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Abstract 

Significance: Regular exercise training can reduce myocardial damage caused by acute 

ischemia/reperfusion (I/R). Exercise can reproduce the phenomenon of ischemic preconditioning, due 

to the capacity of brief periods of ischemia to reduce myocardial damage caused by acute I/R. In 

addition, exercise may also activate the multiple kinase cascade responsible for cardioprotection even 

in the absence of ischemia. Recent Advances: Animal and human studies highlighted the fact that, 

besides to reduce risk factors related to cardiovascular disease, the beneficial effects of exercise are 

also due to its ability to induce conditioning of the heart. Exercise behaves as a physiological stress 

that triggers beneficial adaptive cellular responses, inducing a protective phenotype in the heart. The 

factors contributing to the exercise-induced heart preconditioning include stimulation of the anti-

radical defense system and nitric oxide production, opioids, myokines, and adenosine-5¢triphosphate 

(ATP) dependent potassium channels. They appear to be also involved in the protective effect exerted 

by exercise against cardiotoxicity related to chemotherapy. Critical Issues and Future Directions: 

Although several experimental evidences on the protective effect of exercise have been obtained, the 

mechanisms underlying this phenomenon have not yet been fully clarified. Further studies are 

warranted to define precise exercise prescriptions in patients at risk of myocardial infarction or 

undergoing chemotherapy.  

Antioxid. Redox Signal. 00, 000–000. 
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The concept that regular physical activity is beneficial for the cardiovascular apparatus is a 

cornerstone in the history of Medicine. A great bulk of data has been produced demonstrating that 

exercise decreases the incidence and the prevalence of myocardial infarction and augments the 

chances of survival after a cardiac event (1, 112, 156, 157). However, the beneficial effects afforded 



by regular exercise cannot be explained by only taking into consideration the improvement in 

classical cardiovascular risks, such as reduction in blood pressure, improved glucose homeostasis, 

and low cholesterol and blood triglycerides. It was estimated that these risk factors explain only 27–

41% of the global cardioprotection conferred by active lifestyle. It is then probable that other still 

elusive factors related to exercise exert protective effects on the cardiovascular system (176). Thus, 

mechanisms of cardioprotection are still to be fully elucidated. One phenomenon that may at least in 

part explain why exercise is cardioprotective is ischemic preconditioning (IP), which refers to the 

possibility that brief sub-lethal ischemic insults render the heart more resistant to subsequent more 

profound ischemia, causing infarction. Moreover, IP can also protect from damage due to reperfusion 

and to the progression of coronary patients toward heart failure. It appears that exercise can mimic 

the effect of IP, thereby explaining some of its beneficial effects. Actually, it appears that exercise 

can initiate the biochemical cascade of IP without the need of ischemia. Specifically, exercise induces 

the accumulation of several metabolites (adenosine, bradykinin, opioids, and possibly others), which 

are normally produced during effort and that trigger preconditioning. Exercise can also increase the 

production of nitric oxide (NO), reactive oxygen species (ROS), and heat shock proteins (HSPs). All 

these substances are believed to be involved in the classic form of IP. Moreover, exercise can mimic 

the phenomenon of remote preconditioning, which refers to the possibility to precondition the 

myocardium by inducing ischemia in a remote organ or tissue. Finally, exercise has been found to be 

able to protect against cardiotoxicity due to antiblastic drugs (21, 161, 172, 182). In the present 

review, we will summarize findings supporting the concept that regular exercise is cardioprotective 

against several insults and the related putative mechanisms. 

Reperfusion Injury and Cardiac Conditioning 

In western countries, the main causes of death and morbidity are acute coronary and heart diseases. 

Numerous researches have been performed in the study of acute coronary syndromes without ST 

elevation, the more frequent from the clinical point of view. The prognosis of these patients has been 

improved through both antithrombotic treatment and invasive strategies, such as primary angioplasty, 

which allows the direct restoration of perfusion (194, 195). However, it has been reported that 

reperfusion may cause additional damage to previously ischemic tissues. The immediate restoration 

of the blood flow is followed by a cascade of events that are able to trigger a vicious circle, 

characterized by inflammatory responses and more widespread local lesions, which determine the 

extension of the infarct size in otherwise vital tissues. This finding led to the concept of myocardial 

reperfusion injury (124, 195). Ischemia/reperfusion (I/R) damage is caused by complex mechanisms 

that include mechanical, extracellular, and intracellular processes (129, 195). A short description of 

the principal mechanisms involved in reperfusion injury is reported in Figure 1. They include: (i) 



Ca2+ overload; (ii) ROS generation; (iii) lower production of NO; (iv) opening of the mitochondrial 

permeability transient pore (mPTP); (v) activation of bAU4 NFkB and other transcription factors; 

and (vi) no-reflow phenomenon. (i) The Ca2+ overload developed during ischemia is subsequently 

increased during reperfusion. After ischemia, the increased amount of Ca2+ at the cytosolic level 

results in structural fragility, whereas during the reperfusion phase the Ca2+ overload is responsible 

for a progressive increase in ventricular diastolic pressure (contracture) and necrosis of the contractile 

apparatus (149, 167). The Ca2+ overload favors the expression of proapoptotic elements from 

mitochondria and an increase in cellular osmolarity with consequent swelling (explosive swelling) of 

myocardiocytes (198). Moreover, the Ca2+ overload is also responsible for mPTP opening (141). (ii) 

ROS generation: The main culprit of both the large release of cardiac enzymes and cell death 

occurring during reperfusion is the massive production of ROS. According to Hearse et al., the term 

‘‘oxygen paradox’’ was conceived to explain the effects of ROS on the heart (7, 78). Both an 

increased production of superoxide anion (O2-) and the activation of various enzymatic complexes 

have been observed after reperfusion and the reintroduction of oxygen. The presence of O2- and other 

ROS can considerably oxidize the cardiomyocytes already damaged by ischemia, thus favoring cell 

death (137, 181). During reperfusion, O2- reacts with NO, forming peroxynitrite (ONOO-). In 

addition, O2- can quench NO, thus reducing its bioavailability even in the absence of alterations of 

nitric oxide synthase (NOS) expression/activity (130). Consequently, the lower availability of NO$ 

can be attributed to the production of ONOO-, which, once produced, participates in myocardial 

damage, being highly cytotoxic at elevated concentrations (65, 127, 137, 158, 177). The production 

of ONOO- not only contributestobothmyocardialandvasculardysfunctionduringI/ R but is also 

involved in other cardiac pathologies, such as myocarditis and chronic heart failure (50, 65, 127, 177). 

Importantly, ONOO- cytotoxicity is reduced by the addition of NO. through a secondary reaction 

(nitrosation reaction) (65, 137). The damage caused by O2- is reduced when this reactive species is 

transformed by the superoxide dismutase (SOD) into hydrogen peroxide (H2O2) (65, 127). In 

addition, the presence of Fe2+ or Cu2+ is able to transform H2O2 into hydroxyl (OH$) and hydroxyl 

(HO-) radicals, which are decidedly more toxic than O2- and H2O2, with consequent decreased 

toxicity. The release of ROS by mitochondria is dependent on mitochondrial depolarization, the 

opening of mPTP, and the ROS themselves, a phenomenon known as ‘‘ROS-induced ROS release.’’ 

