
24 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Artificial intelligence and radiomics enhance the positive predictive value of digital chest
tomosynthesis for lung cancer detection within SOS clinical trial

Published version:

DOI:10.1007/s00330-020-06783-z

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1739252 since 2020-05-18T17:17:48Z



Artificial intelligence and radiomics enhance the positive predictive value of digital chest 

tomosynthesis for lung cancer detection within SOS clinical trial 

Adriano De Maggi1, Ilaria Baralis2, Federico Dalmasso1, Paola Berchialla3, Federico 

Mazza4, Giulio Melloni4, Maurizio Grosso4, Stephane Chauvie1 

 

1Medical Physics Division, Santa Croce e Carle Hospital, Cuneo, Italy; 2Epidemiology Depatment, 

Universitty of Torino, Torino, Italy; 3Radiology Department, Santa Croce e Carle Hospital, Cuneo, 

Italy, 3Thoracic Surgery Department, Santa Croce e Carle Hospital, Cuneo, Italy 

 

 

Corresponding author: Stephane Chauvie, Santa Croce e Carle Hospital, via Coppino 26 12100 Italy, 

tel. +39.0171.64.1558, fax +39.0171.64.1554 e-mail chauvie.s@ospedale.cuneo.it 

 

Keyword: digital tomosynthesis, lung cancer, lung nodule detection, random forest  

 

 

SOS Study team: Alberto Biggi (SC Medicina Nucleare), Andrea Campione, Mirella Fortunato (SC 

Anatomia Patologica), Adriano De Maggi, Stéphane Chauvie (SC Fisica Sanitaria), Ida Colantonio 

(SC Oncologia), Maurizio Grosso (SC Radiologia), Giulio Meloni, Federico Mazza, Alessia Stanzi 

(SC Chirurgia Toracica), Paolo Noceti (SC Pneumologia), Paolo Pellegrino (Direzione Sanitaria), 

Elvio Russi (SC Radioterapia). 

 

 

 

 
 

Abstract 

 

Objectives: within this investigation we investigated several approaches to enhance the positive 

predictive value (PPV) of chest digital tomosynthesis (DTS) in the lung cancer detection  

 

Methods: the investigation was carried out within the SOS clinical trial (NCT03645018) for lung 

cancer screening with DTS. Lung nodules were identified by visual analysis and then classified using 



the diameter and the radiological aspect of the nodule following a modified lung-RADS classification.  

Haralick texture features were extracted from the segmented nodules. Both semantic variables and 

radiomics features were used to build a predictive model using two approaches: logistic regression 

model on a sub-set of variables selected with backward feature selection or machine learning  using 

the whole sub-set of variables. We used two machine learning methods: a Random Forest and a neural 

network. Machine learning methods were applied to a training set and validated on a test set. Methods 

were compared using diagnostic accuracy metrics. 

Results:  binary visual analysis had a good sensitivity (0.95) but a low PPV (0.14). Lung-RADS 

classification increased the PPV (0.19) but with an unacceptable low sensitivity (0.65). Analogously, 

logistic regression showed a mildly increased PPV (0.22) and a low sensitivity (0.67). Random Forest 

demonstrated a low accuracy with a moderate PPV (0.40) but with a dramatically low sensitivity 

(0.30). Neural network demonstrated to be the best predictor with a nearly perfect PPV (0.95) and a 

high sensitivity (0.90). 

 

Conclusions: among the various technique to reduce the false positive rates of DTS the neural 

network demonstrated a very high PPV. The use of visual analysis along with neural network could 

help radiologists to depict a follow-up strategy after a positive DTS.  

 

  



Introduction 

Lung cancer is the leading cause of cancer-related death around the world. In 1990–2015, there were 

nearly 2 million new cases per year worldwide accounting for the 11.5% of all new cancer diagnoses 

and 19.7% of the deaths [1]. Despite decreasing smoking trends in developed countries and resulting 

decrease in lung cancer mortality, the population at risk for lung cancer continues to be large [2]. 

Lung cancer screening with low-dose computed tomography (CT) demonstrated, in the pivotal 

National Lung Screening Trial (NLST) study, a clear reduction in mortality [3]. Analogous results 

were achieved in succeeding American and European’s studies [4]. Our group, starting in 2010, 

proposed a different approach based on chest digital tomosynthesis (DTS), a radiographic technique 

that consist of a basculation of the X-rays tube providing three-dimensional images oriented in the 

coronal plane. On a population of around 2000 subjects we demonstrated a detection rate of lung 

cancer of 1.1% [5] that is comparable to those obtained in CT screening trials. One of the pitfalls of 

DTS, shared with CT, is the high rate of false positives. To reduce them we initially proposed a 

classification of the nodules based on their characteristics [6], and within this work, we compare it 

against a multi-variate prediction model and a random forest model. The random forest was 

developed within this work on a independent training population.  

