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Mean-variance dynamic optimality

for DC pension schemes∗

Francesco Menoncin† Elena Vigna‡

March 11, 2020

Abstract

In this paper we deal with the mean-variance portfolio selection for a defined contri-

bution (DC) pension fund. Since this problem is time-inconsistent, a number of papers

have proposed to tackle it through either a Nash equilibrium approach or a precom-

mitment strategy. Here, we adopt the dynamically optimal approach introduced by

Pedersen and Peskir (2017), and we compare the dynamically optimal strategy with the

precommitment one. While it is well known that the precommitment strategy is the

solution to a target-based problem, we show that the same holds for the dynamically

optimal strategy. In particular, the precommitment strategy has a constant target,

while the dynamically optimal strategy has a time-varying target whose expectation

coincides with the constant target of the previous case. We also show that the expected

wealth is the same under the two approaches. Numerical applications show that (i)

the median of the risky asset’s share is lower for the precommitment than the dynam-

ically optimal strategy; (ii) the amount of money invested in the precommitment risky

portfolio is highly more volatile than in the dynamically optimal case; (iii) the vari-

ance of wealth is lower with the precommitment strategy than with the dynamically
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optimal one; (iv) under scenarios of extreme market returns (either good or bad), the

dynamically optimal strategy allows a more effective reaction because of the continuous

adjustment of the final target.

Keywords. Time inconsistency, dynamic programming, martingale approach, pre-

commitment approach, mean-variance portfolio selection.

JEL classification: C61, D81, G11.

1 Introduction and motivation

The risk management of defined contribution (DC) pension schemes is gaining increasing

importance in industrialized countries. The population aging is threatening the solvency

of Pay As You Go public pension systems, and the largely adopted solution is to enhance

the employment-based occupational pension schemes, with an overall preference towards

defined contribution schemes rather than defined benefit schemes. The search of the most

appropriate portfolio strategy in the accumulation phase is the subject of extensive research

in the actuarial and financial literature.

Two common optimization criteria are the maximization of the expected utility of the

fund’s wealth at retirement, and the mean-variance approach. In this paper, we focus on

the latter. An important reason for preferring the mean-variance criterion over the expected

utility approach is that it transforms the difficult problem of selecting the individual’s risk-

aversion coefficient of a generic utility function into the easier task of choosing an appropriate

final target (see Vigna; 2014). Thus, in the context of DC pension funds the mean-variance

approach is more user-friendly and of larger applicability.

It is well known that the mean-variance portfolio selection is a time-inconsistent prob-

lem due to the presence of the variance of final wealth in the performance criterion (Zhou

and Li; 2000 and Basak and Chabakauri; 2010). The problem of time-inconsistency is com-

monly approached in three ways: (i) the precommitment approach (Strotz; 1956), (ii) the

game-theoretical or Nash equilibrium approach (e.g. Basak and Chabakauri; 2010), and (iii)

the dynamically optimal approach introduced by Pedersen and Peskir (2017), which is a
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continuous-time version of the so-called naive approach described by Pollak (1968).1

The first two approaches have been widely investigated in the portfolio selection problem

for DC pension schemes, while the third one has not been adopted in this context. However,

the following short review of pros and cons of these two approaches suggests that none of

the existing approaches can be considered “the best one” under all viewpoints, and this

conclusion stresses the need to investigate alternative investment strategies. Many of the

below mentioned papers go in that direction.

Cui et al. (2017) emphasize that the precommitment approach pursues global objectives,

while the Nash equilibrium strategy cares about local interests, and they propose a third self-

coordination policy that aims at balancing global interest and local interests of the decision-

maker. Cong and Oosterlee (2016) show that the precommitment strategy is consistent

with an investment target but not with a risk attitude, and vice versa the time-consistent

strategy is consistent to a risk attitude but not to an investment target, and they add that “it

is hard to say whether being consistent with a target or being consistent with a risk aversion

attitude is best.” Two papers that attack with a different angle the time inconsistency of the

precommitment strategy are Cui et al. (2012) and Shi et al. (2017), who propose a weaker

notion of time consistency (neither related to the game theoretical nor to the dynamically

optimal approach) and find that, while the precommitment strategy in the continuous time

in the presence of a pure diffusive market satisfies it, the same is not true for the multi-period

time or in a jump diffusion market; they propose semi-self-financing revised mean-variance

strategies that beat the precommitment one.

It is worth noting that some limits of the time-consistent policy of the game theoretical

approach have been highlighted too. According to Wang and Forsyth (2011), the time-

consistent policy can be found by applying time consistency constraints on the precommit-

ment strategy, and yields therefore an inferior efficient frontier. Another important drawback

of the game theoretical approach is in Bensoussan et al. (2019): they analyze the effect of

constraints on the value function of both precommitment and game theoretical approaches,

and find the unexpected result that for game theoretical approach the presence of constraints

can improve the payoff, while for the precommitment approach this paradox does not occur.

1In the remaining of the paper, the third approach (and the corresponding investment strategy) will be
either called dynamically optimal, or dynamically optimal naive, or simply naive.
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Since the risk management problem in a DC pension scheme is a crucial topic in the

agenda of welfare systems of many countries, the relevance of investigating strategies alter-

native to precommitment and Nash equilibrium is evident. In particular, in the existing

literature the third approach mentioned above, the naive strategy, has never been adopted

in DC pension funds. This paper fills this gap in the literature by adopting the dynamically

optimal naive approach to solve a mean-variance portfolio selection problem in a DC pension

scheme. By so doing, this paper also provides actuaries with useful insight regarding the

application of the naive and the precommitment investment strategies to DC pension funds.

A preview of our results is the following. We find that, similarly to the precommitment

approach, also the naive one is equivalent to a target-based approach. Differently from the

precommitment approach, the target of the naive strategy is stochastic and moves over time

in response to renovated circumstances. In the simple Black and Scholes financial settings

with constant parameters we prove that the expectation of the stochastic target associated

with the naive strategy coincides with the constant target of the precommitment strategy.

