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 28 

Abstract 29 

Predictions derived from species distribution models (SDMs) are strongly influenced by the 30 

spatial scale at which species and environmental data (e.g. climate) are gathered. SDMs of 31 

mountain birds usually build on large-scale temperature estimates. However, the topographic 32 

complexity of mountain areas could create microclimatic refuges which may alter species 33 

distributions at small spatial scales. To assess whether fine-scale data (temperature and/or 34 

topography) improve model performance when predicting species occurrence, we collected 35 

data on presence-absence of bird species, habitat and fine-scale temperature at survey points 36 

along an elevational gradient in the Alps (NW Italy). Large-scale temperature data, and both 37 

large- and fine-scale topography data, were extracted from online databases for each point. 38 

We compared species models (fine-scale vs large-scale) using an information-theoretic 39 

approach. Models including fine-scale temperature estimates performed better than 40 

corresponding large-scale models for all open habitat species, whereas most forest/ecotone 41 

species showed no difference between the two scales. Grassland birds such as Northern 42 

Wheatear Oenanthe oenanthe and Water Pipit Anthus spinoletta were positively associated 43 

with warmer microclimates. These results suggest that alpine grassland species are potentially 44 

more resistant to the impact of climate change than previously predicted, but that indirect 45 

effects of climate change such as habitat shifts (forest- and shrub encroachment at high 46 

elevations) pose a major threat. Therefore, active management of alpine grassland is needed 47 

to maintain open areas and to prevent potential habitat loss and fragmentation. SDMs based 48 

solely on large-scale temperatures for open habitat species in the Alps should be re-assessed. 49 

 50 

 51 

Key words: information-theoretic approach, mountains, species distribution models,  52 

temperature, topography. 53 

  54 
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Introduction 55 

Species distribution models (henceforth SDMs) are a widely used tool in conservation (Guisan 56 

and Thuiller 2005, Rodríguez et al. 2007, Franklin 2013) for a range of taxa (Ongaro et al. 57 

2018, Lewthwaite et al. 2018, Hof and Allen 2019). In the face of climate change, SDMs have 58 

become particularly important in predicting current and/or future distributions of species under 59 

different climate change scenarios (Avalos and Herández 2015, Jackson et al. 2015, 60 

Lehikoinen and Virkkala 2016). These studies usually rely on macroclimate data, which 61 

describe climatic conditions at a relatively large scale (approximately one square kilometre or 62 

more; Zellweger et al. 2019) derived from national networks, weather stations or online 63 

databases (e.g Worldclim; Hijmans et al. 2005).  64 

However, mountain environments are often poorly represented by conventional climate 65 

station data, and uncertainty for interpolated climatic values is high (Hijmans et al. 2005). 66 

Furthermore, local temperature can vary substantially due to the topographic complexity in 67 

mountain areas (Scherrer and Körner 2010, Gunton et al. 2015), thus creating a mosaic of 68 

microclimatic conditions over small spatial scales. Depending on discipline, microclimates 69 

have been defined in various ways. In this study, we adopt the definition by Bramer et al. (2018) 70 

who defined microclimate as fine-scale climate variations at spatial resolutions of < 100m, 71 

which are influenced by fine-resolution biotic and abiotic variations (topography, soil type and 72 

vegetation). Topographic variables like aspect and slope can markedly alter microclimate by 73 

influencing the amount of incoming solar radiation between different exposed slopes. Between 74 

north and south exposed slopes, temperature can differ by approximately 1°C if slopes are 75 

gentle (<5°) but can increase up to 5°C if slopes are steep (40°; Gubler et al. 2011). Moreover, 76 

these differences could subsequently influence snow accumulation processes and thus the 77 

rate of snow melt in spring (Gubler et al. 2011). 78 

There is mounting evidence of the importance of microclimate in influencing habitat 79 

selection. For example, Bramblings Fringilla montifringilla tend to rest in higher densities in 80 

areas with warm microclimatic conditions (Zabala et al. 2012). In Mountain Chickadees Poecile 81 

gambeli, microclimates influence the selection of foraging sites (Wachob 1996). Microclimates 82 



4 

 

can also act as thermal refuges, which enable individuals to persist despite unfavourable 83 

ambient conditions (Wilson et al. 2015). This has been shown in Northern Bobwhites Colinus 84 

virginianus, which mitigated thermal stress by seeking thermally-buffered microclimatic sites 85 

during hot days (Carroll et al. 2015). Furthermore, Northern Bobwhite nest site selection was 86 

proven to be influenced by microclimate: Individuals nested in cooler and moister microclimatic 87 

conditions compared to surrounding non-nesting locations (Tomecek et al. 2017, Carroll et al. 88 

