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Abstract—The Field Calculus is a promising language for the
self-organisation of distributed devices, allowing to express on a
high level of abstraction complex distributed algorithms with
robust behaviour guarantees. This language has been argued
to be fruitfully applicable to many different contexts: wireless
sensor networks, internet of things, self-organising edge, fog or
cloud computing scenarios, and simulations of such. However,
existing implementations of this language rely on the Java Virtual
Machine and have an high performance overhead, impairing
their usability in contexts where performance is critical (cloud)
or computational resources are tightly bounded (WSN/IoT).

In this paper we present FCPP, a novel implementation of
the Field Calculus as a C++ library. The library is built as a
component-based system, in order to be easily extensible to fit dif-
ferent contexts. Furthermore, it leverages C++ template patterns
to allow compile-time optimisation and minimal performance
overhead, and enables fine-grained parallelism for scalability
in self-organising cloud applications. A case study of an edge
simulation shows the performance improvement compared to
existing Field Calculus implementations, while preserving the
same level of abstraction. This translates to a significant speed-up
in the development process of distributed algorithms, paving the
way towards application scenarios for which existing tools are
unsuitable: microcontroller systems and self-organising cloud.

Index Terms—edge computing, aggregate computing, program-
ming languages, field calculus, toolchains

I. INTRODUCTION

As the density of computing devices in human environments
is continuing to increase, the problem of coordinating their
behaviour is correspondingly growing in importance. Over
the past few decades, humanity moved from many people
sharing a single computer to several computing devices per
person: phones, watches, vehicles and much more are becom-
ing capable of computing, sensing and communicating. The
growing numbers of devices involved translate into rising costs
of maintaining distributed systems, making the deployment of
global-level software services by individual programming of
every single node more and more problematic, and driving
a search for solutions increasing the autonomy of computing
systems while reducing their overall complexity.

Several macro-programming and spatial self-organisation
approaches are being investigated [1]–[3], aiming at the ab-
straction of a network as a single spatially distributed and
inherently robust platform to be programmed as a whole.
Aggregate programming [4], [5] is an emerging approach
among them, based on the functional composition of reusable
blocks of collective behaviour, with the goal of effectively

achieving resilient complex behaviours in dynamic networks.
This feature allows to study robustness properties like self-
stabilisation [6] and density independence [7] by first proving
them on simple blocks (e.g., broadcast [6], distance estimation
[8]–[10], data aggregation [11]) and then transferring them to
more complex systems built on top by functional composition.

Aggregate programming is built on the Field Calculus [12],
a minimal functional programming language for the specifica-
tion and composition of collective behaviours, with sufficient
power to express any distributed computation [13], and built-
in global-to-local translation formalised as equivalent local
and aggregate semantics. Layers of increasingly complex self-
organisation routines can be defined on top of it, simplifying
the engineering of robust distributed systems in contexts such
as smart-cities, robot/drone swarms, and tactical networks (see
[5] for an extended presentation of aggregate programming).

Several tools have been developed for supporting the ex-
ecution of field calculus-based algorithms: Proto program-
ming language and simulation engine [14] (discontinued),
Alchemist1 simulator [15] with the Protelis2 language [16],
and finally the Scafi3 programming language and simulation
engine [17]. The existing and supported tools already cover
a number of application scenarios, however, they all rely on
the Java Virtual Machine (JVM) for execution, limiting their
applicability to platforms (microcontrollers) where it may not
be available. Furthermore, they are not optimised for perfor-
mance and do not support fine-grained parallelism, reducing
their effectiveness for self-organising cloud scenarios.

In this paper we present FCPP,4 a novel implementation
of the Field Calculus as a C++14 library, together with
its own performance-oriented simulation engine. A layered
component-based architecture ensures convenient extensibility
of the tool, which thanks to the low system requirements
and the widespread support for C++ on architectures, could
potentially be deployed on systems of any sort (including
microcontrollers). Furthermore, a built-in support for fine-
grained parallelism paves the way towards future extensions
of the tool supporting self-organising cloud scenarios. At the
current state, the performance improvements with respect to

1Available at http://alchemistsimulator.github.io.
2Available at http://protelis.github.io.
3Available at https://scafi.github.io.
4Available at https://fcpp.github.io.

http://alchemistsimulator.github.io
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https://scafi.github.io
https://fcpp.github.io


existing tools already allow for more efficient simulation of
aggregate algorithms, speeding up their development process.

