
21 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Improving Collection Dynamics by Monotonic Filtering

Publisher:

Published version:

DOI:10.1109/ACSOS-C51401.2020.00043

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1761364 since 2020-11-05T14:36:43Z

Improving Collection Dynamics by Monotonic
Filtering

Hunza Zainab∗, Giorgio Audrito†, Soura Dasgupta∗, Jacob Beal‡
∗Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA

email: hunza-zainab@uiowa.edu, soura-dasgupta@uiowa.edu
†Computer Science Department and C3S, University of Torino, Torino, Italy

email: giorgio.audrito@unito.it
‡Raytheon BBN Technologies, Cambridge, MA, USA

email: jakebeal@ieee.org

Abstract—A key coordination problems in distributed open
systems is distributed sensing, as achieved by cooperation and
interaction among individual devices. An archetypal operation
of distributed sensing is data summarization over a region of
space, by which many higher level problems can be addressed,
including counting items, measuring space, averaging environ-
mental values, etc. A typical coordination strategy to perform
data summarization in a peer-to-peer scenario, where devices
can communicate only with a neighborhood, is to progres-
sively accumulate information towards one or more collector
devices, though this typically exhibits problems of reactivity
and fragility. In this paper, we present a monotonic filtering
strategy for improving the dynamics of single path collection
algorithms. The strategy consists of inhibiting communication
across devices whose distance towards the collector device is
not decreasing. We prove that single path collection in a line
graph results in quadratic overestimates after a source change
and that these overestimates disappear with the application
of monotonic filtering. These preliminary results suggest that
monotonic filtering is likely to improve the dynamics of single-
path collection algorithms, by preventing excessive overestimates.

Index Terms—edge computing, data aggregation, self-
stabilisation

I. INTRODUCTION

Physical environments are increasingly filled with hetero-
geneous connected devices (intelligent and mobile, such as
smartphones, drones, robots, and IoT devices). Such settings
increasingly call for new mechanisms of collective adaptation,
ultimately supporting a view of environments as acting as
true pervasive computing fabric, where sensing, actuation,
and computation are naturally seen as inherently resilient
and distributed across physical space [1]. In this paper, we
consider the design of a self-adaptive coordination strategy
able to realize distributed sensing of physical properties of

Supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001117C0049. The views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted as repre-
senting the official views or policies of the Department of Defense or the
U.S. Government. This document does not contain technology or technical
data controlled under either U.S. International Traffic in Arms Regulation
or U.S. Export Administration Regulations. Approved for public release,
distribution unlimited (DARPA DISTAR case 33033, 6/2/20). Dasgupta also
has an appointment with the Shandong Adademy of Sciences, China.

the environment or virtual/digital characteristics of computa-
tional resources. By the strict cooperation and interaction of
dynamic sets of mobile entities situated in physical proximity,
distributed sensing can generally support forms of complex
situation recognition [2], better monitoring of the physical
environment [1], and observation (and then control) of teams
of agents [3].

A paradigmatic coordination operation of distributed sens-
ing is data summarization performed on devices filling a region
of space. This is a key component with which one can then
realize other operations such as counting, integration, averag-
ing, maximization, and the like. In fact, data summarization
corresponds to the reduce phase of the MapReduce paradigm
[4], extended into a “spatial” context of agents spread in a
physical environment and communicating by proximity, and
has close analogs for wireless sensor networks [5]. Data
summarization can be performed by distributed collection,
where information propagates towards one or more collector
devices, and combines en-route until reaching a unique value,
i.e., the result of collection. This component of self-organizing
behavior (also referred to as the “C” building block [6]), is one
of the most basic and widely used components of collective
adaptive systems (CASs), as it can be instantiated for values of
any data type with an associative and commutative aggregation
operator, and can be applied to a wide variety of different
contexts.

A number of recent papers have focused on characterizing
the convergence dynamics of data summarization algorithms
[6], [7] and and improving such dynamics [8]–[10]. A common
result across these works is that, despite being self-stabilizing,
such algorithms can give rise to excessive transient overesti-
mates. Such overestimates can have deleterious effects in many
settings. For example if the goal is to apprise a leader of the
net resources in a network, then temporary overestimates may
cause a leader to agree to accept more tasks than the network
is capable of performing.

