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Piemonte Orientale, Italy, laura.giordano@uniupo.it

b Dipartimento di Informatica, Università di Torino, Italy,
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Abstract. In this work we describe preferential Description Logics of typicality,
a nonmonotonic extension of standard Description Logics by means of a typi-
cality operator T allowing to extend a knowledge base with inclusions of the
form T(C) v D, whose intuitive meaning is that “normally/typically Cs are
also Ds”. This extension is based on a minimal model semantics corresponding
to a notion of rational closure, built upon preferential models. We recall the basic
concepts underlying preferential Description Logics. We also present two exten-
sions of the preferential semantics: on the one hand, we consider probabilistic
extensions, based on a distributed semantics that is suitable for tackling the prob-
lem of commonsense concept combination, on the other hand, we consider other
strengthening of the rational closure semantics and construction to avoid the so
called “blocking of property inheritance problem”.

1 Introduction
The family of Description Logics (for short: DLs) is one of the most important for-
malisms of knowledge representation. They have a well-defined semantics based on
first-order logic and offer a good trade-off between expressivity and complexity. DLs
have been successfully implemented by a range of systems and they are at the basis of
languages for the semantic web such as OWL.

A DL knowledge base (KB) comprises two components: the TBox, containing the
definition of concepts (and possibly roles) and a specification of inclusion relations
among them, and the ABox containing instances of concepts and roles. Since the very
objective of the TBox is to build a taxonomy of concepts, the need of representing
prototypical properties and of reasoning about defeasible inheritance of such properties
naturally arises.

The traditional approach is to handle defeasible inheritance by integrating some
kind of nonmonotonic reasoning mechanism. This has led to study nonmonotonic ex-
tensions of DLs [1–8]. However, it is far from obvious to find a suitable nonmonotonic
extension for inheritance with exceptions, according to the following desiderata: 1) The
(nonmonotonic) extension must have a clear semantics and should be based on the same
semantics as the underlying monotonic DL. 2) The extension should allow to specify
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prototypical properties in a natural and direct way. 3) The extension must be decidable,
if so is the underlying monotonic DL and, possibly, computationally effective.

A simple but powerful nonmonotonic extension for defeasible reasoning in Descrip-
tion Logics is proposed in [9–11]. In this approach “typical” or “normal” properties
can be directly specified by means of a “typicality” operator T enriching the under-
lying DL. The semantics of the T operator is characterized by the core properties of
nonmonotonic reasoning axiomatized by either preferential logic [12] or rational logic
[13]. KLM axiomatic systems provide a terse and well-established analysis of the core
properties of nonmonotonic reasoning.

The operator T provides a natural way of expressing prototypical properties, and its
intended meaning is that for any concept C, T(C) singles out the instances of C that
are considered as “typical” or “normal”. Thus an assertion as

“normally, a student is a young person”

is represented by

T(Student) v YoungPerson

We assume that a KB comprises, in addition to the standard TBox and ABox, a set of
assertions of the type T(C) v D whereD is a concept not mentioning T. For instance,
let the TBox contain:

SmartWorker vWorker
T(Worker) v ReachableAtOffice
T(SmartWorker) v ¬ReachableAtOffice

corresponding to the assertions: smart workers are workers (and this is a standard inclu-
sion, not admitting exceptions), a typical worker is reachable at his/her office, whereas,
normally, smart workers are not, since they often work at home and are reachable at
their private addresses. Suppose further that the ABox contains – alternatively – the
following facts about paola:

1. Worker(paola)
2. Worker(paola),SmartWorker(paola)

From the different combinations of TBox and one of the above ABox assertions (either
1 or 2), we would like to infer the expected (defeasible) conclusions about paola . These
are, respectively:

1. ReachableAtOffice(paola)
2. ¬ReachableAtOffice(paola)

Moreover, we would also like to infer (defeasible) properties of individuals implicitly
introduced by existential restrictions, for instance, if the ABox contains

∃HasColleague.(SmartWorker)(fabrizio)

we would like to infer that:
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∃HasColleague.(¬ReachableAtOffice)(fabrizio)

Finally, adding irrelevant information should not affect the conclusions. From the TBox
above, one should be able to infer as well

T(Worker u Slim) v ReachableAtOffice
T(SmartWorker u Slim) v ¬ReachableAtOffice

as Slim is irrelevant with respect to being reachable at office or not. For the same reason,
the conclusion about paola being an instance of ReachableAtOffice or not should not
be influenced by adding Slim(paola) to the ABox.