This phenomenon induces a consequent large burst of ROS from mitochondria (65, 200). In the past 

decade, accumulating evidence suggested that the mitochondrial flavoenzyme monoamine oxidase 

represents another major source of ROS in the I/R myocardium (28). Probably, a reduced formation 

of H2O2 during reperfusion proves to be protective, provided that it is adequately formed or added, 

to reduce ONOO- cytotoxicity and, consequently, the opening of mPTP. (iii) Reduced availability of 



NO: NO is produced by vascular endothelial cells to prevent the reduction of antioxidants, thereby 

limiting oxidative stress injuries. After I/R, the presence of NO has a dual task: At high 

concentrations, it diminishes the harmful effects exerted by the endothelin and on the other hand 

improves microcirculation. During ischemia, NOS is transformed into ‘‘uncoupling NOS’’ capable 

of producing ROS, thus aggravating I/R damage. In this condition, ROS produced by the NADPH 

oxidase system, the mitochondrial electron transport chain, the decoupled NOS system, and the 

xanthine oxidase system can accumulate within the cells and reduce the effects of an antioxidant 

agent (189). (iv) mPTP opening: mPTP is a nonspecific pore placed in the inner mitochondrial 

membrane, whose opening at the beginning of reperfusion causes cell death (9, 32, 58, 63, 66, 74, 

103). Among the main mechanisms responsible for mPTP opening during reperfusion, Ca2+ overload 

has received particular attention. During ischemia, the mitochondrial overload of Ca2+ would bring 

the mitochondria to the threshold at which the opening of mPTP occurs, and during reperfusion the 

true opening of the pore would be encountered. This phenomenon has been described as 

‘‘mitochondrial trigger’’ (186). Although during ischemia the opening of mPTP is unlikely, since it 

is strongly inhibited by acidosis, it is instead favored during reperfusion, a phase in which exhaustion 

of adenosine-5¢-triphosphate (ATP), oxidative stress, and high intramitochondrial concentrations of 

Ca2+ occur (74, 103). Therefore, the ideal scenario for the opening of mPTP is associated with the 

phase of reperfusion, in which on the one hand there is a massive increase of ROS and [Ca2+], and 

on the other the recovery of physiological pH within the cell (58, 74). (v) Activation of NFkB: NFkB 

is a dimer consisting of p50 and p65 subunits that are sensitive to the redox state and capable of 

determining rapid response to oxidative stress, constituting an important transcription factor involved 

in I/R damage. The active form of NFkB is transferred to the nucleus, where it activates target genes 

for transcription. In particular, NFkB is able to regulate the genes of numerous molecules, including 

NOS, cytokines (tumor necrosis factor a, interleukin [IL]-1), chemokines (ENA78), and ICAM-1. Its 

involvement in I/R damage has been suggested by the protective effect exerted by the administration 

of NFkB inhibitors in animal models (189). (vi) In addition, it should be remembered that the reduced 

availability of NO results in vasoconstriction and microthrombus formation in the lumen of small 

vessels(137),which, combined with the adhesion of leukocytes to the endothelium, lead to the so-

called ‘‘no-reflow phenomenon’’ (5). 

Protective Pathways and Mechanisms involved in Ischemic Pre- and Postconditioning 

Short intermittent periods of I/R exert protective effects, both when applied just before infarct 

ischemia (IP) and immediately at the beginning of reperfusion (ischemic postconditioning [PostC]) ( 

bF2 Fig. 2). The main transduction paths related to the conditioning mechanisms will be briefly 

described later and are shown in Figure3. SeealsoRefs.(27,68, 70, 79, 129). Despite the different 



timing, both IP and PostC use the same innate cardioprotective mechanisms, both involving receptors 

and kinases coupled to G proteins and having mPTP as end-effectors. However, there are some 

differences between the molecular pathways involved. In the case of IP, the release of receptor ligands 

coupled with G proteins such as bradykinin, adenosine, and opioids leads to ERK1/2/ 

phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) activation. The further activation of 

protein kinase C (PKC) may occur both downstream of Akt and through the signaling pathway of the 

phospholipase, as happens in the case of the activation of the A1 adenosine receptor (33, 34, 192). 

Tyrosine kinase receptors are likely to be involved through transactivation of the Epidermal Growth 

Factor receptor, which, in turn, activates PI3K/Akt. Thereafter, phosphorylation and other 

intracellular signaling such as nitrosylation and O-linked glycosylation may involve multiple targets. 

Activated Akt can, in turn, phosphorylate/activate other kinases, including endothelial NOS (eNOS), 

resulting in activation of the NO/guanylate cyclase/protein kinase G (PKG) pathway. Glycogen 

synthase kinase 3b (GSK-3b) is also involved after its phosphorylation/inactivation, thus preventing 

its actions on mPTP opening (9, 62). Akt and GSK-3b also play a protective role against apoptosis. 

They are, indeed, able to phosphorylate/inhibit pro-apoptotic factors (Bax and Bad) and to 

phosphorylate/activate anti-apoptotic factors (Bcl-2 and p70s6K), which, in turn, are able to block 

some pro-apoptotic factors. PKG is another kinase involved in cardioprotection that carries out its 

activity at different levels: activating PKC, inhibiting mPTP by enhancing the production of NO, and 

reducing Ca+2 overload by inhibiting the sarcoplasmic reticulum protein phospholamban, thus 

favoring the reuptake of Ca+2. The activation of PKC and its role in the cardioprotection may depend 

on different signal pathways. PKC can be directly phosphorylated/activated, whereas the 

mitochondrial kinase isoform is PKG dependent. PKG exerts its protective action at different levels, 

by inhibiting the opening of mPTP or through the opening of the mitochondrial ATP-dependent 

potassium channels (mKATP) (83), the alkalinization of the mitochondrial matrix, and the production 

of signaling molecules such as ROS and reactive nitrogen species (RNS) (33, 141). The 

cardioprotective reactive species ROS/RNS are produced in the short I/R cycles of the IP protocol 

(70). These radical species exert their protective activity through post-transductional modifications, 

in particular nitrosylation. In addition, they can also determine the activation of other kinases, such 

as p38-MAPK and JAK/STAT (129, 141). The link between ROS/PKC (in particular, the PKCe2 

isoform) was studied in rabbit hearts, in which a pharmacological IP was induced while administering 

free radicals generated by purine/xanthine at the coronary level. Under these conditions, the 

simultaneous administration of a PKC inhibitor (polymyxin B) causes the loss of cardioprotection 

(179). The phase of protection afforded by IP is long-lasting: It is, in fact, recognized late, with very 

slow development (about 6–12h after the preconditioning protocol), but with a decidedly longer 



duration in terms of protection (‘‘late IP,’’ lasting about 3–4days) (16). This late phase of theIP 

requires changes in the transcription of cardioprotective protein genes. Among these, the signal 

transducer and activator of transcription 3 (STAT3) seems to be fundamental for IP cardioprotection. 