The reminder of this paper is organised as follows. Sect. II
presents the background and related work, focusing on aggre-
gate programming and its available tools. Sect. III details the
motivation, architecture and characteristics of FCPP. Sect. IV
compares FCPP with the other existing tools for simulation
and execution of aggregate programs. Finally, Sect. V con-
cludes with plans of future development.

II. BACKGROUND AND RELATED WORK

The challenge of programming self-organising systems has
been addressed in a variety of different contexts, each with its
own goals and starting points. These various approaches can be
grouped in few main clusters [1]: (i) methods abstracting away
devices or networks (e.g., TOTA [18], MapReduce [19]); (ii)
geometrical or topological pattern languages (e.g., self-healing
geometries [20]); (iii) languages for information retrieval and
routing (e.g., TinyLime [21]); (iv) general space-time comput-
ing models (e.g., StarLisp [22], aggregate programming [4]).

In this paper, we focus on the aggregate programming
approach and Field Calculus language, in which a whole net-
work runs a single program by periodically executing its main
function asynchronously in all of its devices. Communication
between devices is realised through low-level broadcasts,
and modelled by the neighbouring field data type, which is
essentially a map from neighbour device identifiers to relative
values. Neighbouring fields are manipulated through “point-
wise map” and “fold” operations, and created by specific
constructs which automatically match outgoing and incoming
messages—thanks to stack tracing techniques—in a way that
ensures safe functional composition.

III. FCPP: FIELD CALCULUS IN C++

A. Motivation and Application Scenarios

FCPP is C++14 library implementing the Field Calculus
with tools for simulation of distributed systems, featuring (i)
an extensible component-based software architecture, suitable
to be customised for different application scenarios (e.g. IoT
deployment, simulation, self-organising cloud) by addition of
components targeting specific needed functionalities; (ii) a
performance-oriented implementation based on compile-time
optimisations, and designed to support parallel execution of a
simulated system5 or self-organising cloud application.

At the current state, the FCPP library only contains compo-
nents supporting the simulation of distributed systems; and is
already able to reduce significantly the simulation cost, speed-
ing up the development process of new distributed algorithms.

Furthermore, the two features described above ensure
the possibility of conveniently extending it to cover addi-
tional application scenarios, for which the previously avail-
able tools were ineffective. In particular (i) deployments on
microcontroller-based systems, which do not usually meet

5We remark that parallel execution of a single simulated system is currently
not supported by the other available Field Calculus simulators.

the minimum performance requirements of existing imple-
mentations; and (ii) self-organising cloud applications, which
require fine-grained parallelism in order to scale and for which
performance improvements translate in a cost reduction.

The choice of C++ as programming language (without
external dependencies such as e.g. Aspect C++), was driven
by the need of targeting most existing platforms, including mi-
crocontrollers, for which a C++ compiler is usually available
while it is not necessarily the case for other performance-
oriented competing languages (e.g. Rust, Go).

B. Extensible Software Architecture

The FCPP library consists of 40 header files (as of the
writing of this paper), divided in three main conceptual layers
represented in Fig. 1: (i) C++ data structures of general
use; (ii) components; (iii) aggregate functions. The first layer
comprises data structures needed by the second layer either for
their internal implementation or for the external specification
of their options, but also data structures designed for the
third layer of aggregate functions: an extension of C++ arrays
and tuples supporting component-wise operations, a vec<n>

class modelling physical vectors, and (most importantly) the
field<T> class implementing the concept of neighbouring
field (with point-wise map and fold operations).

The second layer defines the abstractions for node (single
devices) and net (overall network orchestration, crucial in
simulations and cloud-oriented applications). In an FCPP
application, the two types node and net are obtained by com-
bining a chosen sequence of components [23], each of them
providing a needed functionality, in a mixin-like fashion [24],
[25]. In order to provide compile-time mixin-like composition,
components are templated classes with the following structure.
template <class... Ts>
struct my_functionality {
template <class F, class P>
struct component : public P {
class node : public P::node { ... };
class net : public P::net { ... };

};
};

The my_functionality component above receives a vari-
able list of options Ts as template parameters. Then, its
component sub-class receives as further parameters both a
parent component composition P, and the final composition
of all components F.6 Then, the node and net nested classes
contain the additional functionalities provided by component
my_functionality, as methods possibly depending on both
parents’ methods in P and/or final methods in F.