The operator T is characterized by a set of postulates that are essentially a refor-
mulation of KLM axioms of preferential logic P or rational logic R, namely the as-
sertion T(C) v D is equivalent to the conditional assertion C |∼ D. The operator
T is nonmonotonic, in the sense that from C v D (C is subsumed by D) we cannot
infer that T(C) is subsumed by T(D): even if C v D, the elements in T(C) and
in T(D) can have different properties, and we can consistently say that for some P ,
T(C) v P whereas T(D) v ¬P . Models of standard DLs are extended by a function
f which selects the typical/most normal instances of any concept C, i.e. the extension
of T(C) is defined as (T(C))I = f(CI). The function f satisfies a set of postulates
that are a restatement of KLM’s axioms. This allows the typicality operator to inherit
well-established properties of nonmonotonic reasoning: as in the example above, the
property known as specificity, namely the choice of according preference to more spe-
cific information in case of conflicts among inherited properties, results “built-in” in the
approach. The semantics of the T operator can be equivalently formulated in terms of
preferential [14] or rational models [15], where standard DL models are extended by
an irreflexive, transitive, well-founded (and, for the rational case, modular) relation <
among domain elements. In this respect, x < y means that x is “more normal” than y,
and that the typical members of a conceptC are the minimal elements ofC with respect
to this relation. An element x is a typical instance of some concept C if it belongs to
the extension of C and there is no other C element y such that y < x.

Even if the typicality operator is nonmonotonic, the resulting logic is monotonic,
i.e. if a formula is entailed from a knowledge base K, then it is also entailed from
any K ′ ⊇ K. As a consequence, the formalism is not sufficient to perform inheri-
tance reasoning of the kind described above. Indeed, in order to derive the expected
conclusion that Paola is not reachable at office from the above knowledge base and the
fact SmartWorker(paola), we should know that paola is a typical smart worker, but
we do not have this information. Similarly, in order to derive that also a typical slim
worker is reachable at office, we must be able to infer or assume that a “typical slim
worker” is also a “typical worker”, since there is no reason why it should not be the
case; this cannot be derived by the logic itself given the nonmonotonic nature of T.
The basic monotonic logic, called ALC +TR, is then too weak to enforce these extra
assumptions, therefore in [10] the semantics of ALC + TR has been strengthened by
a minimal model semantics, which is similar, in spirit, to circumscription: intuitively,
the idea is to restrict our consideration to models that minimize exceptions in models.
The resulting nonmonotonic logic is called ALC +TRaCl

R , and we denote by |=LT
min se-

mantic entailment determined by minimal models. It turns out that the minimal model
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semantics of the logic ALC + TR corresponds to a natural extension of the notion of
rational closure, defined in [13] for propositional logic, to Description Logics. This
logic presents also good computational properties: indeed, in [11], it is shown that the
problem of nonmonotonic entailment is in EXPTIME, namely reasoning about typical-
ity and defeasible inheritance with exceptions remains in the same complexity class of
the underlying standard Description Logic ALC, which is already EXPTIME-complete
[16].

Preferential Description Logics have been applied to the basic system ALC [9–11],
as well as to lightweight Description Logics [17–20] and to more expressive DLs [21],
witnessing the feasibility of the typicality extension.

In this chapter we first recall the nonmonotonic Description Logic ALC +TR and
its preferential semantics. Then, we will describe recent extensions of such a Descrip-
tion Logic: probabilistic extension, based on the DISPONTE semantics of [22, 23], suit-
able for formalizing the concept combination, as well as other extensions of the rational
closure semantics and construction, which allow to strengthen rational closure construc-
tion and deal with the well known problem called by Pearl “the blocking of property
inheritance problem” [24].

2 Description Logics of Typicality
In this section we present the logic ALC +TR. As mentioned in the Introduction, we
allow concepts of the form T(C), whose intuitive meaning is that T(C) selects the
typical instances of a concept C. We can therefore distinguish between the properties
that hold for all instances of conceptC (C v D), and those that only hold for the typical
such instances (T(C) v D).

Definition 1. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and R ∈ R, we define:

CR := A | > | ⊥ | ¬CR | CR u CR | CR t CR | ∀R.CR | ∃R.CR
CL := CR | T(CR)

A knowledge base K is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions CL v CR. ABox contains assertions of the form CL(a) and R(a, b), where
a, b ∈ O.

The semantics of ALC + TR can be formulated in terms of rational models: ordi-
nary models of ALC are equipped with a preference relation < on the domain, whose
intuitive meaning is to compare the “typicality” of domain elements, that is to say x < y
means that x is more typical than y. Typical members of a conceptC, that is members of
T(C), are the members x of C that are minimal with respect to this preference relation
(s.t. there is no other member of C more typical than x).

Definition 2 (Semantics of ALC +TR). A modelM of ALC +TR is any structure
〈∆I , <, .I〉 where:

– ∆I is the domain;
– < is a (partial) transitive, irreflexive, and modular (for all x, y, z, if x < y then

either x < z or z < y) relation over ∆I;
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– .I is the extension function that maps each concept C to CI ⊆ ∆I , and each role
R to RI ⊆ ∆I × ∆I . For concepts of ALC, CI is defined in the usual way. For
the T operator, we have

(T(C))I =Min<(C
I),

where Min<(S) = {u : u ∈ S and @z ∈ S s.t. z < u}.

Furthermore, < is well-founded, i.e., there are no infinite <-descending chains.

Informally, x < y means that x is “more normal” than y, and that the typical mem-
bers of a concept C are the minimal elements of C with respect to this relation. An
element x ∈ ∆I is a typical instance of some concept C if x ∈ CI and there is no C-
element in ∆I more typical than x. It is worth noticing that cycles are not admitted for
the relation < since it is well-founded. Elements in ∆I are then organized in different
“levels” or “ranks” by the modularity of <, where all elements with rank i are incom-
parable with each other (i.e., for all x, y having rank i neither x < y nor y < x) and
they are more normal than all elements with an higher rank j > i. Therefore, minimal
C-elements are those having the least rank among C elements.