In this paper, we address this issue by presenting a mono-
tonic filtering strategy for improving the dynamics of single-
path collection algorithms by removing overestimations. This
strategy operates by inhibiting communication between de-
vices whose distance towards the collector device is not

Table I
TABLE OF SYMBOLS

Symbol Property
di(t) Distance estimate
di True distance
ci(t) Constraining node
ci True constraining node
Ci(t) Set of nodes constrained by i at time t
ai(t) Partial accumulate
S(t) Set of sources
eij Length of the edge between i and j
vi Input value in node i
N(i) Set of neighbour nodes of i
V Set of all vertices

decreasing. We prove that single-path collection in a line graph
can incurs quadratic overestimates after a source change; the
provide that these overestimates disappear when monotonic
filtering is applied. These preliminary results suggest that
monotonic filtering could improve the dynamics of single-path
collection algorithms, by preventing excessive overestimates.

The remainder of this paper is structured as follows. Section
II presents the background and related work on the building
blocks investigated in this paper. Section III shows that single-
path collection can incur quadratic overestimates during tran-
sients. Section IV shows that the introduction of monotonic
filtering removes overestimates for line graphs, and Section V
discusses conclusions.

II. BACKGROUND AND RELATED WORK

Recent works have promoted an approach to engineering
complex field-based coordination algorithms by combination
of basic building blocks [6], capturing key mechanisms of
self-organisation such as spreading (block “G”), collection
(block “C”), time evolution (block “T”), and leader election
and partitioning (block “S”).

The most basic and versatile building block is called gra-
dient (G block), which provides distance estimation, creation
of spanning trees, and execution of broadcast operations. In
particular, the estimated distances from a source are a crucial
input of every data aggregation routine (C block), provid-
ing means to guide the direction of aggregation. Accurately
computing distances in a distributed and volatile scenario is
a demanding task, which can be tackled in different ways
depending on the context [11], [12]. In this paper, we focus on
the most basic adaptive Bellman-Ford (ABF) algorithm [6],
[13], although the monotonic filtering strategy may as well
be applied to single-path collection algorithms using other
distance estimation routines as input. In this algorithm, the
distance estimate di(t) of node i at time t is computed as

Figure 1. Representation of an N -node line graph (N -line) with a source
switch from time t = 0 to t = 1.

follows:1

di(t) =

{
0 if i ∈ S(t)

dj(t− 1) + eji for j = ci(t) otherwise
(1)

ci(t) =

i if i ∈ S(t)

argmin
j∈N(i)

{dj(t− 1) + eji} otherwise (2)

where S(t) is the set of sources, eij is the distance between
neighbouring nodes i and j, ci(t) is the constraining node
of i at time t, and N(i) is the set of neighboring nodes
of i (c.f. Table I). Notice that the ABF algorithm produces
two different outputs: the distance estimates di(t) and the
constraining nodes ci(t). Both of these evolve with time t
until reaching the self-stabilising limit di, ci for sufficiently
large t [13].

The constraining nodes implicitly define a spanning tree
in a network: every node i has exactly one ancestor in the
spanning tree (its true constraining node ci, assuming stable
tie-breaking), except for the source (which becomes the root
of the tree). This spanning tree can be used to guide a process
of data collection, via a strategy that we call here single-path
collection (SP collection for short). In this algorithm, partial
accumulates ai(t) of node i at time t are computed as in the
following:

ai(t) =
∑

j∈Ci(t)

(aj(t− 1)) + vi (3)

where vi are input values to be accumulated and

Ci(t) = {j ∈ N(i)| i = cj(t− 1)} (4)

is the set of nodes constrained by i. In the next sections,
we will study the dynamics of this algorithm, showing that
it naturally occurs in quadratic overestimates, which can be
avoid by resorting to a “monotonic filtering” guided by the
distance estimates di(t) produced by ABF.

A. Line Graph

In the remainder of this paper, we will use the following
graph (represented in Fig. II-A) to test the effectiveness of the
collection algorithms under consideration.

1In this paper, we assume that the network topology in which the algo-
rithms are computed is fixed, and that the computation of nodes happen in
synchronous rounds. However, all algorithms presented here can easily be
extended to mutable network topologies and asynchronous networks (c.f. [6]).