The dependencies between currently provided components
are depicted in Fig. 1 (layer 2—components), and are enforced
through static_assert checks. The number of dependencies
has been kept as low as possible, and thanks to mixin composi-
tion, they don’t prevent the substitution of a “required” com-
ponent for another offering an analogous interface. Overall,

6In order to feed the final component composition to each of its contained
components, an instance of the Curiously Recursive Template Pattern (CRTP,
first introduced in [26]) has been used.
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Fig. 1. Representation of the software architecture of FCPP as the combination of three main layers: data structures for both other layers, components which
provide node and network abstractions to aggregate functions. Components are categorized as general purpose (cyan), pertaining to simulations or cloud-based
applications (violet), and simulation specific (magenta). Dependencies between them can be either hard (solid), for which the pointed component is required
as an ancestor of the other; or soft (dotted), for which the pointed component is not required, but if present, it should be an ancestor of the other component.

TABLE I
FCPP COMPONENTS

Component Provides

base
basic update interface, node unique identifiers,
reference to net objects in nodes

calculus
stack trace, context and exports, to be used indi-
rectly through aggregate functions

identifier
manages a collection of node objects indexed by
UID (creation, removal, access)

logger
periodically aggregates values from a storage
component across nodes into a given stream

physical connector

simulates periodic broadcasts of messages, deter-
mining whether connection is possible based on
the simulated physical position

physical position
physical evolution of n-dimensional position, ve-
locity, acceleration vectors with friction

randomizer
random number generator, functions producing
random integer or floating point values

scheduler automatically schedules rounds

spawner
automatically creates nodes in the identifier
(possibly using random distributions)

storage holds a collection of values in a tuple-like fashion

timer
maintains temporal information and allows inter-
active scheduling of rounds

the component system allows to reuse specific functionalities
across different systems, changing only those needed. For
example, the physical_connector component responsible of
message exchanges in simulated systems, could be substituted
for a networked_connector component with similar interface
to be used for exchanging messages in deployed systems
through a broadcast network interface. A comprehensive list
of the components currently implemented in FCPP, together
with a description of their role, is given in Table I.

The third layer provides the actual implementation of Field
Calculus programs, as templated functions with a node pa-
rameter, and an identifier of the point where the function was
called as a further parameter (needed for implementing the

automatic alignment mechanism of Field Calculus for match-
ing messages across nodes). As an example, the following
function estimates distances from devices where source is
true through the Adaptive Bellman Ford algorithm [27], [28].
template <class node_t>
double abf(node_t& node, trace_t call_point, bool source) {

trace_call trace_caller(node.stack_trace, call_point);
return nbr(node, 0, INF, [&] (field<double> d) {

double v = source ? 0.0 : INF;
return min_hood(node, 1, d + node.nbr_dist(), v);

});
}

Notice that a reference to the node object is explicitly pro-
vided, allowing to access the functionalities provided by
nodes: in this case, node.nbr_dist() which is a built-in func-
tion returning a field<double> of estimated distances with
neighbour nodes. The call_point parameter is used to update
the node.stack_trace (first line, which is in common to all
aggregate functions), and is provided to aggregate function
calls (such as nbr and min_hood above) as an increasing
index. The need for an explicit managing of the stack trace
can be circumvented by resorting to C++ macros; through
which the above function can be rewritten as in the following.
DEF() double abf(ARGS, bool source) { CODE

return nbr(CALL, INF, [&] (field<double> d) {
double v = source ? 0.0 : INF;
return min_hood(CALL, d + node.nbr_dist(), v);

});
}

This function repeatedly updates a distance estimate, start-
ing from estimates of neighbour devices gathered in
field<double> d, and setting the current estimate to either
0 if source is true, or to the minimum sum of a neighbour es-
timate with the estimated distance to that neighbour otherwise.
Notice that according to the aggregate programming paradigm,
aggregate functions are themselves organised in stacked lay-



aggregate function declaration
F ::= DEF(T∗) t d(ARGS, t x∗) {CODE return e; }

aggregate expression

e ::= x
∣∣ ` ∣∣ t{e∗} ∣∣ ue ∣∣ e o e

∣∣ p(e∗) ∣∣ node.c(e∗) ∣∣ f(CALL, e∗)∣∣ t x = e; e
∣∣ [&](t x∗)->t {return e; }

∣∣ e ? e : e

type aggregate function

t ::= T
∣∣ bt ∣∣ tt<t∗, ` ∗ > f ::= b

∣∣ d
built-in aggregate functions

b ::= self
∣∣ mod self

∣∣ map hood
∣∣ fold hood

∣∣ old ∣∣ nbr
Fig. 2. Syntax of FCPP aggregate functions.

