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Abstract. The computational analysis of complex biological systems
can be hindered by two main factors. First, modeling the system so that
it can be easily understood and analyzed by non-expert users is not
always possible, especially when dealing with systems of Ordinary Dif-
ferential Equations. Second, when the system is composed of hundreds or
thousands of reactions and chemical species, the classic CPU-based sim-
ulators could not be appropriate to efficiently derive the behavior of the
system. To overcome these limitations, in this paper we propose a novel
approach that combines the descriptive power of Stochastic Symmetric
Nets–a Petri Net formalism that allows modeler to describe the system
in a parametric and compact manner–with LASSIE, a GPU-powered
deterministic simulator that offloads onto the GPU the calculations re-
quired to execute many simulations by following both fine-grained and
coarse-grained parallelization strategies. This pipeline has been applied
to carry out a parameter sweep analysis of a relapsing-remitting multiple
sclerosis model, aimed at understanding the role of possible malfunctions
in the cross-balancing mechanisms that regulate peripheral tolerance of
self-reactive T lymphocytes. From our experiments, LASSIE achieves
around 97× speed-up with respect to the sequential execution of the
same number of simulations.
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1 Introduction

The Immune System (IS) is the ensemble of cells and molecules that protects
living organisms from foreign pathogens. This complex machinery consists in a
set of mechanisms whose complexity depends on the evolutionary level of the
host. In mammals, besides the innate immunity, the adaptive immunity repre-
sents the most effective weapon against viruses and bacteria, thanks to its ability
to specifically recognize and act against pathogens (specificity), to discriminate
between self and non-self, and to remember previously encountered pathogens in
order to act more rapidly (memory). While being extremely effective, adaptive
immunity is not faultless. A breakdown of the mechanisms that allow the IS
to discriminate between self and non-self antigens may lead to harmful effects,
such as the arise of autoimmune diseases. Multiple sclerosis (MS), a disease of
the Central Nervous System (CNS), falls within those.

MS is a chronic inflammatory disease that causes the removal of myelin sheath
created by oligodendrocytes from axons, leading to a reduced functionality of the
CNS. It is well known that a genetic predisposition correlates with MS [8]. More-
over, environmental and dietary factors may play an important role. Epstein-
Barr virus (EBV) may trigger the disease onset [18, 17], while it is supposed
that vitamin D could help in preventing MS [11]. Symptoms include weakness
and fatigue, blurry vision, speech problems, numbness and tingling, dizziness,
lack of coordination and uncontrolled bodily functions. The most common form
of MS (80 − 90% of the total insurgence) is Relapsing-Remitting MS (RRMS)
[20], where relapses (periods of disease progression) are followed by periods of
remission (total or partial recovery from symptoms). RRMS usually occurs in
the age of 20− 40, with a women-to-men ratio of 2:1. When left untreated, 65%
of RRMS cases turn after 15− 25 years to more severe MS forms [7].

Even if the etiology of MS is not fully understood, the common shared hy-
pothesis suggests that self-reactive T lymphocytes may be activated in the pe-
riphery by an external trigger (i.e., EBV). Activated T cells can overcome the
blood brain barrier and go through the CNS [24]. Once in the brain, self-reactive
cells cause inflammatory events that negatively affect both myelin and oligoden-
drocytes, also involving other IS entities such as B lymphocytes, macrophages,
and microglia. It is worth noting that relapses usually represent the clinical cor-
relates of inflammatory bouts. Self-reactive T lymphocytes represent one of the
main actors in the development and progression of the disease, as such cells tend
to decrease in the peripheral blood while increasing in the spinal fluid when re-
lapses occur. Furthermore, homeostasis of regulatory T cells (Treg) and effectors
T cells (Teff) is fundamental in preventing autoimmunity [9, 13]. More precisely,
a breakdown of the peripheral tolerance mechanisms, such as the lack of func-
tionality or deficiency of Treg functions, may bring to uncontrolled activation
and proliferation of effectors T cells [19].



