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Abstract: UV–VIS spectroscopy analysis of six mixtures containing choline chloride or 

triphenylmethylphosphonium bromide as the hydrogen bond acceptor (HBA) and different 

hydrogen bond donors (HBDs, nickel sulphate, imidazole, D-glucose, ethylene glycol, and glycerol) 

allowed to determine the indirect and direct band-gap energies through the Tauc plot method. 

Band-gap energies were compared to those relative to known choline chloride-containing deep 

band-gap systems. The measurements reported here confirmed the tendency of alcohols or Lewis 

acids to increment band-gap energy when employed as HBDs. Indirect band-gap energy of 3.74 eV 

was obtained in the case of the triphenylmethylphosphonium bromide/ethylene glycol system, 

which represents the smallest transition energy ever reported to date for such kind of systems. 

Keywords: deep eutectic solvents; deep band-gap systems; UV–VIS; Tauc plot; molten systems. 

 

1. Introduction 

In recent years, the interest toward organic molten systems showing a eutectic point has 

considerably increased. When some hydrogen bond donors (HBDs) and acceptors (HBAs) are 

combined in opportune proportions, the resulting mixture shows an important drop in melting point 

(with respect to the parent pure constituents), high viscosity, low volatility, and good solvent 

properties. These organic mixtures are named deep eutectic systems or, sometimes, deep eutectic 

solvents (DESs) and are exploitable in several fields. To cite only some applications of DESs, they 

have been proposed as new solvents [1–4], catalysts [5], electrodeposition agents [6,7], and stabilizing 

agents for antibiotics [8]. 

Since the first studies by Abbott [9], consistent research activity has been devoted to the 

structure–activity relationship of such systems. In fact, the specific network of hydrogen bonds, 

decorated by holes and charges, which exists only for specific combinations of HBDs and HBAs, 

determines the peculiar chemical–physical properties of DESs and DES-like systems [10]. 

Recently, we added band-gap energy to the physical descriptors that can be used for DES 

characterization. Some mixtures of HBDs and HBAs also show a drop in band-gap (BG) energy at the 

eutectic composition [11]. Due to this peculiar characteristic, these systems are named deep band-gap 

systems (DEBAGs). It has been observed that DEBAGs also act as DESs, as the specific molar ratio 

between HBA and HBD showing the drop in BG energy is the same as that showing a drop in melting 

point [1]. Not all DESs are DEBAGs, as in the case of choline chloride/levulinic acid, choline 

acetate/glycolic acid, and choline acetate/ethylene glycol systems [1].  

Drops in melting point and BG energy are related to the specific chemical structure of these 

organic molten salts. In these mixtures, local density fluctuations generate empty spaces that are filled 

by charges moving all around the hydrogen bond network. The model of Fürth [12] has been 
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employed to describe such systems and to calculate some structural parameters, such as hole size 

[13]. The same model can explain the peculiar optical characteristics of such systems. In fact, it has 

been proposed that, in analogy to the change in the fluorescent emission of some protein amyloids 

[14], the lowering variation of BG energy in eutectic molten salts can be related to charge 

delocalization through hydrogen bonding, which indicates a proton-transfer mechanism through 

hydrogen bonds, causing a variation in the optical properties of the system [1]. Depending on the 

nature of the HBAs and HBDs, different ionic H-bonds can be formed with different strength and 

geometry [15,16]. Thus, the possibility of tuning the properties of eutectic systems by acting on their 

components in terms of type and/or molar fraction is of particular interest.  

A relevant advantage of DEBAGs compared to DESs is represented by the possibility of easily 

and quickly determining lower band-gap composition by UV–VIS spectroscopy. From spectroscopic 

data, BG energy can be graphically extrapolated by employing the Tauc plot method [17]. In the case 

of DESs, in order to determine the eutectic composition for a HBA and HBD mixture, a phase diagram 

should be built, which can be a difficult task.  