2018).  89 

Only a few studies have investigated the role of microclimate within a mountain context. 90 

Frey et al. (2016) showed that fine-scale temperature metrics were strong predictors of bird 91 

distributions, with temperature effects being larger than vegetation effects on occupancy 92 

dynamics in mountain forests (but see Viterbi et al. 2013). In the Alps, the habitat of the alpine 93 

Rock Ptarmigan Lagopus muta helvetica is characterised by a wide variety of microclimates 94 

over small spatial scales with individuals choosing colder sites in summer (Visinoni et al. 2015).  95 

Beside the direct impact on birds, microclimate also plays a crucial role in habitat selection 96 

in insects. It has been demonstrated that in Parnassius apollo, a mountain specialist butterfly, 97 

larval habitat selection is related to ambient temperature. Larvae selected warm microclimates 98 

when ambient temperatures fell below a threshold of 27°C, whereas cold microclimates were 99 

selected when this threshold was exceeded (Ashton et al. 2009). Microclimate can further 100 

influence oviposition (Stuhldreher et al. 2012), and the precise microclimatic conditions for 101 

thermoregulation are actively sought by montane species of the genus Erebia (Kleckova et al. 102 

2014). In this respect, microclimate won’t only shape the distributions of these butterfly species, 103 

but it will also indirectly influence bird species which rely on caterpillars as a food source for 104 

chick rearing. 105 

Microclimate thus has the potential to influence many aspects of an organism’s life cycle. 106 

It could help to buffer or to compound the effects of climate change (Spasojevic et al. 2013). 107 

To assess the impact of climate change on current or future distributions of species it is crucial 108 

to gather climate data at the most appropriate scale in order to increase model accuracy 109 

(Barton et al. 2018, Randin et al. 2009). However, predictions for future geographic 110 
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distributions of mountain birds under a range of climate change scenarios have thus far been 111 

based on models which have considered climate variables measured at large scales, usually 112 

ca. 1 km2 (Chamberlain et al. 2013, 2016, Brambilla et al. 2016, 2017a). Given the potential 113 

for bird responses to microclimatic conditions in mountains (Frey et al. 2016, Visioni et al. 114 

2014), it may be more appropriate to consider the role of climate measured at finer spatial 115 

resolutions in determining mountain bird distributions. This is particularly important given that 116 

environmental conditions in mountains typically change over very small spatial scales thanks 117 

to steep elevation gradients (Scherrer and Körner 2010, Gunton et al. 2015). 118 

In this study, we investigated the role of microclimate for a range of Alpine ecotone and 119 

open habitat species. There were two specific aims. First, to evaluate if models including a 120 

microclimatic variable (in this case temperature) show better performance than models using 121 

large-scale climate estimates. This will inform future modelling studies, and should help to 122 

improve predictions of future impacts of climate change on Alpine birds where microclimatic 123 

effects are evident. Second, to assess if models including topographic variables (slope and 124 

aspect) in combination with climatic variables (fine and large scale) increase model 125 

performance. This will assess the extent to which topographic variables should be included in 126 

SDMs of alpine bird species. Based on previous studies, which showed that microclimate can 127 

influence bird distributions within mountain habitats (Frey et al. 2016, Visinoni et al. 2015), we 128 

hypothesise that models using fine-scale temperature estimates will show better model 129 

performance than models using large-scale temperature estimates.  130 

 131 

Methods 132 

Study area and point selection 133 

The study was carried out in Val Troncea Natural Park (44°57’28” N; 6°56’28” E) in the western 134 

Italian Alps. At lower elevations, the area is dominated by larch Larix decidua. The natural 135 

treeline is typically found at around 2200 m asl, but varies depending on local conditions. 136 

Typical shrub species are Juniperus nana (henceforth Juniper) and Rhododendron 137 

ferrugineum (henceforth Rhododendron) which rapidly encroached wide areas of grasslands 138 
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after the decline of agro-pastoral activities. Grasslands are mainly dominated by Festuca 139 

curvula, Carex sempervirens, and Trifolium alpinum. Scree and rocky areas occur 140 

predominantly at higher elevations, above approximately 2700 m asl.   141 

Point counts were carried out along an elevational gradient ranging from 1750 m to 2820 142 

m encompassing forest, ecotone and open habitats. Point count locations coincided with the 143 

centroids of a pre-existing grid at a scale of approximately 150 x 150 m (there was some 144 

variation, due to access constraints for example; Probo et al. 2014) along the western facing 145 

slope of the valley. All points were spaced a minimum of 200 m apart.  146 

 147 

Bird surveys  148 

Point counts (n = 221) were carried out from mid-May to mid-July 2017 following the methods 149 

of Bibby et al. (2000), using a 10 minute count period. At each point count location, all individual 150 

birds seen or heard were recorded within a 100 m radius (estimated with the aid of a laser 151 

range finder). Point counts commenced 1-1.5 h after sunrise and continued until 1200 h. 152 

