Exploring the homogeneity of terrestrial subterranean communities at a local spatial scale

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1754691 since 2020-09-02T10:39:38Z

Published version:
DOI:10.1111/een.12883

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Exploring the homogeneity of terrestrial subterranean communities at a local spatial scale

Stefano Mammola,*, Nicolò Chiappetta, Pier Mauro Giachino, Dragan Ž. Antić, Marzio Zapparoli, Marco Isaia,**

1. Molecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania Pallanza, Italy
2. Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
3. Word Biodiversity Association Onlus, Verona, Italy
4. University of Belgrade – Faculty of Biology, Institute of Zoology, Belgrade, Serbia
5. Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Tuscia University, Viterbo, Italy

* corresponding author: stefano.mammola@cnr.it
** corresponding author: marco.isaia@unito.it

Author contribution
SM and MI conceived the study. SM, NC, and MI performed fieldwork. NC sorted specimens. MI identified spiders and harvestmen. DŽA identified millipedes. MZ identified centipedes. PMG identified coleopterans and other insect orders. MI and NC performed GIS analyses. SM performed statistical analysis and wrote the first draft of the paper. All authors contributed to the writing and approved the final submission.

Running title
Turnover in subterranean communities

Statements
Authors disclose any actual or potential conflict of interest.

ABSTRACT
1. While caves are generally perceived as isolated habitats, at the local scale they are often interconnected via a network of fissures in the bedrock. Accordingly, caves in close proximity are expected to host the same, or very similar, animal communities.

2. We explored the extent to which subterranean arthropod communities are homogenous at a local spatial scale of less than 1 km², and which cave-specific environmental features result in a departure from the expected homogeneous pattern. We approached this question by studying richness and turnover in terrestrial arthropod communities of 27 caves in a small karst massif in the Western Italian Alps.

3. Obligate subterranean species were homogeneously distributed among caves and were not influenced by seasonality. The only factor driving their presence and abundance was the distance from the cave entrance, with deeper caves yielding a greater diversity and abundance of species.

4. We observed significant spatial and temporal turnover in non-obligate subterranean species. In summer, there was a significant homogenization of the community and a more even distribution of non-obligate species among sites; in winter, these species were missing or found exclusively at greater depths, where environmental conditions were more stable. Furthermore, caves at lower elevations yielded, on average, a greater diversity and abundance of non-obligate species.

5. We demonstrated that the theoretical expectation of no turnover in community composition in caves in close proximity is not always met. Given that turnover can be mostly attributed to seasonal patterns and sampling depth, our findings have implications for planning sampling and monitoring activities in caves.

Keywords: Beta diversity; Community ecology; Pitfall traps; Spatial turnover; Subterranean biology; Temporal turnover
INTRODUCTION

Ecologists and evolutionary biologists have frequently compared caves to islands (Culver, 1970; Snowman et al., 2010; Esposito et al., 2015; Fattorini et al., 2016; Itescu, 2019; Mammola, 2019). In fact, from the perspective of a specialized subterranean organism, a cave is a patch of suitable habitat within a matrix of unsuitable habitats. It is understood that island-like properties of caves emerge mostly at broad geographical scales (Stoch & Galassi, 2010), wherever the extent of the study area is large enough to encompass geological discontinuities or other natural barriers limiting subterranean connectivity (see Fig. 2 in Mammola, 2019). For example, studies exploring the extent to which subterranean communities vary in their composition at continental scales have documented higher rates of turnover (β-diversity) than those typically observed in surface habitats (Zagmajster et al., 2014; Mammola et al., 2019). Yet, it is understood that β-diversity patterns are strongly scale dependent (Jarzyna & Jetz, 2018), meaning that the “caves as islands” view rarely holds true at the local scale (Mammola, 2019).

According to a modern understanding of the subterranean realm, a cave is nothing but a human-accessible void in the ground. Subterranean organisms not only inhabit caves, but can thrive in a large breadth of lightless habitats including networks of fissures in the bedrock and shallow habitat pores not directly accessible to humans (Culver & Pipan, 2010; Giachino & Vailati, 2010; Mammola et al., 2016; Pipan & Culver, 2017; Ficetola et al., 2019). Indeed, we are starting to perceive caves as small “windows” opening to a vaster world, the subterranean one, allowing us to take a glimpse of what happens below our feet (Howarth, 1983; Uéno, 1987). If microcavernous habitats ensure subterranean habitat connectivity at the local scale, low values of β-diversity should be observed when studying biological communities of caves in close proximity. This pattern was recently confirmed by research exploring the spatial distribution of invertebrate species over the cross-section of the Trnovski Gozd massif in Slovenia, demonstrating a limited distinction between shallow (0–50 m) and deep (up to 800 m) cave communities within this karst massif (Trontelj et al., 2019).