The approach based on tuning BG energy in organic systems by mixing components in different 

proportions was already presented as innovative for the development of organic semiconductors 

[18]. In this context, the search for mixtures of specific HBAs and HBDs that show BG energy that is 

as small as possible is an important task. Currently, few DEBAGs have been described, and more 

examples are needed in order to gain more information about their behavior and characteristics.  

Herein, six systems containing choline chloride as the HBA and different HBDs (nickel sulphate 

(1), imidazole (2), D-glucose (3), glycerol (4)), or triphenylmethylphosphonium bromide as the HBA 

and ethylene glycol (5) or glycerol (6) as HBDs are described in terms of band-gap energy. Due to the 

very high viscosity of Systems 1–3 at room temperature, 10 wt % of water was added after melting 

and prior to UV–VIS measurements. From the UV–VIS data, optical-transition energy was 

determined by the Tauc plot method. The full procedure is described, and the results are discussed 

and compared with the literature data referring to similar systems. 

2. Results and Discussion 

Six eutectic systems were considered in the present study. Table 1 reports the nomenclature and 

composition. 

Table 1. Composition and nomenclature of presented systems. Note: HBA, hydrogen bond 

acceptor; HBD, hydrogen bond donor. 

System HBA HBD Molar Ratio 
1 Choline chloride nickel sulphate 1:1a 
2 Choline chloride imidazole 3:7a 
3 Choline chloride D-(+)-glucose 2:1a 
4 Choline chloride Glycerol 1:5a 
5 Triphenylmethylphosphonium bromide ethylene glycol 1:5 
6 Triphenylmethylphosphonium bromide Glycerol 1:5 

a10 wt % of water added before UV–VIS analysis. 

Systems containing choline chloride/imidazole (2) [19], glucose (3) [20], or glycerol (4) [20], and 

triphenylmethylphosphonium bromide/ethylene glycol (5) [21] or glycerol (6) [21] have already been 

described as DESs. The system composed by choline chloride and nickel sulphate was prepared in 

analogy to the parent choline chloride/zinc chloride [9] and choline chloride/copper chloride [1,22] 

DEBAGs.  

10 wt % of water was added to systems 1–4, and the corresponding solutions were analyzed by 

UV–VIS spectroscopy.  

The corresponding absorbance plots are reported in Figure 1. 
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Figure 1. UV–VIS absorbance plots for (top-left) 1, (top-center) 2, (top-right) 3, (bottom-left) 4, 

(bottom-center) 5, and (bottom-right) 6. 

Looking at the plots reported in Figure 1, absorbance peaks are appreciable only for Systems 2, 

4, and 5, while they are absent for Systems 1, 3, and 6. This absence of relevant peaks between 400 

and 800 nm was exploited formany DESs employed as solvents for the UV–VIS quantification of 

analytes such as lignin [23] or gold nanoparticle [24].  

Nevertheless, UV–VIS spectra of molten salts hide valuable information that can be extracted 

with the appropriate methodology. The Tauc method allows to calculate the band-gap energy from 

acquired UV–VIS data [25]. In order to implement the Tauc plot, it is necessary to calculate the optical-

absorbance-coefficient values and the photon energy as follows.  

Calculation of photon energy from the Tauc and Davis–Mott Relation [26]: 

(αην)n = k (ην – Eg), (1) 

where α = absorption coefficient, ην = incident photon energy, k = energy-independent constant, Eg 

= optical band gap, and n = nature of the transition (n = 2 for direct and ½ for indirect).  

Conversion of wavelength to energy and calculation of absorbance coefficient α: 

Eg = hν  (2) 

Max Planck equation (h = Planck constant; ν = incident photon): 

ν = c/λ  (3) 

where c = speed of light, λ = wavelength of incident photon; ν was used instead of the usual n to 

distinguish it from n = nature of the transition 

. 

Eg = hc/λ, (4) 

where h = 6.62E-34 Js; c = 2.999E8 m/s; Eg = (19.85E-26 Jm)/λ. 