In the same settings we also prove that the expected wealth of precommitment and naive

strategies coincide. Numerical simulations show that: (i) the median of the risky asset’s share

is lower for the precommitment than the dynamically optimal strategy; (ii) the amount of

money invested in the precommitment risky portfolio is highly more volatile than in the naive

case; (iii) the variance of wealth is lower with the precommitment strategy than with the

naive one; and (iv) because of the continuous adjustment of the final target, under scenarios

of extreme market returns both in the good and in the bad direction, the naive strategy

allows a more effective reaction: in a bear market phase it provides a better hedge against

losses, while in a bull market phase it allows to exploit the high returns.

The remainder of the paper is structured as follows. In Section 2 we define the financial

market. In Section 3 we set the mean-variance problem. In Section 4 we present and compare

the precommitment and the dynamically optimal approaches. In Section 5 we derive the

optimal portfolios for the two approaches, while in Section 6 we provide further theoretical

results about their comparison. Section 7 is devoted to numerical simulations and Section 8

concludes.
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2 The model

At time t0 ≥ 0 a worker joins a DC pension scheme whose initial fund is x0 ≥ 0. We assume

that from t0 till T > t0 the worker pays periodic contributions into the fund as a percentage

of his salary, and the retirement T is fixed. Therefore, neither the contribution rate nor the

retirement date are control variables.2 The plan member decides the asset allocation at any

time t ∈ [t0, T ].

We present a general model, in which the uncertainty on an arbitrage free and complete

financial market is driven by a set of s stochastic state variables. In the market one riskless

asset and n risky assets are listed. As a particular case, we also present a framework where

all the state variables are constant and there is only one risky asset following a geometric

Brownian motion (so-called Black and Scholes model, Björk; 1998).

2.1 General model

The financial market is arbitrage free, complete, frictionless, and continuously open at any

time t ∈ [t0, T ]. The risk is described by a set of n independent Brownian motions W (t),

defined on the complete filtered probability space {Ω,F (t) ,P}, where {F (t)}t∈[t0,T ] is the

filtration generated by the Brownian motions and P is the real-world probability measure.

The financial market is described by the following variables:

• s state variables z (t) (with z (t0) = z0 ∈ Rs known) whose values solve the matrix

stochastic differential equation (SDE)

dz (t)
s×1

= µz (t, z)
s×1

dt+ Ω (t, z)
s×n

dW (t)
n×1

, (1)

• one riskless asset whose price G (t) solves the (ordinary) differential equation

dG (t) = G (t) r (t, z) dt,

where r (t, z) is the spot instantaneously riskless interest rate;

2In reality, to some extent the retirement time and in some cases also the contribution rate can be chosen
by the worker. However, in this work we focus on the asset allocation only.
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• n risky assets whose prices S (t) (with S (t0) = s0 ∈ Rn known) solve the matrix

stochastic differential equation

dS (t)
n×1

= IS
n×n

[
µ (t, z)
n×1

dt+ Σ (t, z)
n×n

dW (t)
n×1

]
, (2)

where IS is the n× n square diagonal matrix gathering the prices S1, S2, ..., Sn.

The drift and diffusion terms in (1) and (2) are assumed to satisfy the usual conditions for

the existence and uniqueness of a strong solution to the SDEs.

The absence of arbitrage and completeness imply the existence of a unique risk-neutral

equivalent martingale measure Q. This also implies the existence and uniqueness of a market

prices of risk ξ (t, z) ∈ Rn which solves the linear system Σ (t, z) ξ (t, z) = µ (t, z)− r (t, z) 1,

where 1 is a vector of 1’s (i.e. ∃Σ (t, z)−1). Assuming that ξ (t, z) satisfies the Novikov’s

condition, the Girsanov theorem applies and the Wiener processes dW (t) can be rewritten

under Q as follows:

dWQ (t) = ξ (t, z) dt+ dW (t) . (3)

The Radon-Nikodym derivative is (the prime denotes transposition):

m (t0, t) = e
− 1

2

� t
t0
ξ(u,z)′ξ(u,z)du−

� t
t0
ξ(u,z)′dW (u) ⇐⇒

dm (t0, t) = −m (t0, t) ξ (t, z)′ dW (t) ,

m (t0, t0) = 1.

Thus, given any t−measurable random variable Ξ (t), the following relationship holds

true

EQ
t0 [Ξ (t)] = Et0 [Ξ (t) ·m (t0, t)] , (4)

where EQ
t0 [•] and Et0 [•] are the expected values conditioned on F (t0) and computed under

the risk neutral or the real world probabilities, respectively.

Remark 1. Throughout the paper, the notation Et0 [•] denotes E [•|Ft0 ] and is a compact

version of the more complete notation Et0,z0,x0 [•] .
Let B (t, T ) be the price at t of a zero-coupon bond expiring in T , and σB (t, T ) the

(vector) diffusion term of dB(t,T )
B(t,T )

. It is well known that the so-called “forward probability
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measure” (FT ) can be defined as follows

dWQ (t) = σB (t, T ) dt+ dW FT (t) , (5)

and, given any T−measurable random variable Ξ (T ), we can write

EQ
t

[
Ξ (T ) e−

� T
t r(u,z)du

]
= EFT

t [Ξ (T )]EQ
t

[
e−

� T
t r(u,z)du

]
= EFT

t [Ξ (T )]B (t, T ) , (6)

where the new numéraire of the economy is B (t, T ) (Björk; 1998). FT is useful for simplifying

the role of contributions in the evolution of the pension fund’s wealth.

Remark 2. The forward probability measure is needed to split the expected value of a product

into the product of two expected values, as in (6). In this way, also the derivative of the

expected value can be written in a much simpler way.