ers of increasing abstraction and complexity: starting from
built-in functions without a definition as aggregate functions
(c.f. Sect. III-C); through building blocks of common use
(e.g. leader election, distance estimation, data summarisation,
c.f. Sect. IV-C), available as library functions in FCPP; to
domain-specific library functions and final applications.

C. Programming Language

A restrictive syntax for aggregate functions is given in
Fig. 2, reducing the expressive possibilities of FCPP to a
minimal set of constructs matching the ones in Field Calculus.
Following regular expression notation, we use ∗ to indicate an
element that may be repeated multiple times (possibly zero),
assuming that repetitions are always comma-separated.

An aggregate function declaration consists of a declaration
of (any number of) type variables DEF(T∗), followed by
the return type t and the function name d, followed by a
parenthesized sequence of comma-separated arguments t x

(prepended by the keyword ARGS), followed by an aggregate
expression e (within brackets and keywords CODE return).

Notice that the definition of types follows the syntax of C++:
a type t is either a type variable T , a non-templated type bt
(such as bool, int, double), or a templated type tt (such as
field, array, tuple) with some type and literal arguments
provided tt<t∗, ` ∗ > (e.g. field<double>, array<int, 3> or
tuple<vec<2>, bool, field<double>>).

Aggregate expressions can be either:
• a variable identifier x (either a function argument or

defined in a let-style statement—see below);
• a literal value ` expressible in C++ (e.g. an integer or

floating-point number, true, false, string literals, etc.);
• an object of type t built through a class constructor call
t{e∗} with arguments e;

• an unary operator u (e.g. −, ∼, !, etc.) applied to e;
• a binary operator e o e (e.g. +, ∗, and, or, etc.);
• a pure function call p(e∗), where p is a basic C++

function which does not depend on node information
nor message exchanges (or an anonymous aggregate
function—see below);7

7Unary and binary operators also qualify as pure functions: they only differ
by the usage of the infix notation for calls.

• a component function call node.c(e∗), where c is a
function provided by some component (see Sect. III-B),
depending on node information but not on messages;

• an aggregate function call f(CALL, e∗), where f can
be either a defined aggregate function name d or an
aggregate built-in function b (corresponding to either field
manipulation or Field Calculus constructs—see below);

• a let-style statement t x = e1; e2, declaring a variable x

of type t with value e1 referable in e2;
• an anonymous function [&](t x∗)->tr {return e; } with

arguments t x, return type tr, and body e: since anony-
mous functions capture variables defined in their scope,
they also capture the node variable which allows their
body to be an aggregate expression, even though they
are applied as pure functions;

• a conditional branching expression eguard ? e> : e⊥,
such that e> is evaluated and returned if eguard evaluates
to true, while e⊥ is evaluated and returned if eguard
evaluates to false.

Comparing the syntax in Fig. 2 to the one of the Field Calculus
[12], [13], [29], it is remarkably similar in structure, although
with some organisational differences. In particular, the coor-
dination constructs nbr, rep, share (and variants) that are
primitive concepts in Field Calculus are here modelled through
built-in aggregate functions old and nbr. These two built-in
functions are overloaded to several different signatures:
• old(CALL, v0, v) with v0, v of type t returns the value fed

as second argument v in the previous round of computa-
tion (thus introducing one round of delay), defaulting to
v0 if no such value is available;

• old(CALL, v) is a shorthand for old(CALL, v, v);
• old(CALL, v0, f) corresponds to the rep operator of Field

Calculus, and computes the result of applying f (which
can either be an anonymous aggregate function or a pure
function) of signature (t)->t to the value of the whole
old function at the previous computation cycle (using v0
if no such value is available);

• nbr(CALL, v0, v) with v0, v of type t returns the neigh-
bouring field of values fed as second argument v in
the previous round of computation of neighbour nodes,
defaulting to v0 for the current node if no such value is
available for it;

• nbr(CALL, v) is a shorthand for nbr(CALL, v, v), and
corresponds to the nbr operator of Field Calculus;

• nbr(CALL, v0, f) corresponds to the share operator of
Field Calculus [29], and computes the result of applying
f (which can either be an anonymous aggregate function
or a pure function) of signature (field<t>)->t to the
neighbouring field of values of the whole nbr function
at the previous computation cycle of neighbour nodes
(using v0 for the current node if no such previous value
is available for it).