The expectation of no community turnover among caves at restricted spatial scales is not, however, always met. Even when sampling caves in close proximity that theoretically should harbour the same fauna, slight or even conspicuous species turnover is observed. These may be the result of daily and seasonal changes in community composition (Lunghi et al., 2017; Mammola et al., 2017), of local habitat unsuitability due to a combination of specific environmental conditions (Jiménez-Valverde et al., 2017), of competition dynamics that may lead to the exclusion of certain species from a given community (Mammola & Isaia, 2014), or even simply the consequence of imperfect detection (Ficetola et al., 2018) when sampling such structurally-complex environments (Wynne et al., 2018,
Here, we seek to understand the extent to which habitat connectivity determines a homogenization of subterranean biological communities at local scales, and which cave-specific environmental conditions may determine a departure from this expected pattern. We used a geographically restricted area, the cave system of Comba dell’Infernotto (Chesta & Elia, 2004), as a uniquely suited study site for this purpose, in that it hosts a great diversity of caves in an area of approximately 1 km². These caves encompass a wide range of environmental conditions and host a rich and diversified fauna, with several specialized subterranean species. Therefore, this system is well-suited for exploring the ecological determinants of α- and β-diversity patterns at the local scale.

Our null hypothesis was that community composition is the same in all caves within the considered subterranean system. In other words, we expected to observe comparable levels of α-diversity in all caves, and β-diversity values close to zero in pairwise comparisons among caves. We hypothesize that departures from such theoretical expectations should be linked to seasonal patterns in community composition and/or due to a combination of unsuitable local environmental conditions.

MATERIAL AND METHODS

Study area

The study was carried out in the cave system of Comba dell’Infernotto (or Infernetto) (7.4° E, 44.2° N), in the municipality of Valdieri, Maritime Alps, Province of Cuneo, Piedmont, Italy (Figure 1). With more than 40 caves and mines currently documented, this small karst area yields the greatest number of subterranean sites in the province of Cuneo (Chesta & Elia, 2004). This area is included within the boundaries of the Site of Community Importance IT1160056 “Alpi Marittime” (European Habitat Directive 43/92).

For this study, we selected 27 subterranean sites (Fig. 1) within the area of Comba dell’Infernotto, with a maximum distance of 1 km between sites. Other caves in this system were not investigated due to access difficulties. We sampled both caves and old abandoned mines in the same area, ranging from 4 to 861 m in length, from 0.5 to 35 m² in the size of the cave entrance, and from 1000 to 1200 m in the elevation of cave entrances (Table 1). All sites entrances were in a dense beech forest (Fagus sylvatica L.).

Sampling design

We sampled invertebrates in caves using pitfall traps (diameter 9 cm, volume 40 ml). To minimize impacts on invertebrate populations, only one pitfall trap per site was used. We installed traps at the
ground level away from accumulation of organic material. We covered each trap with a flat stone to shelter it from percolating water (Růžička, 1982). We filled traps with brine (supersaturated preserving solution of water and NaCl; Giachino & Vailati, 2010) and baited them with cheese. We acknowledge that the specific use of a bait, by exerting different attraction on different species, may bias the composition of the sampled arthropod assemblages. Nevertheless, this represented a homogeneous bias across the sampling, thus did not compromise our specific aims.

To evaluate seasonal patterns in community composition, we trapped invertebrates once in summer, from June to September 2017, and once in winter, from November 2017 to April 2018. We were forced to overextend the winter sampling period (6 vs 4 months in summer) due to a late snow melt.

We measured the linear distance from the cave entrance using an extendable tape. Moreover, we estimated the subjacency of each trap (i.e., the vertical distance from the surface; Mammola et al., 2017) using GIS, marking the position of the trap on available geological surveys of Chesta and Elia (2004) and plotting the latter in plan view on a georeferenced topographical map. We derived subjacency for traps in caves below 10 m in length by direct measurements. We derived total cave length and maximal subjacency of each cave from Chesta and Elia (2004), or measured these parameters directly in the field whenever this information was not available in speleological literature. We approximated the area of each cave entrance by multiplying its base by its height. For each cave, we also recorded by eye the presence of percolating water in the two seasons.

