im-
plemented as MATLAB’s procedure fminbnd from [4] are compared with the
LOOCV-GOOI algorithm.

Parameters of the algorithms were set following [4]. In particular, the value
δ = 10−3 was used for the stopping condition in LOOCV-GOOI, the reliabil-
ity parameter r was set to r = 12 for the preliminary search, r = 8 for the
ill-conditioned region refinement, and r = 4 for the main search. The local op-
timization algorithm LOOCV-min uses only the parameter tolX, which was set
to 10−15 in our experiments in order to achieve the machine precision, for the
stopping condition. Since, in [4] the LOOCV method using a uniform grid with
500 nodes has been used, but both the local and global optimization algorithms
LOOCV-min and LOOCV-GOOI have not generated more than 100 trials, then
it can be reasonable to study the LOOCV method with a larger stepsize. Thus,
the LOOCV method with the stepsizes h1 = εmax/99 and h2 = εmax/499 (called
LOOCV-100 and LOOCV-500, respectively) are compared with the LOOCV-min
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and LOOCV-GOOI algorithms (the algorithm LOOCV-500 corresponds to the
standard LOOCV method in [4]).

The algorithms have been coded and compiled in MATLAB (version R2016b)
on a DELL Inspiron 17 5000 Series machine with 8 GB RAM and Processor Intel
Core i7-8550U under the MS Windows 10 operating system.

Each algorithm has been launched on each test problem from both the classes.
First, the execution times have been calculated for each algorithm on each test
class as follows. The execution time T i

total, i = 1, ..., 100, of each algorithm has
been measured for each test problem of the class. Then, the average execution
time T avg

total over 100 test problems has been calculated:

T avg
total =

1

100

100
∑

i=1

T i
total, (8)

as well as its standard deviation StDev(Ttotal):

StDev(Ttotal) =

√

√

√

√

1

99

100
∑

i=1

(T i
total − T avg

total)
2, (9)

the smallest and the largest values Tmin
total and Tmax

total :

Tmin
total = min{T i

total, i = 1, ..., 100}, Tmax
total = max{T i

total, i = 1, ..., 100}. (10)

Then, for each test problem, the average execution time per trial T i
trial has

been calculated by division of the total execution time T i
total by the number of

trials N i
it executed by the algorithm for finding the shape parameter: T i

trial =
T i
total/N

i
it. Finally, the average value, the standard deviation, the smallest and

the largest values have been calculated for T i
trial, as well.

Then, the average value, the standard deviation, the smallest and the largest
values have been calculated in the same way for the best found values ε∗ and
Er(ε∗) from (6) and for the number of performed trials (i.e., the executed evalu-
ations of the function Er(ε) ad different values of ε) for each algorithm for each
test class.

Finally, since all test problems of the same GKLS-class differ only in pa-
rameters fixed randomly (see [8, 28]), then the error obtained by each algorithm
on different test problems from the same class can be considered as a random
variable Er∗. So, for each algorithm on each class of test problems, the linear
regression model has been constructed for the best obtained error:

Er = β0 + β1 ×X, (11)

where X is the number of the function from the class and Er is the obtained
error using the value ε∗ found by each algorithm for the test problem number
X. The coefficients β0 and β1 have been estimated using the standard Ordinary
Least Squares estimator:

β1 =

∑100
i=1(Xi −X)(Er∗i − Er∗)

∑100
i=1(Xi −X)2

, (12)
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β0 = Er∗ − β1X, (13)

where Er∗ is the average error from the Tables 3-4:

Er∗ =
1

100

100
∑

i=1

Er∗i , and X =
1

100

100
∑

i=1

Xi =
1 + 100

2
= 50.5. (14)

4 Results of Numerical Experiments

Results of the experiments are presented in Tables 1–4. Tables 1-2 show the
execution times for all the methods over both the classes of test problems. For
each method, the average value, the standard deviation, the smallest and the
largest values over 100 test problems calculated following (8)–(10) are shown
for the total execution time Ttotal and for the average execution time per trial
Ttrial (i.e., the total execution time divided by the number of trials, which is
equal to 100 and 500 for the methods LOOCV-100 and LOOCV-500). As it can
be seen from Tables 1-2, the execution times for the standard LOOCV method

Table 1. Execution times for “simple” class. For each method, the average, the stan-
dard deviation, the smallest and the largest values over 100 test problems are shown.