Indeed, cardiomyocytes isolated from STAT3-null mice are not protected by IP (15, 68). Collectively, 

the kinases involved during reperfusion are part of the so-called Reperfusion Injury Salvage Kinases 

(RISK) and Survivor Activating Factor Enhancement (SAFE) pathways (72). Similar pathways are 

involved in the PostC protection. The pharmacological protection isobtained bytheinfusionof drugs 

that are able to activate protective pathways such as RISK or SAFE, or NO/GMPc/PKG, similar to 

what occurs after the ‘‘classical’’ IP or PostC maneuvers, before or after the ischemia (136). 

Pharmacological protection can be obtained by administering substances of either endogenous 

(adenosine, bradykinin) or exogenous origin such as diazoxide or anesthetics (isoflurane). The 

inhibitor of mPTP Cyclosporin A, recently used during reperfusion as a PostC agent, is of particular 

interest in the clinic (9). The mitochondrial KATP channels also playanimportant roleinPostC, being 

involved in maintaining the closure of the mPTP (129). Similar to preconditioning, autacoids can 

trigger a complex protective signaling pathway, including RISK and SAFE signaling (67, 71, 73, 97, 

135, 138, 139, 144–146, 168, 180). Although not all studies confirm their role (170), the PI3K/ Akt 

pathway and ERK1/2 are also reported to be involved in this response. SeeT1 c Table 1 for a 

summary. Another important aspect relative to cardioprotection is the acidosis that is maintained 

during the ischemia by inhibition of the ATPase pump. Indeed, during the PostC maneuvers, the 

persistent acidosis contributes to limit at the mPTP opening and, additionally, favors kinase activation 

(34, 57, 84, 85). Although its location in the signaling cascade is unclear, PKCe and PKG may also 

participate in PostC. Another possible mechanism taking part in PostC involves transient modification 

of redox conditions (144). The PostC protection is abolished when ROS scavengers (such as NAC 

and N-(2-mercaptopropionyl)glycine [MPG]) are administered during PostC maneuvers (135, 138, 

144, 180). In addition, PostC determines intermittent oxygen bursts at the mitochondrial level, 

allowing the production of ROS, in a phase in which the enzymes responsible for the synthesis of 

large quantities of ROS are not yet reactivated. During PostC maneuvers, changes in the activity of 

many antioxidant enzymes have been highlighted (143). The mechanisms listed so far participate in 

the closure of mPTP, including the Bad/Bax and Pim-1 systems, correlated with the cardioprotection 

from PostC through the prevention of the mPTP opening and reduction of mitochondrial swelling 

(142). Finally, also the extracellular vesicles (EVs), which play an important role as carriers of 

protective molecules (e.g., miRNAs or proteins), might contribute to improve cardiac function after 

I/R. EVs can be secreted from almost every cell type in the human body (e.g., endothelial cell, 

platelets) and can be transferred via the bloodstream in almost every compartment (41, 187). 



Remote preconditioning 

A further cardioprotective protocol, able to reduce the damage caused by I/R, is the remote ischemic 

conditioning (RIC), which consists of short cycles of I/R in an organ or tissue at a distance from the 

heart (Fig. 2). In particular, RIC can be considered as Pre-, Per-, and Post-C, when these short I/R 

procedures are performed, before or during cardiac ischemia and after reperfusion, respectively (79, 

160). Clinical trials showed that RIC is able to reduce acute myocardial ischemia or increase 

myocardial salvage in patients with ST segment elevation myocardial infarction treated by primary 

percutaneous coronary intervention (71). The signal transduction mechanism involved in RIC is 

unclear in its details. The intramyocardial signal transduction of RIC is similar to that of classical 

conditioning protocol (IP and PostC maneuvers) (92), butthetransfer signalfrom theremotetissue or 

organ to the heart or other target organs is unknown (80), and the different neuronal and humoral 

mechanisms reported in literature appear to be casually involved (79, 160). It has been proposed that 

the anti-apoptotic effect of RIC is induced by the release of EVs containing miR-24, which in a 

paracrine manner plays a central role in the protective effects of RIC (60, 119). Although it has been 

recently suggested that EVs represent an important mediator of RIC, further molecular and in vivo 

experimentations are necessary to clarify their role in RIC. 

Exercise-Induced Preconditioning (Animal and Human Models) 

The possibility to mimic IP is one of the various mechanisms through which physical exercise 

potentially confers cardioprotection. IP classically refers to the capacity of short episodes of sub-

lethal ischemia to render the myocardium more resistant to subsequent, more prolonged, ischemic 

insults (124). This phenomenon was first described in dogs by Murry et al., who found that IP could 

substantially reduce infarct size (124). They also reported that this effect was unrelated to the 

development of collateral flows. Of note, after this original observation in dogs, many authors 

reproduced the infarct-sparing effect of IP in several mammalians, such as rats, mice, rabbits, swine, 

and goats (59, 194). Along the reduction in infarct size, IP has also been demonstrated to protect the 

heart against damage caused by ischemia–reperfusion (133) and to improve vascular and coronary 

reactivity (59). Of note, several evidences suggest that exercise can confer cardioprotection in a 

manner that resembles the IP effect without the necessity of previous ischemia, that is, the protection 

provided by exercise does not require the application of ischemia directly to the heart itself. This has 

been demonstrated in a consistent number of investigations conducted in animal models, whereas 

there is only limited and indirect evidence that exercise can mimic the effects of IP in humans (112). 

Animal studies 

Consistent effects of training on the reduction of infarct size were several times reported in rats and 

in mice. This effect has been attributed to IP-like effects and it could be obtained with different 



exercise types, such as long-term or short-term endurance training, resistance training, interval 

training, and even by a single bout of exercise (23–25, 29, 56, 155, 188). Of note, it has been reported 

indogsthat theacceleration in myocardial metabolism due to tachycardia confers cardioprotection 

similar to that induced by IP. However, this was obtained without the need of ischemia (47, 93). 

Hence, tachycardia alone can directly precondition the heart by activating myocardial cells 

metabolism. A further interest 

ing observation was that the infarct-sparing effect due to exercise-induced tachycardia was greater 

than that observed with tachycardia alone, thereby suggesting that during exercise stimuli other than 

increased myocardial metabolism alone trigger IP (46). Exercise was also demonstrated to be able to 

limit heart damage due to I/R. Investigation in isolated hearts from trained rats reported that the 

recovery of cardiac functions after global ischemia was greater compared with hearts obtained from 

sedentary animals (22). These results are in line with other observations demonstrating that endurance 

training improves myocardial functions during I/R (43, 152). In summary, numerous data have been 

published indicating that in various mammal species IP may be induced in a nonischemic way, 

namely by exercise or tachycardia. Therefore, the concept that heart conditioning can be reached by 

exercise appears to be based on a solid scientific background. 