The semantics of the T operator can also be defined by means of a set of postulates
that are a reformulation of axioms and rules of nonmonotonic entailment in rational
logic R [13]: in this respect an assertion of the form T(C) v D is equivalent to the
conditional assertion C |∼ D in R. The basic ideas are as follows: given a domain ∆I

and an evaluation function .I , one can define a function fT : Pow(∆I) 7−→ Pow(∆I)
that selects the typical instances of any S ⊆ ∆I ; in case S = CI for a concept C, the
selection function selects the typical instances of C, namely:

(T(C))I = fT(C
I).

fT has the following properties for all subsets S of∆I , that are essentially a restatement
of the properties characterizing rational logic R:

(fT − 1) fT(S) ⊆ S
(fT − 2) if S 6= ∅, then also fT(S) 6= ∅
(fT − 3) if fT(S) ⊆ R, then fT(S) = fT(S ∩R)
(fT − 4) fT(

⋃
Si) ⊆

⋃
fT(Si)

(fT − 5)
⋂
fT(Si) ⊆ fT(

⋃
Si)

(fT − 6) if fT(S) ∩R 6= ∅, then fT(S ∩R) ⊆ fT(S)

Such properties are strongly related with KLM postulates [12, 13] and correspond to
the properties of rational consequence relations.

Given standard definitions of satisfiability of a KB in a model, we define a notion of
entailment in ALC +TR. Given a query F (either an inclusion C v D or an assertion
C(a) or an assertion of the form R(a, b)), we say that F is entailed from a KB if F
holds in all ALC +TR models satisfying KB.

Even if the typicality operator T itself is nonmonotonic (i.e. T(C) v E does not
imply T(C u D) v E), what is inferred from a KB can still be inferred from any
KB’ with KB ⊆ KB’, i.e. the logic ALC + TR is monotonic. In order to perform
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useful nonmonotonic inferences, in [9] and [11] the authors have strengthened the above
semantics by restricting entailment to a class of minimal models in two different ways.
Intuitively, in both cases, the idea is to restrict entailment to models that minimize the
atypicality and, in the second case, that minimize the atypical instances of a concept. In
this last case, the resulting logic corresponds to a notion of rational closure built on top
of ALC +TR. Such a notion is a natural extension of the rational closure construction
developed by Lehmann and Magidor [13] for the propositional calculus.

The nonmonotonic semantics of ALC + TRaCl
R relies on minimal rational models

that minimize the rank of domain elements. Informally, given two models of KB, one
in which a given domain element x has rank 2 (because for instance z < y < x), and
another in which it has rank 1 (because only z < x), we prefer the latter, as in this
model the element x is assumed to be “more typical” than in the former.

Definition 3 (Rank of a domain element kM(x)). Given a modelM =〈∆I , <, .I〉,
the rank kM of a domain element x ∈ ∆I , is the length of the longest chain x0 < . . . <
x from x to a minimal x0 (i.e. such that there is no x′ such that x′ < x0).

Definition 4 (Minimal models). Given M1 = 〈∆I1 , <1, .
I1〉 and M2 = 〈∆I2 , <2

, .I2〉 we say that M1 is preferred to M2 if: 1. ∆I1 = ∆I2 ; 2. CI1 = CI2 for all
concepts C; 3. for all x ∈ ∆I1 , it holds that kM1

(x) ≤ kM2
(x) and there exists

y ∈ ∆I1 such that kM1
(y) < kM2

(y). Given a knowledge base K, we say that M
is a minimal model of K if it is a model satisfying K and there is no modelM′ of K
satisfying it such thatM′ is preferred toM.

Query entailment is then restricted to minimal canonical models. The intuition is
that a canonical model contains all the individuals that enjoy properties that are con-
sistent with the KB. A modelM is a minimal canonical model of K if it satisfies K,
it is canonical and it is minimal among the canonical models of K 1. A query F is
minimally entailed from a KB if it holds in all minimal canonical models of KB.

In [11] it is shown that query entailment in ALC +TRaCl
R is in EXPTIME.

3 A Probabilistic Extension of Preferential Description Logics
The logic ALC +TRaCl

R imposes to consider all typicality assumptions that are consis-
tent with a given KB, but this seems to be too strong in several application domains.
It could be useful to reason about scenarios with exceptional individuals, or one could
need to assign different probabilities to typicality inclusions. As an example, one could
need to represent that the properties of loving sport and being active on social medias
are both typical properties of students, however it could be needed to also describe that
the probability of finding exceptional students not using social networks is lower than
the one of finding exceptional students not loving sport.

