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Spin-Orbit Coupling from a Two-Component Self-Consistent Approach.
Part I: Generalised Hartree-Fock Theory
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Formal and computational aspects are discussed of a self-consistent treatment of spin-orbit coupling within
the two-component generalisation of the Hartree-Fock theory. A molecular implementation into the Crystal
program is illustrated, where the standard one-component code (typical of Hartree-Fock and Kohn-Sham
spin-unrestricted methodologies) is extended to work in terms of two-component spinors. When passing from
a one- to a two-component description, the Fock and density matrices become complex. Furthermore, apart
from the αα and ββ diagonal spin blocks, one has also to deal with the αβ and βα off-diagonal spin blocks.
These latter blocks require special care as, for open-shell electronic configurations, certain constraints of the
one-component code have to be relaxed. This formalism intrinsically allows to treat local magnetic torque as
well as non-collinear magnetization and orbital current-density. An original scheme to impose a specified non-
collinear magnetization on each atomic center as a starting guess to the self-consistent procedure is presented.
This approach turns out to be essential to surpass local minima in the rugged energy landscape and allow
possible convergence to the ground-state solution in all of the discussed test cases.

Keywords: Spin-orbit coupling, exact exchange, CRYSTAL program, non-collinear magnetization, magnetic
torque

I. INTRODUCTION

The most practical combination of quantum theory
and the theory of relativity is governed by a system of
four coupled complex equations and this system is colled-
tively called the Dirac equation.1 There are two classes
of relativistic effects which emerge from the Dirac equa-
tion and are not present in its non-relativistic counter-
part (the Schrödinger equation). The first class is de-
scribed by scalar operators and therefore comprises of
what are called scalar-relativistic (SR) effects, such as
mass-velocity and Darwin ones.1–3 In the description of
the electronic structure of a system, scalar effects mani-
fest as relativistic corrections to the electron mass, and
generally result in the direct stabilization (or contraction)
of s- and p-type energy levels as well as indirect (through
screening from more internal shells) destabilization of d-
type energy levels.2 The second class of relativistic effects
is described by vector operators that are collectively re-
ferred to as spin-orbit (SO) or spin-orbit coupling (SOC)
terms. The SOC refers to the coupling of the spin of an
electron with its orbital motion. This coupling not only
shifts the electronic levels of the system, but, in contrast
to SR effects, also change the symmetry of the electronic
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states. This means that in heavy-element systems, where
the SOC is strong, it can be necessary to include it in
calculations even for a qualitatively correct description
of the electronic structure. The SOC effect can be ex-
plained by the creation of a relativistic magnetic field
induced by charged particles in motion relative to a ref-
erence electron. This magnetic field in turn couples with
the field created by the spin of the reference electron.3

The most straightforward way to include SOC or
SR effects in electronic structure calculations would be
through a direct application of Dirac’s complex-four-
component equation as generalized to many-electron
systems.1–4 From a practical point of view, the corre-
sponding equations are never solved exactly and Lorentz
invariance is never achieved. Indeed, even when using
the simple Hartree-Fock (HF) approximation on a many-
electron atom within the full four-component scheme, no
exact analytical form exists for the electron-electron op-
erator (at variance with its non-relativistic counterpart),
so that it must be approximated. This is typically done
by including either the so-called Coulomb, Coulomb-
Breit, or Coulomb-Gaunt terms.1,3 Other times, the SOC
is not included in the HF step, but only later, at the
same stage as electronic correlation, in the so-called spin-
orbit configuration-interaction (SO-CI) approaches.5,6

For very heavy atoms, however, the splitting of the
electronic levels caused by SOC can be of the same
order or even greater than that caused by electronic
correlation.1–3,7 So it is clearly preferable to include SOC
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as early and as explicitly as possible in the calculation
procedure.

It turns out that, in the description of the elec-
tronic states of a system (especially the valence states
of chemical interest), two of the four components of
Dirac’s equation (the so-called large components) are
more dominant. In many fields, it is therefore a com-
mon practice to approximate Dirac’s equation by not
explicitly treating the two less important (small) com-
ponents. This is achieved by invoking proper decou-
pling transformations.8,9 The resulting methodologies are
known as two-component theories. These include the
ZORA, FORA and IORA (zeroth-, first- and infinite-
order regular-approximations),10–13 Douglas-Kroll-Hess
approach,8 and the relatively more recent X2C (exact
two-component) method.14

Yet another popular way to include relativistic ef-
fects in electronic structure calculations in a mixed
two- and four-component approach, is through relativis-
tic effective-core potentials (RECPs). These are effec-
tive potentials representing frozen configurations of core
electrons that are fitted to comparatively very accurate
single-atom relativistic four-component calculations.15–18

These RECPs are then used to solve a two-component
version of Dirac’s equation for the many-body system.
In general, this method might suffer from the frozen-
core approximation. However, from a practical point
of view, this approach may provide a better descrip-
tion than explicit four-component all-electron methods
because the approximation of the electron-electron oper-
ator in the relativistic Hamiltonian can be pushed fur-
ther at the single-atom stage during the RECP fitting
in the core-region (where relativistic effects are more im-
portant) than in the study of the many-atom system.19

Nevertheless, unfortunately, in many programs for
quantum-chemical calculations, the use of RECPs is lim-
ited to only treating SR effects, but not SOC. This is
often the case purely for technical reasons. Indeed, the
inclusion of only SR effects through RECPs poses no ma-
jor challenges to the programmer, as the same structure
of the existing code for calculations with non-relativistic
ECPs can be maintained. This is no longer the case
if SOC effects are to be also included in the calculation
through the RECPs. In this case, the one-component real
algebra scalar-relativistic or non-relativistic code (with
non-relativistic point-symmetry exploitation) needs to be
generalised to two-component eigenfunctions (spinors),
complex algebra and relativistic space-spin symmetry
(i.e. double-group symmetry). Significant efforts have
been made in recent years in molecular codes along this
direction to include SOC effects with RECPs in the
self-consistent field (SCF) procedure of the NWChem
code,20,21 the Turbomole code,22,23 and the Dirac
code.24,25 We stress that some of these codes already
included SOC effects before these newer developments,
through all-electron methodologies.

Here we discuss the generalisation of the Crystal
code26 to a two-component description of SOC through

RECPs. The Crystal program uses a basis-set of
Gaussian-type atom-centered functions to perform HF
and density functional theory (DFT) calculations on fi-
nite molecular systems as well as on extended periodic
systems in one, two or three dimensions. In the field
of electronic structure calculations of periodic systems,
the overwhelming majority of calculations are performed
with the DFT, with the possible inclusion of a frac-
tion of exact Fock exchange (as in hybrid functionals),
and by using one-component codes that do not allow
for SOC effects to be treated self-consistently. For ex-
ample, the Vasp27, Wien2k28 and Fleur programs
can treat SOC only in a non self-consistent way, as a
post-SCF perturbation, after performing either a one-
or two-component non- or scalar-relativistic SCF.29,30

These non self-consistent methods are expected to be re-
liable only if the SOC is weak and the induced split-
ting of the energy levels small. In this respect, the
most notable exception is represented by the Quantum-
Espresso code,31,32 where a self-consistent treatment of
SOC from RECPs within the DFT has been implemented
for solids.33 The Amsterdam density functional (ADF)
package also allows for self-consistent treatment of SOC
in solids through the ZORA approach.34 More recently,
work has been done towards the treatment of SOC in
solids with the GW theory.35,36 A four-component pe-
riodic Kramers-Restricted Kohn-Sham implementation
has been recently published.37 We are not aware of any
public implementation of self-consistent SOC-DFT for
solids that takes into explicit account exact Fock ex-
change, despite it plays a crucial role in the description
of a number of SOC-related physical effects (local mag-
netic torque, non-collinear magnetism, orbital current-
density), as we are going to discuss in the present two-
part paper.

As a first step towards the self-consistent treatment
of SOC effects with an explicit account of exact Fock
exchange, here we discuss formal and computational as-
pects of a molecular implementation based on the use
of RECPs into the Crystal program. We discuss the
self-consistent inclusion of SOC in the HF theory in
Part I and the corresponding treatment within collinear
and non-collinear DFT (in its local density, generalised-
gradient and hybrid formulations) in Part II. In particu-
lar, in Part II we will address the accuracy, numerical ro-
bustness, and computational efficiency of the different fla-
vors of non-collinear DFT reported in the literature and
we will present a new formulation, which ensures higher
numerical stability and efficiency.38 The extension of the
presented methodology to the description of extended pe-
riodic systems represents a near-future development and
will be presented in forthcoming publications.