Patients and methods 

“SOS: Studio OSservazionale” clinical trial (NCT number NCT03645018) enrollment was open 

between Dec 2010 and Aug 2018, follow-up closed on August 2019. Written informed consent was 

obtained before entry into the study, in accordance with the requirements of the institutional review 

board and local health authorities. Subjects considered eligible were smokers or former smokers aged 

45 to 75 years, with a smoking history of at least 20 pack-years; for former smokers, the maximum 

time since smoking cessation was 10 years [5]. DTS were performed at baseline in 2011 (SOS), 1 

year after in 2012 (SOS1) and 5 years after in 2017 (SOS2). For every round of DTS, subjects with a 

non-calcific nodule larger than 5 mm or with multiple nodules were addressed to CT and hence 

managed in keeping with the most up-to-date Fleischner Society guidelines [7]. Lung cancers were 

confirmed by histology. Non-lung cancers were confirmed either by histology or by one-year 

radiological follow-up.  

All nodules were classified by at least two independent radiologists following lung-RADS 

classification [8] based on nodule characteristics: maximum diameter (below 5 mm, between 5 and 8 

mm, and higher than 10 mm) and type (solid, sub-solid, Ground-Glass Opacity, GGO). A radiologist 

and a medical physicist manually contoured together all the nodules using PET Encore (MIM 



software Inc., Cleveland, OH, USA) workstation. To reduce the ripple effect on DTS radiomics 

features were calculated only on the three coronal central slices of the nodule using the open-source 

and validated PORTS radiomics toolkit [9]. Original pixel’s size of 0.2x0.2x3 mm was down-sampled 

to an isotropic voxel of 3x3x3 mm. Image pixel values were discretized by a fixed number of 64 bins 

between maximum and minimum to avoid dependence of radiomics texture from pixel values itself. 

42 Haralick features [10] were extracted from the images including histogram features and four 

textural matrices, namely the gray-level co-occurrence matrix (GLCM), neighboring gray-level 

dependence matrix (NGLDM), gray-level run-length matrix (GLRLM), and gray-level size zone 

matrix (GLSZM). 

 

Two different approaches were used to evaluate the combined impact of radiomics and nodule 

characteristics: machine learning (using a Random Forest (RF) and a Neural Network (NNET)) 

developed on a test set within this work and a logistic regression (LR) method. The RF was trained 

on SOS2 dataset with pre-identified lung cancers. All radiomics and semantic variables were used in 

the model to account for the maximum granularity. Each RF was cross validated on 10-fold for 100 

times. The goodness-of-fit for RF was estimated with accuracy metrics. Since the SOS2 dataset has 

few events, i.e. lung cancers, we applied a bootstrap-based oversampling technique [11] to obtain a 

ratio of events to non-events of 1/3. The model was then applied to SOS dataset. 

 

LR was applied directly to SOS dataset. All radiomics and semantic variables were first analyzed to 

exclude futility (variables for whom the ratio among the first and the second occurrence was more 

than 10 were rejected), correlation (variables with a correlation coefficient  calculated  with Kendall’s  

 or Spearman’s  [12] higher than 0.8 were rejected) and linear combination (variables with a 

existing linear combination among them found with QR decomposition were rejected). Then a 

backward feature selection method was applied that iteratively found the most important variables 

among different tested subsets. The remaining variables were fitted by a generalized linear model. 

The model was then used to predict the lung cancer occurrence in the test dataset (SOS1).  

Diagnostics metrics were used to compare the 5 models: 1) the binary scale (positive vs negative) 

based on visual analysis, 2) the 5-point scale (I to IVb) lung-RADS classification 3) the LR 4) the RF 

and 5) NNET.  

This article was developed following TRIPOD recommendation [13].  



Results 

1594 subjects were enrolled in the study. 132 and 102 patients were DTS positive at SOS and SOS2, 

with, respectively 208 and 134 nodules detected by DTS. The characteristic of all the nodules is 

shown in Table 1. Applying the lung-RADS classification 31, 78, 121, 69 and 43 nodules were in 

class I, II, III, IVa and IVb, respectively. 20 and 12 lung cancers were found after at least 1-year 

follow-up at SOS and SOS2.  