Definition 1 (Line Graph). An N -node line graph LN (N -line
for short) is a graph with N nodes i = 0 . . . N − 1 and the
following topology:

N(i) =


{i+ 1} if i = 0

{i− 1} if i = N − 1

{i+ 1, i− 1} otherwise
(5)

eji = 1 for all j ∈ N(i) (6)

Furthermore, we assume that there is a single source (switch-
ing from time t = 0 to time t = 1, c.f. Fig II-A) as follows:

S(t) =

{
{N − 1} if t = 0

{0} otherwise
(7)

and initial values for the G block are the true distances and
constraining nodes towards the initial source S(0) = N − 1:

di(0) = N − 1− i for all i (8)

ci(0) =

{
i if i = N − 1

i+ 1 otherwise
(9)

Finally, the input value for every node is vi = 1 and the initial
values for the partial accumulates of the C block are:

ai(0) = i+ 1 for all i. (10)

Notice that according to Definition 1, for every t > 0
the source is node 0, while all of the initial values di(0),
ci(0), ai(0) correspond to a stable state where the source is
node N − 1. This represents the situation right after a source
change, where both the ABF estimates and collection results
will need to adjust. In particular, the adjustment process of
ABF is described by the following lemma.

Lemma 1. In LN , the constraining nodes ci(t) as described
in equation (2) for nodes i = 0....N − 1 and times t ≥ 0,
change exactly once from right to left. More precisely, for
i = 1...N − 2:

ci(t) =

{
i+ 1 if t ≤ i

i− 1 otherwise
(11)

while c0(t) = 0 and cN−1(t) = N − 2 for all t > 0.

Proof. For node i = 0 and t > 0, from equation (7) and
(2), we have that c0(t) = 0 since node 0 is the source after
time t = 0. For node i = N − 1, from (5) there is only one
neighbour node (i.e. node N − 2), thus for t > 0

cN−1(t) = argmin
j=N−2

(dN−2(t− 1) + 1) = N − 2 (12)

For i = 1...N − 2, we proceed by induction on t.
Base case: Substituting t = 0 in equation (11), we obtain:

ci(0) = i+ 1 (13)

which holds as it is exactly equation (9).
Inductive Step: Assume that equation (11) holds for some

t > 0. To complete our proof, we must show that it also holds
for time t′ = t+ 1. Substituting for t′ in equation (2).

ci(t
′) = argmin

j=i+1,i−1
(dj(t) + 1) (14)

The distance estimates decrease as you move closer to the
source and initially the source was node N − 1. The initial
condition for time t = 0 given in equation (8) corresponds to
that. We assume that the distance estimates remain the same
even after the source has changed until the time right before
the change in constraining nodes. We assert that the distance
estimates change at t = i.

Then for time t′ ≤ i, as distance estimates do not change
di−1(t) < di+1(t)

ci(t+ 1) = i− 1 (15)

While for time t′ > i, according to our assumption the
distance estimates have changed at time t and are di−1(t) >
di+1(t), hence

ci(t+ 1) = i+ 1 (16)

Thus, the constraining node at time t was i+1, while at time
t+ 1 it is i− 1, concluding the proof.

III. QUADRATIC OVERESTIMATES IN SP COLLECTION

We now show that the single-path collection algorithm in
equations (1)-(4) reaches quadratic overestimates on the N -
node line graph LN . In the first phase (where t ≤ i), every
node except the last two (i ≤ N−3) does not change is partial
accumulate, as shown in the following lemma.

Lemma 2. In LN , the partial accumulate ai(t) at any node
for time t ≤ i, where i goes from i = 0 to i = N − 3 is

ai(t) = i+ 1 (17)

Proof. To prove this, we will use equation (3), where con-
straining nodes are given from Lemma 1 and proceed by
induction on t.

Base case For t = 0 and all i ≤ N − 3, ai(0) = i + 1 by
Definition 1 of the input line graph G.

Inductive Step: Assume that equation (17) holds for some
t ≥ 0. We must show that it also holds true for t+1 provided
that t+ 1 ≤ i, that is:

ai(t+ 1) = i+ 1 (18)

Substituting for time t+ 1 in equation (3):

ai(t+ 1) =
∑

j∈Ci(t+1)

aj(t) + 1 (19)

Using equation (4) and Lemma 1:

Ci(t+ 1) = {j ∈ N(i)|cj(t) = i} = {i− 1} (20)

Then equation (19) simplifies to:

ai(t+ 1) = ai−1(t) + 1 (21)

Using the inductive hypothesis:

ai−1(t) = (i− 1) + 1 = i (22)

Then equation (21) simplifies to:

ai(t+ 1) = i+ 1 (23)

concluding the proof.

Meanwhile, the partial accumulates at the last two nodes
N − 2, N − 1 keep increasing before suddenly dropping to
the stable state, as characterised by the following lemma.