A stochastic contribution c (t, z) > 0 is continuously paid by the member into the fund’s

wealth X (t). If w (t) ∈ Rn contains the monetary amount invested at time t in each risky

asset (i.e. a portfolio) and satisfies the usual “admissible” properties (Karatzas and Shreve;

1998), the wealth dynamics are given by the following SDE:

dX (t) =
(
X (t) r (t, z) + c (t, z) + w (t)′ (µ (t, z)− r (t, z) 1)

)
dt+ w (t)′Σ (t, z) dW (t) . (7)

2.2 Black and Scholes model, constant salary

Our general model collapses into the Black and Scholes framework if we assume µz = 0

and Ω = 0 (where 0 is a matrix/vector of zeros), i.e. all the state variables are constant.

Accordingly, both the interest rate and the contributions are constant and positive: r ≥ 0,

c ≥ 0. Furthermore, in the financial market, we have n = 1 and both µ and Σ = σ are

constant. Thus, we can write

dG (t) = G (t) rdt,

dS (t) = µS (t) dt+ σS (t) dW (t) ,
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and the wealth dynamics is accordingly

dX (t) = (X (t) r + c+ w (t) (µ− r)) dt+ w (t)σdW (t) . (8)

3 The mean-variance problem

At time t0 with initial state variables z0 and initial wealth x0 the plan member wants to

maximize the expected final wealth at retirement, adjusted by the wealth variance that can

be interpreted like a risk measure. Specifically, he wants to solve the following mean-variance

problem:3

[
PMV
t0,z0,x0

]
sup
w
JMV (t0, z0, x0, w) = sup

w
{Et0 [X (T )]− αVt0 [X (T )]} , (9)

where the optimization is done over some set of admissible controls, and α > 0 is a measure

of the agent’s risk aversion.

It is well known (e.g. Zhou and Li; 2000) that it is not possible to solve the mean-

variance problem
[
PMV
t0,z0,x0

]
with dynamic programming, because of the presence of a non-

linear function of expected final wealth in the performance criterion (Björk et al.; 2017).

Thus, according to the existing literature, the problem is said to be time-inconsistent.

There are three possible ways to tackle this time-inconsistency: (i) a precommitment

approach; (ii) a game theoretical approach; (iii) a dynamically optimal or naive approach.

The first gives raise to a time-inconsistent policy, while the last two approaches lead to

time-consistent policies.

In the current literature on defined contribution pension schemes, only the first and

the second approaches have been thoroughly investigated, see, among others, He and Liang

(2013), Yao et al. (2013), Yao et al. (2014), Menoncin and Vigna (2017), Guan and Liang

(2015) and Wu et al. (2015). Instead, the third one has neither been adopted nor analyzed.

In this paper we fill this gap of the literature. In particular, we investigate the adoption

of the dynamically optimal naive approach in a defined contribution pension scheme and we

3We use Vt0 [•] as a short notation for Vt0,z0,x0
[•], similarly to what we do for the expectation, see Remark

1.

8



make a comparison with the precommitment approach.

4 The precommitment and the dynamically optimal

naive approaches

4.1 Precommitment approach

Given the initial point (t0, z0, x0), the so-called precommitment strategy that solves the mean-

variance problem
[
PMV
t0,z0,x0

]
in (9) is the control plan ŵ that maximizes just JMV (t0, z0, x0, w).

More formally, we can write what follows.

Definition 1. Given the mean-variance problem (9), if there exists a strategy ŵt0,z0,z0 (t, z, x),

with (t, z, x) ∈ [t0, T ]× Rs × R, that maximizes JMV (t0, z0, x0, w), i.e., a control map

ŵt0,z0,x0 : [t0, T ]× Rs × R→ Rn, (10)

such that

JMV (t0, z0, x0, ŵt0,z0,x0) = sup
w
JMV (t0, z0, x0, w) ,

then the strategy ŵt0,z0,x0 (t, z, x) for (t, z, x) ∈ [t0, T ] × Rs × R is called precommitment

strategy.

The precommitment strategy for
[
PMV
t0,z0,x0

]
in both models of Sections 2.1 and 2.2 exists

and is known in closed form (Vigna; 2014, and Menoncin and Vigna; 2017).

4.2 Dynamically optimal or naive approach

The dynamically optimal approach introduced by Pedersen and Peskir (2017) is the continuous-

time version of the naive approach described by Pollak (1968). This approach can be easily

defined from the precommitment approach. We illustrate the construction of the dynamically

optimal strategy for the mean-variance problem
[
PMV
t0,z0,x0

]
in three steps.
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Step 1. Assume that for the initial point (t0, z0, x0) there exists the precommitment

strategy

ŵt0,z0,x0 : [t0, T ]× Rs × R→ Rn (11)

that maximizes the criterion JMV (t0, z0, x0, w).

Step 2. Define the new control map

w̃ : [t0, T ]× Rs × R→ Rn (12)

as follows

w̃ (t, z, x) := ŵt,z,x (t, z, x) ∀ (t, z, x) ∈ [t0, T ]× Rs × R, (13)

where the right hand side of (13) is obtained by replacing (t0, z0, x0) with (t, z, x) in the

function (11).

Step 3. The strategy w̃ (t, z, x) for (t, z, x) ∈ [t0, T ]× Rs × R given by (13) is called the

dynamically optimal or naive strategy.

To put it in simple terms, the dynamically optimal strategy is obtained by replacing

(t0, z0, x0) with (t, z, x) in the precommitment strategy. Therefore, the calculation of the

dynamically optimal naive strategy for the models of Sections 2.1 and 2.2 is straightforward.

4.3 Link between the two approaches

There is a strict link between the dynamically optimal naive and the precommitment ap-

proaches:4

• At time t0 with wealth x0 the dynamically optimal naive investor and the precommitted

investor play the same strategy ŵt0,z0,x0 (t0, z0, x0), and they face the same problem[
PMV
t0,z0,x0

]
.