In Part I of the paper, we review all formal aspects
of the most general variant of the two-component the-
ory for the self-consistent inclusion of SOC in HF and
Kohn-Sham (KS) calculations: the so-called Kramers-
unrestricted (KU) approach. The KU theory is the most
suitable for treating both open-shell and closed-shell elec-
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tronic configurations within a single-determinantal de-
scription. The self-consistent treatment of SOC in open-
shell electronic configurations is particularly challenging
as it involves the breaking of certain symmetries that are
usually exploited in one-component codes. In addition
to Hermitian αα and ββ spin blocks, also non-Hermitian
αβ and βα spin blocks of the Fock, or KS, and density
matrices have to be considered. Granted, while the αβ
and βα are not individually Hermitian for open-shell sys-
tems, of course the total Fock, KS and density matrices
are still Hermitian. The importance of the Fock exchange
term in providing an indirect magnetic torque as well as a
correct description of the orbital current-density, through
its dependence on specific blocks of the density matrix,
is discussed. This will become particularly crucial when
different non-collinear formulations of the DFT will be
illustrated in Part II.

Despite the formal difficulties in treating SOC for
open-shell systems, it is also particularly rewarding, be-
cause these are exactly the same systems in which SOC
is most important.39–42 Indeed, the self-consistent treat-
ment of SOC using approaches similar to the one de-
scribed here allows for a proper description of systems
containing heavy and magnetic elements as has been done
for U by Wiegand et al.19 and Zhang,20 for Pb by Arm-
bruster et al.,22 for Au by Zeng et al.,43 for Fe and Pt
by Tsujikawata et al.,44 or for Fe and Cu by Pacchioni et
al.45

The inclusion of SOC often makes the electronic en-
ergy landscape very complicated, resulting in the pres-
ence of many local minima (metastable electronic states)
and multiple global minima (i.e. degenerate ground state
electronic configurations), even in very simple molecu-
lar systems, as will be shown in this paper. As for
strongly correlated systems characterized by several elec-
tronic metastable states,46 the starting guess for the elec-
tronic configuration (i.e. density matrix) of the system
is of critical importance for the SCF procedure. In Part
I of the paper, we present a strategy to modify a stan-
dard atomic guess for the density matrix so as to impose
specified orientations for the electronic magnetization on
each atomic center. We present some examples on small
molecular systems where we show how calculations per-
formed with different starting guesses often results in dif-
ferent final electronic states.

Finally, in Part I we document the correctness of the
implementation, and we comment on its comparative nu-
merical accuracy and efficiency against the existing sim-
ilar public implementations.

II. FORMAL ASPECTS

In this section, we introduce some general concepts
of relativistic quantum-chemistry and, in particular, we
present formal aspects of the self-consistent treatment of
spin-orbit coupling within a two-component generalisa-
tion of the Hartree-Fock theory. Regular font bold sym-

bols (eg. A,a) are used for vector and matrix quantities
in spin-space. Underlined font bold symbols (eg. A,a)
are used for vector and matrix quantities in other spaces
(for example Euclidean space). Hats are used for opera-

tors (eg. Â, â) and if it is convenient to adopt a matrix
representation of operators, these are also denoted by
a bold-hat notation (eg. Â, â, Â, â). In this paper, all
formulae are presented in atomic units and the bra-ket
notation is reserved for eigenfunctions of spin operators,
unless explicitly stated otherwise.

A. Spinors and Spin-Orbit Coupling Hamiltonians

The SOC is represented mathematically by a complex
matrix operator, which acts on complex two-component
vector quantities (spinors), which have the following rep-
resentation in the spin basis:1,2

Ψi = 〈s|ψαi 〉+ 〈s|ψβi 〉 =

(
ψαi
0

)
+

(
0

ψβi

)
. (1)

In a one-electron atom, the SO operator has the following
functional form:4

ĥSO(r) = ξ̂(r)L̂·Ŝ , (2)

where r = |r| is the magnitude of the position vector r,

and Ŝ and L̂ are the spin and angular-momentum op-
erators. As a matter of fact, SO operators sharing a
similar functional form, consisting of a product of ra-
dial, spin and angular-momentum operators (or a sum
of such products) is also a common approximation for
many practical calculations on molecules and periodic
systems.1,20,22,24,33 Such a mono-electronic operator is
somewhat of a natural choice to describe spin-same-orbit
(SSO) interactions (those between the spin and orbit
of the same electron). On the other hand, spin-other-
orbit (SOO) interactions (those between the spin and
orbit of different electrons), would be more naturally
represented using a bi-electronic operator.1 In a two-
component spinor basis, the spin operator Ŝ adopts the
following representation:1

Ŝ =
(
Ŝx, Ŝy, Ŝz

)T

with Ŝc =
1

2
σ̂c , (3)

where c = x, y, z labels a Cartesian component and the
Pauli matrices σ̂c, are defined as follows:

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
. (4)

The operators Ŝx, Ŝy, Ŝz, Ŝ have an associated spin-
quantum number s = 1/2 and magnetic spin quantum
number ms = ±1/2, which determine their action on
their associated eigenfunctions, including |α〉 and |β〉,
which are expressed as follows in the spin basis:

〈s|α〉 =

(
1
0

)
and 〈s|β〉 =

(
0
1

)
. (5)
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The angular-momentum operator L̂, which instead only
acts on the spatial part of the spinors, can be represented
as follows in the position basis:

L̂ =
(
L̂x, L̂y, L̂z

)T

= −i
(
r̂× ∇̂

)
. (6)

Similarly, the operators L̂x, L̂y, L̂z, L̂ have an as-
sociated angular-momentum quantum number l ∈
{0, 1, 2, ...} and magnetic quantum number m ∈
{−l,− (l − 1) , ..., 0, ..., (l − 1) , l}, which quantify their
action on their respective eigenfunctions. For the atomic
case, the presence of the SO operator implies that the
Hamiltonian no-longer commutes with Ŝ and L̂, so that
the s,ms, l,m are no-longer good quantum numbers, and
hence cannot be used to label the spinors.1 However, the
quantum numbers s,ms, l,m are still useful concepts, to
label the functions on which the spinors are expanded.
For example, in our implementation, we expand spinors
in a set of atom-centered spin-orbitals χσ (σ = α or β),

which are eigenfunctions of Ŝ and L̂, and can be ex-
pressed as follows in the spin-position basis:

〈r, s|χσ〉 = R(r)Y ml (r)〈s|σ〉 ≡ 〈r, s|l,m〉 , (7)

where R(r) is a radial function (in our case a linear
combination of Gaussian functions) and Y ml are real-
solid spherical harmonics. It turns out that for atoms,
it is still possible to define a new operator (the to-

tal angular-momentum) Ĵ = L̂ + Ŝ, which does com-

mute with the Hamiltonian. In analogy to L̂, Ĵ has
associated quantum numbers j =

∣∣l ± 1/2
∣∣, and mj ∈

{−j,− (j − 1) , ..., 0, ..., (j − 1) , j}. These can also be
useful to label the functions on which the spinors are ex-
panded. Nonetheless, in the general polyatomic molec-
ular case, the spinors are not eigenfunctions of any of
Ĵ, L̂, Ŝ. In this light, it is also useful to introduce the spin
and angular-momentum ladder (or creation-annihilation)
operators:

L̂± = L̂x ± iL̂y ; (8)

Ŝ± = Ŝx ± iŜy , (9)

where the action of Ŝ± on the spin states |α〉, |β〉 is:

Ŝ+|α〉 =|0〉 Ŝ+|β〉 = |α〉 ; (10)

Ŝ−|α〉 =|β〉 Ŝ−|β〉 = |0〉 , (11)

and similarly, the action of the L̂± (or Ĵ±) on their eigen-
functions raises and lowers the quantum number m (or
mj).

In this paper we work with the following Hamiltonian
that acts on two-component spinors:

Ĥ =
∑
k

[
ĥ0(rk)σ̂0 + ĥSO(rk)

]
+ V̂ee + V̂NN , (12)

where σ̂0 is the identity matrix in spin-space, k is an in-
dex that labels the electrons with coordinates rk, V̂NN is

the nuclear-nuclear potential and ĥ0 is a mono-electronic
operator containing the SR, kinetic, and nuclear-electron
interaction terms. We are going to show in Section II B
below that the SOC operator in Eq. (12) has a some-
what similar functional form to the one presented in Eq.
(2). Finally, V̂ee is the electron-electron interaction op-
erator, which is at least in part bi-electronic. Since the
Hamiltonian acts on two-component spinors, it has a 2×2
complex-matrix structure in spin-space, similarly to the
σ̂c Pauli matrices introduced in Eq. (4). The four blocks
of the matrix are denoted as the αα, αβ, βα and ββ spin-
blocks:

Ĥ =

(
Ĥαα Ĥαβ

Ĥβα Ĥββ

)
. (13)

This is in contrast to the non- or scalar-relativistic ap-
proach where operators have a 2 × 1 real structure in
spin-space for open-shell systems (i.e. the αα and ββ
blocks) or 1× 1 real structure for closed-shell systems.