We measured temperature at each pitfall trap with EL-USB-2+ dataloggers (Lascar Electronics, Salisbury, United Kingdom), programmed to record a temperature measure (accuracy of ±0.5°C) every six hours (0:00, 6:00, 12:00, 18.00) throughout the two sampling periods.

Species identification and ecological classification

Specimens were identified to the lowest possible taxonomic rank by experts of the different groups (see author contribution for details). For the purpose of the analyses, we assigned each species to one of the two major ecological groups commonly used to explore subterranean diversity patterns (e.g., Novak et al., 2012; Niemiller & Zigler, 2013; Trontelj et al., 2019): obligate subterranean species (‘troglobionts’; Sket, 2008; Trajano & de Carvalho, 2017), and non-obligates (‘non-troglobionts’; Novak et al., 2012) (Supplementary material Appendix S1). We based this classification mainly on the expert opinion of different taxonomists involved in this work, but also using data and morphological traits associated with subterranean life (loss of eyes and body pigment) from the literature.
Statistical analyses

Data supporting the study are deposited in figshare (doi: 10.6084/m9.figshare.12005934 Note that the hyperlink will become available upon acceptance). All analyses were conducted in R (R Core Team, 2018). We used Poisson generalized linear models (GLMs) to explore factors driving alpha diversity (α) and the abundance of obligate and non-obligate subterranean species in our study sites. We followed the general protocol by Zuur & Ieno (2016) for conducting regression-type analyses, whereby we:

i) performed data exploration on the initial dataset, aiming to verify the presence of outliers, remove collinear predictors, and detect potential interactions among predictors (Zuur et al., 2009);

ii) constructed Poisson GLMs to test for significant relationships between the dependent variables and our explanatory predictors. We included potential interactions among predictors only if these were detected during data exploration (see point i);

iii) performed a step-wise model selection on each model with the ‘step1’ R function, in order to obtain a Minimum Adequate Model (MAM) for each of the dependent variables, minimizing the Aikaike Information Criterion (AIC) value; and

iv) validated each model with the aid of the R package ‘performance’ (Lüdecke et al., 2020). In this phase, we tested each model for over-dispersion, and switched to a negative binomial distribution if models were over-dispersed (Gelman & Hill, 2007).

To investigate spatial and temporal turnover in community composition, we estimated pairwise β-diversity among caves and between the two seasons using the framework proposed by Carvalho et al. (2012) and Cardoso et al. (2014), whereby β is expressed as:

$$\beta_{\text{total}} = \beta_{\text{replacement}} + \beta_{\text{richness}}$$

β_{richness} is the turnover in community composition explained by species loss/gain alone, and $\beta_{\text{replacement}}$ is turnover in community composition explained by replacement of species alone. Thus, this framework allowed us to distinguish between these two processes (loss/gain vs replacement) underlying changes in community composition. β-diversity was calculated with the function ‘beta’ in the R package ‘BAT’ (Cardoso et al., 2015, 2020), using species abundances as input data. We graphically explored changes in β-diversity values among caves in the two sampling seasons using density plots. We used a Wilcoxon rank sum test with continuity correction to test if median $\beta_{\text{replacement}}$ and β_{richness} values were significantly different between the two seasons for both obligate and non-obligate subterranean species.
RESULTS

a-diversity and abundance of species

In total, we trapped 3,026 specimens belonging to 11 arthropod orders, 12 molluscs, and 1 nematode (Supplementary material Appendix S1). Dipterans, both adults and larvae, were the most abundant organisms in our traps (1,673 specimens), followed by coleopterans (616), diplopods (308), and acari (208). The pitfall trap placed in cave 11 (a small cave near Barôn Litrôn) was lost in summer, and therefore this site was excluded from the analysis.