Surveys did not take place in excessively wet or windy conditions. Each point count location 153 

was visited once. 154 

 155 

Habitat data collection 156 

At each point count location, habitat data were collected through the visual estimation of the 157 

percentage cover of canopy (i.e. vegetation above head height), the dominant shrub species, 158 

open grassland and bare rock (including scree and unvegetated areas) within a 100 m radius 159 

of the point’s centre. The dominant shrub species were defined into four groups: 160 

Rhododendron, Juniper, bilberry (Vaccinium myrtillus and V. gaultherioides) and other (e.g. 161 

Green Alder Alnus viridis, Willow Salix spp, and also including young trees less than two 162 

meters in height, mostly European Larch Larix decidua). Furthermore, the number of mature 163 

trees (greater than c. 20 cm in diameter at breast height) within a 50 m radius of a point count 164 

location was counted. These estimates have been shown to correlate well with estimates of 165 
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land cover derived from remote sensing and have been used as the basis of predictive models 166 

for several species considered here (Chamberlain et al. 2013, 2016, Jähnig et al. 2018).  167 

 168 

Temperature measurements 169 

At each point count location, temperature was measured with hygro buttons (Plug & TrackTM), 170 

using methods based on Frey et al. (2016). Each button was stuck on the bottom of a small 171 

plastic cup, which was attached upside down to a bamboo stick to protect the button against 172 

wind, direct sunlight and water. Mean button height was 40.89 cm (min = 28 cm, max = 47 173 

cm). Hygro buttons were programmed to record temperature every 5 minutes. They were 174 

placed 24 hours before a point count commenced and were collected 24 hours after the point 175 

count ended, which resulted in a total recording time of 48 hours. At every hygro button 176 

location, button height, distance to slope, substrate and canopy presence/absence was 177 

recorded. 178 

 179 

 180 

Statistical analysis 181 

Temperature modelling 182 

For each point count location, minimum, maximum and mean temperatures were derived over 183 

the 48 hour recording period. All temperature measurements were checked for collinearity by 184 

calculating Pearson’s correlation coefficient. Mean temperature was strongly correlated with 185 

both minimum (r = 0.80) and maximum temperature (r = 0.73) over the recording period. 186 

Therefore, temperature modelling was undertaken with mean temperature values. The same 187 

procedure was repeated for night-time temperatures. Minimum, maximum and mean night-188 

time temperatures were obtained for the time period between 23.00 pm and 03.00 am over the 189 

same recording period at each point. There was a strong positive correlation of mean night-190 

time temperature between minimum (r = 0.97) and maximum night-time temperature (r = 0.89).   191 

The objective of the first analysis was to model temperature in relation to date and 192 

elevation. This model was then used to predict a standardised temperature at each point count 193 
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location, set at a fixed date, which was representative of the fine-scale temperature at that 194 

point controlling for seasonal effects. This procedure provided data which was analogous to 195 

the larger scale temperature data (see below). This standardised temperature was then used 196 

subsequently as a variable in species distribution models. Note that all subsequent modelling 197 

steps were performed separately for mean temperature and mean night-time temperature. 198 

However, models with night-time temperature were very similar to those using mean 199 

temperature, so we focus on the latter. Further details on night-time temperature models are 200 

given in the Electronic Supplementary Material (ESM) Table S1. 201 

First, to investigate if temperature recording was influenced by characteristics of the hygro 202 

button’s position, it was analysed using a generalised linear model in relation to button height, 203 

distance to slope, substrate underneath the button and canopy presence/absence, specifying 204 

a normal error distribution. None of the variables showed a significant effect on mean 205 

temperature (p > 0.05), therefore they were not considered further in the analysis.  206 

In the next modelling step, standardised temperature estimates were derived separately 207 

for open Alpine grassland and forest/ecotone habitat, i.e. models were used to estimate 208 

temperature for a given elevation whilst accounting for seasonal variation. Points were 209 

classified as Alpine grassland if there was no canopy within 100m radius of the point count 210 

centre (following Chamberlain et al. 2013). For open habitat points (n = 93), temperature was 211 

modelled in relation to date and elevation. Date was described as the number of days passed 212 

since the start of the field season, where day 1 = 27-May-2017. Canopy cover was added to 213 

the model structure for points located in forest and ecotone habitat (n = 128). In both cases, a 214 

normal distribution was specified. Prior to modelling, all variables were scaled and centred 215 

using the scale function in R. Collinearity was assessed using Variance inflation factors (VIFs), 216 

calculated using the ‘corvif’ function (package ‘AED’, Zuur et al. 2009), and by considering 217 