The other built-in aggregate functions currently available are:
• self(CALL, φ), which given a value φ of field<t> type

returns the value φ(i) taken by the neighbouring field φ



for the current node (of identifier i = node.uid);
• mod self(CALL, φ, v), which given a value φ of
field<t> type, returns the same value with φ(i) changed
to v, where i = node.uid;

• map hood(CALL, f, v∗) which applies f point-wise to a
sequence of local or field values v∗;

• fold hood(CALL, f, φ) which folds the values in the
range of φ of field<t> type through the commutative
and associative binary operator f of type (t, t)->t, re-
ducing them to a single value of type t;8

• fold hood(CALL, f, φ, v) which folds φ as above,
using v instead of the value of φ for the cur-
rent device: in other words, it is equivalent to
fold hood(CALL, f, mod self(CALL, φ, v).

IV. TOOL COMPARISON

A. Alchemist and the Simulation Features of FCPP

Alchemist [15] is a general-purpose, flexible simulator of
distributed systems with an extensive range of features. It can
simulate bidimensional environments, indoor environments
with obstacles (described as black and white images), and real-
world maps (with support for GPS traces and navigation on
roads). It is integrated with four “incarnations”, i.e., languages
specifying distributed behaviour: protelis and scafi (languages
for aggregate programming), sapere (tuple-based language
for distributed computing), biochemistry (language describing
chemical-like reactions). Batches of simulations can be run in
grid computing systems through Apache ignite.

Although FCPP is designed as a flexible and easily extensi-
ble platform, the currently supported range of features is more
limited: it lacks several functionalities present in Alchemist,
although while also providing few features that Alchemist
lacks. It can be easily extended to deployed systems, and it
can simulate bidimensional and tridimensional environments,
with a physically accurate model based on position, velocity,
acceleration and friction (features not currently available in
Alchemist). On the other hand, it doesn’t yet have support
for obstacles, real-world maps and GPS traces. Furthermore,
it only supports one language for specifying distributed be-
haviour (discussed in Sect. IV-B), following the aggregate
programming paradigm.

Besides the difference in features and applications sup-
ported, the two tools also diverge in their overall structural
approach. Alchemist (like e.g. Repast and NetLogo) is a stand-
alone application running on the JVM, which can be used to
run experiments. On the other hand, FCPP (like e.g. ns-3) is a
library, used to develop experiments as applications importing
it. The two different approaches imply corresponding trade-
offs: (i) in stand-alone simulators, multiple runnable experi-
ments share the application, which can be downloaded and
built only once; while in simulation libraries every runnable
experiment need to include and be compiled with (part of) the
library, forcing parts of the simulation library to be duplicated

8In Field Calculus, a neighbouring field always has at least a value for the
current node; thus, folding is well-defined.

across the different experiments; (ii) simulation libraries can
be more performant due to compile-time optimizations, and
produce small runnable experiments where only the parts of
the library needed are included; while stand-alone simulators
have generally an higher performance and disk space overhead.

B. Protelis, Scafi and the Language Features of FCPP

The FCPP language for aggregate programming implements
the abstract Field Calculus language, as Protelis and Scafi do.
Thus, the basic features and expressive power of the three
languages mostly coincide, with few notable differences. In
fact, the main differences among them boil down to Scafi
and FCPP being internal domain specific languages (DSL),
implemented directly in Scala and C++ respectively, while
Protelis is an external DSL interpreted in the JVM.

Thus, the Protelis syntax is more neat and specifically
designed for field computations, while the syntaxes of Scafi
and FCPP can only partially mimic the abstraction level of
Field Calculus, being tied by the specific syntactic restrictions
of their host languages (which are stronger for C++ than
Scala, making FCPP the least “clean” language out of the
three). However, the more complex syntaxes of Scafi and
FCPP may turn out to be simpler to familiarise with for
programmers already proficient in Scala and C++ (the latter
being particularly well-known among programmers).