Human studies 

Since experimentally induced ischemia or infarction is not a feasible option in humans, in vivo 

research to test directly whether exercise-induced IP can effectively protect the human heart from 

infarction cannot be conducted. However, there are several indirect clues suggesting that the human 

heart can be actually preconditioned by exercise. Specifically, observations during repeated exercise 

tests performed in patients with stable angina demonstrated that exercise can effectively protect the 

heart from ischemia. In particular, the warm-up (WU) phenomenon, which refers to the enhanced 

exercise performance and the reduced signs and severity of angina shown by some patients with 

coronary disease a few minutes after a previous effort, has been attributed to a preconditioning-like 

effect. It has been reported that the degree of myocardial stunning after exercise-induced ischemia 

was attenuated if the patient had previously exercised (157). Moreover, myocardial O2 consumption 

was reduced during WU in comparison with the first effort (126). These findings suggest that WU 

improves myocardial performance and metabolism during subsequent efforts. However, there is the 

possibility that the opening of collateral flows, with coronary vasodilation, is responsible for the WU, 

although some authors have argued against this possibility and demonstrated that the protection 

afforded by exercise induced ischemia was independent from collateral flow recruitment (98). It 

should be also highlighted that improved exercising capacity and reduced signs of ischemia can still 

be present 24 to 48h after ischemic exercise, when collateral flows should already be closed. This 



observation is consistent with the time course of the second window of protection (SWOP) afforded 

by IP, that is, a kind protection triggered by IP that requires proteins transcription to be effective (98). 

In support of this finding, there are studies showing that patients with coronary insufficiency, who 

under went a sequence of repetitive exercise tests, exhibited improved myocardial performance 

measured with thallium-scintigraphy during the last of the sequential efforts (116). This observation 

was confirmed by other investigations conducted in patients with stable angina demonstrating that, 

together with the reduced ischemic signs, global hemodynamic was also improved during exercise 

performed 48h after a previous exercise-induced ischemia (37). Further, by employing a sequence of 

repeated treadmill efforts, it was shown that signs of the presence of cardioprotection (reduced ST 

segment depression, increased rate pressure product, and longer onset of chest pain) disappeared 6h 

after a session of exercise-induced ischemia to reappear again after 24h, which again is consistent 

with the time course of the SWOP (131). In this regard, it should, however, be acknowledged that 

one study failed to demonstrate the possibility of inducing the SWOP with exercise induced ischemia 

in humans (178). Overall, all these observations indirectly support the notion that the human heart 

can be preconditioned by exercise, although it should be underscored that all the evidence 

demonstrating this possibility derives from studies on patients with coronary disease, in whom the 

preconditioning effect is triggered by exercise-induced myocardial ischemia. Differently, the attempt 

to enhance cardiac performance in healthy subjects by means of a sequence of maximal tests on a 

cycle ergometer failed, and this suggests that ischemia must occur to detect any preconditioning effect 

due to exercise (36). Hence, the capability of exercise to mimic IP without the occurrence of ischemia 

is still to be demonstrated in humans. Importantly, to the best of our knowledge there are no studies 

in humans that have dealt with the effects of regular exercise training programs, which are usually 

conducted at sub-maximal and sub-ischemic threshold intensity. To date, there are only retrospective 

studies demonstrating that greater levels of physical capacity in the week preceding an infarction 

were associated with lower mortality and more nonfatal cardiac events (156). Moreover, it was 

reported that exercise in the week before a coronary bypass grafting increased the rates of survival 

(1). Hence, there is no available information on thresholds for exercise duration and intensity to reach 

the beneficial effects of preconditioning induced by exercise. In this regard, specific studies designed 

to investigate on this possibility and to establish at which intensity effort should be performed to 

trigger the preconditioning phenomenon are needed. 

Biological Mechanisms Involved in the Protective Effect of Exercise Against Heart Failure 

As previously exposed, animal studies have demonstrated reduced necrosis and improved myocardial 

function after ischemia following exercise training. Although mechanisms responsible for the 

supposed exercise-induced cardioprotection remain elusive, there are some putative cellular 



adaptations due to exercise that may help in explaining the phenomenon. Specifically, some 

investigations have shown that exercise training increases the expression of sarcolemmal 

ATPsensitive K+ channels, which are involved in the classical form of IP (23, 199). Moreover, other 

studies in rats and dogs have demonstrated that blocking both sarcolemmal and mitochondrial ATP-

sensitive K+ channels resulted in the abolition of the training-acquired cardioprotection (24, 46, 86), 

although to date it is not clear whether both types of channel are necessary for cardioprotection. Other 

putative mechanisms are related to the production of several metabolites such as adenosine (46), 

bradykinin (183), and opioids (118) which are released by the contracting myocardium during effort. 

These metabolic by-products are known to accumulate during ischemia, but they are also released 

during moderate-sustained exercise and this may explain why, in animal models of preconditioning, 

exercise was found to be able to trigger IP without the need of ischemia. Actually, it has been 

proposed that a single episode of moderate sub-maximal physical exercise, which unlikely induced 

myocardial ischemia, was able to induce cardioprotection in rat hearts. Authors explained this 

cardioprotection with a PKC-mediated mechanism, since pharmacological inhibition of this enzyme 

abrogated cardioprotection (190). This observation demonstrates that ischemia is not a prerequisite 

for the activation of the IP biochemical cascade and that the PKC is directly modulated by exercise. 

Another important substance that may play an important role in exercise-induced preconditioning is 

NO. This substance is pivotal in the cardioprotection afforded by IP as it triggers and mediates both 

the first and the SWOP. Indeed, exposure to NO donors can reproduce the effects of IP in the absence 

of ischemia (37, 88). It has been observed that exercise increases NO production by increasing shear 

stress (99). Hence, it was hypothesized that exercise-induced increase in NO production is a potential 

mechanism by which physical training induces cardioprotection. A number of experimental evidences 

confirm this hypothesis. In the mouse heart, the reduced extension of infarct size induced by training 

was accompanied by both eNOS activation and increased expression of inducible NOS (iNOS). The 

effects of training, including the upregulation of iNOS, were absent in eNOS(–/–) knockout mice. 

Similarly, exercise-induced cardioprotection did not occur in iNOS(–/–) mice or after treatment with 

a selective iNOS inhibitor, suggesting that iNOS plays an important role in exerciseinduced 

cardioprotection (3). A further study in mice showed that the reduction in the infarct size, and the 

expression and activity of eNOS persisted till 7 days after training accomplishment. Other studies 

showed that the b3 adrenergic receptors, at least in part, mediate the enhanced activation of eNOS 

and production of NO within the heart during exercise, thus suggesting the involvement of the 

adrenergic system in cardioprotection (25). In dogs subjected to I/R, the cardioprotective effect of 

acute exercise of increasing intensity was blunted by inhibitors of iNOS such as aminoguanidine and 

AEST, or by the nonselective NOS inhibitor N(x)-nitro-Larginine methyl ester (LNAME). 