B. Relativistic Effective Core Potentials for Spin-Orbit
Coupling

In our approach, the SR and SO effects are both
treated using the RECP method.47 This method is nowa-
days routine in quantum-chemistry for treating SR ef-
fects, but has recently also gained popularity in the
last decade for treating SOC in molecules,20,22,24 and
solids.33 In this approach, core-core and core-valence
electron interactions are represented using effective po-
tentials, whose parameters are extracted from fitting to
atomic four-component Dirac-Fock calculations. The pa-
rameters of the potentials are obtained using the energy-
adjusted or shape-consistent methods.48,49 Through this
fitting procedure, the RECPs inherently take care of the
SO and SR effects for core-core interactions. SR and
SO effects (which are most important near the core) are
therefore neglected for valence-valence interactions. In
this way, all relativistic effects that are left to be treated
variationally are the core-valence SO and SR interactions.

In our implementation, the core SR and SO operators
are mono-electronic ones, act on two-component spinors,
and adopt the form originally proposed by Ermler, Pitzer
and co-workers.47,50 In this approach, all relativistic
(core-core SR and SO, core-valence SR and SO) and non-
relativistic core-core and core-valence effects are repre-
sented using an effective-core potential operator ÛREP,
which can be written as a sum of atom-centered operators
ÛREP
a :

ÛREP(r) =

N∑
a

ÛREP
a (r− ra) , (14)

where N is the number of atoms in the system and ra are

their positions. In fact, as we will show below, the ÛREP

can be subdivided into an average relativistic-effective
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potential term ÛAREP representing all non- and scalar-

relativistic effects, as well as a SO operator ĥSO:

ÛREP(r) = ÛAREP(r) + ĥSO(r) . (15)

Henceforth the sum over centers in Eq. (14) is made
implicit. When using effective-core potentials as done

here, the ĥSO is sometimes referred to as the ÛSOREP in
the litterature. The effective-core potential operator is
expanded as a product of radial and angular operators:47

ÛREP(r) = ÛREP
LJ (r)

+

L∑
l=0

jα∑
j=jβ

[
ÛREP
lj (r)− ÛREP

LJ (r)
]

P̂l,j(θ, φ) .(16)

In the above, L is the largest angular-momentum quan-
tum number used to describe the core (usually chosen
as equal-to or one higher than in the valence basis-set),
J is the corresponding total-angular momentum (J =∣∣L± 1/2

∣∣), and we have used the notation jα =
∣∣l + 1/2

∣∣
and jβ =

∣∣l − 1/2
∣∣. The ÛREP

lj (r) are radial potentials fit-

ted to a linear combination of solid-Gaussian functions.51

Given that the ÛREP
lj (r) are dependent on the total- and

angular-momentum l and j, projection operators are nec-
essary to ensure that each radial operator acts on func-
tions of the appropriate l and j species. The θ and φ are
the inclination and azimuthal polar angles of the elec-
tron coordinates. In our case, the angular projectors are
defined as:

P̂l,j(θ, φ) =

j∑
mj=−j

|l, j,mj〉〈l, j,mj| . (17)

The P̂l,j are generally complex operators acting on both
the spatial and spin part of the spinors. More specif-
ically, the |l, j,mj〉 are chosen as two-component, com-
plex eigenfunctions of the Pauli Hamiltonian,47 which is
an approximation to the Dirac Hamiltonian.

The average-relativistic effective potential ÛAREP

reads:47,50

ÛAREP(r) = ÛAREP
L (r)

+

L∑
l=0

[
ÛAREP
l (r)− ÛAREP

L (r)
]
P̂l(θ, φ) ,(18)

where, the angular projectors P̂l are defined as:

P̂l(θ, φ) =

l∑
m=−l

|l,m〉〈l,m| . (19)

In contrast to P̂l,j , the operators P̂l now only act on
the spatial part of the spinors. They are defined using
the |l,m〉, which are one-component, real eigenfunctions

of the SR Dirac Hamiltonian.47 The ÛAREP
l (r) in turn

are averaged, purely scalar-relativistic radial potentials,
defined in terms of quantities in Eq. (16) as:47,50

ÛAREP
l (r) =

1

2l + 1

[
lÛREP
l,jβ

(r) + (l + 1)ÛREP
l,jα (r)

]
.

(20)
The SO part of the operator can then be defined as the
difference between the fully-relativistic ÛREP and the SR
ÛAREP and takes the form:52

ĥSO(r) =
1

2

L−1∑
l=1

ξ̂l(r)
{
lP̂l,jα(θ, φ)− (l + 1) P̂l,jβ (θ, φ)

}
,

(21)
where:

ξ̂l(r) =
2

2l + 1

[
ÛREP
l,jα (r)− ÛREP

l,jβ
(r)
]
. (22)

We note that the convention for expressing ξ̂l(r) varies
according to the authors up to an l-dependent factor, as
can be seen, for instance by comparing Eq. (22), with
those from Ref. 50 and 47. The advantage of the formu-
lation above is that the ÛREP is separated in the SR real

term ÛAREP and the complex SO term ĥSO. As such, ex-
isting algorithms to evaluate SR effects from RECPs can
be adapted to evaluate the ÛAREP integrals and new al-

gorithms are only needed to evaluate the ĥSO integrals.
In our implementation, the ÛAREP integrals are evalu-
ated by modification of existing routines in the Crys-
tal code,26 based on a method proposed by McMurchie
and Davidson51 in a basis set of Cartesian Gaussian-type
functions (CGTF). This approach is partly analytical (for
angular and radial integrals of type I) and partly involves
numerical quadrature (for radial integrals of type II).51

The exact definition of the radial integrals of type I and

II can be found in Ref. 51. The integrals over the ĥSO

are instead evaluated by modification of the routines of
the Argos integral package,53 again over CGTF using a
closely-related approach to that proposed by McMurchie
and Davidson. These CGTF integrals are subsequently
transformed to a basis of spherical-Gaussian type func-
tions up to angular momentum l = 4.54

Finally, we note that the mono-electronic form of the
SO operator above in Eq. (21) reduces to:1

ĥSO(r) =

L−1∑
l=1

ξ̂l(r)P̂l(θ, φ)L̂ · ŜP̂l(θ, φ) , (23)

which has a similar functional form to Eq. (2). As men-
tioned in Section II A, a mono-electronic operator is a
natural choice for describing SSO interactions, but is not
so natural for describing SOO interactions. However, in
our case, SOO interactions are also implicitly included

in the ĥSO through the fitting procedure of the RECPs
from four-component Dirac-Fock calculations.
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C. Generalised Hartree-Fock Theory

We now discuss into some detail the present Hartree-
Fock treatment including SOC interactions. Our imple-
mentation is based on a linear-combination of atomic-
orbitals (LCAO) framework. As was anticipated in Sec-
tion II A, the presence of the complex SOC operator im-
plies that the molecular orbitals (MOs) are expressed in
terms of the complex two-component spinors introduced
in Eq. (1). The spinors, in turn are expanded in a set of
nf atomic spin-orbitals defined in Eq. (7):

Ψi(r) =

nf∑
µ=1

cαµ,i

(
χµ(r)

0

)
+ cβµ,i

(
0

χµ(r)

)
, (24)

where the cσµ,i are the (generally) complex MO coeffi-
cients. Variation of the orbital coefficients, under the
constraint of orthonormalization, to minimize the energy
of the respective Slater determinant leads to Hartree-
Fock-Roothaan-type equations which resemble closely
the scalar- or non-relativistic procedure. More specifally,
in our case the cσµ,i satisfy the complex generalized HF

(GHF) equations:55

Fc = Scε , (25)

where the S, c, ε are the usual overlap matrices and one-
particle Fock eigenvector and diagonal-eigenvalue matri-
ces, respectively, which have a size of 2nf × 2nf . The
Fock (or Hamiltonian) matrix F, is the matrix represen-
tation of the Hamiltonian introduced in Eq. (12) in the
basis of atomic spin-orbitals. We can write Eq. (25) in
a more explicit way to display its structure in spin-space
as follows:(

Fαα Fαβ

Fβα Fββ

)(
cα

cβ

)
=

(
Sαα 0αβ

0βα Sββ

)(
cα

cβ

)
ε . (26)

The off-diagonal spin-blocks of S are nullified by mono-
electronic spin-sum rules, as evidenced by Eq. (24). The

0σσ
′

is a matrix of zeros. As in the above, when matrices
do not have a double spin-index superscript, it is assumed
that they have a size of 2nf×2nf , unless explicitly stated
otherwise. Matrices that do have a double spin-index
superscript have a size of nf × nf . The Fock matrix F
is written as the sum of mono-electronic h, as well as
Coulomb C and exchange K contributions:

F ≡ h + C + K . (27)

1. Mono-Electronic Integrals

The spin structure of the mono-electronic term h is as
follows:(

hαα hαβ

hβα hββ

)
=

(
hαα0 0αβ

0βα hββ0

)
+

(
hααSO hαβSO

hβαSO hββSO

)
. (28)

In the above, the ĥ0 operator is the SR mono-electronic
part, containing the AREP, valence kinetic, and valence-
nuclear electrostatic terms. The matrix elements of the
ĥ0 operator are real and have the following symmetries:

[hαα0 ]µν = [hαα0 ]νµ =
[
hββ0

]
νµ

=
[
hββ0

]
µν

, (29)

where the matrix elements are defined as:[
hσσ

′

0

]
µν

= 〈χσµ|ĥ0|χσ
′

ν 〉 . (30)

From Eq. (23), and taking into account the form of the
Pauli matrices from Eqs. (3) and (4), the matrix elements
of the SO operator for the diagonal spin-blocks are:

[hααSO]µν =

L−1∑
l=1

〈χαµ |ξ̂lP̂lL̂zŜzP̂l|χαν 〉

=
1

2

L−1∑
l=1

〈χµ|ξ̂lP̂lL̂zP̂l|χν〉 . (31)

For the off-diagonal spin-blocks, using now also the spin
and angular momentum ladder operators L̂±, Ŝ± defined
in Eqs. (8) and (9):[

hαβSO

]
µν

=
1

2

L−1∑
l=1

〈χαµ |ξ̂lP̂lL̂−Ŝ+P̂l|χβν 〉

=
1

2

L−1∑
l=1

〈χµ|ξ̂lP̂lL̂−P̂l|χν〉 . (32)

The SO matrix elements have the following symmetries,
from the properties of the spin and angular momentum
operators discussed in Eqs. (3) to (11), for the diagonal
spin-blocks:

[hααSO]µν = − [hααSO]νµ =
[
hββSO

]
νµ

= −
[
hββSO

]
µν

, (33)

and for the off-diagonal spin-blocks:[
hαβSO

]
µν

= −
[
hαβSO

]
νµ

=
[
hβαSO

]∗
νµ

= −
[
hβαSO

]∗
µν

. (34)

In the above, the operator L̂z is purely imaginary and the
L̂− is complex. As a consequence, the matrix elements

of the αα and ββ blocks of ĥSO are purely imaginary,
while those of the αβ and βα blocks are complex. The
symmetry properties of the matrix elements can be ex-
ploited in their construction, such that only one of the
upper- or lower-triangular blocks of αα and αβ need to
be explicitly calculated.

2. Bi-Electronic Integrals

To write a succinct expression for the real Coulomb C
and complex exchange K matrix elements, we introduce
the one-particle density matrix D:[

Dσσ′
]
µν
≡

occ∑
i

[
cσµi

]∗
cσ
′

νi , (35)
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where the index i runs over the occupied MOs and the
density matrix is complex-Hermitian:[

Dσσ′
]
µν

=
[
Dσ′σ

]∗
νµ

. (36)

The Coulomb and exchange matrix elements are written
in terms of bi-electronic integrals:(

χσµχ
σ′

ν |χσ
′′

ρ χ
σ′′′

γ

)
≡ (χµχν |χρχγ)δσ,σ′ δσ′′,σ′′′ , (37)

with:

(χµχν |χρχγ) ≡
x

dr1dr2χµ(r1)χν(r1)
1

r12
χρ(r2)χγ(r2) ,

(38)
where r12 = |r1 − r2| and the Kronecker-delta functions
appear from the matrix products in spin space. In this
way, the Coulomb term may be written as:

[Cαα]µν =
∑
ρ,γ

(χµχν |χρχγ) <
(

[Dαα]ργ +
[
Dββ

]
ργ

)
,

(39)
where the < is used to denote the real part of the argu-
ment (similarly, in the following the = will be used for the
imaginary part). The real Coulomb matrix elements have
the following symmetries, for the diagonal spin-blocks

[Cαα]µν = [Cαα]νµ =
[
Cββ

]
νµ

=
[
Cββ

]
µν

, (40)

while the off-diagonal spin-blocks are null, so that the
overall structure in spin-space reads:

C =

(
Cαα 0αβ

0βα Cββ

)
. (41)

The exchange terms are calculated as follows for both
diagonal and off-diagonal spin-blocks:[

Kσσ′
]
µν

= −
∑
ρ,γ

(χµχγ |χνχρ)
[
Dσ′σ

]
ργ

, (42)

and the matrix elements are complex-Hermitian:[
Kσσ′

]
µν

=
[
Kσ′σ

]∗
νµ

. (43)

As can be seen above, the exchange operator is the only
one that generates terms for which elements of the αα
blocks cannot be related to those in the ββ blocks, and
for which the lower triangular elements of the off-diagonal
spin-blocks cannot be related to corresponding upper-
triangular elements. This is a consequence of the lack
of correspondence between αα and ββ elements of the
density matrix, as well as the non-Hermiticity of its off-
diagonal spin-blocks in open-shell systems. Even though
the off-diagonal spin-blocks of the density matrix are
not individually Hermitian, of course the whole matrix
is Hermitian. It is worth mentioning that since the
Coulomb terms contain only the real part of the density
matrix, their calculation is identical to the scalar- and

non-relativistic approaches. This means that no modifi-
cation of the existing SR code was necessary for calculat-
ing the Coulomb term. For the exchange term, the inte-
grals are the same as in the SR code, but they now need
to be combined with new blocks of the density matrix.
In the calculation of the bi-electronic exchange integrals
like those denoted in Eq. (42), the following permutation
symmetries are exploited:

χµ ↔ χγ , χν ↔ χρ and (χµχγ)↔ (χνχρ) , (44)

so that the same integral can be used eight times for the
construction of the Coulomb and exchange matrices. One
difference with respect to the SR code is that when ap-
plying these permutations, the sign of the corresponding
density matrix block must be reversed, see Eq. (36). Ad-
ditionally, for open-shell systems, the off-diagonal spin-
blocks are not necessarily Hermitian. This is in contrast
to the SR code, in which the off-diagonal blocks are null,
so that additional care must now be taken to associate
the appropriate density-matrix block once the permuta-
tion is performed.

3. Energy

The total energy E is calculated using the trace oper-
ator Tr as follows:

E =
1

2

{
Tr
(
hD†

)
+ Tr

(
FD†

)}
. (45)

Using the properties of the trace operator, as well as the
Hermiticity of h,D and F, the energy can be partitioned
into different contributions:

E =

{
<
[
Tr
(
h0D

†
)]

+ <
[
Tr
(
hSOD†

)]

+
1

2
<
[
Tr
(
CD†

)]
+

1

2
<
[
Tr
(
KD†

)]}
. (46)

Working expressions for the traces above can be found in
the Appendix.

4. Electron Density and Magnetization

The total (or particle-number) electron density can be
calculated from the occupied two-component spinors as
a product in the spin basis:

n(r) ≡
occ∑
i

Ψ†i (r)Ψi(r) . (47)

Developing this product using the Hermiticity of the den-
sity matrix of Eq. (36) yields:

n(r) = n<αα(r) + n<ββ(r) , (48)



8

where we now introduce the compact notation:

n<σσ′(r) =
∑
µν

<
[
Dσσ′

]
µν
χµ(r)χν(r) ;

n=σσ′(r) =
∑
µν

=
[
Dσσ′

]
µν
χµ(r)χν(r) . (49)

Information on the spin-polarisation of the system is
given by the magnetization vector m =

[
mx,my,mz

]
.

Its Cartesian components are:56

mc(r) ≡
occ∑
i

Ψ†i (r)σ̂cΨi(r) . (50)

Using the expression for the Pauli matrices in Eq. (4),
as well as the Hermiticity of the density matrix, explicit
expressions are obtained for each component:

mx(r) = n<αβ(r) + n<βα(r) ; (51)

my(r) = n=αβ(r)− n=βα(r) ; (52)

mz(r) = n<αα(r)− n<ββ(r) . (53)

We define the concept of collinear magnetization as a
spatial distribution of m which is everywhere parallel or
anti-parallel. On the other hand, a non-collinear mag-
netization is a spatial distribution of the m in which at
least one point in space is associated with a value of m
that is not parallel or anti-parallel to that of the other
points in space.57 From Eq. (49), as well as Eqs. (51)
and (52), the mx and my are proportional to the real
and imaginary parts of the off-diagonal spin-blocks of the
density matrix, respectively. From Eq. (53), the mz is
proportional to the real part of the diagonal spin-blocks
of the density matrix. In addition, from Eqs. (A.1), (A.2)
and (A.4), for the calculation of the energy, we note that
the SOC operator is the only one which combines inte-
grals with the spin blocks of the density matrix that en-
ter into the magnetization. The physical consequence of
this is that the SOC operator is the only term which di-
rectly imparts an energy dependence on the orientation of
the magnetization (sometimes called magnetic torque).58

This is because the electron-spin couples with the geom-
etry of the system (hence the orientation of the magneti-
zation) through coupling with its orbital motion. Albeit,
for some systems the exchange operator can also impart
an indirect energy dependence on the orientation of the
magnetization through the dependence of the operator
on the density matrix in Eq. (42). The energy contri-
bution from the exchange operator is also invariant to a
global rotation of the spin-reference frame, while the SO
contribution is sensitive to such rotations.