Lemma 3. In LN , the partial accumulate ai(t) at the old
source node N − 1 for time t ≤ N − 1 is given by

aN−1(t) = d
t

2
eN (24)

And for t ≥ N
aN−1(t) = 1 (25)

Proof. We will prove this by induction.
Base case: For t = 1 and t = 2 from Lemma 2,

aN−1(1) = (N − 1) + 1 = N (26)

aN−1(2) = (N − 1) + 1 = N (27)

Inductive Step: Assume that equation (24) holds true for all
t′ < t. To complete the induction, we must show that it also
holds for t.

Substituting for time t and node i = N − 1 in equation (3)
where Ci(t) contains only one node j = N − 2 as given by
equation (4):

aN−1(t) = aN−2(t− 1) + 1 (28)

Then again through equation (3):

aN−2(t− 1) = aN−1(t− 2) + aN−3(t− 2) + 1 (29)

Then using Lemma 2, aN−3(t− 2) = N − 2:

aN−1(t− 2) = aN−1(t− 2) + (N − 2) + 1 + 1 (30)

From equation (24), we have:

aN−1(t− 2) = d t− 2

2
eN = d t

2
eN −N (31)

Thus:
aN−1(t) = d

t

2
eN −N +N (32)

And finally:

aN−1(t) = d
t

2
eN (33)

This completes the proof of equation (24), and we now move
on to the proof of equation (25).

For t ≥ N , using equation (4), CN−1(t) = {j ∈ N(i)|i =
cj(t− 1)} = ∅. Then the algorithm in equation (3) gives:

aN−1(t) =
∑

j∈Ci(t)=∅

(aj(t− 1)) + 1 = 1 (34)

Finally, in the last phase t ≥ N − 1 the large overestimates
in the last two nodes flow towards the new source, as shown
in the following lemma.

Lemma 4. In LN , once all the constraining nodes are in a
steady state, that is, for every time t ≥ N−1 and index x ≥ 0:

aN−1−x(t+ x) = aN−1(t) + x (35)

Proof. Base case: For x = 0, the equation holds trivially:

aN−1−0(t+ 0) = aN−1(t) = aN−1(t) + 0 (36)

Inductive Step: Assume that equation (35) holds for some
x ≥ 0 and t ≥ N − 1. To complete the induction, we must
show that it also holds for x + 1 and the same t. Let i =
N − 1 − (x + 1). From the algorithm definition in equation
(3):

ai(t+ x+ 1) =
∑

j∈Ci(t+x+1)

(aj(t+ x)) + 1 (37)

Since t + x ≥ t ≥ N − 1, we can apply Lemma 1 to obtain
that Ci(t + x + 1) = {j ∈ N(i)|i = cj(t + x)} = {i + 1}.
Then, substituting i and applying the inductive hypothesis:

ai(t+ x+ 1) = ai+1(t+ x) + 1

= aN−1−x(t+ x) + 1

= aN−1(t) + x+ 1

concluding the proof.

Altogether, the lemmas proved so far imply that a quadratic
overestimate is reached in the new source i = 0 just before
reaching the final stable state, as detailed in the following
theorem.

Theorem 1. In LN , the maximum partial accumulate ai(t)
reached by the source is obtained at time t = 2N − 2 and is:

a0(2N−2) =
⌈
N − 1

2

⌉
N+N−1 ≥ N(N + 1)

2
−1 ∈ O(N2)

(38)
before reaching the correct value at time t = 2N − 1

a0(2N − 1) = N (39)

Proof. Consider Lemma 4 where t = x = N − 1, so that:

a0(2N−2) = aN−1−x(t+x) = aN−1(t)+x = aN−1(N−1)+N−1.
(40)

Then by Lemma 3:

a0(2N −2) = aN−1(N −1)+N −1 =

⌈
N − 1

2

⌉
N +N −1

(41)
For a0(2N−1), consider Lemma 4 where t = N , x = N−1,
so that:

a0(2N−1) = aN−1−x(t+x) = aN−1(t)+x = aN−1(N)+N−1.
(42)

Then by equation (25) in Lemma 3:

aN−1(N) +N − 1 = 1 +N − 1 = N.