This hypothesis has been confirmed by Vélez de Mendizábal et al. [23],
with the use of an Ordinary Differential Equations (ODEs) model to reproduce
RRMS. However, this model represented a very simplistic scenario, by avoiding
to explicitly include the trigger of the disease represented by an external factor
such as the EBV, as well as the occurrence of neural damage represented by the
loss of myelin and/or the death of oligodendrocytes. Furthermore, the model to-
tally missed to give any description of the spatial evolution of the disease. These
issues were fulfilled by an agent based model (ABM) capable of better describ-
ing, from a temporal and spatial points of view, the typical shape of RRMS [16].
It must be said that, due to the significant computational efforts needed to run
thousands of ABM simulations, a deeper analysis of the model parameters that
may influence the disease progression was not carried out.

To cope with these aspects, in this paper we propose a new framework for
the analysis of this type of biological systems, in which a graphical formalism is
exploited to facilitate the model creation and the simulation of its behavior. In
detail, Stochastic Symmetric Net (SSN) [6], a high-level Petri Nets formalism,
is used to describe the system in a parametric and compact manner. Then, from
the SSN model an ODE system is automatically derived and solved through
a numerical integrator that exploits a High Performance Computing solution.
In particular, a GPU-based simulation algorithm of ODE systems is suitable
in this context [15], since models translated from SSNs into set of equations
typically involve thousands of reactions and/or chemical species. It is therefore
necessary to accelerate the numerical integration to achieve thorough analyses
of the system. Here we exploit an improved version of LASSIE [22], a GPU-
powered deterministic simulator capable of realizing both a fine-grained and a
coarse-grained parallelization, meaning that the calculations required by a single
simulation are distributed over the GPU cores, as well as multiple simulations
that run in a parallel fashion on the GPU.

We show that this novel framework that combines SSNs with LASSIE may
provide a good compromise between its effectiveness in terms of model descrip-
tion and solution, and the mathematical and computational skills needed to
generate, simulate and analyse models.

The paper is structured as follows. In Sec. 2 we briefly recall the basic notions
of SSN and the functioning of LASSIE, while in Sec. 3 we describe the SSN
model of MS. In Sec. 4 we present our developed framework and the results of
the parameter sweep analysis executed on the RRMS model. We conclude in
Sec. 5 with some final remarks and future directions of this work.

2 Background

In this section we introduce all the definitions, the notations and methods used in
the rest of the paper. We first introduce the SSN formalism and then we describe
how to translate a SSN model into the corresponding (symbolic) ODE system.
Finally, we briefly describe LASSIE, the GPU-powered deterministic simulator
exploited to realize the analysis of the RRMS model.



2.1 The SSN formalism

Stochastic Symmetric Net (SSN) is a high-level graphical formalism that extends
Stochastic Petri Net (SPN) formalism with colored tokens [6], so that an infor-
mation can be associated with tokens flowing in the net. This feature allows for
a more compact system representation that can be exploited during both the
construction and the solution of the model [6, 3, 1]. SSN is a bipartite directed
graph with two types of nodes, called places and transitions.

The places, graphically represented as circles, correspond to the variables
describing the state of the system. Places can contain colored tokens, whose
colors are defined by the color domain cd() associated with any place. The place
color domains are thus defined as Cartesian products of color classes Ci, or by
the neutral element ε consisting of a neutral color as in ordinary Petri Nets. A
color class Ci can be partitioned into static sub-classes Ci,1 ∪ . . . ∪ Ci,l. Then,
the colors of a class represent entities of the same nature (e.g., regulatory T cells),
but only the colors within a static sub-class are guaranteed to behave similarly
(e.g., regulatory T cells in active state). Moreover, a color class is ordered if and
only if it is possible to define on it a successor function, denoted by ++, which
determines a circular order on its elements. For instance, in the SSN model in
Fig. 1, three color classes are defined: State denoting the cell state, PosX and
PosY encoding the cell position on a grid representing a tissue portion. The
color class State is divided into two static sub-classes N and A, which refer
to the cell states Naive and Active, respectively. Differently, the ordered color
classes PosX and PosY are not divided into static sub-classes. According to this
color definition, the color domain of places Treg and Teff is State×PosX×PosY.
Differently, the color domain of places ODC and EBV is PosX× PosY.