Spearman correlations between continuous variables. All variables had VIF < 3, and no pair of 218 

variables showed a correlation > 0.7, indicating low levels of inter-correlation. These models 219 

were used to derive a standardised temperature for each point, based on the elevation at that 220 

point, the canopy cover (for forest/ecotone habitat) and for a date fixed at 15th June. 221 
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 222 

Species distribution models 223 

Birds detected within a 100-m radius of a point count location were used to analyse species 224 

distribution (presence/absence of individual species). Bird species were considered in the 225 

modelling process if they were present on at least 15 % of the points; below this threshold 226 

model performance is consistently poor (Chamberlain et al. 2013). 227 

The commonest species were modelled in relation to four different variable sets: (i) habitat 228 

(HABITAT), (ii) habitat + temperature (TEMP), (iii) habitat + topography (TOPO), (iv) habitat + 229 

temperature + topography (COMB; Table 2). Temperature and topographic variables were 230 

used at two different scales (large-scale/ fine-scale). Fine-scale temperature estimates were 231 

derived from the temperature modelling approach described above, whereas large-scale 232 

temperature data for each point were extracted from the Worldclim database (Hijmans et al. 233 

2005) by calculating the average temperature within a 1000 m radius of the point count centre. 234 

Topographic variables (aspect and slope) were derived from a Digital Elevation Model (DEM) 235 

at a spatial resolution of 10 metres. Aspect was transformed as x= −1*cos[Ø(π/180)], where Ø 236 

is measured in degrees. Values ranged from 1 where solar insolation was higher (south-facing 237 

slopes) to -1 (north-facing slopes) where it was lower.  238 

The mean aspect (transformed values) and slope was calculated within a 100 m (fine-239 

scale) and a 1000 m (large-scale) radius of the point count centre for the analysis. Habitat 240 

variables were kept at a constant scale in the models (as the objective was to test scale effects 241 

in temperature and topography).  242 

Habitat models of Lesser Whitethroat Sylvia curruca and Dunnock Prunella modularis 243 

were tested for non-linear relationships with Rhododendron and Juniper cover as suggested 244 

by previous work(Jähnig et al. 2018). Habitat models with and without quadratic terms for shrub 245 

species cover were compared using AIC. Lesser Whitethroat models showed lower AIC values 246 

for the habitat model without quadratic terms. Therefore these were omitted in further modelling 247 

steps. The addition of the quadratic term for Rhododendron cover reduced the AIC of the 248 

habitat model for Dunnock by ΔAIC > 2, hence it was included in the next modelling steps. 249 
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The occurrence probability of each species was modelled in relation to the different 250 

variable sets using a binomial logistic regression, after controlling for potential collinearity (as 251 

above). In the case of open habitat species, we found high VIFs  for the variables rock and 252 

grass cover. After the removal of rock cover, all VIFs  were below the threshold of three. As a 253 

result, rock cover was removed from all models for open habitat species.  254 

Data were analysed using an information theoretic approach with the MuMIn package in 255 

R  version 3.5.2; (R Development Core Team 2018, Bartón 2013). This entailed deriving full 256 

models for each variable set at each scale (except habitat which was kept constant in all 257 

models) using generalised linear models (R package lme4; Bates et al. 2015). This approach 258 

served two goals. First, model-averaged parameter estimates were derived for all 259 

combinations of variables in each full model set in order to identify variables that were most 260 

closely associated with bird distribution. p-values derived from the model-averaged parameter 261 

estimates and their SEs were considered to represent significant effects when p < 0.05. 262 

Second, the Akaike information criterion corrected for small sample size (AICc) was 263 

determined for each individual model and was used to assess model performance for different 264 

variable combinations at different scales in the full model. In this way it was possible to assess 265 

which combination of the four different variable sets produced the best models, and at which 266 

scale. 267 

At each scale, the residuals for all full models were extracted and tested for spatial 268 

autocorrelation using Moran’s I (Moran 1950). Significant spatial autocorrelation was found for 269 

models of Eurasian Skylark Alauda arvensis, Tree Pipit Anthus trivialis and Water Pipit. For 270 

these species, spatial effects were incorporated by modelling their distributions using 271 