Due to malfunctioning, half of the dataloggers did not measure temperature correctly throughout the sampling period. Since the removal of these missing data would have halved the sample size of the dataset, and considering that cave temperature was significantly associated with sampling season, we did not include any temperature-derived variable in the regression analysis. Furthermore, we found that the categorical variable “presence of percolating water” was significantly associated with cave length. Cave length, cave maximum subjacency, and pitfall trap subjacency were also collinear with the distance of the pitfall from the entrance (all Pearson $r > 0.7$). Therefore, we included only the distance of the pitfall from the entrance, cave elevation, cave entrance size, and sampling season in the initial regression models. We successfully fitted and validated models for all four dependent variables. Poisson a-diversity models were not over-dispersed [Obligates: Dispersion Ratio (DR)= 0.78; Pearson’s $\chi^2 = 36.57$; $p= 0.86$; Non-obligates: DR= 1.21; $\chi^2 = 55.56$; $p= 0.16$]. Conversely, abundance Poisson GLMs were significantly over-dispersed (Obligates: DR= 12.04; $\chi^2= 565.73$; $p< 0.001$; Non-obligates: DR= 35.74; $\chi^2= 1643.84$; $p< 0.001$) and thus, we opted for a negative binomial distribution to model abundance. Results of model selection are presented in Table 2, while estimated regression coefficients and p-values are given in Table 3. a-diversity (Figure 2a) and abundance of obligate subterranean species (Figure 2c) were best explained by the distance of the pitfall trap from the entrance; other variables had no significant effects and were dropped during model selection (Table 2). a-diversity (Figure 2b) and abundance (Figure 2d) of non-obligate species were best explained by the distance of the pitfall trap from the entrance in interaction with the sampling season. Specifically, we observed higher a-diversity and abundance at lower depth in summer, and at greater depth in winter. Moreover, abundance values were significantly lower in winter (Figure 2e, 2f). Finally, there was an effect of elevation on a-diversity and abundance of non-obligate species, with higher values at lower elevations (Table 2).

β-diversity
Results of β-diversity analysis are illustrated in Figure 3. In obligate subterranean species, the density of βTotal values across sites showed a bimodal concentration around 0 and 1, indicating the existence of two types of communities; βTotal values close to zero corresponded to the comparisons between pitfall traps with similar depth and environmental conditions, and values close to 1 to the comparisons between pitfall traps installed close to versus far from the entrance. This bimodal distribution was more pronounced in summer than in winter (Figure 3a). Nevertheless, βReplacement values were mostly concentrated towards zero (Figure 3b), indicating that community turnover in obligate-species was not due to a difference in species composition. There was a significant difference between βReplacement values for summer and winter (W= 235950, p< 0.001), whereas no significant differences between βRichness values in the two seasons were observed (W = 9418.5; p= 0.22; Figure 3c).

We observed pronounced seasonal variations in the distribution of non-obligate arthropod communities across sites (Figure 3d). In summer, there was a homogenization of values for non-obligate species, indicating a more even distribution of species among sites (Figure 3f, 3g). The richness component of β-diversity was found to fluctuate more across sites. Summer values were mostly concentrated either between 0.25 or between 0.75, whereas in winter the highest density of values was between 0.75 and 1. Observed differences between the two seasons were highly significant for βRichness (W= 156080; p<0.001) and approached significant for βReplacement (W= 207350, p= 0.05)

Discussion

Our expectation that community composition should be equal across the caves of the cave system of Comba dell’Infernotto was not entirely met. While a pool of nine obligate subterranean species was consistently found in most caves (Appendix S1), we observed significant turnovers in species composition between external and internal sectors of caves. When considering non-obligate subterranean species, there was also substantial turnover in richness and community composition, which was mostly attributable to seasonality.

The main driver of α-diversity and abundance was the distance of the pitfall trap from the entrance. Pitfalls at greater distance from the cave entrance yielded greater diversity and abundance of obligate subterranean species, independently from the sampling season. In our study site, a higher distance from the entrance (corresponding to greater values of subjacency) ensured the maintenance of more stable environmental conditions, including higher relative humidity and constant temperature (Figure 4). These are the optimal microclimatic conditions for the specialized subterranean fauna, and indeed subterranean habitats with grater environmental stability often support a more diverse and abundant subterranean arthropod community (Tobin et al., 2013; Bento et al., 2016; Mammola et al., 2017).
In a few cases, obligate subterranean species also occurred in close proximity to the surface, although in low numbers. This was not an unexpected pattern, as it has been shown that obligate subterranean species within different cave systems may present a bimodal distribution, with peaks in richness and abundance in the nearby of the surface and deeper inside caves (Novak et al., 2012; Kozel et al., 2019). Yet, in the system of caves system of Comba dell’Infernotto, the predicted and observed abundance in the vicinity of the surface was close to zero (Figure 2d), which explains the non-significance of this pattern.