5. Non-Collinear Guess for the Density Matrix

Since the SOC operator is the only term in the Hamil-
tonian which imparts a direct energy dependence on the
orientation of the magnetization, if the SOC is not very

strong, the energy dependence will be very weak. So it
is not guaranteed that the SCF procedure will always
yield the optimal magnetization distribution. The start-
ing guess for the magnetization distribution can there-
fore be important to ensure convergence to the lowest
energy solution and for calculating properties which de-
pend strongly on the direction of the magnetization.59

In this light, we show here how a non-relativistic atomic
starting guess for the density matrix (here referred to
as Dcol) - in our case calculated from an approach orig-
inally described by Clementi in Ref. 60 - can be gen-
eralized to impose a specified non-collinear magnetiza-
tion on the individual atoms, as a starting point. Actu-
ally, the approach presented below would also work for
other types of non-relativistic or scalar-relativistic atomic
starting guess density matrices. To our knowledge, such
an approach has not been presented before in the litera-
ture and yet represents an important tool for describing
the electronic structure from a two-component SCF pro-
cedure, as will be explicitly shown in Section IV. In that
section, we will show that for all of the tested cases the
global minimum of the total energy can only be found
through such modification of the guess.

Such an atomic guess density matrix is block-diagonal
with each individual block spanning the AOs of each
atom in the system. Given that the guess density matrix
is Hermitian, in our implementation the manipulation of
this matrix is done only on its upper triangular portion.
Once the density matrix has been manipulated to impose
the desired magnetization, it can then be Hermitised.
Since the standard guess density matrix Dcol is non- or
scalar-relativistic, for each individual atomic block, let us
work in terms of its spin-polarization-dependent compo-
nent:

Dspin
col (a) = <Dαα

col(a)−<Dββ
col(a) , (54)

and spin-polarization-independent component:

Dtot
col(a) = <Dαα

col(a) + <Dββ
col(a) , (55)

where a is again an index that labels the atoms in the
system. The subscript “col” indicates that the above
matrices are related to collinear magnetization distribu-
tions, because of the non- or scalar-relativistic nature of
the atomic calculation. These matrices are purely real
and the only spin-blocks which are potentially non-zero
are the αα and ββ ones. In what follows, we propose to
combine and scale these real αα and ββ blocks to define a
new guess, which will be instead complex and also to set
the elements of the off-diagonal αβ and βα blocks to non-
zero values, so as to impose a desired non-collinear mag-
netization by exploiting the relation between the density
matrix and the magnetization, from Eq. (50).

In the standard procedure, given that the atomic guess
is scalar- or non-relativistic, then the Dspin

col (a) could
be used to impose an associated collinear magnetiza-
tion mcol(a) = (0, 0,mcol

z (a)), with magnitude mcol(a) =∣∣mcol(a)
∣∣ ≡ mcol

z (a). In order to instead impose a non-
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collinear magnetization m(a), we define polar θa and az-
imuthal φa angles, which will be used to locally re-define
the orientation of the magnetization on each atomic cen-
ter, without changing its magnitude. The angles θa, and
φa can be interpreted pictorially with the help of the dia-
gram in Figure 1. Since the relevant density matrices are
atomic, we are free to choose different variables θa and
φa on different atoms. In this way, we define the atomic
non-collinear magnetization as follows:

m(a) = mcol(a)w(a)

w(a) =
(
sin(θa)sin(φa), sin(θa)cos(φa), cos(θa)

)
, (56)

where w(a) is a unitary vector, defined locally on each
center, which orients the magnetization according to the
polar angles θa and φa (see Figure 1). Therefore the rel-
ative magnitude of the Cartesian components of m(a) is
determined solely from the components of w(a). From
Eq. (50), the Cartesian components of m(a) are pro-
portional to distinct spin-blocks of the density matrix,
as explicitly shown below. A non-collinear guess for the
density matrix D can be obtained by distributing the
collinear magnetization of the standard guess Dcol - in
proportions determined by the Cartesian components of
w(a) - over its different spin-blocks so as to ensure the de-
sired non-collinear magnetization according to Eqs. (51)
- (53):

<Dαβ(a) = <Dβα(a) =
1

2
sin(θa)sin(φa)Dspin

col (a) ;

=Dαβ(a) = −=Dβα(a) =
1

2
sin(θa)cos(φa)Dspin

col (a) ;

<Dαα(a) =
1

2

[
Dtot

col(a) + cos(θa)Dspin
col (a)

]
;

<Dββ(a) =
1

2

[
Dtot

col(a)− cos(θa)Dspin
col (a)

]
;

=Dαα(a) = =Dββ(a) = 0 . (57)

Some comments on the above are in order. Eqs. (51) -
(53) show us how to scale the real part of the αβ and βα
blocks of the density matrix, relative to their imaginary
parts, or relative to the real part of the αα and ββ blocks.
However, those equations do not tell us, for example,
how to scale the αβ block relative to the βα block, as
the magnetization is only defined through the sum or
difference of their real or imaginary parts. In Eq. (57)
we arbitrarily scale the αβ and βα blocks equally with
the factors of 1/2. Eqs. (51) - (53) also do not tell us how
to scale the imaginary parts of the αα and ββ blocks, as
these are not used to build the magnetization and we
therefore set them to zero. Nonetheless, we note that
these blocks of the density matrix enter the definition of
the orbital current-density.61,62

We finally note that each individual atomic density
matrix D(a) is defined using a collinear magnetization,
whose direction is determined by that of the vector w(a).
But since the total density matrix is obtained as a su-
perposition of the D(a), the guess magnetization is in
general non-collinear everywhere in space.

FIG. 1. Definition of the angles θa and φa in a generic bi-
atomic molecule. A global Cartesian frame x, y, z is used to
orient the atoms of the molecule, then local frames x1, y1, z1
and x2, y2, z2 are defined on each atomic center in order to
orient the angles θ1, φ1 and θ2, φ2, which in turn manipulate
the corresponding atomic density matrices. In this plot, the
zx quadrant is in the plane of the page, so that the angles
θa are those between the z axis and the zx projection of the
vectors w(a). The angles φa are those starting from the x
axis and finishing at the xy projection of the corresponding
w(a).

III. COMPUTATIONAL DETAILS

We have implemented our two-component spin-orbit
HF approach in a developmental version of the Crys-
tal17 code.26 For the purposes of validating our im-
plementation, as well as to discuss some of its perfor-
mance and numerical stability aspects, we have chosen a
test set of small molecular systems, and have performed
similar calculations also with the latest public versions
of the NWChem,21 Dirac25 and Turbomole23 codes.
The systems are the I2, CH3I, IH and TlBr molecules,
in both a neutral state (closed-shell electronic configura-
tions) and a positively charged state obtained by remov-
ing one electron from the molecules (open-shell electronic
configurations): namely, I+

2 , CH3I+, IH+ and TlBr+. All
linear molecules are oriented arbitrarily along the z axis
(unless otherwise specified), with a bond length of 2.67
Å for I2, 2.80 Å for TlBr and 3.00 bohr for IH, which
are the experimental bond lengths. The exact geome-
try of the CH3I molecule is provided in the supplemental
material.63

For the C and H atoms, we use a modified version of the
all-electron double-zeta basis sets of Dunning,64 as avail-
able in the basis set library of the Hondo95 package.65

We also note in passing that a similar SOC treatment
with two-component HF theory has been implemented
by one of us in our local version of the Hondo95 pro-
gram for internal tests against the Crystal implemen-
tation. For the heavy atoms (I, Tl, Br) we use the fully
relativistic (scalar+spin-orbit) RECPs of Dolg and co-
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workers. Specifically, the ECP46MDF and ECP28MDF
are used for I and Br, respectively,66 while for Tl, the
ECP60MDF is used.67 The valence basis sets we use are
the triple-zeta basis set of Martin and Sundermann for
I,68 the double-zeta basis set of Dolg and co-workers for
Tl66 and that of Peterson for Br.69

For calculations with the Turbomole code, the ex-
isting implementation requires use of the resolution of
identity (RI) approximation for at least the evaluation of
the Coulomb integrals.22 Such a procedure requires ex-
pansion of the Coulomb operator in an auxiliary basis

set. Where available, we use the def2-QZVPP-2c expan-
sion set, or otherwise if not available, the dhf-QZVP-2c
set.70

Calculations involving comparison among different
codes were considered to have converged when the differ-
ence in energy between two successive cycles did not ex-
ceed 1×10−9 Ha, unless otherwise specified. Calculations
performed with only our implementation to discuss con-
vergence issues and different metastable electronic con-
figurations had a higher convergence tolerance on the en-
ergy of 1×10−15 Ha. In all codes, we turn off screening
algorithms for the evaluation of integrals.

TABLE I. Energies for the closed-shell electronic configurations. The E0 is the energy obtained without the SOC operator in the
Hamiltonian, while the ESOC is the corresponding energy with the SOC operator included, as obtained with our implementation.
The ∆EX = ESOC−E0 is the SOC contribution to the energy as obtained with the code X = CRY (Crystal), NW (NWChem),
TUR (Turbomole) or DIR (Dirac). The ∆∆EX = ∆EX − ∆ECRY is the difference between the SOC energy contribution
computed with the program X and that with our implementation. All quantities are reported in atomic units (Ha). The hyphen
indicates that the TlBr calculation could not be performed with Dirac in the same way as the other codes (see text for more
details).