In [25] an extension of preferential Description Logic of typicality called ALC +
TP

R is introduced: in this logic, typicality inclusions are equipped by probabilities of
exceptionality of the form

T(C) vp D,
1 In Theorem 10 in [11] the authors have shown that for any consistent KB K there exists a

finite minimal canonical model K.
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where p ∈ (0, 1). The intuitive meaning is that “normally,Cs areDs and the probability
of having exceptional Cs – not being Ds – is 1 − p”. In other words, all the typical
instances of the concept C are also instances of the concept D, and the probability that
a C element is not also a D element, i.e. it is an exceptional C element, is 1 − p. For
instance, we can have

T(Student) v0.6 SportLover
T(Student) v0.9 SocialNetworkUser

whose intuitive meaning is that being sport lovers and social network users are both typ-
ical properties of students, however the probability of having exceptional students not
loving sport is higher than the one of finding students not using social networks, in par-
ticular we have the evidence that the probability of having exceptions is 40% and 10%,
respectively. As a difference with DLs under the distributed semantics introduced in
[23, 22], where probabilistic axioms of the form p :: C v D are used to capture uncer-
tainty in order to represent that Cs are Ds with probability p, in the logicALC+TP

R it
is possible to ascribe typical properties to concepts and to reason about probabilities of
exceptions to those typicalities. We define different extensions of an ABox containing
only some of the “plausible” typicality assertions: each extension represents a scenario
having a specific probability. Then, a notion of nonmonotonic entailment restricted to
extensions whose probabilities belong to a given and fixed range is defined, in order to
reason about scenarios that are not necessarily the most probable.

Let us now recall the main formal definitions of the logic ALC +TP
R.

Given a KB, we define the finite set C of concepts occurring in the scope of the
typicality operator, i.e. C = {C | T(C) vp D ∈ KB}. Given an individual a explicitly
named in the ABox, we define the set of typicality assumptions T(C)(a) that can be
minimally entailed from KB in the nonmonotonic logicALC+TRaCl

R , with C ∈ C. We
then consider an ordered set CA of pairs (a,C) of all possible assumptions T(C)(a),
for all concepts C ∈ C and all individual constants a in the ABox.

Definition 5 (Assumptions in ALC +TP
R). Given an ALC +TP

R KB=(T ,A), let T ′
be the set of inclusions of T without probabilities, namely

T ′ = {T(C) v D | T(C) vp D ∈ T } ∪ {C v D ∈ T }.

Given a finite set of concepts C, we define, for each individual name a occurring in A:

Ca = {C ∈ C | (T ′,A) |=ALC+TRaCl
R

T(C)(a)}.

We also define CA = {(a,C) | C ∈ Ca and a occurs in A} and we impose an order
on its elements: CA = [(a1, C1), (a2, C2), . . . , (an, Cn)]. Furthermore, we define the
ordered multiset PA = [p1, p2, . . . , pn], respecting the order imposed on CA, where

pi =
m∏
j=1

pij for all T(Ci) vpi1 D1,T(Ci) vpi2 D2, . . . ,T(Ci) vpim Dm in T .

The ordered multiset PA is a tuple of the form [p1, p2, . . . , pn], where pi is the proba-
bility of the assumption T(C)(a), such that (a,C) ∈ CA at position i. pi is the product
of all the probabilities pij of typicality inclusions T(C) vpij D in the TBox.
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We consider different extensions Ãi of the ABox and we equip them with a prob-
ability Pi. Starting from PA = [p1, p2, . . . , pn], the first step is to build all alternative
tuples where 0 is used in place of some pi to represent that the corresponding typical-
ity assertion T(C)(a) is no longer assumed (Definition 6). Furthermore, we define the
extension of the ABox corresponding to a string so obtained (Definition 7). In this way,
the highest probability is assigned to the extension of the ABox corresponding to PA,
where all typicality assumptions are considered. The probability decreases in the other
extensions, where some typicality assumptions are discarded, thus 0 is used in place
of the corresponding pi. The probability of an extension Ãi corresponding to a string
PAi = [pi1, pi2, . . . , pin] is defined as the product of probabilities pij when pij 6= 0,
i.e. the probability of the corresponding typicality assumption when this is selected for
the extension, and 1− pj when pij = 0, i.e. the corresponding typicality assumption is
discarded, that is to say the extension contains an exception to the inclusion.

Definition 6 (Strings of possible assumptions S). Given a KB=(T ,A), let the set CA
and PA = [p1, p2, . . . , pn] be as in Definition 5. We define the set S of all the strings of
possible assumptions with respect to KB as

S = {[s1, s2, . . . , sn] | ∀i = 1, 2, . . . , n either si = pi or si = 0}

Definition 7 (Extension of ABox). Let KB=(T ,A), PA = [p1, p2, . . . , pn] and CA =
[(a1, C1), (a2, C2), . . . , (an, Cn)] as in Definition 5. Given a string of possible assump-
tions [s1, s2, . . . , sn] ∈ S of Definition 6, we define the extension Ã of A with respect
to CA and S as:

Ã = {T(Ci)(ai) | (ai, Ci) ∈ CA and si 6= 0}

We also define the probability of Ã as PÃ =
n∏
i=1

χi where χi =
{
pi if si 6= 0
1− pi if si = 0

It can be observed that, in ALC + TRaCl
R , the set of typicality assumptions that can

be inferred from a KB corresponds to the extension of A corresponding to the string
PA (no element is set to 0): all the typicality assertions of individuals occurring in the
ABox, that are consistent with the KB, are assumed. On the contrary, in ALC + TR,
no typicality assumptions can be derived from a KB, and this corresponds to extending
A by the assertions corresponding to the string [0, 0, . . . , 0], i.e. by the empty set. It is
easy to observe that we obtain a probability distribution over extensions of A.