During feature selection of radiomics and nodule characteristics, 3 variables were rejected for futility, 

27 for correlation and none for linear combination. The backward feature selection procedure 

subsequently applied retained the four variables glzsm_low_gray_level_zone_emphasis, nodule 

diameter, gtsdm_entropy and glzsm_zone_size_non_uniformity, resulting in a final model that 

achieved an accuracy higher than 0.85. The final LR model was selected according to the Akaike 

Information Criteria (AIC = 81) and achieved the Somer’s concordance indx Dxy of 0.63 (the closer 

to 1, the better) and the Brier score of 0.10 (the closer to 0, the better).  

SOS2 dataset was used as training. Random Forest had an accuracy of 0.98, a sensitivity of 0.99 and 

a specificity of 0.98  

The most important variables depicted by the RF algorithm were ngtdm_coarseness, nodule diameter, 

ngtdm_busyness, ngtdm_complexity and ngtdm_texture_strength with a relative importance of 100, 

61, 22, 16 and 15, respectively. 

SOS dataset was used to compare the diagnostic accuracy of the five methods. 208 nodules were 

defined as positive by binary visual analysis, 70 (IVa and IVb) with lung-RADS, 18 with LR  15 with 

RF and 19 with NNET. Diagnostic accuracy of the five models on the test SOS dataset is shown in 

Table 2.  

Discussion 

One of the hurdles enduring in lung cancer screening is keeping the positive predictive value as high 

as possible without compromising the sensitivity. Indeed, false positive findings create discomfort in 

the patient, loss of confidence in the screening program besides a numerous set of useless 

examinations. With the binary visual analysis, we indeed found a sensitivity of 0.95 and a specificity 

of 0.93. A metanalysis [14] of numerous DTS screening trials showed pooled sensitivity of 0.83 and 

specificity of 0.91, that is in line with our findings. In CT screening adding the lung-RADS 

classification of the nodules, generally increased the sensitivity but to a cost of higher number of false 

positive. Pinsky et al. [15] demonstrated an increase of sensitivity from 0.78-0.79 to 0.93-0.94 with 

a false positive rate raising from 0.05 to 0.16-0.27. In our work, considering positive a nodule with 



lung-RADS classes IVa and IVb, we found a sensitivity of 0.65 and a PPV rate of 0.04. While PPV 

slightly increased we had a great reduction in sensitivity. We shall point-out that at the time of SOS 

trial start in 2010 we choose the threshold of 5 mm used in Fleischer guidelines and not the 6 mm one 

used in lung-RADS.  

Over the last two decades a plethora of Computer Aided Detection (CAD) systems have been 

developed to improve diagnostic accuracy in CT. CAD are nowadays generally used as a "second 

opinion" tool, providing a list of possible lung nodules that shall be characterised by the radiologist. 

In such setting CAD systems have a high sensitivity (up to 100%) at the cost of a low specificity (up 

to 8.2 false positive nodules per scan) [16]. At our knowledge there are few experiences on DTS. 

Dobbins III et al.  [17] were the first to develop an automated lung segmentation method and nodule 

detection. Over a series of 45 DTS they achieved relatively high accuracy for lung segmentation and 

all of the nodules were correctly found.  Hadházi et al.[18] proposed a domain-specific filters for the 

enhancement and classification of bright, rounded structures along with a vessel enhancing algorithm 

based on strain energy filters. To reduce false positive findings supervised vector machine-based 

classifiers were applied, where features obtained from the vessel enhancement module were used as 

inputs. The system was evaluated on the scans obtained with their experimental DTS system [19]. Of 

the ~2000 nodule candidates, 97% of them were detected, producing on average 31 false positives 

per scan.  

In this work, instead of developing a CAD system we decided to find a tool to reduce the false positive 

rate endeavoring the potential role of radiomics. Several experience have been carried out for CT. 

Balagurunathan et al. [20] used images and data from the NLST, curated a subset of 479 participants 

(244 for training and 235 for testing) that included lung cancers and nodule-positive controls. After 

removing redundant and non-reproducible features, optimal linear classifiers with AUC-ROC were 

used with an exhaustive search approach to find a discriminant set of image features, which were 

validated in an independent test dataset. They identified several strong predictive models, using size 

and shape features; the highest AUC was 0.80. Using non-size-based features, the highest AUC was 

0.85. Combining features from all the categories, the highest AUC was 0.83. One-hundred-fifty lung 

nodules among 114 lung cancer patients from the NLST were investigated by Lu et al. [21]. Lung 

nodules were semi-automatically segmented using lung and mediastinal windows separately, and 

subtracting the mediastinal window region from the lung window region generated the difference 

region. The tumor growth could be predicted by radiomic models constructed using features obtained 

in the lung window, the difference region, and by combining features obtained in both the lung 

window and difference regions with AUC of 0.80, 0.82, and 0.85, respectively.  Wu et al. [22] 

analyzed radiomics feature for lung cancer detection in a series of 121 subjects. The AUC (and 95% 



confidence interval) for the set of radiomics features, for the set of clinical variable and radiological 

semantics and for the combination of the two sets were 0.85 (0.71–0.96), 0.88 (0.77–0.96), and 0.88 

(0.77–0.97), respectively.  