While obligate subterranean species were substantially unaffected by seasonal dynamics, the occurrence of non-obligate species varied significantly between winter and summer in relation to the distance of the sampling plot from the cave entrance. In winter, we mostly collected non-obligate species far from the cave entrance, where environmental conditions are relatively stable through the year and where temperatures never drop below the freezing point (Novak et al., 2014) (Figure 4). Winter abundance of accidental species was in general low, following the general reduction of activity in surface habitats in winter and the typical winter dormancy pattern in most arthropods. In winter, we collected the few non-obligate species in pitfall traps installed far from the entrance; these were mostly species overwintering in caves – a seasonal behaviour documented in several taxa (Chelini et al., 2011; Lipovšek et al., 2016, 2019; Balogová et al., 2017; Mammola & Isaia, 2018).

On the other hand, in summer we observed a massive colonization of the shallow sectors of caves by external species. The importance of these species for the ecology of subterranean ecosystems is noteworthy, as they provide significant inputs of carbon into the system (Novak et al., 2013). Concomitantly, there was also a migration of non-obligate species from deep toward shallow cave sectors. This pattern is often observed when studying spatial and temporal dynamics of temperate cave invertebrate communities (Tobin et al., 2013; Lunghi et al., 2017; Mammola & Isaia, 2018). In our case, the most abundant species involved in this migration was the predatory beetle *Sphodropsis ghiliani* (Schaum). In summer, this species seemingly moves into warmer, entrance sectors where the availability of prey is usually higher (e.g., Novak et al., 2013; Mammola & Isaia, 2018). The same migration pattern has been also observed for the same species in a cave of the North-Western Italian Alps (Mammola et al., 2015).

We also found higher richness and abundance of non-obligate subterranean species at lower elevations (Table 3). In the study area, the elevation difference determines a change in the average temperature of about 1 °C between lower (1000 m) and higher (1200 m) caves, which may in turn drive the observed biological pattern. Alternatively, the explanation for this relationship may be linked to gravitation-assisted patterns in the distribution of species. Trontelj et al. (2019) documented how the distribution of animals within karst massif can be influenced by gravity. They argued that
“[…] animals from a wider area of shallow subterranean spaces can be funneled towards deeper parts of vertical caves by flowing water or gravity.” This may explain why, including our case, caves at lower elevations yielded a greater diversity and abundance of species.

Conclusions

Our results indicate that at a spatial scale of less than 1 km², there is a single pool of obligate species that permanently occurs in the subterranean domain, and a pool of non-obligate species whose presence in the subterranean domain is more influenced by seasonality. This finding corroborates the idea that caves in close proximity are often interconnected by networks of subterranean habitat spaces (Giachino & Vailati, 2010; Trontelj et al., 2019; Mammola, 2020). Yet, the theoretical expectation of no turnover in the community composition of these caves is not always met. Turnover is primarily attributable to active migrations of fauna from deep to superficial habitats, and vice versa. From a methodological perspective, our results imply that sampling a few caves across different seasons should provide a general indication of the resident subterranean fauna of a certain area, having in mind that a large depth is essential for sampling specialized subterranean taxa and that a greater diversity is generally expected at lower elevations within a karst massif.

Acknowledgements

This work was funded by University of Turin and Compagnia di San Paolo (Grant Award: CSTO162355). Special thank to Filippo Milano (University of Torino, Italy) for fieldwork assistance and to Giulio Gardini (Genova, Italy) for the identification of pseudoscorpions. We are also grateful to Dr. Dan Chamberlain for proof-reading our English.

Supplementary material

Appendix S1. List of species recorded in the system of caves of Maissa.

Mammola, S. & Isaia, M. (2018) Day-night and seasonal variations of a subterranean invertebrate...

Table 1. Main features of the investigated caves.