Interestingly, the cardioprotective effect was reduced both by LNAME administered before exercise 

and by AEST given before coronary artery ligation, thus indicating that NO exerts cardioprotective 

effects both early and late after exercise (69). It must also be taken into consideration that, in addition 

to NO produced inside the heart, skeletal muscle also generates RNS, such as NO or nitrite ion (173), 

high doses of which cause nitrosative stress and tissue damage, whereas low doses may exert 

beneficial effects on cardiac cells. ROS production is augmented by exercise (51), and this may be 

another potential exercise-related mechanism under lying cardioprotection. Actually, PKC is directly 

activated by ROS generation, that is, without the need to interact with a specific receptor (194). 

Moreover, habitual physical activity upregulates myocardial antioxidant capacity because of the 

sustained oxidative stress. This is testified by the increased myocardial levels of manganese SOD and 

of extracellular SOD (116, 191). The upregulation of these enzymes is involved in the SWOP, thereby 

providing another potential mechanism by which exercise protects from ischemia. In view of the 

fundamental role of ROS in I/R injury (122), several studies were performed to investigate whether 

the cellular antioxidative defenses are involved in exercise induced cardioprotection. The production 

of ROS occurring both in mitochondria and in the cytosol may be counteracted by the antioxidative 

defense system, which includes several enzymes, such as the different form of SOD present in the 

cytosol or in the mitochondria, catalase, glutathione, glutathione peroxidase and glutathione 

reductase, and thioredoxin reductase (61). It has been shown that both short- and longterm exercise 

training enhances the activity of mitochondrial matrix form–manganese [Mn] SOD (MnSOD) within 

the heart, whereas low-intensity exercise is ineffective. Data obtained by using antisense oligodeoxy 

ribonucleotide against MnSOD are partially conflicting: Some studies showed that this treatment 

prevented the reduction in the infarct size induced by exercise training, whereas another report 

indicated it was ineffective in the development of myocardial stunning after I/R. At present, the role 

of the cytosolic isoform of SOD in the exercise-induced cardioprotection has not been established 

(151). Data regarding catalase, glutathione peroxidase, and glutathione reductase suggest a minor or 

no role of these enzymes in cardiac adaptation after exercise (61). Administration of MPG, a free 

radical scavenger, before exercise did not affect the external work output of the heart of trained 

animals (174). The lack of uniformity of these results can be tentatively explained with the fact that, 

although it is generally accepted that ROS play a fundamental role in I/R injury, they can also act as 

a double-edged sword, being also able, at least at low concentrations, to participate in the cascade of 

events that lead to cardioprotection (105, 122). Exercise can also increase the expression of proteins 

involved in the cardioprotection afforded by IP. Specifically, HSPs, which are a group of proteins 

whose production is stimulated by stress stimuli, have been found augmented up to three times in the 

myocardium in response to physical training (106). It is believed that HSPs, in particular HSP72, can 



protect cells from a variety of stressful conditions, including ischemia–reperfusion (82, 154). 

However, their contribution to the cardioprotection afforded by exercise remains controversial since 

the cardioprotection lasts longer than the HSPs’ half time (101, 175). In addition, despite the fact that 

the production of HSP72 within the heart depends on environmental conditions, being several-fold 

enhanced after exercise in room temperature, but unaltered by exercise in cold, the cardioprotective 

effect of exercise is similar in both conditions (154, 175). Recent data suggest that HSP70 also 

participates in exercise preconditioning. HSP70 isupregulated afterexercise and may exert a 

cardioprotective role through its capacity to repair unfolded proteins or to stabilize endoplasmic 

reticulum functions (196). Other intracardiac factors involved in exercise-induced preconditioning 

include KATP channels, mitochondria, lipid mediators, and polyamines. An early study performed 

by Brown et al. (23) in endurance trained rats showed that blockade of sarcolemmal KATP (sKATP) 

channels abolished the training-acquired cardioprotection, whereas blockade of mKATP channels 

had no effect, thus suggesting an important role of sKATP channels in cardioprotection. Further 

studies performed on dogs in which early and late cardiac preconditioning were induced by acute 

high intensity exercise before and 24h before coronary occlusion showed that both the early and the 

late conditioning depend on mKATP activation (132). The role of KATP channels in exercise-

induced cardioprotection has been recently confirmed by the fact that blockade of mKATP channels 

reduced the protective effect induced by RIC on infarct size and arrhythmias on the isolated rat heart 

(86). Endurance training promotes the development of a mitochondrial phenotype resistant to I/R 

injury, leading to a decrease in ROS production and in therate of opening ofmPTP, as well as to an 

increase intolerance to high calcium level and in the amount of antiapoptotic 

proteins(4,54,100,153).Both long-term endurance and short-term trainings were shown to increase 

resistance of the mPTP opening during I/R in rats (110, 111) and mice (150). The fact that training 

did not influence the heart function and coronary flow (32) suggests a direct action on mPTP features, 

even if we are not aware of data regarding their response to acute exercise. Proteomic studies indicate 

that several changes induced by endurance exercise training in mitochondrial proteins involved in 

amino acid and fatty acid metabolism, citric acid cycle and electron transport chain, creatine kinase 

phosphorylation pathway, and oxidation–reduction processes may participate to determine the 

improved outcomes in the heart undergoing I/R (89, 107). Although it is feasible that the ability to 

maintain ATP homeostasis could contribute to cardioprotection induced by exercise, there is no direct 

evidence connecting these processes to adaptation to exercise. On the other hand, several 

experimental evidences suggest a direct link between exercise, oxidation–reduction balance, and 

cardioprotection. As previously mentioned, endurance exercise training increases the presence of 

SOD and glutathione reductase activity in myocardiocytes (55), thus enhancing the presence of 



antioxidants that protect mitochondria against increased ROS production induced by I/R. In addition, 

endurance exercise training also reduces the presence of monoamine oxidase A in both 

subsarcolemmal and intermyofibrillar mitochondria in the rat heart (90), thus possibly leading to 

reduced production of H2O2 and apoptosis in cardiac myocytes undergoing I/R. Ceramide and 

sphingosine-1-phosphate (S1P) are bioactive sphingolipids involved in I/R injury and 

cardioprotection. IP is able to limit the increase of ceramide content occurring in the I/R heart (13), 

which is, at least in part, responsible for apoptosis of cardiomyocytes (19). Although no direct 

measurement of ceramide content in the I/R heart of trained animals has been performed, the fact that 

acute exercise reduces the heart content of ceramide in the rat (45) suggests a possible role for this 

mediator in cardioprotection. The S1P exerts beneficial effects against I/R injury, being involved in 

both IP and PostC in the I/R heart. Although, at present, no data regarding the content of S1P in the 

heart after exercise are available, the fact that plasma levels of S1P increase in untrained healthy 

humans after acute exercise suggeststhatSP1mayparticipate in cardioprotection induced by exercise 

(12). It is conceivable that other lipid mediators contribute to exercise-induced cardioprotection. For 

instance, it has been shown that platelet-activating factor (PAF) production within the heart 

participates in the induction of IP, by inducing the activation of kinases included in the RISK pathway. 