IV. IMPROVED DYNAMICS WITH MONOTONIC FILTERING

We now propose an improved version of the single path C-
block, by imposing a monotonic filter that reduces the set of
considered constraining nodes as follows:

Ci(t) = {j ∈ N(i)| i = cj(t− 1) ∧ di(t) < dj(t− 1) ∧ i 6= j}
(43)

Using this filtered set Ci(t), we compute the partial accu-
mulates exactly as before with equation (3). This constraint,
which intuitively ensures that data is collected by always
descending distances, is satisfied by every node in a stable
state; however, it may not be satisfied during transients. In the
following, we will show that monotonic filtering is enough
to completely eliminate the overestimates in LN . First, we
characterise the partial accumulates for a set of intermediate
times i+ 1 ≤ t ≤ 2N − 3− i and every node except for the
last two i ≤ N − 3, as in the following lemma.

Lemma 5. In LN , the partial accumulate ai(t) for time i+1 ≤
t ≤ 2N − 3− i and nodes i = 0 to i = N − 3 is given by

ai(t) =

⌈
t− i

2

⌉
(44)

Proof. Base Case: For a node i at time t = i + 1 and time
t = i+ 2, using equation (3):

ai(i+ 1) =
∑

j∈Ci(i+1)

(aj(i)) + 1 (45)

and:
ai(i+ 2) =

∑
j∈Ci(i+2)

(aj(i+ 1)) + 1 (46)

To determine the constraining node set Ci(i+1) and Ci(i+2),
using equation (43):

Ci(i+ 1) = {j ∈ N(i) | (47)
cj(i) = i ∧ di(i+ 1) < dj(i) ∧ j 6= i}

= ∅

Ci(i+ 2) = {j ∈ N(i) | (48)
cj(i+ 1) = 0 ∧ d0(i+ 2) < dj(i+ 1) ∧ j 6= i}

= ∅

These sets are empty as from Lemma 1 for time t = i and
t = i+1, no node has node i as their constraining node. Then
equations (45)-(46) do not have the first term, thus ai(t) = 1.
For t = 3 . . . 2N − 1 we proceed by induction on t.

Inductive Step: Assume that equation (44) holds for some
t ≥ i+2. We must show that the same equation holds for t+1
as well. Using equations (43) and (3), Ci(t) is no longer empty.
By Lemma 1, for time t > i+1 the only node constrained by
i is j = i+ 1. Thus:

Ci(t+ 1) = {i+ 1} (49)

Then using equation (3):

ai(t+ 1) = ai+1(t) + 1 (50)

And from our inductive hypothesis:

ai+1(t) =

⌈
t− i− 1

2

⌉
(51)

Then:

ai(t+ 1) =

⌈
t− i− 1

2

⌉
+ 1 =

⌈
t− i+ 1

2

⌉
(52)

concluding the proof.

Notice that this last lemma holds also for the traditional SP
collection without monotonic filtering. In the following lemma,
we prove that for times t ≥ 2N −2− i and nodes i the partial
accumulates stabilise.

Lemma 6. In LN with monotonic filtering, for time t ≥ 2N−
2− i

ai(t) = N − i (53)

Proof. We prove the hypothesis by backwards induction on i,
starting from i = N − 1 down to i = 0.

Base case: The distance condition in equation (43) along
with Lemma 1 for t > 0 implies that:

CN−1(t) = ∅ (54)

For t > 0:

CN−1(t) = {j ∈ N(N − 1)|cj(t− 1) = N − 1 and (55)
dN−1(t) < dj(t− 1), j 6= N − 1} = ∅

where j = N − 2, but the distance condition fails to meet as
dN−1(t) > dj(t− 1) and hence the set is empty.

Thus:

aN−1(t) =
∑

j∈CN−1(t)=∅

(aj(t− 1)) + 1 = 1 (56)

concluding the proof for i = N − 1.
Inductive Step: Assume now that the hypothesis holds for

i+1 ≤ N − 1. We need to prove that it holds for i ≤ N − 2.
Notice that i ≤ N − 2 implies that t ≥ 2N − 2 − i ≥ 2N −
2 −N + 2 = N . Hence by Lemma 1 the constraining nodes
and distance estimates have already stabilised at t, thus:

Ci(t) = {i+ 1} (57)

Then, by inductive hypothesis:

ai(t) = ai+1(t− 1) + 1 = N − (i+ 1) + 1 = N − i (58)

concluding the proof.

Altogether, the previous lemmas imply that the new source
i = 0 does not have overestimates during convergence of the
SP collection, and in fact, it has underestimates that are no
worse than without monotonic filtering (since Lemma 5 holds
for collection without monotonic filtering as well).