We have now all the ingredients for recalling formal definitions for nonmonotonic
entailment in the Description Logic ALC + TP

R. Intuitively, given KB and a query F ,
we distinguish two cases:

– if F is an inclusion C v D, then it is entailed from KB if it is minimally entailed
from KB’ in the logic ALC +TRaCl

R , where KB’ is obtained from KB by removing
probabilities of exceptions, i.e. by replacing each typicality inclusion T(C) vp D
with T(C) v D;

– if F is an ABox fact C(a), then it is entailed from KB if it is entailed in the mono-
tonic ALC +TR from the knowledge bases including the extensions of the ABox
of Definition 7.
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We provide both (i) a notion of entailment restricted to scenarios whose probabilities
belong to a given range and (ii) a notion of probability of the entailment of a query
C(a), as the sum of the probabilities of all extensions from which C(a) is so entailed.

Given a knowledge base KB and two real numbers p and q, we write KB |=〈p,q〉
ALC+TP

R

F to represent that F follows – or is entailed – from KB restricting reasoning to scenar-
ios whose probabilities range from p to q. We distinguish the case in which the query is
a TBox inclusion from the one in which it is an ABox assertion.

Definition 8 (Entailment inALC+TP
R). Given a KB=(T ,A), two reals p, q ∈ (0, 1],

and a query F which is a TBox inclusion either C v D or T(C) v D, we say that F
is entailed from KB in ALC +TP

R in range 〈p, q〉, written KB |=〈p,q〉
ALC+TP

R

F , if (T ′,A)

|=ALC+TRaCl
R

F , where T ′ = {T(C) v D | T(C) vr D ∈ T } ∪ {C v D ∈ T }.

Definition 9 (Entailment in ALC +TP
R). Given a KB=(T ,A), given C a set of con-

cepts, and given p, q ∈ (0, 1], let E = {Ã1, Ã2, . . . , Ãk} be the set of extensions ofA of
Definition 7 with respect to C, whose probabilities are such that p ≤ P1 ≤ q, p ≤ P2 ≤
q, . . . , p ≤ Pk ≤ q. Let T ′ = {T(C) v D | T(C) vr D ∈ T } ∪ {C v D ∈ T }.
Given a query F which is an ABox assertion C(a), where a ∈ O, we say that F is en-
tailed from KB inALC+TP

R in range 〈p, q〉, written KB |=〈p,q〉
ALC+TP

R

F , if (T ′,A ∪ Ãi)

|=ALC+TR
F for all Ãi ∈ E .

We also define the probability of the entailment of a query as P(F ) =
k∑
i=1

Pi.

It is worth noticing that, in Definition 8, probabilities p and q do not play any role:
indeed, probabilities of scenarios are related to ABox extensions, that are not involved
when we are reasoning about TBoxes. As already mentioned, in this case entailment in
ALC +TP

R corresponds to entailment in the nonmonotonic Description Logic ALC +
TRaCl

R . In [25] it is shown that the problem of entailment in the logic ALC + TP
R is

EXPTIME complete.

4 TCL: A Logic for Concept Combination
In this section we exploit preferential Description Logics in order to tackle the problem
of combining two prototypical descriptions. This problem is important because repre-
sents a classical issue in formal and cognitive semantics. This generative phenomenon,
indeed, highlights some crucial aspects of the knowledge processing capabilities in hu-
man cognition and concerns high-level capacities associated to creative thinking and
problem solving. Still, it represents an open challenge in the field of Artificial Intelli-
gence (AI) [26]. Dealing with this problem requires, from an AI perspective, the har-
monization of two conflicting requirements that are hardly accommodated in formal
ontologies [27]: the need of a syntactic and semantic compositionality and that one
concerning the exhibition of typicality effects. According to a well-known argument, in
fact, prototypes are not compositional. The argument runs as follows: consider a con-
cept like pet fish. It results from the composition of the concept pet and of the concept
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fish. However, the prototype of pet fish cannot result from the composition of the pro-
totypes of a pet and a fish: e.g. a typical pet is furry and warm, a typical fish is grayish,
but a typical pet fish is neither furry and warm nor grayish (typically, it is red).

In [28, 29] we have provided a framework able to account for this type of human-like
concept combination by introducing a probabilistic extension of a Description Logic
of typicality called TCL (typicality-based compositional logic). The nonmonotonic De-
scription Logic TCL combines the semantics based on the rational closure ofALC+TR

with the probabilistic DISPONTE semantics [23]. By taking inspiration from [30], we
consider two types of properties associated to a given concept: rigid and typical. Rigid
properties are those that hold under any circumstance, e.g.C v D (allCs areDs). Typi-
cal properties are represented by inclusions equipped by a probability. Additionally, we
employ a cognitive heuristic for the identification of a dominance effect between the
concepts to be combined, distinguishing between HEAD and MODIFIER.