I2 CH3I IH TlBr

E0 −22.3521093204 −50.7878214941 −11.7546358329 −184.7377075782

ESOC −22.3593120591 −50.7907490722 −11.7574699229 −184.7696802376

∆ECRY −7.2027386×10−3 −2.9275781×10−3 −2.8340901×10−3 −3.19726594×10−2

∆EDIR −7.2027394×10−3 −2.9275781×10−3 −2.8340898×10−3 -

∆ENW −7.2027373×10−3 −2.9275777×10−3 −2.8351312×10−3 −3.19726605×10−2

∆ETUR −7.1918968×10−3 −2.8855949×10−3 −2.8124657×10−3 −3.19722265×10−2

∆∆EDIR −7.5×10−10 +4.5×10−11 +2.5×10−10 -

∆∆ENW +1.3×10−09 +4.0×10−10 −1.0×10−06 −1.1×10−09

∆∆ETUR +1.1×10−05 +4.2×10−05 +2.2×10−05 +4.3×10−07

IV. RESULTS AND DISCUSSION

We start our discussion on the performed calculations
by first comparing results obtained using our implemen-
tation with those calculated using other available codes,
with the purpose of validating our implementation and
commenting on relative numerical accuracies and per-
formance. Next we will discuss the obtained solutions
on the individual molecules in more detail in terms of
their energy and spatial distribution of the magneti-
zation. We start by presenting results on the neutral
closed-shell electronic configurations for the four consid-
ered molecules, followed by the positively charged open-
shell ones.

Table I presents the total energies (in Ha) of the five

molecules in their neutral closed-shell electronic config-
urations as computed with our implementation with,
ESOC, and without, E0, spin-orbit coupling. The SOC
contribution to the energy is given as ∆E = ESOC − E0.
This quantity is reported as computed with our imple-
mentation, ∆ECRY, and as obtained with other codes,
∆EX with X=NW for NWChem, X=TUR for Turbo-
mole, and X=DIR for Dirac. The last rows contain the
quantities ∆∆EX = ∆EX−∆ECRY, which are the differ-
ences of the SOC contribution to the energy as computed
with the other codes with respect to our implementation.

For the case of TlBr, it was not possible to use the
Dirac code in exactly the same computational condi-
tions as in the other codes. This is due to the fact that
the RECP-SOC implementation in Dirac is only avail-
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TABLE II. Energies for the open-shell electronic configura-
tions. See caption of Table I for a definition of all quantities.
Values are given in atomic units (Ha).

CH3I+ IH+ TlBr+

E0 −50.4740537084 −11.4070207076 −184.4323009231

ESOC −50.4893057289 −11.4190407956 −184.4673452196

∆ECRY −1.52520205×10−2 −1.20200879×10−2 −3.50442965×10−2

∆ENW −1.52519711×10−2 −1.20231322×10−2 −3.50442958×10−2

∆ETUR −1.50500491×10−2 −1.18585439×10−2 −3.50410198×10−2

∆∆ENW +4.9×10−08 −3.0×10−06 +6.7×10−10

∆∆ETUR +2.0×10−04 +1.6×10−05 +3.3×10−06

able with a basis of Cartesian Gaussian-type functions
that differ from spherical Gaussian-type functions (used
in our implementation as well as in NWChem and Tur-
bomole ones) starting from angular momentum l = 2
(i.e. starting from d-type functions). Given that TlBr
has occupied d orbitals in the valence, it was not possible
to perform the comparison with Dirac in this case. For
all other molecular systems, no l = 2 or higher angular
momentum functions were included in the valence basis
sets, so that we were able to perform the comparison.

From Table I, we see that the SOC contribution to the
total energy is of the order of 10−3 for the I2, CH3I and IH
molecules and of 10−2 for TlBr. The SOC contribution
to the total energy computed with our implementation is
very close to that obtained with other implementations
(this is embodied in the ∆∆EX quantity in the table).
The differences of our spin-orbit contribution with that
from NWChem and Dirac are always very low, being
on the order of 10−9, 10−10, or even 10−11 Ha (which
are on the same order as the convergence criterion of
the SCF), apart from the one case of the IH molecule
with NWChem where it is instead on the order of 10−6

Ha. We get a slightly less impressive agreement with
the results from Turbomole due to the fact that the
Coulomb operator is evaluated using the RI approxima-
tion in that program, which results in a partial loss of
accuracy. In general, our implementation best compares
with Dirac (when possible), followed by NWChem and
lastly Turbomole. Overall, the ∆∆EX are always sev-
eral orders of magnitude smaller than the SOC contribu-
tion to the energy, which confirms the correctness of our
implementations for closed-shell systems.

We now discuss results obtained on the open-shell elec-
tronic configurations. Table II is analogous to Table I,
but now for the cases where one electron is removed from
the molecules such that they are now open-shell systems.
We do not yet report the energies on the I+

2 molecule in
Table II as convergence of the SCF is particularly chal-
lenging in this case and we obtained different energies us-
ing different codes. More details on the calculations for
the I+

2 molecule are presented below. As a matter of fact,

we were only able to find the ground state (lowest-energy)
solution using our implementation with a tighter conver-
gence criterion on the energy of 10−15 Ha (i.e. the tight-
est possible tolerance for a code with double-precision)
instead of 10−9 Ha, as used in the other calculations.

Now, with the electron removed from the molecules,
the spin-orbit contribution to the energy is around five
times bigger for CH3I, four times bigger for IH and
around ten percent larger for TlBr. The ∆∆EX quanti-
ties given in Table II are very small and overall compara-
ble to those obtained on the closed-shell electronic con-
figurations. Hence, the correctness of our implementa-
tion is also confirmed for open-shell systems. The agree-
ment with NWChem is particularly satisfactory while
the comparison with Turbomole also in this case suf-
fers from its approximated RI treatment of the Coulomb
operator. We note that we were unable to perform com-
parable calculations with the Dirac code on open-shell
electronic configurations as, to the best of our knowledge,
it is not possible to perform single-determinant Kramers-
unrestricted calculations with the Dirac code at present.

We now comment on the computational efficiency of
our implementation compared to those of the other codes
with the help of Table III, which reports the number of
cycles needed to converge the SCF to the same criterion
on the energy of 1 × 10−9 Ha for the different systems
here investigated. Both closed-shell and open-shell elec-
tronic configurations are considered in the table. A sim-
ilar table is also included in the supplemental material63

for the same calculations, but where the SCF was con-

TABLE III. Number of cycles to converge the SCF with a
threshold on the energy of 1 × 10−9 Ha for both closed-shell
and open-shell electronic configurations. The “n.c.” label is
used to mark those calculations that we were unable to con-
verge. The asterisk marks a case (CH3I+ with NWChem with
the DIIS convergence accelerator) where the SCF converges
to a higher energy solution (3.38×10−3 Ha higher) than the
ground state solution. Hyphens mark those calculations that
can not be performed with the Dirac code, as discussed in
the text.

closed-shell open-shell

I2 CH3I IH TlBr CH3I+ IH+ TlBr+

Without DIIS

Crystal 17 15 13 15 365 18 195

NWChem 29 25 22 22 679 399 417

Turbomole 48 40 39 58 1345 547 767

Dirac 22 n.c. 15 - - - -

With DIIS

NWChem 10 12 10 13 38∗ 37 23

Dirac 9 20 10 - - - -
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FIG. 2. Energy convergence profiles for the I+2 molecule. The
evolution of the energy during the SCF iterations is shown,
where both the energy and iterations are plotted on a loga-
rithmic scale. The four curves of different colours correspond
to the four initial guesses for the magnetization sketched on
the left of the figure. The red guess is along the axis of the
molecule (z axis). The black guess is one degree off of the
axis of the molecule, towards the x direction. The blue guess
is along the xyz diagonal (dashed lines are going out of the
page). The green guess is oriented along x, that is to say per-
pendicular to the axis of the molecule. When the SCF passes
through a plateau, the smallest difference in energy between
two successive iterations is on the order of the δE of the cor-
responding colour. All calculations are eventually converged
to 10−15 Ha.

verged instead to 1 × 10−7 Ha, where the same conclu-
sions can be drawn. Results are first reported in the table
without using the Direct Inversion in the Iterative Sub-
space (DIIS) convergence accelerator. For NWChem and
Dirac, where DIIS is the default convergence accelera-
tor option, we also report the number of cycles needed to
converge when DIIS is activated. Again, default conver-
gence options are used in all codes, with the exception
of the possible deactivation of DIIS in NWChem and
Dirac. For the case of the CH3I molecule with Dirac
and without DIIS, the “n.c.” indicates that the calcu-
lation did not converge. For this discussion, it is note-
worthy that the different programs use a different defi-
nition of the starting density matrix used to begin the
SCF procedure. In the NWChem program, the start-
ing guess density matrix is built from a superposition
of non-relativistic atomic densities. In the Turbomole
program, the guess density matrix is built from an ex-
tended Huckel calculation. Finally, in the Dirac pro-
gram, the starting guess density matrix is obtained after
the diagonalisation of a Fock matrix obtained from a su-
perposition of atomic relativistic LDA potentials.