On the other hand, internal DSL are more performant and
can easily inherit most of the features of their host languages.
Among those, an expressive type system: the most expressive
type system is available in Scafi (inheriting types from Scala),
followed by FCPP (expressive on parametric types, but less
suited for functional types), and finally by Protelis which has
no type system available at the moment. Other constructs
inherited by the host language may also prove useful in some
circumstances: for example, C++ cycles are available in FCPP
(both natively within pure C++ functions, and in aggregate
functions through a custom cycle alignment support).

Finally, Scafi was designed as a customised version of Field
Calculus based on fold_hood operations, without explicit
field types. In order to obtain the same behaviour of Field
Calculus, a Scafi programmer needs to manually avoid certain
function signatures (e.g. arguments of field type), thing that
may require some care and syntactic tweaks.9 On the other
hand, Protelis and FCPP are natively designed on the Field
Calculus with neighbouring fields.

C. Case Study

In order to measure the performance improvement of FCPP
for the simulation of aggregate systems with respect to existing
Field Calculus implementations and simulators, we translated
the recent simulation scenario in Audrito et al. [11] into FCPP,
then compared the CPU time, RAM memory and hard disk oc-
cupancy needed to run the simulations. We focused on running
instead of building, since the running requirements determine
which possible architectures can support the execution of these

9True field types are currently available in Scafi as an additional library;
however, they need to be manually aligned.



TABLE II
PERFORMANCE COMPARISON

HDD RAM avg/peak CPU
FCPP 0.4 MB 0.06 / 0.07 GB 0:04:32

(1.5GB) 1.96 / 2.08 GB 8:03:10
(2.0GB) 2.48 / 2.56 GB 6:39:34
(2.5GB) 174 MB .jar 2.88 / 3.05 GB 5:45:19

Alchemist+Protelis (3.0GB) 626 MB Gradle 3.33 / 3.55 GB 5:13:49
(3.5GB) +100MB (JVM) 3.81 / 4.09 GB 4:45:06
(4.0GB) 4.10 / 4.45 GB 4:29:47
(4.5GB) 4.38 / 4.77 GB 4:17:45

implementations, and also since the building phases of stand-
alone simulators (Alchemist) and simulator libraries (FCPP)
are very different in nature and purpose.

1) Scenario Description: The benchmark simulation sce-
nario chosen [11] focuses on the problem of data aggregation,
where a set of values vi, each locally available in a device i
of the network, has to be collapsed into a single aggregate
value

⊕
i vi (e.g. the sum, mean, maximum, minimum, etc.),

available in a single selected device (a leader) of the network.
The aggregation routine takes as input a set of distance
estimates di from the leader to guide the information flow,
so that partial aggregates in a device i are computed by
combining partial aggregates of (some) neighbour devices j
with larger distances dj > di.

This case study compares the effectiveness of several dis-
tributed data aggregation routines (single-path [6], multi-path
[6], weighted multi-path [11]), each combined with different
distance estimation algorithms guiding the aggregation (BIS
[8], FLEX [10], ULT [9]). For each of these combinations
of algorithms, two aggregation scenarios are considered: (i)
device counting, where the leader device has to compute the
total number of devices in the network; (ii) progress tracking,
where the leader has to compute the maximum progress
reached by a device in the network.

In both cases, the simulation comprises 1000 simulated de-
vices with a 100m connection radius walking through random
waypoints in a 2000m× 200m rectangular area. Each device
performs rounds of computation with an average frequency of
1Hz, for a total 500s of simulated time.

2) Performance Results: The tests were run on a MacBook
Pro (13-inch, Mid 2012), with a 2.9 GHz Intel Core i7 dual-
core CPU, and 8 GB of DDR3 RAM at 1600 MHz. We
compared the implementation in Audrito et al. [11] (based on
Alchemist [15] and Protelis [16]) for several heap size settings,
with an equivalent implementation in FCPP.10 We averaged the
RAM and CPU usage across 80 runs for FCPP and 80 runs for
Alchemist (the latter split into 8 different heap size settings),
with a relative standard error between runs always below 7%
(3.5% in average). The resulting performance statistics for the
various implementations are summarised in Table II.

10The implementation is available at https://github.com/fcpp/sample-project
as the sample project of FCPP; and for the Alchemist and Protelis implemen-
tation at https://bitbucket.org/Harniver/aamas19-summarising/src/fcpprun.