The language of TCL extends the basic DLALC by typicality inclusions of the form
T(C) v D equipped by a real number p ∈ (0.5, 1) representing its probability, whose
meaning is that “normally, Cs are also D with probability p”.

Definition 10 (Language of TCL). We consider an alphabet C of concept names, R of
role names, and O of individual constants. Given A ∈ C and R ∈ R, we define:

C,D := A | > | ⊥ | ¬C | C u C | C t C | ∀R.C | ∃R.C

We define a knowledge base K = 〈R, T ,A〉 where:

– R is a finite set of rigid properties of the form C v D;
– T is a finite set of typicality properties of the form p :: T(C) v D, where
p ∈ (0.5, 1) ⊆ R is the probability of the inclusion;

– A is the ABox, i.e. a finite set of formulas of the form either C(a) or R(a, b), where
a, b ∈ O.

It is worth noticing that we avoid typicality inclusions with degree 1. Indeed, an in-
clusion 1 :: T(C) v D would mean that it is a certain property, that we represent
with C v D ∈ R. Also, observe that we only allow typicality inclusions equipped
with probabilities p > 0.5. Indeed, the very notion of typicality derives from the one
of probability distribution, in particular typical properties attributed to entities are those
characterizing the majority of instances involved. Moreover, in our effort of integrat-
ing two different semantics – DISPONTE and typicality logic – the choice of having
probabilities higher than 0.5 for typicality inclusions seems to be the only compliant
with both formalisms. In fact, despite the DISPONTE semantics allows to assign also
low probabilities/degrees of belief to standard inclusions, in the logic TCL it would be
misleading to also allow low probabilities for typicality inclusions.

Following from the DISPONTE semantics, each axiom is independent from each
others. This this allows us to deal with conflicting typical properties equipped with dif-
ferent probabilities. A model M of TCL is as in Definition 2. Probabilities equipping
typicality inclusions do not play any role in the models, but they are used to define sce-
nario of the composition of concepts in the distributed semantics. Intuitively, a scenario
is a knowledge base obtained by adding to all rigid properties in R and to all ABox
facts in A only some typicality properties. More in detail, we define an atomic choice
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on each typicality inclusion, then we define a selection as a set of atomic choices in
order to select which typicality inclusions have to be considered in a scenario.

Definition 11 (Atomic choice). Given K = 〈R, T ,A〉, where T = {E1 = q1 ::
T(C1) v D1, . . . , En = qn :: T(Cn) v Dn} we define (Ei, ki) an atomic choice for
some i ∈ {1, 2, . . . , n}, where ki ∈ {0, 1}.

Definition 12 (Selection). Given K = 〈R, T ,A〉, where T = {E1 = q1 :: T(C1) v
D1, . . . , En = qn :: T(Cn) v Dn} and a set of atomic choices σ, we say that σ
is a selection if, for each Ei, one decision is taken, i.e. either (Ei, 0) ∈ σ and (Ei,
1) 6∈ σ or (Ei, 1) ∈ σ and (Ei, 0) 6∈ σ for i = 1, 2, . . . , n. The probability of σ is
P (σ) =

∏
(Ei,1)∈σ

qi
∏

(Ei,0)∈σ
(1− qi).

Definition 13 (Scenario). Given K = 〈R, T ,A〉, where T = {E1 = q1 :: T(C1) v
D1, . . . , En = qn :: T(Cn) v Dn} and given a selection σ, we define a scenario
wσ = 〈R, {Ei | (Ei, 1) ∈ σ},A〉. We also define the probability of a scenario wσ as
the probability of the corresponding selection, i.e. P (wσ) = P (σ). Last, we say that a
scenario is consistent when it admits a model in the logic TCL.

We denote byWK the set of all scenarios. It immediately follows that the collection of
probabilities of the form P (wσ) is a probability distribution over all possible scenarios,
that is to say

∑
w∈WK

P (w) = 1. It is worth noticing that the probability of a scenario

P (wσ) also depends on the size of σ, i.e. the number of atomic choices belonging to it.
Given a KB K = 〈R, T ,A〉 and given two concepts CH and CM occurring in K,

our logic allows to define the compound concept C as the combination of the HEAD
CH and the MODIFIER CM , where C v CH u CM and the typical properties of the
form T(C) v D to ascribe to the concept C are obtained in the set of scenarios that:
1) are consistent; 2) are not trivial, i.e. those with the highest probability, in the sense
that the scenarios considering all properties that can be consistently ascribed to C are
discarded; 3) are those giving preference to the typical properties of the HEAD CH
(with respect to those of the MODIFIER CM ) with the highest probability.

Notice that, in case of conflicting properties likeD and ¬D, given two scenarios w1

andw2, both belonging to the set of consistent scenarios with the highest probability and
such that an inclusion p1 :: T(CH) v D belongs to w1 whereas p2 :: T(CM ) v ¬D
belongs to w2, the scenario w2 is discarded in favor of w1.
In order to select the wanted scenarios we apply points 1, 2, and 3 above to blocks of
scenarios with the same probability, in decreasing order starting from the highest one.