<table>
<thead>
<tr>
<th>Code (Fig.1)</th>
<th>Cave name</th>
<th>Cadaster code</th>
<th>Type</th>
<th>Elevation [m]</th>
<th>Pitfall distance from entrance [m]</th>
<th>Pitfall subjacency [m]</th>
<th>Total length [m]</th>
<th>Depth [m]</th>
<th>Entrance size [m²]</th>
<th>Subjacency [m]</th>
<th>Longitude (°)</th>
<th>Latitude (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maissa 1</td>
<td>1209 Pi</td>
<td>Natural</td>
<td>1186</td>
<td>16</td>
<td>16</td>
<td>37</td>
<td>—9</td>
<td>10</td>
<td>16</td>
<td>7.4050</td>
<td>44.2615</td>
</tr>
<tr>
<td>2</td>
<td>Topalinda – Maissa 2</td>
<td>1210 Pi</td>
<td>Natural</td>
<td>1179</td>
<td>36</td>
<td>30</td>
<td>334</td>
<td>—63</td>
<td>20</td>
<td>83</td>
<td>7.4052</td>
<td>44.2615</td>
</tr>
<tr>
<td>3</td>
<td>Maissa 16</td>
<td>1221 Pi</td>
<td>Natural</td>
<td>1169</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7.4054</td>
<td>44.2615</td>
</tr>
<tr>
<td>4</td>
<td>Grotta dell'Ola – Maissa 25</td>
<td>1228 Pi</td>
<td>Natural</td>
<td>1105</td>
<td>4.5</td>
<td>2</td>
<td>6</td>
<td>—2</td>
<td>2.8</td>
<td>2</td>
<td>7.4060</td>
<td>44.2627</td>
</tr>
<tr>
<td>5</td>
<td>Grotta Diana – Maissa 22</td>
<td>1227 Pi</td>
<td>Natural</td>
<td>1048</td>
<td>19.1</td>
<td>14</td>
<td>39</td>
<td>—11</td>
<td>5</td>
<td>18</td>
<td>7.4061</td>
<td>44.2627</td>
</tr>
<tr>
<td>6</td>
<td>Small cave near Grotta Diana</td>
<td>n.c.</td>
<td>Natural</td>
<td>1111</td>
<td>3.1</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>2.7</td>
<td>8</td>
<td>7.4065</td>
<td>44.2622</td>
</tr>
<tr>
<td>7</td>
<td>Maissa 21</td>
<td>1226 Pi</td>
<td>Natural</td>
<td>1145</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>—2</td>
<td>2</td>
<td>4</td>
<td>7.4168</td>
<td>44.2614</td>
</tr>
<tr>
<td>8</td>
<td>Maissa 9</td>
<td>1217 Pi</td>
<td>Natural</td>
<td>1085</td>
<td>10.3</td>
<td>7</td>
<td>11</td>
<td>—1</td>
<td>2.5</td>
<td>7</td>
<td>7.4084</td>
<td>44.2617</td>
</tr>
<tr>
<td>9</td>
<td>Maissa 8</td>
<td>1216 Pi</td>
<td>Natural</td>
<td>1077</td>
<td>6.4</td>
<td>7</td>
<td>6</td>
<td>—2</td>
<td>1.2</td>
<td>9</td>
<td>7.4084</td>
<td>44.2618</td>
</tr>
<tr>
<td>10</td>
<td>Maissa 7</td>
<td>1215 Pi</td>
<td>Natural</td>
<td>1071</td>
<td>35</td>
<td>13</td>
<td>29</td>
<td>—11</td>
<td>1.3</td>
<td>13</td>
<td>7.4086</td>
<td>44.2618</td>
</tr>
<tr>
<td>11</td>
<td>Small cave near Baron Litron</td>
<td>n.c.</td>
<td>Natural/Mine</td>
<td>1063</td>
<td>5.5</td>
<td>3</td>
<td>10</td>
<td>—1</td>
<td>12</td>
<td>5</td>
<td>7.4093</td>
<td>44.2616</td>
</tr>
<tr>
<td>12</td>
<td>Baròn Litrôn – Maissa 6</td>
<td>1214 Pi</td>
<td>Natural/Mine</td>
<td>1063</td>
<td>16</td>
<td>38</td>
<td>861</td>
<td>—59</td>
<td>10</td>
<td>75</td>
<td>7.4093</td>
<td>44.2616</td>
</tr>
<tr>
<td>13</td>
<td>Sweet Inny – Maissa 10</td>
<td>1218 Pi</td>
<td>Natural</td>
<td>1045</td>
<td>14.3</td>
<td>13</td>
<td>116</td>
<td>—30</td>