4To improve the readability and the interpretation, in what follows we will sometimes refer only to wealth
(that is the only controlled state variable), and will ignore the remaining state variables. In the special case
of the Black and Scholes market, where there are no state variables other than wealth, this turns out to be
correct.
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• When time passes by, at time t ∈ ]t0, T ] with wealth x the naive investor faces problem[
PMV
t,z,x

]
and solves it with the precommitment approach at time t, as if his initial point

were (t, z, x).

• In fact, the naive investor plays ŵt,z,x (t, z, x), that would be the initial control played

by an investor who, starting at time t with wealth x, wants to solve Problem
[
PMV
t,z,x

]
over the time horizon [t, T ] with the precommitment approach.

• Then, the intuition is that the dynamically optimal investor can be seen as the contin-

uous reincarnation of the precommitted investor.

• Such an investor is called eitherdynamically optimal by Pedersen and Peskir (2017) or

naive by Pollak (1968).

4.4 A target-based approach

Both strategies that we have presented in the previous sections, can be interpreted as two

particular cases of target-based problems. Indeed, it is possible to prove (Zhou and Li; 2000,

and Vigna; 2014) that a target γt0,z0,x0 ∈ R exists such that at any time t ∈ [t0, T ] with

wealth x the precommitted investor plays the strategy that minimizes the following criterion

Et
[
(X (T )− γt0,z0,x0)

2] .
In other words, the precommitted investor plays the strategy that makes the final wealth

as close as possible to the target γt0,z0,x0 . In this case the target is constant over time.

Instead, it can be proved that the naive investor at time t with wealth x plays the strategy

that minimizes the following criterion

Et
[
(X (T )− γt,z,x)2] .

In other words, the dynamically optimal naive investor plays the strategy that makes the

final wealth as close as possible to the target γt,z,x. Nevertheless, in this case the target is

time-varying and it also depends on the wealth x achieved at time t (i.e. γt,z,x 6= γt0,z0,x0).

In the next section we show the value of the target for the two approaches.
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5 The precommitment and the naive portfolios

Since the naive portfolio is obtained from the precommitment one, we first present the

precommitment strategy.

5.1 The precommitment portfolio

After Zhou and Li (2000), it is known that the mean-variance problem (9) can be recast as

a target problem in the following form

inf
w
J (t0, z0, x0, w) = inf

w
Et0
[

1

2
(X (T )− γt0,z0,x0)

2

]
, (14)

in which

γt0,z0,x0 =
x0 +

� T
t0
EFs
t0 [c (s, z)]B (t0, s) ds

B (t0, T )
+

1

2α

Et0
[
e2Φ(t0,T )

]
B (t0, T )2 , (15)

Φ (t0, T ) = −
� T

t0

r (u, z) du− 1

2

� T

t0

ξ (u, z)′ ξ (u, z) du−
� T

t0

ξ (u, z)′ dW (u) . (16)

The form of the target is worth a comment. The first term of (15) coincides with the

forward price of a floating versus fix swap. Let us assume that the fund wants to exchange

its future stochastic cash flows till time T with a fixed amount xT0 of money to be paid in

T . This forward price xT0 is a kind of certain equivalent for the whole cash flows of the fund,

and, with a light abuse of terminology, we will call it certain equivalent in T , or T–certain

equivalent. The value of xT0 must satisfy the following pricing equation:

0 = EQ
t0

[
xT0 e

−
� T
t0
r(u,z)du −

(
x0 +

� T

t0

c (s, z) e
−

� s
t0
r(u,z)du

ds

)]
. (17)

Through this contract, the fund pays its initial wealth x0 and all the subsequent payments

c (t, z) to its counterpart, and, in exchange, it receives, at maturity T , a constant amount of

money xT0 that solves (17). If we simplify this equation, the final result is

xT0 =
x0 +

� T
t0
EFs
t0 [c (s, z)]B (t0, s) ds

B (t0, T )
. (18)
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The target γt0,z0,x0 is greater than the T–certain equivalent, in fact:

γt0,z0,x0 = xT0 +
1

2α

Et0
[
e2Φ(t0,T )

]
B (t0, T )2 ,

and the amount that is added to xT0 for obtaining the target is a function of the risk aversion

α. If the risk aversion is very high, then the fund will try to stay as close as possible to the

T–certain equivalent, while if α is sufficiently low, the target will depart substantially from

the T–certain equivalent.

In the Black and Scholes case, with c and r constant, the T–certain equivalent becomes

xT0 =
x0 + c

� T
t0
e−r(s−t0)ds

e−r(T−t0)
= x0e

r(T−t0) + c
er(T−t0) − 1

r
,

which coincides with the compounded value at the riskless rate r of initial wealth and con-

tributions (i.e., the amount of money that could be obtained at time T by investing initial

wealth x0 and future contributions in the riskless asset). In the same framework, the target

is

γt0,x0 = x0e
r(T−t0) + c

er(T−t0) − 1

r
+

1

2α
eξ

2(T−t0), (19)

where ξ = µ−r
σ

is the Sharpe ratio of the risky asset.

The solution to problem (14) is provided in the following proposition.

Proposition 1. The optimal strategy of Problem (14), that coincides with the precommit-

ment solution to Problem (9), is

ŵt0,z0,x0 (t, z, x) = B (t, T )
(
γt0,z0,x0 − xTt

)
(Σ′)

−1
ξ (20)

+ (Σ′)
−1

Ω′
∂
(
B (t, T )

(
γt0,z0,x0 − xTt

))
∂z (t)

−B (t, T )
(
γt0,z0,x0 − xTt

)
(Σ′)

−1
Ω′
∂ lnEt

[
e2Φ(t,T )

]
∂z (t)
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where xTt is the T–certain equivalent at time t:

xTt =
x+

� T
t
EFs
t [c (s, z)]B (t, s) ds

B (t, T )
(21)

and γt0,z0,x0 and Φ (t0, T ) are given in (15) and (16), respectively.