The knowledge base obtained as the result of combining concepts CH and CM into
the compound concept C is called C-revised knowledge base:

KC = 〈R, T ∪ {p : T(C) v D},A〉,

for all D such that T(C) v D is entailed in w. The probability p is defined as follows:
if D is a property inherited either from the HEAD (or from both the HEAD and the
MODIFIER), then p corresponds to the probability of such inclusion of the HEAD in
the initial knowledge base, i.e. p : T(CH) v D ∈ T ; otherwise, p corresponds to
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the probability of such inclusion of a MODIFIER in the initial knowledge base, i.e.
p : T(CM ) v D ∈ T . Notice that, since the C-revised knowledge base is still in
the language of the TCL logic, we can iteratively repeat the same procedure in order to
combine not only atomic concepts, but also compound concepts.

As an example, consider the following instantiation of the above mentioned pet fish
problem: let K = 〈R, T ,A〉 be a KB, where the ABox A is empty, the set of rigid
inclusions isR = {Fish v ∀livesIn.Water} and the set of typicality properties T is:

(1) 0.8 :: T(Fish) v ¬Affectionate (2) 0.6 :: T(Fish) v Greyish
(3) 0.9 :: T(Fish) v Scaly (4) 0.8 :: T(Fish) v ¬Warm
(5) 0.9 :: T(Pet) v ∀livesIn.(¬Water)
(6) 0.8 :: T(Pet) v Affectionate (7) 0.8 :: T(Pet) vWarm

In the logic TCL the not trivial scenario defining prototypical properties of a pet fish is
defined from the selection σ = {(1, 1), (2, 0), (3, 1), (4, 1), (5, 0), (6, 0), (7, 0)}, con-
taining inclusions (1), (3), and (4). The resulting Pet u Fish-revised knowledge base
is KPet u Fish = 〈{Fish v ∀livesIn.Water}, T ∪ T ′, ∅〉, where T is:

0.8 :: T(Pet u Fish) v ¬Affectionate
0.9 :: T(Pet u Fish) v Scaly
0.8 :: T(Pet u Fish) v ¬Warm

Notice that in the Description Logic TCL, adding a new inclusion T(PetuFish) v Red ,
would not be problematic: this means that our formalism is able to tackle the cognitive
phenomenon of attributes emergence for the new compound concept [31].

In [29, 28] we have shown that reasoning in TCL in the revised knowledge is EXP-
TIME-complete. The proposed logic has been adopted in concrete computational cre-
ativity applications. In particular, it has been used both in a system for the automatic,
goal-directed, knowledge augmentation of dynamic knowledge bases [32] and as a logic
engine for a serendipity-based recommender system, applied to the RaiPlay platform,
able to generate and suggest novel narrative contents to the users [33].

5 Refinements of the Rational Closure
Lehmann and Magidor’s rational closure (RC) construction [13] was first considered for
DLs in [8] and later it was studied for ALC in [11, 34], where polynomial reductions
of the RC to standard DLs have been considered. However, RC suffers from a well
known problem called by Pearl [24] “the blocking of property inheritance problem”,
and by Benferhat et al. the “drowning problem” [35]. The problem can be summarised
as follows: if a subclass of a class C is exceptional with respect to C for a given aspect,
it is exceptional tout court and does not inherit any of the typical properties of C.

Refinements of the RC construction, avoiding this problem, have been studied in
the context of propositional logic, among which the lexicographic closure introduced
by Lehmann [36] was later extended to DLs by Casini and Straccia [37]. Besides this
proposal, in the context of DLs other approaches have been considered to deal with
the above mentioned problem of RC. The same authors have developed an inheritance-
based approach for defeasible DLs [38]. Casini et al. have introduced the notions of
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basic and minimal Relevant Closure [39] as extensions of RC, where relevance is based
on the notion of justification. In [40] Gliozzi has defined a multipreference semantics for
defeasible inclusions in which models are equipped with several preference relations,
providing a refinement of the RC semantics. Two closure constructions, the MP-closure
and the Skeptical closure, have been proposed as weaker refinements of the rational
closure for ALC, approximating the multipreference semantics. The logic of overrid-
ing DLN [41] may exploit RC to determine specificity of defaults, and do not suffer
from the above problem. In a way, when building on RC to determine the ranking of
concepts (rather than building on the concept hierarchy), also DLN can be regarded as
a refinement of RC.

In this section we will present the ideas underlying the skeptical closure construc-
tion trough some examples. This closure, as the MP-closure, can be regarded as a
weaker variant of the lexicographic closure. The skeptical closure is weaker than the
MP-closure [42, 43], which is in turn weaker than the multipreference semantics [44].
For a given KB and a query, the skeptical closure is based on the construction of a sin-
gle base, while the MP-closure (as the lexicographic closure) requires building multiple
(and, in the worst case, exponentially many) bases (sets of defeasible inclusions).