Generalized Additive Models (GAMs) from the mgcv package (Wood 2011) by fitting smoothed 272 

terms for latitude and longitude in the model, following Wood (2017).  273 

 274 

Results 275 

In total, 862 individuals of 40 species were recorded in 221 point counts over an elevational 276 

range of 1750 – 2800 m a.s.l. There were seven species that were recorderd on at least 15% 277 
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of the points within forest and ecotone habitat: Dunnock, Lesser Whitethroat, Chaffinch 278 

Fringilla coelebs, Mistle Thrush Turdus viscivorus, Coal Tit Parus ater, rock bunting Emberiza 279 

cia, Tree Pipit and three species within open habitat: Eurasian Skylark, Water Pipit and 280 

Northern Wheatear.  281 

The best model to predict rock bunting occurrence was always the null model for each 282 

model set at each scale, with no model-averaged parameter estimates being significant. 283 

Therefore, this species was not considered further in the analysis.  284 

 285 

Forest and ecotone species  286 

Habitat variables such as trees and shrubs were the variables most commonly associated with 287 

species occurrence within the HABITAT model for forest and ecotone species. In general, the 288 

results of the HABITAT models were in line with previous findings by Jähnig et al. (2018). 289 

Juniper showed a positive relationship with Coal Tit, Dunnock and Lesser Whitethroat, but was 290 

negatively related to Tree Pipit presence. Rhododendron was positively associated with Mistle 291 

Thrush and Lesser Whitethroat presence, whereas it showed a non-linear relationship with 292 

Dunnock presence. The number of mature trees showed a positive relationship with forest 293 

species (Chaffinch, Mistle Thrush and Coal Tit). Habitat associations among the species 294 

remained mostly constant in TEMP, TOPO and COMB models (for full details see ESM Table 295 

S2, S4). 296 

Each variable set at each scale performed equally well for Lesser Whitethroat, Mistle 297 

Thrush and Coal Tit (Table 3). (Note that full details of all models are given in ESM Table S3). 298 

Large-scale temperature and topographic variables were included in the best performing 299 

model for Dunnock, temperature being negatively associated with Dunnock presence (Table 300 

4, Fig. 1). In contrast, large-scale temperature showed a positive relationship with Chaffinch 301 

presence in models including only large-scale temperature (Table 4, Fig. 1), or in models 302 

including a combination of large-scale temperature and topographic variables. In both species, 303 

large-scale model sets performed better than their fine-scale equivalents. Large-scale models 304 

for TOPO and COMB were the best performing models for Tree Pipit, whose presence was 305 
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more closely associated with large-scale topographic variables such as aspect, for which it 306 

showed a strong negative relationship indicating a preference for westerly over southerly 307 

slopes (Fig. 2). Beside Tree Pipit, only Mistle Thrush showed a negative association with 308 

aspect. No other species showed any association with slope or aspect. Furthermore, Tree Pipit 309 

was the only species that showed better model performance (ΔAICc ≤ 2) for the large-scale 310 

TOPO model compared to all fine-scale models and the large-scale TEMP model. All other 311 

species showed better (Chaffinch) or equal model performance of TEMP models compared to 312 

TOPO models at both scales. 313 

 314 

Open habitat species 315 

The HABITAT model for each open species did not show any habitat associations among the 316 

recorded variables. However, all fine-scale models (TEMP, TOPO and COMB) showed a 317 

positive association between grass cover and Skylark presence while Juniper cover was only 318 

positively associated in the TEMP and COMP models.  319 

Models including fine-scale temperature and topography performed best (ΔAICc ≤ 2) for 320 

Northern Wheatear. The best performing models of Skylark and Water Pipit included both fine-321 

scale TEMP and COMB models. Fine-scale temperature was positively associated with Water 322 

Pipit and Northern Wheatear presence, whereas Eurasian Skylark presence was negatively 323 

associated (Table 4, Fig. 3).  324 

At a fine scale, TEMP models showed better model performance than TOPO models for 325 

Northern Wheatear and Water Pipit, whereas on a large scale, model sets for TEMP and TOPO 326 

were overlapping (Northern Wheatear, Water Pipit). The large-scale TOPO model showed 327 

equal model performance compared to the large-scale TEMP model for Skylark, but AICc was 328 

still higher compared to fine-scale COMB. In addition, aspect showed a positive relationship 329 

with Northern Wheatear (Fig.2, fine-scale COMB model) and Skylark presence (large-scale 330 

TOPO model) while slope was positively related to Skylark presence in the fine-scale TOPO 331 

model.   332 

 333 
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Discussion 334 

Models including fine-scale temperature estimates (TEMP, COMB) showed better model 335 

performance (ΔAICc < 2) than corresponding large-scale models for all three open habitat 336 

species. Northern Wheatear and Water Pipit were both positively associated with warm 337 

microclimates while Skylark presence was negatively associated with fine-scale temperature. 338 