Method Average StDev Min Max

LOOCV-100
Ttotal 0.259532 0.0148 0.21462 0.29333
Ttrial 0.0025955 0.000148 0.00215 0.00293

LOOCV-500
Ttotal 1.6185886 0.0624 1.49634 1.77206
Ttrial 0.0032371 0.000124 0.00299 0.00354

LOOCV-min
Ttotal 0.0945058 0.0150 0.03967 0.15917
Ttrial 0.0024746 0.000234 0.00205 0.00408

LOOCV-GOOI
Ttotal 0.1330198 0.0211 0.07415 0.16174
Ttrial 0.0023819 0.000239 0.00181 0.00301

Table 2. Execution times for “Difficult” class. For each method, the average, the
standard deviation, the smallest and the largest values over 100 test problems are
shown.

Method Average StDev Min Max

LOOCV-100
Ttotal 0.2766418 0.0165 0.22933 0.33023
Ttrial 0.0027662 0.000165 0.00229 0.0033

LOOCV-500
Ttotal 1.7100525 0.0975 1.51752 2.13641
Ttrial 0.00342 0.000195 0.00304 0.00427

LOOCV-min
Ttotal 0.0995276 0.0147 0.04636 0.12692
Ttrial 0.002605 0.000196 0.00222 0.00331

LOOCV-GOOI
Ttotal 0.1306838 0.02652 0.07524 0.19115
Ttrial 0.002447 0.000287 0.00174 0.0033
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both using 100 and 500 trials is larger, than the execution times of the local and
global optimization methods LOOCV-min and LOOCV-GOOI. Moreover, the
average execution time is quite similar for the LOOCV-min and LOOCV-GOOI
methods.

Then, Tables 3–4 show the results obtained by each optimization algorithm
on both the classes of test problems. In each table, the rows ε∗ show the average
best obtained value of the shape parameter ε by each method over all 100 test
functions, its standard deviation over 100 test functions, its smallest and largest
values, respectively. The rows Er∗ show the average error using the best obtained
values of the shape parameter ε, its standard deviation, the smallest and the
largest values, respectively, over all 100 test functions. Finally, the rows Nit show
the average number of executed trials (or evaluations of the error at different
values of ε), its standard deviation, the smallest and the largest values over all
100 test functions for the methods LOOCV-min and LOOCV-GOOI.

Table 3. Results on the “simple” class. For each method, the average value, the stan-
dard deviation, the smallest and the largest values over 100 functions are shown.

Method Average StDev Min Max

LOOCV-100
ε
∗ 3.5111076 1.298 0.20202 4.84848

Er
∗ 1.74588915 0.834 0.592631 4.71696

LOOCV-500
ε
∗ 3.0989983 1.620 0.04008 4.92986

Er
∗ 1.62075683 0.781 0.488258 4.63249

LOOCV-min
Nit 38.32 5.412 15 43
ε
∗ 3.8770097 0.473 2.79051 4.9319

Er
∗ 1.84643575 0.957 0.543417 4.59887

LOOCV-GOOI
Nit 55.58 5.113 41 63
ε
∗ 3.3596371 1.365 0.165 4.9317

Er
∗ 1.66772142 0.825 0.543426 4.59973

Table 4. Results on the “difficult” class. For each method, the average value, the
standard deviation, the smallest and the largest values over 100 functions are shown.