The fact that low increases in plasma PAF concentrations occur in humans during exercise also 

suggests that this mediator may be involved in exercise-induced cardioprotection (134). Although 

being a powerful way to protect the heart from I/R-induced damage, IP has shown to be ineffective 

in aged hearts. Since exercise training decreases the incidence of age-related cardiovascular 

dysfunctions and upregulates the ornithine decarboxylase (ODC)/polyamine pathway, Wang et al. 

(184) investigated whether exercise can restore IP protection in aged rat hearts and the role of 

polyamines in this phenomenon. Although IP did not affect the metabolism of polyamine, exercise 

training restored both the effectiveness of IP and the polyamine pool by activating ODC and inhibiting 

the spermidine/spermine acetyltransferase enzyme in aged hearts. In addition, exogenous polyamines 

improved mitochondrial dysfunction associated with age. The phenomenon of ‘‘remote 

preconditioning’’ should be also considered, which refers to the possibility to precondition the 

myocardium by inducing ischemia in a remote organ or tissue. Several investigations have 

demonstrated that transient ischemia in small intestine, kidney, and skeletal muscle effectively 

induces cardioprotection (14, 165, 185). It has been hypothesized that remote preconditioning is 

initiated by humoral factors produced by the ischemic tissue (such adenosine and bradykinin), which 

are released into the blood and then transferred to the myocardium where they trigger the 

cardioprotection, although the exact mechanisms involved in this phenomenon are still unknown 

(112, 188). In this regard, it is to be considered that the skeletal muscle is a very active secretory 



tissue and that several products of its metabolism, such as myokines, opioids, NO, and by-products 

of the anaerobic metabolism (lactate, adenosine diphosphate [AU5 c ADP], adenosine, etc.) are 

continually produced by the contracting muscle and released into the blood during exercise, even in 

the absence of any ischemic condition. Among myokines, particularly important is IL-6. Studies 

performed onIL-6knockoutmicehighlightedtherole ofIL-6 in the exercise-induced heart 

preconditioning. Although as expected, exercise exerted a protective effect against I/R induced 

arrhythmias and reduced infarct size in wild animals, it was ineffective in IL-6 knockout mice (115). 

Although, at present, the data on the cardioprotective effect of other myokines are scarce, their role 

in exercise-induced heart preconditioning appears a very promising area of research. The involvement 

of opioids in exercise-induced cardioprotection has been suggested by the blocking effect of naloxone 

or other opioid receptor antagonists (44, 118). The use of selective blocking agents suggested that 

exercise-induced preconditioning is mediated by delta-opioid receptors. A long-term training was 

able to reduce the infarct size over three times in rats undergoing I/R, and this effect was prevented 

by naloxone or by naltrindole, a selective delta-opioid receptor blocker (18). The fact that left 

ventricle mRNA of proenkephalin was enhanced immediately after and 120min later than exercise 

indicates that both the blood-borne and intracardiac opioids can participate in the exercise-induced 

preconditioning (118). Hence, it can be hypothesized that these metabolites may induce remote 

preconditioning without the need of ischemia at cardiac level, and this may explain, at least in part, 

the cardioprotective effect of exercise. To the best of our knowledge, this hypothesis has never been 

verified although some indirect proofs have been found in support of this possibility. In detail, recent 

research demonstrated that dialysated plasma from humans undergoing high-intensity exercise 

reduced infarct size in isolated rabbit hearts after ischemia–reperfusion injury. This cardioprotective 

effect was similar to that induced by plasma from humans exposed to RIC (117). Authors of the 

quoted study suggested that exercise-induced cardioprotection was at least partially mediated by the 

release of one or more humoral factors. Similar results were obtained in mice hearts perfused with 

dialysated plasma from highly trained humans (swimmers) undergoing a protocol of ischemia–

reperfusion exercise (87). Along with its cardioprotective effects, RIC has also been found able to 

improve endothelium-dependent function after strenuous. This effect has been attributed to humoral 

mechanisms that increased the activation of KATP channels and the concentration of NO (109). Of 

note, it has been observed that IP induced by intermittent upper-arm ischemia performed before 

primary percutaneous coronary intervention could attenuate reperfusion injury in patients with 

evolving myocardial infarction, thereby resulting in the reduction of myocardial damage (20). Others 

have proposed that remote preconditioning works through a neural pathway between the nervous 

tissue and the heart (104). Indeed, stimulation of sensory nerve endings in the ischemic area may 



elicit RIC of the heart. Although the precise mechanism of this phenomenon is not clear, it has been 

shown that both parasympathetic and sympathetic efferent pathways to the heart seem to be involved 

(48, 81). It has been hypothesized that the changes of metabolic environment could activate sensory 

receptors within contracting skeletal muscle, leading to  IP. On the other hand, muscular exercise 

enhances the activity of the adrenergic nervous system, leading to tachycardia and increased 

inotropism of the heart. The role of the adrenergic system in cardioprotection has been previously 

discussed in relation to NO. Although interesting, to our knowledge the possibility that the nervous 

system also may participate in remote preconditioning has never been definitively proven and nervous 

segments potentially involved have not been identified. Taken together, the studies performed on 

humans or in animal models suggest that exercise-induced cardioprotection is a multifactorial 

phenomenon, depending on both extracardiac and intracardiac factors. Working together, all these 

factors may activate cellular pathways widely shared with those involved in classic preconditioning 

and remote conditioning, such as components of the prosurvival (RISK) pathway such as Akt, PKCe, 

and ERK1/2 (108). The major putative mechanisms responsible for the exercise-induced IP are shown 

in bF4 Figures 4 and bF5 5 and reviewed in Refs. (2, 17, 31, 52, 94, 112, 153, 176, 188). 

Exercise and Cardioprotection Against Cardiotoxicity Due to Antiblastic Drugs 

Although advances in early detection and therapy have led to significant improvements in longevity 

after a cancer diagnosis, patients with early-stage disease not only remain at high risk of cancer 

recurrence but also remain at risk for late effects caused by adjuvant therapy, in particular 

cardiovascular disease (CVD) due to the cardiotoxic side effects of treatment. Anthracyclines are 

powerful chemotherapeutic drugs widely used in the treatment against several kinds of neoplasms in 

both children and adult populations. However, anthracyclines induce both early and late cardiotoxic 

effects: More than 2% of patients treated with doxorubicin (DOX) undergo heart failure, with a 

mortality rate more than 60% at 2 years. Several evidences indicate that physical exercise, a correct 

lifestyle, and the control of risk factors can, at least partially, reduce anthracycline-induced 

cardiotoxicity. In particular, exercise training represents a feasible nonpharmacological treatment that 

is able to improve cardiovascular and endothelial functions, to regulate proapoptotic signaling, to 

protect against ROS, and to decrease autophagy/lysosomal signaling (21, 29, 91, 125, 162) (F6 c Fig. 