<td>35</td>
<td>35</td>
<td>7.4098</td>
<td>44.2615</td>
</tr>
<tr>
<td>14</td>
<td>Small cave near Maissa 12</td>
<td>n.c.</td>
<td>Natural</td>
<td>1027</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>—7</td>
<td>1.5</td>
<td>6</td>
<td>7.4099</td>
<td>44.2613</td>
</tr>
<tr>
<td>15</td>
<td>Small mine shaft near Maissa 11</td>
<td>n.c.</td>
<td>Mine</td>
<td>1038</td>
<td>2.5</td>
<td>1</td>
<td>4</td>
<td>—1</td>
<td>0.5</td>
<td>1</td>
<td>7.4102</td>
<td>44.2617</td>
</tr>
<tr>
<td>16</td>
<td>Small cave near Maissa 11</td>
<td>n.c.</td>
<td>Natural</td>
<td>1051</td>
<td>3.5</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>26</td>
<td>1</td>
<td>7.4104</td>
<td>44.2613</td>
</tr>
<tr>
<td>17</td>
<td>Maissa 12</td>
<td>1219 Pi</td>
<td>Natural</td>
<td>1090</td>
<td>13.3</td>
<td>12</td>
<td>92</td>
<td>—20</td>
<td>2.6</td>
<td>14</td>
<td>7.4106</td>
<td>44.2613</td>
</tr>
<tr>
<td>18</td>
<td>Small cave near Maissa 10</td>
<td>n.c.</td>
<td>Natural</td>
<td>1037</td>
<td>3.5</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>7.4105</td>
<td>44.2617</td>
</tr>
<tr>
<td>19</td>
<td>Maissa 11</td>
<td>n.c.</td>
<td>Natural</td>
<td>1054</td>
<td>6.8</td>
<td>7</td>
<td>37</td>
<td>—20</td>
<td>0.8</td>
<td>22</td>
<td>7.4104</td>
<td>44.2613</td>
</tr>
<tr>
<td>20</td>
<td>Maissa 13</td>
<td>n.c.</td>
<td>Natural</td>
<td>1023</td>
<td>22</td>
<td>5</td>
<td>20</td>
<td>—4</td>
<td>3</td>
<td>5</td>
<td>7.4113</td>
<td>44.2619</td>
</tr>
<tr>
<td>21</td>
<td>Grotta dei Morti Mineshaft near Grotta Infernotto Superiore</td>
<td>1054 Pi</td>
<td>Mine</td>
<td>1023</td>
<td>19</td>
<td>15</td>
<td>84</td>
<td>—16</td>
<td>10</td>
<td>15</td>
<td>7.4131</td>
<td>44.2611</td>
</tr>
<tr>
<td>22</td>
<td>Grotta Infernotto Superiore</td>
<td>n.c.</td>
<td>Mine</td>
<td>1041</td>
<td>5.5</td>
<td>4</td>
<td>6</td>
<td>—1</td>
<td>4.2</td>
<td>4</td>
<td>7.4113</td>
<td>22.2605</td>
</tr>
<tr>
<td>23</td>
<td>Grotta Infernotto Superiore</td>
<td>1055 Pi</td>
<td>Natural</td>
<td>1041</td>
<td>6.1</td>
<td>4</td>
<td>19</td>
<td>—1</td>
<td>2.5</td>
<td>12</td>
<td>7.4130</td>
<td>44.2609</td>
</tr>
<tr>
<td>24</td>
<td>Maissa 31</td>
<td>n.c.</td>
<td>Natural</td>
<td>1181</td>
<td>3.4</td>
<td>3</td>
<td>7</td>
<td>—2</td>
<td>3</td>
<td>3</td>
<td>7.4148</td>
<td>44.2580</td>
</tr>
<tr>
<td>25</td>
<td>Maissa 32</td>
<td>n.c.</td>
<td>Natural</td>
<td>1177</td>
<td>8.2</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>7.4148</td>
<td>44.2580</td>
</tr>
<tr>
<td>26</td>
<td>Natural cave “Salamandre”</td>
<td>n.c.</td>
<td>Natural</td>
<td>1100</td>
<td>3.6</td>
<td>4</td>
<td>7</td>
<td>—2</td>
<td>2.5</td>
<td>4</td>
<td>7.4144</td>
<td>44.2580</td>
</tr>
<tr>
<td>27</td>
<td>Natural cave “Salamandre”</td>
<td>n.c.</td>
<td>Natural</td>
<td>1110</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>1.5</td>
<td>5</td>
<td>7.4144</td>
<td>44.2580</td>
</tr>
</tbody>
</table>