Method Average StDev Min Max

LOOCV-100
ε
∗ 3.3010079 1.760 0.20202 8.68687

Er
∗ 1.72870075 0.896 0.300373 4.71778

LOOCV-500
ε
∗ 2.4761517 1.891 0.08016 5.81162

Er
∗ 1.46907157 0.694 0.289021 3.80709

LOOCV-min
Nit 38.3 5.363 16 43
ε
∗ 3.9942203 0.816 2.78239 8.67908

Er
∗ 1.90784202 0.954 0.286915 4.57326

LOOCV-GOOI
Nit 53 6.404 38 65
ε
∗ 2.8477346 1.850 0.08928 6.61288

Er
∗ 1.56127502 0.733 0.286961 4.17587
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Fig. 2. The error functions for the first test problem from the “Simple” (top) and
“Difficult” (bottom) classes used in the experiments. The best found values by LOOCV-
100, LOOCV-500, LOOCV-min, and LOOCV-GOOI are indicated as “o”, “x”, “*”,
and “+”, respectively.
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As it can be seen from Tables 3-4, the best average error was obtained by
the method LOOCV-500 for both the classes of test problems, while the average
error obtained by the method LOOCV-GOOI is better, than the average error
obtained by the methods LOOCV-100 and LOOCV-min. However, the method
LOOCV-500 has executed 500 trials in order to obtain better error, while the
method LOOCV-GOOI has executed less than 65 trials for both the classes (see
the column “Max” and the rows “Nit”). In average, the algorithm LOOCV-
GOOI executed almost 55 trials for both the classes, which is almost 9 times
smaller, than the number of trials of the method LOOCV-500. Moreover, the
average and minimum values of ε for LOOCV-min are larger than those for
LOOCV-100, LOOCV-500 and LOOCV-GOOI, while its standard deviation is
smaller, which means that the local optimization algorithm is not able to study
the ill-conditioned region with small values of ε. It stops very frequently on the
locally optimal values of ε, while the smallest obtained value of ε for LOOCV-
GOOI is smaller, than the value for LOOCV-100, which means that the algo-
rithm LOOCV-GOOI studies the ill-conditioned region even better, than the
“greedy” method LOOCV-100. In Figure 2, an example of the error functions
(6) is presented for the first test problem from both the “Simple” and “Difficult”
classes.

Finally, Figure 3 shows the distribution of the best obtained values Er(ε∗)
and the regression lines (11) for each test problem by each algorithm. As it can
be seen from Figure 3, the lowest regression line corresponds to the method
LOOCV-500 for both the classes, while the regression lines of the methods
LOOCV-100 and LOOCV-min are higher than the regression function of the
method LOOCV-GOOI. It can be also seen from Figure 3 that the error ob-
tained by the LOOCV-GOOI method is the best one in several cases (see, e.g.,
the obtained errors for the functions number 79 and 100 of the “simple” class).
The error obtained by the global optimization method LOOCV-GOOI is always
not worse than the error obtained by the local optimization method, but it is
better in a lot of cases.

5 Conclusion

It has been shown that global optimization methods can be successfully used
for finding a good value of the shape parameter in radial basis functions. The
obtained error in this case is better in average, than the error obtained by the
standard LOOCV method using a uniform grid with a small size of the grid
(using, e.g., 100 evaluations). It has been also shown that even a grid with
500 nodes can be not sufficient for guaranteeing the best value of ε, since in
several cases the global optimization method has found a better value executing
in average always no more than 55 evaluations. Finally, it has been shown that
the traditionally used local optimization algorithm LOOCV-min is not able to
study the ill-conditioned region with small values of the shape parameter, giving
a locally optimal solution, which is worse than the globally optimal one found
by the other methods. It should be also noted that the number of trials executed
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by the global optimization method is larger than the number of trials executed
by the local optimization method, but the difference is small (almost 15 trials in
average for both the classes) and not meaningful since it is related to the study
of the ill-conditioned region and, in practice, the number of trials for solving
ill-conditioned optimization problems is always much higher (see, e.g., [27]).

To conclude, the presented global optimization algorithm has shown a promis-
ing performance and can be successfully used in practice for finding good values
of the shape parameter in radial basis functions interpolation.
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