Proof. This result has been proven previously by Menoncin and Vigna (2017). For the

reader’s convenience, we provide the proof here in the Appendix (A).

The optimal portfolio is formed by three components.

1. A speculative component proportional to the ratio between the market price of risk ξ

and the diffusion matrix Σ. This component also contains the distance between the

initial target γt0,z0,x0 and the T–certain equivalent (21) at time t.

2. A hedging component that hedges the fund against the stochastic changes in the T–

certain equivalent xTt . Actually, xTt is a stochastic variable since it is a conditional

expected value. This portfolio component is needed because the state variables are

stochastic (i.e. Ω 6= 0) and is proportional to the correlation between the asset prices

and the state variables. In fact, the matrix (Σ′)−1 Ω′ can be written as

(Σ′)
−1

Ω′ = (Σ′)
−1

Σ−1ΣΩ′ = (ΣΣ′)
−1

ΣΩ′,

where (ΣΣ′)−1 is the inverse of the variance covariance matrix, while ΣΩ′ is the matrix

that contains the covariances between the asset prices and the state variables. Thus,

the term (Σ′)−1 Ω′ can be interpreted as a kind of beta ratio between the market and

the state variables.

3. The last hedging component is again proportional to the distance between the initial

target γt0,z0,x0 and the T–certain equivalent xTt . Nevertheless, this time, the portfolio

component hedges against the stochastic changes in the discount factor Et
[
e2Φ(t,T )

]
. In

particular, the portfolio contains the semi-elasticity of this discount factor with respect

to the state variables.
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Black and Scholes model

The precommitment strategy for the Black and Scholes model of Section 2.2 is5

ŵt0,x0 (t, x) =
ξ

σ

[
γt0,x0 e

−r(T−t) − x− c1− e−r(T−t)

r

]
, (22)

in which γt0,x0 is given by (19).

Note that in the Black and Scholes case, the hedging portfolio components do not play

any role, since all the state variables (r and c) are constant (i.e. Ω = 0).

5.2 Dynamically optimal naive approach

The dynamically optimal naive strategy for the general model of Section 2.1 is obtained by

substituting γt0,z0,x0 with γt,z,x. In particular, given the value of γt0,z0,x0 in (15), we can write

γt,z,x =
1

2α

Et
[
e2Φ(t,T )

]
B (t, T )2 +

x+
� T
t
EFs
t [c (s, z)]B (t, s) ds

B (t, T )
,

or

γt,z,x = xTt +
1

2α

Et
[
e2Φ(t,T )

]
B (t, T )2 ,

and, accordingly, the dynamically optimal naive strategy is

w̃ (t, z, x) =
1

2α

Et
[
e2Φ(t,T )

]
B (t, T )

(Σ′)
−1
ξ (23)

+ (Σ′)
−1

Ω′

(
γt,x

∂B (t, T )

∂z (t)
−
∂
� T
t
EFs
t [c (s, z)]B (t, s) ds

∂z (t)

)

− 1

2α

Et
[
e2Φ(t,T )

]
B (t, T )

(Σ′)
−1

Ω′
∂ lnEt

[
e2Φ(t,T )

]
∂z (t)

.

We note what follows.

1. The speculative portfolio component does not depend any longer on the contributions.

5In the Black and Scholes model s = 0 and there is no z variable.
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In fact, the state variable c (t, z) does not appear in the portfolio component containing

(Σ′)−1 ξ.

2. The second portfolio component that hedges against the stochastic changes in the

T–certain equivalent xTt , instead, still depends on contributions.

3. The last hedging portfolio component does not contain contributions.

Black and Scholes model

The dynamically optimal naive strategy for the Black and Scholes model of Section 2.2 is

obtained by substituting (t, x) to (t0, x0) in (22), and is:

w̃ (t, x) =
ξ

σ

1

2α
e(ξ

2−r)(T−t), ∀ (t, x) ∈ [t0, T ]× R, (24)

in which we see that the amount invested in the risky asset at time t does depend on t but

does not depend on the fund level x at time t.

Under the hypothesis that the variables ξ and σ are positive, we can see that the amount

of money optimally invested in the risky asset w̃ (t, x), is either increasing or decreasing over

time depending on the sign of the difference ξ2− r. The sign of this difference is not obvious

(recall that ξ = µ−r
σ

). When the interest rate is “sufficiently” high (low) the difference

ξ2 − r is negative (positive), and the amount of money invested in the risky asset increases

(decreases) over time.

6 Black and Scholes case: two theoretical results

In this section we present two theoretical results holding in the Black and Scholes case

that shed further light on the interactions between the precommitment and the dynamically

optimal approaches.

The first result is that, although the precommitment and the naive strategies are sub-

stantially different, the expected value of the corresponding wealth is the same at any time.
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Proposition 2. In the Black and Scholes financial market, let X̂(t) and X̃ (t) denote the

wealth at time t under adoption of the precommitment and dynamically optimal naive strat-

egy, respectively. Then,

Et0
[
X̂ (t)

]
= Et0

[
X̃ (t)

]
∀t ∈ [t0, T ] . (25)

Proof. See Appendix (B).

The second result refers to the connection between the constant target of the precom-

mitment approach and the moving target of the dynamically optimal naive approach. In the

precommitment approach the fund’s wealth at time T is optimally set as close as possible

to a constant target decided at time t0 and given the initial wealth x0. Instead, in the naive

strategy the fund’s wealth at time T is optimally set as close as possible to a time-varying

target that depends on both the current time t and the current wealth x. Interestingly,

we find that the expectation at time t0 of the stochastic time-varying target relative to the

dynamically optimal strategy coincides with the constant target.