n.c. = mines or caves not included in the speleological cadaster; subjacency = vertical distance from the surface; Mammola et al. 2017)
Table 2. Results of model selection. For each dependent variable, models are listed from the least to the most supported. AIC = Akaike Information Criterion.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Model structure</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richness of obligate subterranean species (α)</td>
<td>Pitfall depth + Season + Elevation + Entrance size</td>
<td>129.24</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth + Elevation + Entrance size</td>
<td>127.46</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth + Elevation</td>
<td>126.17</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth</td>
<td>125.18</td>
</tr>
<tr>
<td>Abundance of obligate subterranean species</td>
<td>Pitfall depth + Season + Elevation + Entrance size</td>
<td>264.60</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth + Elevation + Entrance size</td>
<td>262.62</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth + Elevation</td>
<td>261.17</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth</td>
<td>259.75</td>
</tr>
<tr>
<td>Richness of non-obligate species (α)</td>
<td>Pitfall depth * Season + Elevation + Entrance size</td>
<td>227.16</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth * Elevation</td>
<td>225.15</td>
</tr>
<tr>
<td>Abundance of non-obligate species</td>
<td>Pitfall depth * Season + Elevation + Entrance size</td>
<td>437.80</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth * Elevation</td>
<td>435.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Variable</th>
<th>Estimated $\beta \pm$ S.E.</th>
<th>p-value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richness of Troglobionts (α)</td>
<td>Intercept</td>
<td>-1.98 ± 0.50</td>
<td>-</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Distance from the entrance</td>
<td>0.85 ± 0.18</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Abundance of Troglobionts</td>
<td>Intercept</td>
<td>-3.10 ± 0.69</td>
<td>-</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Distance from the entrance</td>
<td>1.98 ± 0.28</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Richness of Troglophiles (α)</td>
<td>Intercept</td>
<td>8.66 ± 1.54</td>
<td>-</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Distance from the entrance</td>
<td>-0.44 ± 0.12</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Season (Winter)</td>
<td>-3.12 ± 0.51</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance from the entrance * Season</td>
<td>0.97 ± 0.21</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elevation</td>
<td>-0.01 ± 0.01</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Abundance of Troglophiles</td>
<td>Intercept</td>
<td>11.93 ± 2.82</td>
<td>-</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Pitfall depth</td>
<td>-0.38 ± 0.24</td>
<td>0.110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Season (Winter)</td>
<td>-6.34 ± 0.88</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance from the entrance * Season</td>
<td>1.54 ± 0.34</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elevation</td>
<td>-0.01 ± 0.01</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Map of the study area. Dots show the distribution of the sampled caves on the left slope of the Comba dell’Infernotto (municipality of Valdieri, Province of Cuneo, Italy). Photographs illustrate the morphology of some examples of cave entrances.

Figure 2. Drivers of richness and abundance of species in the system of caves of Comba dell’Infernotto. Predicted relationships between the richness and abundance of obligate (a, b) and non-obligate (c, d) species and the depth at which the pitfall trap was placed in each cave, based on the results of regression analysis. Note that for non-obligate species, there was a significant interaction between the depth of the pitfall trap and the sampling season; therefore, the predicted relationship is shown separately for each season. In all predictions of non-obligate species, elevation is set at the mean values. Black lines are predicted values, while grey surfaces are 95% confidence intervals.

Figure 3. Community turnover in the system of caves of Comba dell’Infernotto. Density of β-diversity values for obligate (a, b, c) and non-obligate (d, e, f) terrestrial arthropod communities in winter and summer samples. Total β-diversity is split in two components: \(\beta_{\text{richness}} \) is the turnover in community composition explained by species loss/gain alone, and \(\beta_{\text{replacement}} \) is turnover in community composition explained by replacement of species alone.

Figure 4. Example of cave microclimate in the system of caves of Comba dell’Infernotto. Daily temperature was registered by two dataloggers, one placed at a depth of 36 m in Maissa 2 and one at 4.5 m in Maissa 23.