Theorem 2. In LN with monotonic filtering, the partial accu-
mulates at the new source a0(t) do not have any overestimates
and for 0 < t ≤ 2N − 3 are given by

a0(t) =

⌈
t

2

⌉
(59)

while for t ≥ 2N − 2 are stable a0(t) = N .

Proof. Using Lemma 5 on i = 0, for t = 1 . . . 2N − 3:

a0(t) = d
t− 0

2
e = d t

2
e (60)

By lemma 6, for t ≥ 2N − 2:

a0(t) = N − 0 = N (61)

concluding the proof.

V. CONCLUSIONS

In this paper, we have introduced the monotonic filtering
strategy for single-path collection algorithms. In the sample
case of an N -node line graph, we showed that the introduction
of monotonic filtering allows to avoid quadratic overestimates,
without introducing any additional underestimate.

In future work, we plan to extend the present results by
both (i) identifying a larger family of graphs for which single-
path collection produces quadratic overestimates; and by (ii)
identifying the assumptions needed to prove that monotonic
filtering avoids quadratic overestimates. Based on preliminary
investigations, quadratic overestimates seem to possible for
all graphs, but are also avoided by monotonic filtering for all
graphs, provided that rounds are synchronous. Finally, we plan
to empirically validate the effectiveness of monotonic filtering
by simulation on asynchronous, mutable networks.

REFERENCES

[1] N. Bicocchi, M. Mamei, and F. Zambonelli, “Self-organizing virtual
macro sensors,” ACM Transactions on Autonomous and Adaptive Sys-
tems, vol. 7, no. 1, pp. 2:1–2:28, 2012.

[2] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan, “Context is key,”
Communications of the ACM, vol. 48, no. 3, pp. 49–53, 2005.

[3] M. Viroli, D. Pianini, A. Ricci, and A. Croatti, “Aggregate plans for
multiagent systems,” International Journal of Agent-Oriented Software
Engineering, vol. 4, no. 5, pp. 336–365, 2017.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[5] A. K. Talele, S. G. Patil, and N. B. Chopade, “A survey on data
routing and aggregation techniques for wireless sensor networks,” in
International Conference on Pervasive Computing (ICPC). IEEE, 2015,
pp. 1–5.

[6] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
resilient collective adaptive systems by self-stabilisation,” ACM Trans-
actions on Modeling and Computer Simulation, vol. 28, no. 2, pp. 16:1–
16:28, 2018.

[7] Y. Mo, J. Beal, and S. Dasgupta, “Error in self-stabilizing spanning-tree
estimation of collective state,” in 2nd IEEE International Workshops
on Foundations and Applications of Self* Systems (FAS*W). IEEE
Computer Society, 2017, pp. 1–6.

[8] G. Audrito and S. Bergamini, “Resilient blocks for summarising
distributed data,” in 1st Workshop on Architectures, Languages and
Paradigms for IoT (ALP4IoT), ser. EPTCS, vol. 264, 2017, pp. 23–26.

[9] G. Audrito, S. Bergamini, F. Damiani, and M. Viroli, “Effective
collective summarisation of distributed data in mobile multi-agent
systems,” in 18th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). International Foundation for
Autonomous Agents and Multiagent Systems, 2019, pp. 1618–1626.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3331882

[10] ——, “Resilient distributed collection through information speed thresh-
olds,” in 22th International Conference on Coordination Models and
Languages (COORDINATION), ser. Lecture Notes in Computer Science.
Springer, 2020, to appear.

[11] Q. Liu, A. Pruteanu, and S. Dulman, “Gradient-based distance estimation
for spatial computers,” Comput. J., vol. 56, no. 12, pp. 1469–1499, 2013.

[12] G. Audrito, F. Damiani, and M. Viroli, “Optimal single-path informa-
tion propagation in gradient-based algorithms,” Science of Computer
Programming, vol. 166, pp. 146–166, 2018.

[13] Y. Mo, S. Dasgupta, and J. Beal, “Robustness of the adaptive bellman -
ford algorithm: Global stability and ultimate bounds,” IEEE Transactions
on Automatic Control, vol. 64, no. 10, pp. 4121–4136, 2019.

http://dl.acm.org/citation.cfm?id=3331882

	Introduction
	Background and Related Work
	Line Graph

	Quadratic Overestimates in SP Collection
	Improved Dynamics with Monotonic Filtering
	Conclusions
	References