Let us consider the following example from [43]. Consider a knowledge base K =
(T ,A), where A = ∅ and T contains the following inclusions:

(1) Penguin v Bird (2) BabyPenguin v Penguin

(3) T(Bird) v Fly (4) T(Bird) v NiceFeather

(5) T(Penguin) v ¬Fly (6) T(Penguin) v BlackFeather

(7) T(BabyPenguin) v ¬BlackFeather

Here, we expect that the defeasible property of birds having a nice feather is inherited
by typical penguins, even though penguins are exceptional birds regarding flying. We
also expect that typical baby penguins inherit the defeasible property of penguins that
they do not fly, although the defeasible property BlackFeather is instead overridden for
typical baby penguins, and that they inherit the typical property of birds of having nice
feather. The RC construction assigns rank 0 to Bird , rank 1 to Penguin , and rank 2
to BabyPenguin , the more specific concept having the higher rank. RC does not allow
the conclusion that penguins have nice feather, as penguins are exceptional w.r.t. birds
concerning flying and, hence, they do not inherit any of the properties of birds. Simi-
larly, it does not allow the conclusion that typical baby penguins (being penguins) do
not fly, as baby penguins are exceptional w.r.t. penguins concerning their color. Hence,
baby penguins neither inherit properties of penguins nor properties of birds.

The skeptical closure addresses the problem above by building a base for a given
concept B (e.g., BabyPenguin), by collecting all the defeasible inclusions which are
compatible with B and adding them to the defeasible inclusions with the same rank
as B, forming a base. If B has rank i, all the defeasible inclusions with rank i are
in the base. Then the construction proceeds rank by rank, from rank i − 1 to rank
0. For each rank k, if the defeasible inclusions with rank k individually compatible
with B (i.e. those which are not overridden by more specific inclusions with higher
rank) are all together consistent with B, they are all added to the base. If not, there
are conflicting defaults with rank k and we stop. In the example, BabyPenguin has
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rank 2 and inclusion (7) is added to the base (as well as strict inclusions). Defaults (5)
and (6) are the only defeasible inclusions with rank 1. Default (5) is compatible with
BabyPenguin , given default (7) and the strict inclusions, while default (6) is not (is
overridden by (7)). Hence, (5) is added to the base. (3) and (4) are defaults with rank 0.
(3) is overridden by (5). (4) is added to the base. There are no conflicting defaults with
the same rank. The skeptical closure for BabyPenguin then contains (in addition to
strict inclusions) defeasible inclusions (4), (5), and (7). From this base, using entailment
inALC+TR, we conclude that typical baby penguins have nice feather and do not fly.

The same conclusion can be derived by the stronger MP-closure and lexicographic
closure, as in both cases there is a unique minimal basis for BabyPenguin , coinciding
with the one above. The same conclusions holds as well in DLN and in both the basic
and the minimal Relevant closures. Let us consider the following simple example in
which the skeptical closure is weaker than all other constructions.

(1) T(Eagle) v Fly (2) T(Eagle) v NiceFeather
(3) T(OldAnimal) v ¬NiceFeather (4) OldEagle ≡ Eagle uOldAnimal

For concept OldEagle , the defeasible inclusions (2) and (3) are conflicting, and they
have all the same rank 0 (the same specificity). In MP-closure and lexicographic closure
there are two bases for OldEagle , one containing defaults (1) and (2) and the other
containing defaults (1) and (3). As from both bases we can conclude that old eagles fly,
then defeasible inclusion T(OldEagle) v Fly holds. However, the skeptical closure
does not allow this conclusion as all defaults (1), (2), (3) are individually compatible
with concept OldEagle , they have all the same rank (rank 0) and are conflicting, so that
the skeptical closure discards them all. The relevant closure in this case would behave
as the MP-closure and the lexicographic closure and would accept the conclusion that
normally old birds fly. The logic of overriding DLN would find out that there is a
conflict between the defaults (2) and (3), none of which is overridden by more specific
properties making the prototype of concept OldBird inconsistent.

Entailment defined by the skeptical closure satisfies all KLM properties of a prefer-
ential consequence relation. Skeptical closure has been proved to be weaker than MP-
closure, but neither weaker nor stronger than basic and minimal Relevant closures. We
refer to [43] for an example in which skeptical closure is stronger than both basic and
minimal Relevant closures. In the DL case, lexicographic closure is stronger than basic
and minimal Relevant closure [39]. In the propositional case, it has been proved [45]
that MP-closure is stronger than relevant closure, but weaker than Lehmann’s lexico-
graphic closure, so that skeptical closure is also weaker than lexicographic closure in
the propositional case.

6 Conclusions
We have provided an overview of preferential DLs of typicality, which allow a user
to represent and reason about prototypical properties. Recently, preferential DLs have
been extended in two directions: on the one hand, probabilistic extensions have been ap-
plied to the task of commonsense concept combination, on the other hand, a strength-
ening of the rational closure semantics has been proposed in order to avoid the well
known problem of inheritance blocking. For what concerns the first extension, we aim
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at extending the proposed approach to more expressive DLs, such as those underlying
the standard OWL language, and at implementing efficient reasoners for commonsense
concept combination. Concerning refinements of RC, as RC definition has been inves-
tigated for expressive DLs [19], for low complexity DLs [17–20], and for all DLs [46],
a natural question is whether skeptical closure and other closure constructions can as
well be extended to these DLs.
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