After the conversion from J to eV, the following equation can be obtained: Eg = 1239.3 nm/λ 

(Energy). 
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The value of Eg was employed to convert UV–VIS data acquired through direct measurements 

into energy values for the X axis, employing the formula  

X = Eg/absorbance 5) 
 

(5) 

The absorbance coefficient is calculated as follows [27]  

I/I0 = ���� , (6) 

where I = intensity of transmitted light; I0 = intensity of incident light; α = absorbance coefficient; l = 

path length. 

From Equation (6) the following absorbance coefficient can be obtained: α = 2.303 A cm−1 

α was used to obtain the values for the Y axis of the Tauc plot, through the formula 

Y = √2.303 ×  absorbance ×  X (7) 

for the indirect band gap, and  

Y = (2.303 × absorbance × X)2 

for the direct band gap. 
(8) 

By employing Equations (5) and (7) or (8), it is possible to obtain for each system analyzed by 

UV–VIS the plots corresponding to the indirect (Equation (7)) and direct (Equation (8)) transition, as 

reported in Figure 2 for System 1 (choline chloride/nickel sulphate/H2O).  

 

Figure 2. UV–VIS spectrum and Tauc plots for indirect and direct transition of System 1. 

The plots for both transitions reported in Figure 2 were used for graphically determining the 

nature of the transition. For each plot, if a linear part of the curve was available, it was possible to 

calculate the energy gap by applying a linear fitting equation (y = a + bx) and intercepting the X axis 

in the point corresponding to the energy gap (eV). As a matter of fact, the choice of the linear part of 

the curve to be fitted is arbitrary and considering different ranges can result in a slight change in the 

final estimated energy-gap value. In order to minimize the error associated with this procedure, we 

finally considered the linear part of the curve with a Pearson’s r value > 0.95 (Table 2).  

For System 1, a direct band-gap energy of 5.18 eV could be estimated (Figure 2, top-right), while 

the curve corresponding to the indirect transition was not suitable for determining a band-gap value, 

suggesting that an indirect transition was not allowed. 
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In insulators and semiconductors, band-gap energy corresponds to the minimal amount of 

energy required to promote the transition of one electron from the valence band to the conduction 

band. The energies of the two former bands are characterized by a specific crystal momentum that is 

represented by a k-vector. When the two k-vectors have the same value, the top of the valence band 

and the bottom of the conduction band are aligned in the k-space (space of wave vector), and the 

band gap is direct (Figure 3, left). In this case, photon absorption is necessary for electron transition 

from the valence band to the conduction band. When k-vectors are different, the top of the valence 

band and the bottom of the conduction band were not aligned in the k-space (Figure 3, right), and 

the additional participation of a phonon that would change the momentum of the electron was 

necessary for the transition to happen [17,28]. 

 

Figure 3. Schematic and simplified representation of direct and indirect optical transition. 

The above-described protocol was also applied to Systems 2–6, revealing some interesting 

information. Similarly to System 1, obtained curves for Systems 2, 3, and 6 showed no consistent 

linear part when indirect band-gap determination was attempted, thus revealing only direct 

transition, with a relative band gap of 4.74, 5.85, and 5.23 eV, respectively (Figure 4).  

 

Figure 4. Tauc plots for (top) direct and (bottom) indirect transition of Systems (left) 2, (center) 3, and 

(right) 6. 
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Different behavior was observed for Systems 4 and 5, which showed both indirect and direct 

transition (Figure 5). 

 

Figure 5. Tauc plots for (top) direct and (bottom) indirect transition of systems (left) 4 and (right) 5. 

For Systems 4 and 5, both direct and indirect energy gaps could be determined. A summary of 

the conducted measurements is reported in Table 2.  

Table 2. Indirect and direct band-gap energies for Systems 1–6. Pearson’s coefficient of corresponding 

linear fitting reported in parentheses. 

Entry HBA HBD 
Indirect Band Gap 

(eV) 
Direct Band Gap 

(eV) 

1 Choline chloride 
Nickel 

sulphate 
- 5.18a (0.96945) 

2 Choline chloride Imidazole - 4.74a (0.98835) 
3 Choline chloride D-(+)-glucose - 5.85a (0.9828) 
4 Choline chloride Glycerol 4.64a (0.99756) 5.56a (0.98955) 

5 
Triphenylmethylphosphonium 

bromide 
Ethylene 

glycol 
3.74 (0.99879) 5.34 (0.97962) 

6 
Triphenylmethylphosphonium 

bromide 
Glycerol - 5.23 (0.98312) 

a10 wt % of water added before UV–VIS analysis. 