The transitions, graphically represented as boxes, correspond to the system
events. The possible colored instances of a transition are defined by the color
domain cd() associated with any transition. The transition color domains are
thus expressed through a list of typed variables, whose types are selected among
the color classes Ci. The variables associated with a transition appear in the
functions labeling its arcs, so that a transition instance binds each variable to a
specific color of proper type. Then, a guard can be used to introduce restrictions
on the allowed instances of a transition. Such restrictions are defined as Boolean
expression over the color domain of the transition, and their terms, called basic
predicates, allow one (i) to compare colors assigned to variables of the same or
different type (x = y, x 6= y); (ii) to test whether a color element belongs to a
given static sub-class (x ∈ Ci,j); (iii) to compare the static sub-classes of the
colors assigned to two variables (x, y ∈ Ci,j). For instance, the color domain of
transition TeffActivation in Fig. 1 is State × State × PosX × PosY. The guard
[m ∈ N ∧ n ∈ A] is associated with this transition to mimics the activation of
a Naive Teff cell.

The functions labeling arcs are formally expressed as sums of tuples where
each tuple element is chosen from a set of predefined basic functions, whose
domains and co-domains are respectively color classes and multisets on color
classes. The basic functions in SSN formalism can be grouped as follows: projec-



tion functions, denoted by a variable in the transition color domain (e.g., m, x
and y appearing in the arc expression < m,x, y > labeling several arcs in net);
successor functions, denoted by x + +, where x is a variable in the transition
color domain whose type is an ordered class; a constant function returning all
elements in a class (or sub-class), indicated as classname.All. Input, output arcs
are denoted by I,O[p, t] : cd(t) → Bag[cd(p)], where Bag[A] is the set of all
possible multisets that may be built on set A.

The state of an SSN, called marking, is defined by the number of colored
tokens in each place. For instance, a marking for the model in Fig.1, assuming
N = {n}, A = {a}, PosX = {x1, . . . , xn} and PosY = {y1, . . . , yn}, is

m = Treg(10〈n, x1, y2〉) + Teff(12〈a, x2, y2〉),

representing the state in which there are 10 Treg cells in position x1, y2 and 12
Teff cells in position x2, y2.

The evolution of the system is given by the firing of an enabled transition,
where the enabling condition and the state change associated with each transi-
tion instance are specified by means of arc functions labeling the arcs connecting
a place to this transition and vice versa. Given the color identifying an instance
of the transition t, the arc function labeling the arc connecting t to a place p
provides the (multi)set of colored tokens that will be either added to or removed
from p. In the SSNs, the firing of an enabled transition instance 〈t, c〉 occurs
after a random delay sampled from a negative exponential distribution whose
rate is given by:

ω(t, c) =

{
ri condi(c) ∀i = 1, . . . , n,
rn+1 otherwise,

where condi is a Boolean expression comprising standard predicates on the tran-
sition color instance. In this manner, the firing rate ri of a transition instance
can depend only on the static sub-classes of the objects assigned to the tran-
sition parameters and on the comparison of variables of the same type. We
assume that the conditions condi are mutually exclusive. So doing, the stochas-
tic process mimicking the dynamic of SSN models is a Continuous Time Markov
Chain (CTMC), where the states are identified with SSN markings and the state
changes correspond to the marking changes in the SSN.

If we assume that all the transitions of the SSN use an infinite server policy,
the transition rate from state m to state m′ in the CTMC can be written as:

qm,m′ =
∑

∀t,c:m〈t,c〉−→m′

ω(t, c)e(m, t, c),

where e(m, t, c) is the enabling degree of the transition instance 〈t, c〉 in marking
m, defined as:

e(m, t, c) = min
(pj ,c′):I[pj ,t](c)(c′)6=0

⌊
m(pj)(c

′)

I[pj , t](c)(c′)

⌋
.



According to these assumptions, the temporal behavior of an SSN model can
be derived by means of analytic or numerical approaches [21]. However, in the
case of very complex models, the underlying CTMC can not be derived or/and
solved due to the well-known state space explosion problem. To deal with these
cases, whenever the stochasticity of the modeled system can be neglected (e.g.,
due to huge number of cells), the so-called deterministic approach [12] can be
exploited, assuming that the behavior of entities contained in a place of the net
is described with an ODE and that the whole model is specified with a system
of ODEs, one for each place of the net.