These results contrast with previous findings from the same region of the Alps (Chamberlain 339 

et al. 2013, 2016), where model predictions were based on large-scale climatic variables. In 340 

these studies, SDMs (based on temperature change and assuming no change in habitat) 341 

suggested that under warmer conditions, Skylark and Northern Wheatear would show an 342 

increase in their distribution whereas Water Pipit distribution would decrease. Therefore, for 343 

Water Pipit and Skylark distributions, our findings suggest opposite associations between fine-344 

scale and large-scale temperature. 345 

Differences in model predictions at different spatial scales have been reported for a range 346 

of studies, and thus identifying the appropriate scale represents a major problem when 347 

forecasting suitable habitat in order to inform conservation planning (Elith and Leathwick 2009, 348 

Randin et al. 2009, Franklin et al. 2013, Logan et al. 2013, Scridel et al. 2018). To improve 349 

SDMs, it is therefore necessary to carefully select predictors (e.g. temperature variables) and 350 

their spatial resolution. In the case of microclimate, local topography could create areas with 351 

suitable climatic conditions under which it would still be possible for a species to persist under 352 

the impact of climate change. Through the use of large-scale climate data, these areas might 353 

not be recognised by SDMs (Austin et al. 2011). Besides affecting the future distribution of a 354 

species, microclimate can also influence many other aspects of a species’ life cycle.  355 

There is evidence that microclimate can be important in influencing habitat selection in 356 

mountain birds which may explain our findings. For example, it has been shown that Horned 357 

Larks Eremophila alpestris adjusted the amount of incubation time in response to microclimatic 358 

conditions (Camfield and Martin 2009) by spending less time on the nest as temperatures in 359 

the nest surrounding increased, which may imply energy savings in warmer microclimates. 360 

Furthermore, microclimate and aspect strongly influenced nestling survival in Water Pipits 361 
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(Rauter et al. 2002). Nests which were located at ENE-facing slopes (temperature maximum 362 

in the morning) had more fledglings than those on WSW-facing slopes (temperature maximum 363 

in the afternoon). In contrast, foraging habitat selection by alpine White-winged Snowfinches 364 

Montifringilla nivalis, a high altitude specialist, was influenced by solar radiation (Brambilla et 365 

al. 2017b). Snowfinches preferred to forage at colder sites (low solar radiation) throughout the 366 

season. These studies illustrate that behaviour, foraging habitat selection and choice of nest 367 

sites could be driven by microclimatic conditions thereby affecting bird species distributions. 368 

Therefore, we would strongly recommend considering microclimate as a predictor in future 369 

SDMs for open habitat Alpine species.  370 

In contrast to the open habitat species considered, forest and ecotone species showed no 371 

association with fine-scale temperature. One possible reason might be the buffering effect of 372 

vegetation. Körner et al. (2007) showed that temperature can vary strongly between forest and 373 

open alpine grassland along the elevation gradient with intermediate values at the treeline 374 

ecotone. Furthermore, canopies can buffer the diurnal amplitude of air temperature in the forest 375 

(Chen et al. 1999).  376 

For two species (Dunnock and Chaffinch) large-scale models including temperature (TEMP, 377 

COMB) performed better than fine-scale models. The probability of occurrence of Chaffinch 378 

was positively associated with large-scale temperature, whereas the probability of Dunnock 379 

presence was negatively affected. A future increase in temperature could therefore affect the 380 

distribution of Chaffinches by expanding its range towards higher elevations. In contrast, the 381 

distribution of Dunnocks might be severely limited. Bani et al. (2019) demonstrated that 382 

Dunnock distribution experienced a lower range contraction along the elevational gradient 383 

during the last 35 years, but a simple dispersal into higher elevations as a response to 384 

environmental change might not be possible because it’s preferred nesting habitat in our study 385 

area, Rhododendron, has a slow rate of colonisation to the extent that treeline shifts towards 386 

higher elevations are likely to be more rapid than upwards shifts in this species (Komac et al. 387 