We first note that, when DIIS is not used, the open-
shell calculations take a much greater amount of cycles
to converge the SCF, than the closed-shell ones (around
one order of magnitude more cycles, with the only no-
table exception of IH+ with our implementation). The
use of DIIS in Dirac and NWChem greatly reduces
the amount of cycles needed to converge the SCF (by
around a factor of 2 in closed-shell calculations, and by
one order of magnitude in open-shell calculations). How-
ever, we stress that the use of DIIS may be undesir-
able in some cases as it might force convergence to a
metastable state. For example, this is the case of the
CH3I+ molecule (marked with an asterisk in the table)
where the DIIS converges to a metastable state that is
3.38 × 10−3 Ha higher in energy than the ground state
one. Only with deactivation of DIIS it was possible to
converge to the ground state solution. Indeed, conver-
gence problems of the DIIS algorithm for open-shell sys-
tems have been previously acknowledged several times in
the litterature.71–73

When the DIIS is not used (what seems to be a safer
strategy to get to the ground state solution), our imple-
mentation converges in much less SCF cycles than the
other codes. That is, it converges in about two thirds
to half the amount of cycles than the other codes for
closed-shell calculations and in about half the amount of
cycles for open-shell calculations. The exception, as al-
ready anticipated above, is the case of IH+ where our im-
plementation converges in an impressive 18 cycles when
compared to the 399 cycles of NWChem or 547 cycles
of Turbomole. We note that the relative number of
cycles of the other codes follows the same order as for
the ∆∆EX in Tables I and II. That is, Dirac generally
takes less cycles to converge than NWChem, followed by
Turbomole. This points towards the conclusion that
the amount of cycles needed to converge the SCF may
very well be related to the overall numerical accuracy of
the corresponding two-component HF implementation.

We now discuss in closer detail the obtained solutions
for the individual charged molecules with open-shell elec-
tronic configurations. We start with the I+

2 molecule.
Given the self-consistent nature of our SOC treatment,
it is interesting to discuss the evolution of the electronic
configuration during the SCF process. A profile of the
energy of the system along the SCF iterations is given in
Figure 2, where both the energy and number of iterations
are given on a logarithmic scale. Four different calcula-
tions are performed with different guesses for the initial
orientation of the magnetization using the approach de-
scribed in Section II C 5. The energies corresponding to
the four guesses are plotted with different colours and the
nature of the guess is sketched on the left of Figure 2. The
red guess has the magnetization oriented along the axis
of the molecule (z axis). The black guess has magneti-
zation oriented one degree off of the axis of the molecule
towards the x axis. The blue guess has the magnetization
oriented along the xyz diagonal (i.e. equal amounts of
mx, my and mz at the first iteration of the SCF). Finally,
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FIG. 3. Energy convergence profiles for the IH+ (left panel)
and TlBr+ (right panel) molecules. The four curves of dif-
ferent colours correspond to the four initial guesses for the
magnetization sketched in the insets of each panel. When the
SCF passes through a plateau, the smallest difference in en-
ergy between two successive iterations is on the order of the
δE of the corresponding colour. All calculations are eventu-
ally converged to 10−15 Ha.

the green guess has magnetization oriented along the x
axis, that is to say perpendicular to the molecular axis.

All calculations are converged to 1× 10−15 Ha, which
is the highest possible threshold for a code working with
double precision arithmetic, such as Crystal. The
green, blue and black guesses all lead to the same final
ground state solution. This is not the case for the red
guess, which leads to a metastable solution. Let us stress
that in all the cases that eventually lead to the most sta-
ble ground state solution (green, blue, black), the SCF
passes through plateaus (or regions of relatively flat en-
ergy profile) such that it appears as if the SCF procedure

has converged. Nevertheless, if the convergence criteria
on the energy is pushed far enough (as in our case), the
SCF procedure eventually finds a lower energy solution.
For example, in the case of the black curve, the SCF
first reached a plateau after a few tens of iterations and
for ∼300 iterations, where the lowest difference in energy
between two successive cycles (denoted with δE in the fig-
ure) was of the order of 1× 10−11 Ha. Then, the energy
drops by ∼5×10−4 Ha and the SCF again passes through
a second plateau for another ∼600 iterations where the
smallest δE is of the order of 1× 10−12 Ha. Finally, the
energy drops by another ∼15×10−4 Ha and the ground
state solution is found after 1672 iterations.

The fact that the SCF passes through plateaus with
very small δE means that the ground state solution can
only be found by using very tight convergence criteria on
the energy, which means that the numerical accuracy and
stability of the SOC-HF implementation becomes crucial
for possibly reaching the ground state solution. In fact,
in our efforts with Dirac, NWChem, and Turbomole,
we were able at best to converge to the second plateau
of the black curve, but never to the ground state solu-
tion. We note however, that as we are not authors of the
Dirac, NWChem, or Turbomole codes, it is possible
that certain options of which we are not aware might be
available, which could improve the numerical accuracies
of the calculations. The presence of the plateaus also
highlights the importance of exploring different guesses
for the initial magnetization distribution, as this some-
times permits the SCF to reach the ground state solution

FIG. 4. Spatial distribution of the electronic magnetization
m for the three electronic configurations corresponding to
the three plateaus of the black curve in Figure 2 for the
I+2 molecule. The first two panels correspond to metastable
states while the last one to the ground state. The colour
map represent the absolute value |m| of the magnetization in
each point of the plane while the small black arrows represent
the magnetization direction and relative magnitude. The two
large black arrows represent the vectors w(a) which define the
orientation of the guess magnetization (one degree off of the
axis of the molecule) on both centers. Differences in energies
w.r.t. the lowest energy ground state solution are reported
on top of the panels, while the amount of iterations needed to
converge the SCF to the corresponding solutions is reported
on the bottom of the figures. All quantities are reported in
atomic units.
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by bypassing some plateaus. For example, the blue curve
only goes through one plateau, with a more manageable
δE of 1×10−6 Ha, and reaches the lowest energy solution
in ∼900 iterations (versus the ∼1700 of the black guess).
In the red curve, on the other hand, the SCF gets stuck
at the first plateau and the ground state solution is not
obtained.

The importance of exploring different initial guesses
for the orientation of the magnetization (in terms of ef-
fectiveness and efficiency in getting to the lowest energy
solution) is documented even more clearly in the two pan-
els of Figure 3, which is analogous to Figure 2, but now
refers to the IH+ and TlBr+ molecules. Indeed, for both
molecules, only two of the four explored guesses lead
to the lowest energy solution: green and blue for IH+

and blue and black for TlBr+. As already observed for
the I+

2 linear molecule discussed above, also here the red
guess with the magnetization aligned with the axis of the
molecule produces a metastable electronic configuration.
For IH+, also the black guess (one degree tilted off the

molecular axis) leads to the same metastable solution.
For TlBr+, the black guess also virtually converges to
the same metastable state as the red one, being able to
jump to the lowest energy solution only after some 10000
SCF iterations. For TlBr+, the guess perpendicular to
the molecule (green curve) leads to another solution in-
termediate in energy that is ∼4×10−4 Ha higher than
the ground state solution. Let us stress that, in Ta-
ble II, where we compared our description of IH+ and
TlBr+ with that obtained from NWChem and Turbo-
mole, the metastable electronic configuration obtained
with the red guess was considered as we were unable to
get the lowest energy solution with the other codes.

In order to further comment on the relevance of the
initial guess in this kind of simulations, we note that in
the case of the IH+ a green guess with the magnetiza-
tion perpendicular to the axis of the molecule leads to
the lowest energy ground state electronic configuration
in just some 50 iterations without passing through inter-
mediate metastable states.

FIG. 5. Spatial distribution of the electronic magnetization m of the lowest energy solution of the I+2 molecule (top panels) as
a function of different initial starting guesses, and (bottom panels) as the molecule is rotated from the z axis to the x axis with
the same relative guess. The orientation of the initial guess for the magnetization on the two atomic centers is represented by
the big black arrows. Differences in energies w.r.t. the right-most panel are reported on top of the panels, while the amount of
iterations needed to converge the SCF to the corresponding solutions is reported on the bottom of the figures. All quantities
are reported in atomic units.