2.2 From SSN models to ODEs

Starting from Kurtz’s results [12], in [3] we described how to efficiently derive an
ODE system that provides a good deterministic approximation for the stochastic
behavior of the corresponding SSN model. Practically, a SSN model is firstly
translated into its equivalent SPN through the unfolding procedure [3], following
a procedure that consists of replicating places and transitions as many times as
the cardinalities of the corresponding color domains. Hence, colors disappear in
the unfolded model and the complex behavior due to color combinations, color
arc functions and color transition guards, is encoded with a net structure in
which tokens are indistinguishable entities and new transitions, places and arcs
are introduced to account for the different actions performed by instances of the
same transition on colored tokens. Note that the name of new places (transitions)
in the unfolded net is defined by associating with the original name of the place
(transition) in the SSN one possible element of its color domain. For instance,
the unfolding of the SSN p place, with cd(p) = C × C and C = {c1, c2}, will
provide four places: pc1,c1, pc1,c2, pc2,c1 and pc2,c2.

When the unfolded SPN model is derived, the average number of tokens in
each place of the unfolded net is approximated through the following ODE:

dxi(ν)

dν
=

|T |∑
j=1

s(tj , x(ν))(O[pi, tj ]− I[pi, tj ]), (1)

where x(ν) is a vector of real numbers representing the average number of tokens
in the model places at time ν, T is the set of the net transitions, and s(tj , x(ν))
is a function defining the speed of transition tj in the state x(ν) as follows:

s(tj , x(ν)) = ω(tj) min
l:I(pl,tj) 6=0

xl(ν)

I[pl, tj ]
. (2)

2.3 LASSIE: GPU-powered simulation of large-scale models

LASSIE is a GPU-powered deterministic simulator that can be easily used with-
out any specific GPU programming or ODE modeling skills [22]. LASSIE was
designed to perform deterministic simulations of large-scale biochemical models,



distributing all required calculations on the cores of the GPU. LASSIE requires
as input a biological system formalized as a reaction-based model [10, 4] un-
der the assumption of mass-action kinetics [14], as in the case of SSN models
translated into ODE systems (see Sec. 2.2). LASSIE was developed using the
most widespread GPU computing library, namely, Nvidia Compute Unified De-
vice Architecture (CUDA), which allows programmers to exploit the GPUs for
general-purpose computational tasks (GPGPU computing).

In this work, we make use of an improved version of LASSIE that realizes
both a fine-grained and a coarse-grained parallelization of the simulations. This
means that two different levels of parallelism are implemented: (i) the numerical
integration of ODEs required by a single simulation is parallelized on the GPU
cores, and (ii) many simulations of the same model characterized by different
initial conditions and kinetic parameters are executed in a parallel fashion on the
same GPU. The second level of parallelization was introduced to the aim of fully
occupying the GPU cores, and to further accelerate the analysis of large-scale
models of biological systems.

3 Treg-Teff cross regulation in RRMS

Our case study, as already anticipated in Sec. 1, refers to the cross regulation
mechanism between Treg and Teff cells in RRMS. T cells are a type of white
blood cells that play a central role in the human immune system. Indeed, they
implement the adaptive immunity that tailors the immune response of the body
to specific pathogens. T cells are commonly divided into various populations,
including Cytotoxic CD8 T lymphocytes, also known as effectors T cells (Teff),
the main effectors of cellular-mediated immunity that can directly attack infected
or cancer cells, and CD4 T helper lymphocytes, essential to boost the immune
functions by activating other immune cells. More recently, regulatory T cells
(Treg) have been discovered as one of the main actors in modulating the immune
system in order to maintain tolerance to self-antigens and to prevent autoimmune
diseases. In particular, Treg cells are usually responsible of controlling the Teff
functionalities suppressing their potentially deleterious activities. Teff cells can
be inhibited by Treg cells through cell-to-cell contact and immunosuppressive
cytokines. Furthermore, Treg proliferation can be stimulated as a consequence
of the suppression of Teff cells. In our study we consider the activation of self-
reactive Teff and Treg cells due to an EBV infection that, through a process
called antigenic mimicry, misleads such cells. In this situation, in healthy people,
Treg cells are able to control the spread of Teff cells activated by EBV. Instead,
in diseased people a breakdown of the regulation mechanism, represented by a
malfunction of Treg activities, leads to widespread inflammatory events driven
by Teff cells that erroneously attack the Myelin Based Protein (MBP), a major
structural component of myelin that is expressed by oligodendrocytes (ODC) in
the central nervous system. This attack can irredeemably damage myelin sheath
of neurons leading to the occurrence of demyelinating diseases as MS.