2016). 388 
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The mismatch between temperature and available future habitat can also affect open 389 

habitat species considered in this study. Due to increasing temperatures, shifts in major habitat 390 

types (i.e. forest and shrub encroachment; Harsch et al. 2009) may lead to habitat 391 

fragmentation and/or loss of open alpine grassland at higher elevations. This process might 392 

even be exacerbated by the abandonment of pastoral activities which formerly have 393 

maintained the forest limit at lower elevations than would be possible under climatic constraints 394 

only (Gehrig- Fasel et al. 2007).  395 

 396 

Topography 397 

For the majority of species, COMB models performed equally well in comparison with TEMP 398 

models at both spatial scales. Combining temperature with topographic variables increased 399 

model performance only for Northern Wheatear and Skylark at a fine scale. For the former 400 

species, occurrence was more closely related with south-facing slopes. At a large scale, the 401 

probability of Tree Pipit presence was higher on westerly slopes. However, in general 402 

topographic variables were rarely associated with species occurrence. The influence of aspect 403 

on the occurrence of some species could be explained by its effect on snow melt patterns 404 

during spring. Thermal differences among slopes with different exposition, which are caused 405 

by the amount of received solar radiation, could lead to an early snow melt on south-exposed 406 

slopes whereas north-exposed slopes might stay snow covered for a longer period (Keller et 407 

al. 2005). These early snow free areas could potentially benefit Northern Wheatears by making 408 

suitable nesting sites available earlier. Furthermore, it has been shown that differences in 409 

temperature among slopes can influence plant species diversity in temperate mountains 410 

(Winkler et al. 2016) with south-exposed slopes favouring a higher degree of species richness 411 

and diversity which may in turn influence insect availability.  412 

 413 

Conservation implications 414 

Previous studies from the Italian Alps have indicated that increasing temperatures could have 415 

detrimental effects for certain Alpine species in the future (Chamberlain et al. 2013), with some 416 
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species being potentially impacted by both temperature and habitat shifts (Water Pipit), while 417 

for others, loss of habitat due to forest and shrub encroachment will likely be more important 418 

(Northern Wheatear, Skylark).  419 

 However, our results have shown that species such as Water Pipit and Northern 420 

Wheatear are positively associated with warm microclimates which could indicate that both 421 

species are potentially more resistant to the impact of a warming climate than previously 422 

emphasised by large-scale temperature modelling (e.g. Chamberlain et al. 2013). As a 423 

consequence, our results imply that changes in habitat in the form of advancing treelines and 424 

the encroachment of formerly open areas by shrubs and trees (Gehrig-Fasel et al. 2007, 425 

Leonelli et al. 2011) are currently the major threat to those Alpine species, rather than direct 426 

effects of temperature. Therefore, it becomes particularly important to actively manage open 427 

areas within mountain environments. This could be achieved by targeted grazing techniques 428 

such as mineral mix supplements (Pittarello et al. 2016) or temporary night camp areas (Tocco 429 

et al.2013). Both techniques lead to the mechanical damage of shrubs (including saplings) and 430 

eventually result in a reduction of shrub cover (Probo et al. 2013, 2014).  431 

 432 
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 438 

Figure legends 439 

 440 

Fig. 1 Relationship between large-scale temperature and the probability of occurrence of 441 

Dunnock and Chaffinch based on the large-scale COMB model. Shading indicates the 95% 442 

confidence interval. 443 

 444 
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Fig. 2 Relationship between aspect and the probability of occurrence for Tree Pipit and 445 

Northern Wheatear for the large-scale TOPO and the fine-scale COMB model, respectively. 446 

Note that aspect was modelled as an index from 1 (south-facing) to -1 (north facing), but here 447 

we present the axis as the equivalent cardinal direction for ease of interpretation. Shading 448 

indicates the 95% confidence interval. 449 

 450 

Fig. 3 Relationship between fine-scale temperature and probability of occurrence for open 451 

habitat species for the fine-scale COMB model. Shading indicates the 95% confidence interval. 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 
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Table 1 Variables considered in the analysis, and the scale at which they were measured. 

Parameter Scale Description 

Canopy fine Percentage cover of canopy (above head height) within a radius 

of 100 m of the point count centre 

Rod fine Percentage cover of Rhododendron within a radius of 100 m of 

the point count centre 

Jun fine Percentage cover of Juniper within a radius of 100 m of the point 

count centre 

Vac fine Percentage cover of bilberry within a radius of 100 m of the point 

count centre 

Oth fine Percentage cover of shrubs different from Juniper, 

Rhododendron and bilberry within a radius of 100 m of the point 

count centre 

Grass fine Percentage cover of grass within a radius of 100 m of the point 

count centre 

Rock fine Percentage cover of rock within a radius of 100 m of the point 

count centre 

Trees fine Number of mature (greater than ca. 20 cm in diameter) trees 

within a radius of 50 m of the point count centre 

Temp 

 

fine Modelled fine-scale standardised average temperature of the 

point count centre 

Temp 

 

large Large-scale average temperature within 1000 m of the point 

count centre extracted from WorldClim. 

Aspect fine  The average direction a slope is facing within a 100 m radius of 

the point count centre transformed as x= −1*cos[Ø(π/180)], 

where Ø is measured in degrees. 