So far we have discussed the energy of the different
solutions found at the various plateaus of Figures 2 and
3 for the I+

2 , IH+ and TlBr+ molecules. Let us now
have a closer look at their electronic structure, in partic-

ular in terms of electronic magnetization. In Figure 4,
we present 2D maps of the non-collinear magnetization
m, as introduced in Eq. (50), for the three electronic
configurations corresponding to the three plateaus of the
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black curve in Figure 2 for the I+
2 molecule. The colour

map represent the absolute value |m| of the magneti-
zation in each point of the plane while the small black
arrows represent the magnetization direction and rela-
tive magnitude. The two large black arrows at the two
atomic centers represent the vectors w(a) in Eq. (56),
which define the orientation of the guess magnetization
(one degree off of the axis of the molecule in this case)
on both centers.

Figure 4 helps to show that rather different spin tex-
tures can be obtained by pushing the SCF to higher tol-
erances. The first metastable solution (left panel) corre-
sponds to the first plateau of the black curve in Figure 2,
is 2.6×10−3 Ha higher in energy than the ground state,
and is characterized by a magnetization that is almost
aligned parallel to the axis of the molecule everywhere.
The second metastable solution (middle panel) corre-
sponds to the second plateau of the black curve in Figure
2, is 1.7×10−3 Ha higher in energy than the ground state,
and is characterized by a distribution of magnetization

no longer aligned to the axis of the molecule, which re-
sembles more closely the one of the ground state (right
panel). The solutions obtained for the I+

2 molecule along
the other curves of Figure 2 are included in the supple-
mental material.63 We also provide similar figures for the
ground state and metastable solutions of the IH+ and
TlBr+ molecules in the supplementary information.

Now, we want to discuss two other aspects: i) the ex-
istence of different degenerate solutions characterized by
the same energy but different spin texture (i.e. spatial
distribution of the magnetization), and ii) the rotational
invariance of our SOC-HF implementation. In Figure
5, we report the spatial distribution of the electronic
magnetization m of the lowest energy solution of the I+

2

molecule as a function of different initial starting guesses
(top panels), and as the molecule is rotated from the z
axis to the x axis with the same relative guess (bottom
panels). The orientation of the initial guess for the mag-
netization on the two atomic centers is represented by
the big black arrows.

FIG. 6. Same as Figure 5 for the IH+ molecule.

Let us first discuss the different solutions obtained by
starting from different guesses (six top panels). The first
guess is oriented along the axis of the molecule, the sec-
ond is oriented one degree off of the axis of the molecule,
the third is along the xyz diagonal (with dashed line
pointing outside of the page), the fourth is along the xyz
diagonal along one center and the −x − y − z diagonal
along the other center (with dotted line pointing inside
the page), the fifth is perpendicular to the molecular axis

(along the x axis), and the sixth is again perpendicular
to the molecular axis, but on one center along the x di-
rection and on the other center along the −x direction.

Five out of six initial guesses (panels 2 to 6 in the fig-
ure) eventually lead to the lowest energy ground state.
The only guess that leads to a metastable solution
(3.5×10−3 Ha higher in energy) is the one perfectly
aligned with the axis of the molecule (panel 1). From the
analysis of the five energy-degenerate solutions, we can
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identify three distinct spin textures: that of the second
panel (where the magnetization changes its orientation
around the atoms), that of panels 3 and 4 (with a mag-
netization along x, almost perpendicular to the axis of
the molecule), and that of panels 5 and 6 (with a mag-
netization aligned along a common direction everywhere
and slightly tilted with respect to the x axis).

The six panels on the bottom of Figure 5 show the
lowest energy solution as the axis of the molecule rotates
from z to x where we always use the same relative guess
(one degree off of the molecular axis). Here, we want
to check the rotational invariance of our implementation,
which should be ensured by the formalism presented in
Section II C. Rotational invariance is a property that be-
comes crucial in the extension of the treatment of SOC
within the DFT, as we are going to discuss into detail
in Part II of this paper. From Figure 5, we see that the
rotational invariance is achieved within a numerical accu-
racy of the order of 10−10 Ha (the maximum energy dif-
ference between different orientations being 3.8×10−10),
which overall confirms the high accuracy of the imple-
mentation. We note that, as the molecule is rotated, the
obtained solution hops among the three degenerate spin
textures discussed above.

A similar analysis to the one just performed on the I+
2

molecule is reported in Figure 6 for the IH+ molecule.
On the top panels, four of the six different guesses con-
verge to the same lowest energy solution characterized
by magnetization always perpendicular to the axis of
the molecule and only around the I atom. The first
two panels show the metastable electronic configuration
(3.5×10−3 Ha higher in energy), corresponding to the red
and black plateaus in Figure 3, with magnetization par-
allel (and antiparallel) to the axis of the molecule with a
non null magnetization on the H atom. On the bottom
six panels, rotational invariance is perfectly achieved in
this case down to double precision, as the energy differ-
ences are exactly null (i.e. < 10−15 Ha). A similar plot
to Figures 5 and 6 is given in the supplemental material63

for the TlBr+ molecule, where similar considerations can
be made.

V. CONCLUSIONS AND PERSPECTIVES

We have revised the formalism of the Kramers-
unrestricted generalisation of the Hartree-Fock (HF) the-
ory for the self-consistent treatment of spin-orbit cou-
pling in electronic structure calculations, where the wave-
function is expanded in terms of complex two-component
spinors. Some constraints of standard one-component
implementations of spin-unrestricted HF need to be re-
laxed so as to deal with the new αβ and βα blocks in the
description of the electronic configurations, especially for
open-shell systems.

We have illustrated a molecular implementation in the
Crystal program, of such methodology where spin-orbit
and scalar-relativistic operators are defined through rel-

ativistic effective-core potentials. The correctness of the
implementation, as well as its accuracy and efficiency, is
discussed by comparison to three other existing similar
implementations through tests on small molecules.

A new approach is presented for generalising a non- or
scalar-relativistic atomic guess density matrix to impose
a desired non-collinear magnetization as a starting point
of the SCF procedure. The importance of using such an
approach is highlighted on some test examples on small
molecular systems, where it is shown that in all of the
tested cases, the ground state solution can be found only
through such modification of the guess. Some confidence
in the fact that the final solution represents the global
minimum of the total energy can be gained if several
choices of the starting guess lead to the same energy.

In Part II of the paper, we will discuss the self-
consistent treatment of spin-orbit coupling effects within
collinear and non-collinear DFT (in its local density,
generalised-gradient and hybrid formulations). In par-
ticular, we will address the accuracy, numerical robust-
ness, and computational efficiency of the different flavors
of non-collinear DFT reported in the literature and we
will present a new formulation, which ensures higher nu-
merical stability and efficiency. In the context of DFT
calculations, we will stress the importance of including a
fraction of exact Fock exchange (whose treatment in SOC
calculations has been discussed in this paper), through
hybrid functionals, to get a physically sound description
of local magnetic torque and orbital current-density.

The extension of the presented methodology to the de-
scription of extended periodic systems represents a near-
future development and will be presented in forthcoming
publications.

SUPPLEMENTARY MATERIAL

See supplementary material for the geometry of the
CH3I molecule, the number of cycles needed to converge
the SCF to 1 · 10−7 a.u. in energy, spatial distribu-
tions of the magnetization for meta-stable solutions for
the I+

2 , IH+ and TlBr+ molecules, and final distributions
of the magnetization for different guesses for the TlBr+

molecule as well as for different orientations of the molec-
ular axis.
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Appendix: Working Expressions for the Evaluation of the
Energy

Here we show how the four terms in Eq. (46) can be
developped into working expressions in terms of the σσ′

spin-blocks. This is useful to allow for the exploitation of
the symmetry properties for the various integral types.
From the Hermiticity of K and D, the exchange term
yields:

<
[
Tr
(
KD†

)]
= Tr(<Kαα<Dαα†)− Tr(=Kαα=Dαα†)

+ Tr(<Kββ<Dββ†)− Tr(=Kββ=Dββ†)

+ 2Tr(<Kαβ<Dαβ†)− 2Tr(=Kαβ=Dαβ†) .(A.1)

From the Hermiticity of h0, C and D, the SR and
Coulomb terms yield:

<
[
Tr(AD†)

]
= Tr(<Aαα<Dαα†) + Tr(<Aββ<Dββ†) ,(A.2)

where A = C or h0. Finally, the symmetry properties of
hSO from Eqs. (33) and (34), as well as the Hermiticity
of D, yield:

<
[
Tr(hSOD†)

]
= −Tr

(
=hααSO

[
=Dαα† −=Dββ†

])
+ 2Tr(<hαβSO<Dαβ†)− 2Tr(=hαβSO=Dαβ†) ,(A.3)

or equivalently:

<
[
Tr(hSOD†)

]
= −Tr

(
=hααSO

[
=Dαα† −=Dββ†

])
+ 2T̃r(<hαβSO

[
<Dαβ† + <Dβα†

]
)

− 2T̃r(=hαβSO

[
=Dαβ† −=Dβα†

]
) ,(A.4)

where the T̃r, is the half trace, and means that the trace
is taken over the first half of the diagonal elements.

1K. G. Dyall and K. Faegri, Introduction to relativistic quantum
chemistry (Oxford University Press on Demand, 2007).
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