Proposition 3. In the Black and Scholes financial market, if X̃(t) denotes the wealth at

time t under adoption of the dynamically optimal naive strategy with X̃ (t0) = x0, then

Et0
[
γt,X̃(t)

]
= γt0,x0 ∀t ∈ [t0, T ] . (26)

In other words, the target process γt,X̃(t) is a martingale.

Proof. See Appendix (C).

Then, the similarities between the two strategies are twofold. Standing at time t0, over

time the two strategies produce the same expected wealth. Moreover, standing at time t0,

the final target pursued at every time t remains on average the same.

It is then important to simulate and compare the actual behavior over time of the two

strategies and the corresponding wealths, in order to identify those differences that cannot

be captured on average.
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7 Simulations

In the Black and Scholes model we have run 1000 Monte Carlo simulations with weekly

discretisation for both the precommitment and the naive strategy and made a comparison

between the two strategies with respect to the behavior over time of several quantities, such

as the optimal portfolio and the optimal wealth. We have also investigated the distribution

of the time-varying targets relative to the naive approach and compared them with the

constant target of the precommitment approach.

The parameters for the simulations are

• t0 = 0, and T = 20: we assume that the financial horizon is 20 years;

• x0 = 1: the initial wealth can of course be scaled for taking into account any other

wealth level;

• c = 0.1: we assume that the contribution is a percentage of the initial wealth (in this

example 10%);

• r = 3%, µ = 8%, and ξ = 1
3
, which imply a volatility σ = 0.15.

With these data, the T–certain equivalent xT0 is

xT0 = x0e
r(T−t0) + c

er(T−t0) − 1

r
= 4.562515,

while
1

2α
eξ

2(T−t0) =
4.613907

α
.

Thus, the initial target is

γt0,x0 = xT0 +
1

2α
eξ

2(T−t0) = 4.562515 +
4.613907

α
.

If we want the target to be 1.2 times the T–certain equivalent xT0 , we have

4.562515 +
4.613907

α
= 1.2× 4.562515,
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from which α = 5.0563, and so

γt0,x0 = γ0,1 = 5.475.

In what follows, we report the results of the simulations for the wealth, the optimal

portfolio, and the time-varying target.

Figure 1 reports the statistics for the precommitment (PC) and the naive (N) wealth.

The graph on top reports the mean and mean plus/minus twice the standard deviation for

both approaches. The bottom left graph reports the minimum, the maximum, and the 5th,

25th, 50th, 75th and 95th percentiles of PC-wealth, while the graph on the right reports the

same measures for the N-wealth.

Figure 2 reports the behavior of the precommitment and naive wealth in the four extreme

cases: the best and the worst cases for the final PC-wealth and the best and the worst cases

for the final N-wealth. It also reports the path of the price of the risky asset in those extreme

cases, as well as the time-varying target of the naive approach.

Figure 3 reports the statistics for the precommitment and the naive optimal investments

in the risky asset (i.e. the optimal strategies). The graph on top reports the median for

both strategies. The bottom left graph reports the minimum, the maximum, and the 5th,

25th, 50th, 75th and 95th percentiles of PC-strategy, while the graph on the right reports the

same measures for the N-strategy.

Finally, Figure 4 reports the statistics of the time-varying targets for the naive approach,

γt,x, as well as the constant target for the precommitment approach, γt0,x0 .
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Figure 1: Precommitment (PC) and naive (N) wealths. Top graph: mean and mean ±
2 standard deviation. Bottom-left graph: statistics of PC-wealth. Bottom-right graph:
statistics of N-wealth.
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Figure 2: Extreme scenarios and corresponding wealth evolution. Top-left graph: price of
risky asset in the four extreme scenarios. Top-right graph: time-varying target for naive
approach in the four extreme scenarios. Bottom-left graph: PC- and N- wealths in the best
scenario for N-wealth and the worst scenario for PC-wealth. Bottom-right graph: PC- and
N- wealths in the best scenario for PC-wealth and the worst scenario for N-wealth.
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Figure 3: Optimal stock share of precommitment (PC) and naive (N) strategies. Top graph:
median of both PC and N. Bottom-left graph: statistics of PC-strategy. Bottom-right graph:
statistics of N-strategy.
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Figure 4: Statistics of time-varying targets for the naive approach, γt,x, and constant target
for precommitment approach, γt0,x0

From Figures 1–4 we observe what follows.

• On average the wealth growth over time is exactly the same under the two approaches,

that is consistent with Proposition 2 (Figure 1).

• The standard deviation of wealth is lower with precommitment than with the naive

approach (Figure 1).

• In the worst cases, the precommitment wealth behaves much worse than the naive

wealth (Figure 1). On the other hand, in the most favorable cases (at least top 25%),

the naive wealth behaves better than the precommitment wealth (Figure 1).
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• The two paths of the risky asset that lead to the worst PC-wealth and the worst N-

wealth look quite similar one another, and the same applies for the two paths of the

risky asset that lead to the best PC-wealth and the best N-wealth (Figure 2, top-left

graph).

• The time-varying target for the naive approach adjusts to market returns and increases

over time in the two best cases (best PC-wealth and best N-wealth), while it decreases

over time in the two worst cases (worst PC-wealth and worst N-wealth) (Figure 2,

top-right graph).

• In both the worst case for the precommitment wealth and the worst case for the naive

wealth, the precommitment wealth behaves worse than the naive wealth, and the gap

is larger in the worst case for the PC-wealth, as expected (Figure 2, bottom graphs).

In both the best case for the precommitment wealth and the best case for the naive

wealth, the naive wealth behaves better than the precommitment wealth, and the gap

is larger in the best case for the naive wealth, as expected (Figure 2, bottom graphs).

• On average, the optimal portfolio of the precommitment strategy contains less risky

asset than the naive strategy (Figure 3).

• The optimal share invested in the risky asset according to the precommitment strategy

is highly more volatile than in the naive case (Figure 3).