Aspect large The average direction a slope is facing within a 1000 m radius of 

the point count centre transformed as x= −1*cos[Ø(π/180)], 

where Ø is measured in degrees. 

Slope fine The average inclination of the surface within a 100 m radius of 

the point counts centre measured in degrees. 

Slope large The average inclination of the surface within a 1000 m radius of 

the point counts centre measured in degrees. 
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Table 2 Variable combinations for each model set. Model sets for TEMP, TOPO and COMB 

were considered at two different scales (fine and large) and included temperature, slope and 

aspect at their matching scale. The variables Rock and Trees were omitted from the habitat 

model for open habitat species (Northern Wheatear, Water Pipit and Skylark). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full 

models 
Parameter 

HABITAT Rod + Jun + Vac + Oth + Grass + (Rock) + (Trees) 

TEMP Rod + Jun + Vac + Oth * Grass + (Rock) + (Trees) + Temp 

TOPO Rod + Jun + Vac + Oth * Grass + (Rock) + (Trees) + Slope + Aspect 

COMB Rod + Jun + Vac + Oth * Grass + (Rock) + (Trees) + Temp + Slope + 

Aspect 
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Table 3 ΔAICc value for each model set at each scale for all species. A ΔAICc value of zero indicates the best performing model. Note that in some 

cases, the best performing models were identical in different model sets, hence a value of zero can appear more than once for a given species. 

Original AICc values are listed in ESM Table S3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 HABITAT TEMP TOPO COMB 

Species fine-scale fine-scale large-scale fine-scale large-scale fine-scale large-scale 

Prunella modularis 3.9 2.7 0.8 3.9 3.9 2.7 0 

Sylvia curruca 0 0 0 0 0 0 0 

Parus ater 1.4 1.4 0 1.4 1.4 1.4 0 

Turdus viscivorus 1.2 1.2 1.2 0 1.2 0 1.2 

Fringilla coelebs 13.9 6.3 0 13.1 12.9 6.3 0 

Anthus trivialis 10 8.5 10 9.8 0 8.4 0 

Oenanthe oenanthe 7.7 3.5 7.7 5.8 6.5 0 6.5 

Anthus spinoletta 4.6 0.9 4.6 3.2 4.6 0 4.6 

Alauda arvensis 6.0 0.9 2.7 2.3 4.8 0 2.7 
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Species Mode

l 

Scal

e 

Paramet

er 

  

Estimate 

SE z    p 

Prunella modularis COM

B 

large Rod      1.285 0.618 2.068    

0.038 

   Jun      0.818 0.308 2.632    

0.008 

   Oth      0.580 0.270 2.126    

0.033 

   Temp   − 0.886 0.406 2.163    

0.030 

Sylvia curruca* TEM

P 

fine Rod      1.029 0.265 3.835 ≤ 

0.001 

   Jun      0.624 0.265 2.332    

0.019 

   Rock   − 1.174 0.467 2.487    

0.012 

Parus ater* COM

B 

large Jun      0.677 0.333 2.017    

0.043 

   Oth      0.657 0.277 2.351    

0.018 

   Grass      0.938 0.434 2.145    

0.031 

   Trees      1.126 0.303 3.678 ≤ 

0.001 

Turdus viscivorus* TOP

O 

fine Vac   − 1.700 0.823 2.049    

0.040 

   Aspect   − 0.644 0.316 2.017    

0.043 
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Table 4 Significant model averaged parameters of the best model for each species. The model 

type, scale (large or fine), estimate, standard error (SE), test value (z) and p-value are given 

for each parameter. Note that species where there was more than one model in the best model 

set (i.e. ΔAICc < 2) are marked with *. In these cases, the model with the lowest AICc is 

presented, but competing models are shown in ESM, Table S3, along with full details for all 

species. 

 

  

Fringilla coelebs TEM

P 

large Trees      2.453 0.809 3.004    

0.002 

   Temp      1.500 0.462 3.218    

0.001 

Anthus trivialis TOP

O 

large Jun   − 1.187 0.399 2.939    

0.003 

   Aspect   − 2.614 0.644 4.022 ≤ 

0.001 

Oenanthe 

oenanthe 

COM

B 

fine Temp      0.736 0.305 2.386    

0.017 

   Aspect      0.622 0.288 2.133    

0.032 

Anthus spinoletta COM

B 

fine Temp      1.336 0.577 2.281    

0.022 

Alauda arvensis COM

B 

fine Jun       0.616 0.282 2.158    

0.030 

   Grass       1.010 0.436 2.289    

0.022 

   Temp    − 

0.896 

0.447 1.980    

0.047 
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Figure 1 

 

 

 

 

Figure 2 
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Figure 3 

 

 
 