6). Cardiac dysfunctions induced by chemotherapy are characterized by reduction of left ventricular 

ejection fraction, in the presence or not of heart failure (53). These alterations are attributed to 

production of ROS and oxidative stress, alterations in mitochondrial metabolism and lysosomal 

structure and function. Anthracyclines also impair iron metabolism, promoting its accumulation 

within cardiac myocytes (95). However, several factors, such as cumulative dosage, associated use 

of other drugs, age and female gender, as well as the possible presence of cardiac hypersensitivity 



reactions, can concur to worsen anthracycline cardiotoxicity. Several clinical studies assessed the 

benefits of exercise against heart failure induced by chemotherapy. Aerobic training improved 

VO2max and decreased heart rate, systolic and diastolic blood pressure in patients undergoing 

treatment for cancer (182). A study assessing the effect of exercise during and after treatment showed 

that the group of patients undergoing a prescriptive exercise program had maximal benefit in terms 

of cardiopulmonary parameters and fatigue levels, suggesting the beneficial effect of an early exercise 

intervention (161). Patients can also benefit from supervised or home-based exercise regimen in the 

post-treatment period (40, 148). In addition, a combined aerobic and resistance exercise protocol 

improved exercise tolerance and flexibility variables in cancer survivors (172). However, other 

studies have yielded conflicting results. The fact that exercise did not prevent ventricular remodeling 

when trastuzumab was used as associated therapy suggested that not all the molecular targets involved 

can be affected by exercise (75). In another study, the best benefit was observed in the self-directed 

exercise group patients, whereas supervised exercise had beneficial effects only in patients not under 

chemotherapy (163). A recent report by Bourdon et al. (21) has been devoted toward analyzing the 

effect of aerobic exercise on cardiopulmonary fitness in childhood cancer survivors who are under 

treatment or had been treated with a cardiotoxic agent. Although meta-analysis of the nine included 

studies shows that aerobic exercise exerts a significant positive effect, subgroup analyses of clinical 

characteristics and exercise variables gave no significant findings. Although this analysis gave no 

definitive results, it represents an initial step to establish the possible protective effect of aerobic 

exercise against cardiotoxicity consequent to cancer treatment. Several studies in humans and in 

animal models have been performed to elucidate the possible cellular basis of exerciseinduced 

changes in CVD induced by chemotherapy. The cardiotoxicity of anthracyclines is, in general, 

attributed to enhancement of ROS production, leading to mitochondrial dysfunction, peroxidation 

ofseveral substrates,andincreased apoptosis, finally resulting in cell dysfunction and death. Aerobic 

exercise can counteract these effects, causing enhancement of antioxidant and anti-apoptotic capacity. 

A possible protective mechanism involves cellular pathways depending on gp130 cytokines and 

neuregulin-1 (NRG1), a paracrine mediator produced by microvascular endothelial cells, which is 

upregulated in heart failure and has significant prognostic value for this pathology (96). It has been 

shown that exercise is opposed to the alterations of NRG1/ErbB signaling as well as to enhancement 

in angiotensin II and adrenergic agonists levels through the increase of mechanical stress and 

depression of the neurohormonal system. In addition, exercise can increase myocardial Akt, thus 

reducing pathological LV remodeling and hypertrophy (38, 162). On the other hand, being able to 

upregulate vascular endothelial growth factor (VEGF) production and endothelial progenitor cells 

activation, exercise may counteract the action of drugs that exert antiangiogenetic effects by targeting 



VEGF receptor or acting as tyrosine kinase inhibitors (162). Studies conducted on animal models 

confirmed the protective effects of exercise against cardiac alterations induced by chemotherapeutic 

drugs, and they allowed to clarify some of the cellular mechanisms involved in its positive effects. 

Moderate-term endurance training before treatment with DOX enhanced cardioprotection markers 

(HSP70, SOD) and reduced cardiotoxicity in heart tissue (166). Exercise training provided 

cardioprotection against delayed-onset cardiotoxicity also when treatment was initiated in childhood, 

as shown by assessing cardiac function in rat pups treated with DOX, which remained sedentary or 

were allowed to voluntarily exercise for 10 weeks (76). Smuder et al. (171) tested the involvement of 

altered cardiac gene and protein expression of mediators of the autophagy/lysosomal system in 

cardiac alterations induced by DOX. The major finding of this study is that exercise training is able 

to reduce the increase of both mRNA and protein levels of numerous key autophagy genes caused by 

DOX treatment, thus suggesting that the protective effect of exercise may be, at least in part, related 

to its ability to reduce increases in autophagy signaling induced by DOX. Several studies show that 

exercise performed before DOX treatment is able to reduce mitochondrial toxicity in cardiac cells. In 

particular, the effects of two different (endurance treadmill training [TM] and voluntary free-wheel 

activity [FW]) exercise models applied before and during DOX treatment were evaluated in male 

young Sprague-Dawley rats (113). DOX treatment induced ultrastructural and functional 

mitochondrial alterations and decreased oxidative phosphorylation proteins. Moreover, DOX 

decreased the content and activity of complex I, mitochondrial biogenesis (mitochondrial 

transcription factor A [TFAM]), and increased acetylation and oxidative stress. Although TM 

prevented all the alterations induced by DOX, FW was not able to prevent the decreases in TFAM 

and SIRT3, a protein involved in mitochondrial oxidative stress. Moreover, both TM and FW 

prevented the increased mPTP susceptibility and apoptotic signaling, the alterations in mitochondrial 

dynamics, and the increase in auto(mito)phagy signaling induced by DOX (114). The study of Lien 

et al. (102) highlighted some cellular mechanisms involved in the protective effect of chronic exercise 

training against DOX-induced cardiotoxicity. Exercise preconditioning attenuated both in vivo and 

ex vivo cardiac dysfunctions. In particular, when compared with sedentary animals, both TM and FW 

preserved fractional shortening, left ventricular developed pressure, and the expression of sarco 

endoplasmic reticulum calcium-ATPase 2a protein. These findings suggest that pretreatment with 

endurance exercise may be a potentially useful strategy to improve myocardial tolerance against 

DOX-induced oxidative damage, in particular maintaining mitochondrial function and calcium 

handling in cardiomyocytes. 