• The optimal share invested in the risky asset on average is decreasing over time (Figure

3).6

• As expected from Proposition 3, the time-varying targets are on average equal to the

constant precommitment target. Furthermore, the time-varying targets are symmetri-

cally distributed around the mean (Figure 4).

The fact that the variance of wealth is lower with the precommitment strategy is consistent

with the theory: the precommitment strategy minimizes the variance of the final wealth

6This decreasing trend occurs also in the case r < ξ2, when instead the amount is increasing (see Equation
(24)).
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given the same expected final wealth; therefore, any other strategy/portfolio that produces

the same expected final wealth should produce a larger variance of final wealth.

Quite interestingly, however, we observe that in the worst cases for both the naive and

the precommitment wealth, the precommitment strategy produces a lower wealth than the

naive strategy. This outcome is both interesting and somehow unexpected, given that the

precommitment strategy provides the lowest variance of final wealth. This only seeming

contradiction is due to the fact that the naive strategy adjusts the final target at each time

according to renovated circumstances. Instead, the precommitment strategy keeps the final

target fixed over time. Indeed, when the market performance is bad, the fund is low; if the

target remains fixed and too high compared to current wealth, the investment in the risky

asset becomes important and this pushes the fund further down if the unfavorable market

returns persist. If, instead, the target is regularly adjusted to current wealth and decreases

when the fund falls down, the investment in stocks does not need to be so remarkable, and

the potential loss from persisting bad market performance is reduced. Thus, the dynam-

ically optimal strategy, which accounts for a time-varying target, seems to allow a more

effective reaction against unfavorable market conditions that last for a long period, while the

precommitment strategy does not.7

In addition, in the scenarios that lead to the best cases for both the naive and the

precommitment wealth, the naive strategy produces a larger wealth than the precommitment

strategy. This outcome is quite interesting too, and is again explained by the feature of the

naive strategy to adjust the target. Indeed, when returns are high for a long period, the

naive strategy implies a target which is higher and higher. Accordingly, this strategy leads

to a larger final wealth than the precommitment strategy which, instead, is characterized by

a constant target. Finally, we can conclude that the feature of the naive strategy to adjust

the targets according to changing market conditions gives an extra reward to the pensioner

in the presence of extreme scenarios of market returns, both in the good and in the bad

7On the other hand, whether the naive strategy always yields a more effective reaction in a period of
bad market returns can be debatable. This is true when the bad returns keep on also in the future, because
the precommitment strategy keeps on investing in the risky asset when returns are poor because of the
unchanged high target (in that sense the precommitment approach is said to be contrarian, see Forsyth
and Vetzal; 2017). But if a (short) period of bad returns is then followed by a period of good returns, the
precommitment strategy might turn out to be better off than the naive one.
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direction.

The heavier investment in stocks of the precommitment strategy in bad scenarios is

confirmed by the higher volatility of the precommitment investment strategy with respect

to the naive strategy, that instead turns out to be more stable.

It must be noted that a similar result was observed by Forsyth and Vetzal (2017), in

a comparison between precommitment strategy and constant proportions strategy: they,

too, found that smallest values for the precommitment strategy were notably lower than the

smallest values for the constant proportion strategy. They also found that the difference

between the two strategies in the bad market scenarios was wider in the presence of leverage

(unconstrained strategy) than with a no-leverage constraint. Therefore, it is likely that the

remarkable difference we observe in the worst market scenarios between the precommitment

and the naive strategy would be reduced should some no-short-selling constraints be imposed

in the model.

Finally, we have run other simulations with a more and a less ambitious target (i.e. a

target equal to κxT0 with κ > 1.2 and κ < 1.2). When the target is changed, the quality

of the result does not change, while the magnitude is modified according to the obvious

financial intuition: higher (lower) target is pursued by investing higher (lower) percentage

of wealth in the risky asset.

8 Concluding remarks

In this work we have solved the mean-variance portfolio allocation problem for a defined

contribution pension scheme in an arbitrage free and complete market driven by any num-

ber of stochastic state variables and having any number of risky assets. We have provided

and investigated the solution to the asset allocation problem with two common methods, the

precommitment and the dynamically optimal naive approaches. While the precommitment

approach has been deeply studied and applied in the literature, to the best of our knowl-

edge this is the first paper that (i) provides the dynamically optimal naive strategy in a

general model with many state variables and many assets; and (ii) thoroughly investigates

the dynamically optimal naive approach in the framework of a DC pension fund.

The precommitment method is equivalent to fixing a given target at the initial time
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and keeping it unchanged over time. The dynamically optimal method is based on this

precommitment strategy, where we modify the target at each instant in time, as if we were

solving a newly starting optimization problem.

From the theoretical point of view, we prove that in the Black and Scholes market the

expected wealth under the two strategies is the same. Moreover, we prove that the expected

value of the time-varying target of the dynamically optimal strategy coincides with the

constant target of the precommitment strategy.

Merits and weaknesses of the two strategies are further investigated via numerical sim-

ulations, which show that: (i) the precommitment portfolio contains less risky asset than

the naive strategy; (ii) the amount of money invested in the precommitment risky portfolio

is highly more volatile than in the naive case; (iii) as expected, the variance of wealth is

lower with the precommitment strategy than with the naive one; (iv) interestingly, under

scenarios of extreme market returns (either good or bad) that drive an extreme (rich or

poor) performance in terms of the final wealth, the naive strategy allows a more effective

reaction because of the continuous adjustment of the final target: in particular, in a bear

market phase the naive strategy provides a better hedge against losses, while in a bull market

phase it allows to exploit the high returns. These results might be of help to actuaries and

investment managers of DC pension funds.