The direct band-gap energies reported in Table 2 were quite elevated for all considered systems 

and suggested classifying these systems as insulators (BG > 4) [29]. Only System 2 (choline 

chloride/imidazole) showed an energy value below 5 eV. Among systems containing 

triphenylmethylphosphonium bromide, System 5 was of interest, showing an indirect band gap of 

3.74 eV, similar to other known semiconductors [30–33]. To date, 3.74 eV is the lowest value of an 

energy band gap ever reported for such kind of systems. The determination for the same system of 

both direct and indirect band gaps suggests the presence of different phases with different optical 

behavior in Systems 4 and 5. Band-gap energy crossover composition was determined for several 

systems, for example, for the system of Alx Ga1-xAs [34], for Be x Zn 1−xTe alloy [35], for double 

perovskite systems [36], for MoSe2 and MoS2 [37], for Group IV semiconductor alloys [38], and for 2D 
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van der Waals crystals [39]. Some information about the perturbation of the structural disorder of 

systems could be extracted from the absorption-edge region of the curves reported in the Tauc plot 

[40]. This is an exponential part of the curve known as the Urbach tail resulting from localized states 

that are extended in the band gap [40]. In this low-photon-energy area, the system follows the Urbach 

rule, which relates absorption coefficient and photon energy (Equation (9)) [41]. 

α = α0 exp(hν/Eu), (9) 

where α is the absorbance coefficient, α0 a constant, and Eu the Urbach energy. 

Urbach energy is related to temperature and is indicative of the disorder of low crystalline 

materials [41]. By applying the natural logarithm function to Equation (9), a linear curve was obtained 

(Equation (10)). 

ln(α) = ln(α0) + hν/Eu. (10) 

Thus, by plotting α vs. photon energy, it is possible to obtain a straight line of which the slope is 

the inverse of the Urbach energy. In Table 3, Eu values are reported for Systems 1–6.  

Table 3. Urbach energies for Systems 1–6. 

Entry HBA HBD Eu Direct Band Gap (eV) 
1 Choline chloride Nickel sulphate 0.59 5.18  
2 Choline chloride Imidazole 0.34 4.74  
3 Choline chloride D-(+)-glucose 0.26 5.85  
4 Choline chloride Glycerol 0.13 5.56  
5 Triphenylmethylphosphonium bromide Ethylene glycol 1.56 5.34  
6 Triphenylmethylphosphonium bromide Glycerol 0.67 5.23 

Looking at the data in Table 3, some trends are observable. Eu energies that are related to the 

disorder and defects [42] follow the order of triphenylmethylphosphonium bromide/ethylene glycol 

> triphenylmethylphosphonium bromide/glycerol > choline chloride/nickel sulphate, choline 

chloride/imidazole, choline chloride/glucose > choline chloride/glycerol.  

Concerning choline chloride-based systems, in order to perform appropriate analysis of the 

acquired data, we compared the results of the present study with literature data [11] (Table 4).  

Table 4. Direct band-gap energies of choline chloride-based systems. 

Entry System Direct Band Gap (eV) 
1 Choline chloride/glycolic acid/H2O 4.68 [11] 
2 Choline chloride/imidazole/H2O  4.74 
3 Choline chloride/levulinic acid/H2O 5.08 [11] 
4 Choline chloride/ethylene glycol/H2O 5.16 [11] 
5 Choline chloride/nickel sulphate/H2O 5.18 
6 Choline chloride/glucose/H2O 5.85 
7 Choline chloride/glycerol/H2O 5.56 