The negligible hard disk space (HDD) necessary to run
the FCPP program (440 KB) correspond to the compiled
executable size, without any other additional external re-
quirements.11 For Alchemist and Protelis, the execution of a
program requires the presence of the JVM (about 100 MB)
and of the whole simulator and language, due to the different
structural approach (see Sect. IV-A). Executing the simula-
tion with Gradle,12 which automatically handles building and
dependencies, occupies a total 626 MB of disk space. By
manually managing build and dependencies, it is possible to
reduce the space needed to 174 MB (size of the redistributable
jar file for the Alchemist 9.3.0 release), JVM excluded.

For Alchemist and Protelis, the amount of RAM to be used
is manually set as an option to the JVM. If the amount chosen
is too low, the execution will crash with an out-of-memory
error: in the test at hand, this happened consistently whenever
the maximum heap size of the JVM was set to 1.0 GB. If
the amount chosen is large enough to allow execution, but too
close to the lower limit, the execution slows down significantly
due to an excessive garbage collection load. If the amount
chosen is yet larger, execution speed stops reducing signifi-
cantly, while memory occupancy keeps increasing, filling up
all the available space. Thus, tuning the “maximum heap size”
parameter is a crucial step for an efficient execution of an
Alchemist and Protelis simulation.

We tested maximum heap sizes between 1.0 and 4.5 GB
with steps of 0.5 GB. With 1.0 GB the simulation crashed
consistently, thus no results are reported in the table. For heap
sizes up to 3.5 GB, the actual RAM used peaked at about that
maximum heap size plus an extra 600 MB, with an average
usage at about extra 300-500 MB. For heap sizes of 4.0 and
4.5 GB, the RAM used peaked at about an extra 300-450 MB
with an average close to the heap size. On the other hand, the
amount of RAM memory used in FCPP is fixed, depending
only on the amount of space actually needed, and peaked at
68 MB which is 30× to 70× lower than the RAM needed by
Alchemist and Protelis.

Regarding the total CPU time used for the execution,
the FCPP implementation completed after 4 minutes and 32
seconds in average, while Alchemist and Protelis needed 4 to
8 hours depending on the heap sizes (60× to 100× as much).
Overall, the performance improvement of FCPP with respect
to Alchemist and Protelis is significant; reducing by orders
of magnitude the cost of simulating a distributed system, and
paving the way towards the execution of aggregate programs
on low-end devices, and cost-effective self-organising cloud
applications.

V. CONCLUSIONS AND FUTURE DEVELOPMENT

We presented FCPP, a novel implementation of the Field
Calculus language as a C++14 library, together with tools for
simulation and execution of distributed systems. Although its

11For the interested reader, building the FCPP experiment required 39.4
seconds of CPU time and occupied 940MB of space on disk. However, once
built, only the executable is needed for running the experiments.

12Build tool available at https://gradle.org.

https://github.com/fcpp/sample-project
https://bitbucket.org/Harniver/aamas19-summarising/src/fcpprun
https://gradle.org


scope is currently narrower than that of existing aggregate
programming tools (Alchemist, Protelis, Scafi), it has potential
for extensibility due to its component-based architecture, and
it already covers some features and application scenarios that
are not adequately covered by the other tools. Furthermore, it
grants measurable efficiency improvements, which we quanti-
fied by re-implementing a recent case study from literature.

In future work, we plan to extend the comparison with the
state-of-the-art by re-implementing the case study also in Scafi
(simulated with Alchemist or with the built-in Scafi simulator),
and measure performance more accurately with a profiler,
in order to separate the resources needed for the network
simulation and language execution aspects of the computation.

Since the FCPP library is still in its early stage of life,
far-reaching development plans are in order: developing new
components for simulation, self-organising cloud scenarios
and microcontrollers; adding support for interactive simula-
tions by importing the C++ graphical user interface of Proto
[14]; extending the library of aggregate functions; improving
documentation and support; evaluating the usability of the
library. In particular, we plan to perform a case study on a
self-organising cloud scenario in the near future, and on a
deployment of microcontrollers in a mid-term future. Further-
more, a tool for translating a Kotlin-like (and Protelis-like)
syntax into FCPP aggregate functions is already in its early
stage of development, with the purpose of offering a cleaner
syntax interface while retaining the benefits of the library.
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