This paper leaves room for further research. In particular, the numerical analysis of a

market with stochastic interest rate and stochastic contributions would be worth investiga-

tion. More importantly, introducing a variable risk aversion αt, and studying its impact on

the precommitment and the naive strategies would also be quite interesting. This would also

allow comparison with Bensoussan et al. (2019) and Björk et al. (2014), who find the Nash

equilibrium strategy in the presence of a variable risk aversion.
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A Proof of Proposition 1

Problem (14) can be recast as a static problem where the choice variable is the final wealth:

infX(T ) Et0
[

1
2

(X (T )− γ)2]
s.t. EQ

t0

[
−
� T
t0
c (s, z) e

−
� s
t0
r(u,z)du

ds+X (T ) e
−

� T
t0
r(u,z)du

]
≤ x0.

(27)

The Lagrangian function of this problem is

L = Et0
[

1

2
(X (T )− γt0,x0)

2 + λX (T ) e
−

� T
t0
r(u,z)du

m (t0, T )

]
− λ

(
x0 +

� T

t0

EFs
t0

[c (s, z)]B (t0, s) ds

)
,

where λ is the Lagrangian multiplier. The derivative of L with respect to X (T ) must be set

to zero for each state of the world, i.e.

X∗ (T ) = γt0,x0 − λe
−

� T
t0
r(u,z)du

m (t0, T ) . (28)

Now, λ is computed from the constraint in (27) where X∗ (T ) is substituted, and the

inequality is replaced by the equality (since we want the solution to be compatible with the

minimum amount of initial wealth):

λ =
γt0,x0B (t0, T )−

� T
t0
EFs
t0 [c (s, z)]B (t0, s) ds− x0

Et0
[
e
−2

� T
t0
r(u)du

m2 (t0, T )
] .

By defining the stochastic process Φ (t, T ) as in (16), we can write

λ =
γt0,x0B (t0, T )−

� T
t0
EFs
t0 [c (s, z)]B (t0, s) ds− x0

Et0 [e−2Φ(t0,T )]
,
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or

λ =
B (t0, T )

Et0 [e−2Φ(t0,T )]

(
γt0,x0 −

x0 +
� T
t0
EFs
t0 [c (s, z)]B (t0, s) ds

B (t0, T )

)
.

In the optimal solution, the constraint (27) must hold at any instant in time:

X∗ (t) = −
� T

t

EFs
t [c (s, z)]B (t, s) ds+ Et

[
X∗ (T ) e−

� T
t r(u,z)dum (t, T )

]
.

If the optimal final wealth (28) is plugged into this equation we have:

X∗ (t) = −
� T

t

EFs
t [c (s, z)]B (t, s) ds+ γt0,x0B (t, T )− λm (t0, t) e

−
� t
t0
r(u,z)duEt

[
e2Φ(t,T )

]
.

(29)

Now, the passages are as follows:

1. dX∗ (t) is found through Itō’s lemma on (29) (differentiating w.r.t. m (t0, t) and z (t));

2. λm (t0, t) e
−

� t
t0
r(u,z)duEt

[
e2Φ(t,T )

]
is substituted into the diffusion term of dX∗ (t) from

(29);

3. this diffusion term is set equal to the diffusion term of investor’s equation in (7) in

order to find the portfolio which replicates the optimal wealth. Such a portfolio is

given by (20).

B Proof of Proposition 2

If we plug the precommitment strategy (22) in the wealth (8)we get the following dynamics

for the precommitment wealth X̂ (t)

dX̂ (t) =

{
X̂ (t) r + c+ ξ2

[
x0e

r(t−t0) +
c

r

(
er(t−t0) − 1

)
− X̂ (t) +

1

2α
eξ

2(T−t0)−r(T−t)
]}

dt+(...) dW (t) .

(30)

By taking the expectation at time t0 given the wealth x0, we get the following linear

ordinary differential equation (ODE) for Et0
[
X̂ (t)

]
:
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dEt0
[
X̂ (t)

]
dt

=
(
r − ξ2

)
Et0
[
X̂ (t)

]
+ b (t) , (31)

where we have swapped the expected value and the derivative operators, and in which

b (t) = c+ ξ2x0e
r(t−t0) + ξ2 c

r

(
er(t−t0) − 1

)
+
ξ2

2α
eξ

2(T−t0)−r(T−t),

with initial condition

X̂ (t0) = x0. (32)

The solution of the linear ODE (31) with the initial condition (32) is the expectation of

the precommitment wealth:

Et0
[
X̂ (t)

]
= x0e

r(t−t0) +
c

r

(
er(t−t0) − 1

)
+

1

2α
e−r(T−t)

(
eξ

2(T−t0) − eξ2(T−t)
)
. (33)

By following the same procedure for the dynamically optimal wealth (plugging (24) into

(8), and taking expectation), we get the following ODE for the expected dynamically optimal

wealth

dEt0
[
X̃ (t)

]
dt

= rEt0
[
X̃ (t)

]
+ c+ ξ2 1

2α
e(ξ

2−r)(T−t), (34)

with the same initial condition (32). By solving (34) with initial condition (32), we get the

following expectation of the dynamically optimal naive wealth:

Et0
[
X̃ (t)

]
= x0e

r(t−t0) +
c

r

(
er(t−t0) − 1

)
+

1

2α
e−r(T−t)

(
eξ

2(T−t0) − eξ2(T−t)
)
, (35)

and comparing (33) with (35), we get the claim (25).
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C Proof of Proposition 3

The analogue of γt0,x0 (19) at time t with wealth x is

γt,x =
1

2α
eξ

2(T−t) + xer(T−t) +
c

r

(
er(T−t) − 1

)
.

Therefore

Et0
[
γt,X̃(t)

]
=

1

2α
eξ

2(T−t) +
c

r

(
er(T−t) − 1

)
+ Et0

[
X̃ (t)

]
er(T−t). (36)

By plugging (35) into (36), and recalling (19), we get

Et0
[
γt,X̃(t)

]
= x0e

r(T−t0) +
c

r

(
er(T−t0) − 1

)
+

1

2α
eξ

2(T−t0) = γt0,x0 , (37)

that is claim (26).
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