The systems reported in Table 4 differ by the nature of the HBD. Some attempts at classification 

based on HBD acidity were reported [43]. Nevertheless, no direct correlation between pKa values of 

former HBDs and BG energy was observed. As a matter of fact, from the reported data in Table 4, it 

is possible to observe some trends. Systems containing glycolic acid and imidazole showed very 

similar BG energy of around 4.7 eV (Entries 1 and 2). The presence of levulinic acid, ethylene glycol, 

and nickel sulphate pushed BG energy between 5.0 and 5.2 eV (Entries 3–5). Finally, systems 

containing glucose and glycerol had the highest BG energy value (Entries 6 and 7). Looking at the 

chemical nature of the HBD, polyols and Lewis acids seemed to increase band-gap energy (Entries 

4–6). This trend was already observed for systems containing choline chloride and CuSO4, or ZnCl2 

[11], and was confirmed here. Among Bronsted acids, glycolic is more efficient in reducing the BG 

than levulinic (Entry 1 vs. Entry 3), revealing an important effect of the specific HBD on band-gap 

energy.  
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Finally, as all systems reported in Table 4 contained 10 wt % of water, some considerations about 

its presence deserve attention. The addition of increasing water amounts in several eutectic mixtures 

revealed a progressive transition from a water-in-DES regime, where the eutectic mixture preserved 

its nanostructure, to a DES-in-water regime, where the eutectic mixture became a simple aqueous 

solution of dissolved species. Even if the effect of water on the hydrogen-bonding network of a DES 

is still debated, it is generally accepted that the representative DES reline retains interactions between 

its components up to water concentrations as high as 35 wt %, and a transition from a water-in-DES 

to a DES-in-water regime occurs only at ca. 50 wt % [44,45]. Therefore, we are confident that the 

addition of 10 wt % of water in all the systems of Table 4 was considerably below the maximal limit 

of tolerance, and molecular interactions were preserved while reducing viscosity. 

An additional issue is represented by the possibility of water to act as additional HBD and to 

contribute to band-gap-energy determination. This topic was discussed for some of the systems 

reported in Table 4, and, as a general observation, the presence of 10 wt % of water did not affect 

band-gap energy for the system containing glycolic acid (Entry 1), and reduced the band-gap energy 

of systems containing levulinic acid (of 0.14 eV, Entry 3), and ethylene glycol (of 0.76 eV, Entry 4). 

Previously published data showed no linear behavior of water presence on band-gap energy [11]. 

3. Materials and Methods  

3.1. Sample Preparation 

Choline chloride (99%) as well as triphenylmethylphosphonium bromide (98%) have been 

purchased by Merk. 

The HBA (choline chloride or triphenylmethylphosphonium bromide) and the selected HBD 

were placed in a 2 mL vial and stirred at 80 °C for 16 h. Due to the very high viscosity of Systems 1–

3 at room temperature, 10 wt % of water was added after melting and prior to UV–VIS measurements. 

We also added 10 wt % of water to Sample 4 for comparison. 

3.2. UV–VIS analysis 

UV–VIS analyses were performed on samples in pure form by employing a Hewlett Packard 

845-3 UV–Visible system (HP, Palo Alto, CA, United States). Samples were analyzed in a 0.7 mL 

quartz cuvette. 

4. Conclusions 

Six molten systems containing choline chloride or triphenylmethylphosphonium bromide as the 

hydrogen bond acceptor were prepared and analyzed with UV–VIS. From the optical-absorbance 

data through the graphic Tauc plot method, we could determine the corresponding direct band-gap 

energy for each system. For the systems of choline chloride/glycerol and 

triphenylmethylphosphonium bromide/ethylene glycol, indirect band-gap energy was found. 

Analysis of data relative to direct band-gap energy, integrated with literature measurements, 

revealed an effect of the band-gap widening of hydrogen bond donors based on Lewis acids and 

polyols, and high sensitivity of band-gap energy to a specific hydrogen bond donor. Additional 

studies for promising systems are needed, such as a detailed characterization of band structures and 

the influence of a single HBD and HBA on direct or indirect transition. Nevertheless, the reported 

data reinforce the idea that DESs or DES-like systems can find applications as optical materials. 
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