At our knowledge the radiomics of lung nodules was never studied DTS. Within this work we used 

two different approach. One using linear regression model to fit the lung cancer based on the variables 

identified though analytical and backward feature selection and the other one with   predictive model 

based on two machine learning technique: a random forest and a neural network. The machine 

learning algorithms were trained on SOS2 dataset and tested on SOS. Both radiomics features and 

nodule characteristics (nodule diameter and type) were used. The features selected by the algorithm 

were the nodule dimension, since, even if obvious, big nodules are more likely to be lung cancers, 

gtsdm_entropy that is a measure of nodule dis-organization and 

glzsm_low_gray_level_zone_emphasis and glzsm_zone_size_non_uniformity that account for areas 

with different grey intensity within the nodules. The LR permitted to increase the PPV respect to 

visual analysis to 0.22 but with a still too low sensitivity 0.67. Similar effect we found when we used 

the RF algorithm. Even if the PPV raised to 0.40 the price to pay was the sensitivity dropping down 

to 0.30. On the other hand the predictive value of neural network proved to be impressive. The PPV 

jumped to 0.95 but with a sensitivity comparable to that of visual analysis (0.90).  

 

We know that an intrinsic limitation of DTS, due to the limited angle reconstruction, is the ripple 

artifacts in the antero-posterior direction. Consequently, the radiomics features could be diluted and 

the intrinsic heterogeneities of the tumor, disguised. That’s the reason why we calculated radiomics 

indexes only on the three central slices in the coronal plane. As a future work we are considering 

adding some shape radiomic features that could, as already seen with CT add some additional 

information. One of the major limitations of the study is the few numbers of events. To overcome it 

we could have used an independent test set of all the lung cancers discovered in DTS in our hospital, 

outside the SOS clinical trial. Although, they were few because CT, and not DTS, is used as first-line 

diagnostic tool in subjects with a suspect of lung cancer. 

 

Conclusions 

In this work we tried to introduce different techniques to increase the positive predictive value of 

digital chest tomosynthesis in lung cancer detection. Considering the different radiological 

appearance of nodule in CT and DTS the lung-RADS classification did not add diagnostic accuracy 



to visual analysis. Among the other techniques, neural network was the only one to have a great PPV 

with loosing sensitivity.  
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 Solid Partially solid Ground Glass Opacity Calcific All 

<5 mm 49 0 1 12 62 

5-8 mm 120 11 1 11 143 

8-10 mm 47 2 2 3 54 

>10 mm 62 16 3 2 83 

All 278 29 7 28 342 

Table 1 Distribution of nodules’ diameters and type in SOS1 and SOS3 combined data set 

 Sensitivity Specificity Positive Predictive 

Value 

Negative 

Predictive Value 

True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Binary Visual 

Analysis 

0.95 

(0.75; 1.00) 

0.93 

(0.91; 0.94) 

0.14 

(0.09; 0.21) 

1.00 

(1.00;1.00) 

19 1460 114 1 

lung-RADS 

classification 

0.65 

(0.41; 0.85) 

0.96 

(0.95; 0.97) 

0.19 

(0.10; 0.30) 

1.00 

(0.99; 1.00) 

13 1517 57 7 

Logistic Regression 0.67 

(0.22; 0.96) 

0.99 

(0.99; 1.00) 

0.22 

(0.06; 0.48) 

1.00 

(1.00;1.00) 

4 1574 14 2 

Random Forest 0.30 

(0.12; 0.54) 

0.99 

(0.99; 1.00) 

0.40 

(0.16; 0.68) 

0.99 

(0.99; 1.00) 

6 1565 9 14 

Neural network 0.90 

(0.68; 0.99) 

1.00 

(1.00;1.00) 

0.95 

(0.74; 1.00) 

1.00 

(1.00; 1.00) 

18 1573 1 2 

Table 2 Diagnostic accuracy metrics for the different classification algorithms: point estimates and 95% confidence interval 

 