Conclusions 



Several evidences indicate that exercise acts as a physiological stress that is able to induce a defensive 

phenotype in the heart, exerting a cardioprotective effect and reducing cardiac dysfunction and infarct 

size after I/R. Although the precise mechanisms underlying this effect have not yet been fully 

clarified, much progress has recently been made in understanding this phenomenon. Exercise induced 

cardioprotection depends on the production of several cellular mediators and shares the same 

intracellular pathways that are responsible for the ‘‘classical’’ conditioning of the heart, such as RISK 

and SAFE. Interestingly, exercise-induced preconditioning largely depends on factors originated 

from contracting skeletal muscles, which therefore ‘‘take care’’ of the heart (remote conditioning). 

The same factors also seem to be responsible for the ability of exercise to improve myocardial 

tolerance against DOX induced oxidative damage. Although to date a direct demonstration that 

exercise can condition the heart of healthy individuals is lacking, a preconditioning effect induced by 

ischemia has been observed in patients suffering from coronary disease (‘‘warmup’’ phenomenon). 

Thus, regular exercise should be recommended not only to achieve beneficial effects by reducing 

cardiovascular risk factors but also because it appears to be the only available practical method to 

induce IP of the heart. In conclusion, although the results obtained from animal models and human 

studies are encouraging, rigorous investigations are still required to clarify the role of physical 

exercise in preventing I/R damage and cardiovascular toxicity of chemotherapy. In particular, future 

investigations are required to define the proper intensity, duration, and frequency of exercise for 

prevention of cardiotoxicity caused by the various chemotherapeutic regimens that are currently 

applied.  
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LIST OF ABBREVIATIONS 

CVD: cardiovascular disease  

DOX: doxorubicin 

eNOS: endothelial NOS 

EVs: extracellular vesicles 

FW: voluntary free-wheel activity 

GSK-3β: glycogen synthase kinase b  

HSPs: heat shock proteins 

IL-6: interleukin-6 

iNOS: inducible NOS 

IP: ischemic preconditioning 

I/R: Ischemia/Reperfusion   

LNAME: N(ω)-nitro-L-arginine methyl ester 

mKATP: mitochondrial ATP dependent potassium channels 

MnSOD: mitochondrial matrix form –manganese [Mn] SOD 

MPG: N-(2-mercaptopropionyl)glycine  

mPTP: mitochondrial permeability transient pore 

NO: nitric oxide 

NOS: nitric oxide synthase 

NRG1: Neuregulin 1  

ODC: ornithine decarboxylase 

ONOO−: peroxynitrite 

PAF: Platelet-activating factor  

PI3K: phosphatidylinositol 3-kinase 

PKC: Protein Kinase C  

PostC: ischemic post-conditioning 

RIC: remote ischemic conditioning 

RISK: Reperfusion Injury Salvage Kinases  

RNS: reactive nitrogen species  

ROS: reactive oxygen species 

S1P: sphingosine-1-phosphate 

SAFE: Survivor Activating Factor Enhancement 

sKATP: sarcolemmal KATP 

STAT3: signal transducer and activator of transcription 3 



SOD: superoxide dismutase 

SWOP: second window of protection 

TFAM: mitochondrial transcription factor A 

TM: endurance treadmill training  

VEGF: vascular endothelial growth factor 

WU: warm-up 
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Table 1. Endogenous factors involved in cardioprotection  

Substance Time of 

Administration 

I/R 

Injury 

Clinical trials References 

G protein-coupled 

receptors (GPCRs) 

activators 

 

Adenosine Pre and Post ↓ Yes 32, 33, 42, 47, 59, 91, 192 

Adipocytokines Pre and Post ↓ None 82 

Bradykinin Pre and Post ↓ Yes 138, 139, 183 

Glucagon-like 

peptide 

Pre and Post ↓ Yes 140, 197 

Obestatin Post ↓ None 6, 146 

Opiods Pre and Post ↓ None 44, 77, 118, 119 

PAF Pre ↓ None 134 

GHRH Pre and Post ↓ None 64 

Tyrosine kinase 

receptor activators 

 

Erythropoietin Pre ↓ Yes 121, 159 

Thrombopoietin Pre and Post ↓ None 11 

Insulin Pre ↓ None 10, 164 

Growth factors  

Neuregulin Pre and Post ↓ Yes 49, 97, 122 

Ghrelin-associated 

peptides 

Pre and Post ↓ None 29 

Guanylyl 

cyclase(GC)-linked 

receptor activators 

 

Natriuretic peptides Pre and Post ↓ Yes 38, 193 

Agents Acting on 

Intracellular 

Pathways 

 

NO, CO, H2S Pre and Post ↓ Yes 3, 8, 25, 36, 41, 50, 59, 69, 88, 

128, 135, 173 



Agents with 

unknown membrane 

target 

 

Chromogranin A- 

derived peptides 

Pre and Post ↓ None 26, 147 

Exosomes and 

microvesicles 

Remote PreC ↓ None 40, 60, 187 

 

  



FIGURE LEGENDS 

 

Figure 1. Ischemia-reperfusion injury: schematic representation of molecules involved in the I/R 

damage. ATP: Adenosine-5'-triphosphate; Cytc: Cytochrome c; mPTP: mitochondrial permeability 

transition pore; RNS: reactive nitrogen species; ROS: reactive oxygen species; SR: sarcoplasmic 

reticulum; TNF : Tumor necrosis factor- ; : mitochondrial membrane potential.    

Figure 2. Schematic diagram showing the time-course of typical protocols of ischemic 

cardioprotection. The parts signed in black indicate periods of ischemia. 

Figure 3. Schematic representation of the RISK and SAFE cardioprotective pathways. mPTP, 

mitochondrial permeability transition pore; mKATP, mitochondrial potassium ATP dependent 

channel.  

Figure 4. Putative mechanisms responsible for exercise-induced preconditioning. Exercise directly 

induces the classic form of preconditioning at heart level by means of tachycardia, opening of ATP-

sensitive K+ channels, metabolites, and protein production. Muscle activity induces remote 

preconditioning by means of metabolites and myokines production and, possibly, by the activation of 

neural pathways still to be identified. See text for more details.  

Figure 5. Schematic overview of cellular reprogramming in cardiomyocytes in response to physical 

exercise. Activation of specific receptors enhances phosphatidylinositol 3-kinase (PI3K)/protein 

kinase B (Akt)/mammalian target of rapamycin (mTor)/ glycogen synthase kinase 3 beta (GSK-3β) 

signaling which leads to proliferation, physiological hypertrophy, and cardiac repair mechanisms in 

response to injury. The PI3K/Akt activation enhances endothelial nitric oxide synthase (eNOS) and 

subsequently intracellular nitric oxide (NO) levels, which increases contractility and decreases 

fibrosis as well as pathological hypertrophy. Changes in miR mediate apoptosis and influence cardiac 

compliance and fibrosis via alterations in collagen production and matrix metalloproteinase (MMP) 

expression. Sports induces mitochondrial renewal. Paracrine secretion of extracellular vesicles (Evs) 

containing miR or other molecules mediate/reduce I/R injury as well cellular apoptosis. 

Figure 6. Molecular mechanisms in exercise-induced protection against cardiotoxicity of 

anthracycline. 
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