Fig. 1. SSN model describing Treg-Teff cross regulation in multiple sclerosis.

Fig. 1 shows the SSN model describing our case study. The color class State
divided into two sub-classes (i.e. Naive and Active) represents the cell status,
while the ordered color classes PosX and PosY encode the cell position con-
sidering the tissue portion as spherical grid. The marking of places Teff (resp.
Treg) provides the number of active and inactive Teff (resp. Treg) cells in each
grid position. Similarly, the marking of places EBV and ODC represents the
concentration of EBVs and ODCs in each grid position.

The Teff, Treg, and EBV diffusion process is modeled by the transitions
MoveTeff, MoveTreg and MoveEBV. The proliferation of inactive Teff and Treg
cells is modeled by the firing of the transitions TeffBorn and TregBorn, while
their natural death by the firing of the transitions TregDeath and TeffDeath. The
activation of a Teff cell due to the contact with EBV is modeled by the transition
TeffActivation. Similarly, the transition TregActivation represents the activation
of a Treg cell due to the contact with EBV. The transition TeffKillsODC de-
scribes the attack of Teff against ODCs causing the axonal damage. Moreover,
as a feedback, the Teff cell will be duplicated. The partial recovery (recoverable
damage) of ODC functions up to their initial value is instead represented by the
transition recovery. Finally, the transition TregKillsTeff is used to model the
already described down regulation functions of Treg cells against Teff cells.

4 Results

4.1 Framework architecture

In this section we describe the architecture of the prototype framework that we
developed for the study of Treg-Teff cross regulation in RRMS. This framework
is integrated in GreatSPN [2], a well-known suite for the analysis of Discrete
Event Dynamic Systems described through Petri Net formalisms. In details, our
framework exploits the GreatSPN GUI to draw an SSN model and to derive the
corresponding ODE system from an SSN model, while LASSIE [22] is used for
solving the generated ODE system. The architecture of this prototype framework



is depicted in Fig. 2: GreatSPN is used as graphical interface for constructing the
model and as solution manager for activating the solution process. The solution
manager executes in the correct order the framework components, and manages
the models/data exchanges between them.

Fig. 2. Schematization of the prototype framework combining GreatSPN suite with
LASSIE (the components are shown by rectangles, component invocations by solid
arrows, models/data exchanges by dashed arrows).

Thus, the solution process comprises three steps:

1. Unfolding to derive the unfolded SPN model from an SNN model, as de-
scribed in Sec. 2;

2. PN2ODE to generate the ODE system from an SPN model, as formalized in
Sec. 2. Then, the derived ODE system is exported according to the LASSIE
input format;

3. LASSIE to solve the generated ODE system by offloading onto the GPU all
the calculations required by the numerical integration of all parallel simula-
tions.

4.2 Computational results

To test the effectiveness of the pipeline presented in Sec. 4.1, we performed a
parameter sweep analysis (PSA) [5] on the RRMS model, in which one kinetic
parameter was varied within a given sweep interval (chosen with respect to a
fixed reference value for each parameter). For this test we exploited a Nvidia
GeForce GTX Titan Z (2880 cores, clock 876 MHz, RAM 6 GB).

The RRMS model depicted in Fig. 1 was converted into an ODE system char-
acterized by 3200 reactions and 700 chemical species. The PSA was performed
by generating a set of different initial conditions—corresponding to different
parameterizations of the model—and then automatically executing the parallel



deterministic simulations with LASSIE. The initial marking, the transition rates
and the grid size used in the experiments are reported in Fig. 1. The kinetic con-
stant associated with the firing of the TregKillsTeff transition was varied by
taking 640 different values equally distributed in the interval [10−3, 1] days−1.
We recall here that the firing rate of such transition is fundamental to describe
the possible malfunction of Treg cells activities, which may lead to a breakdown
of the peripheral tolerance and thus to the insurgence of the disease.
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Fig. 3. Dynamics of Teff (left) and ODC (right) with different values of the kinetic
constant associated with the TregKillsTeff transition.

The results of this analysis are reported in Fig. 3, where we can observe
that for values of the kinetic constant higher than 0.109 days−1, Treg cells are
able to control the spread of Teff cells (left panel, yellow and purple lines) and
consequently to avoid the appearing of the disease. This is also visible on the
ODC plot (right panel, yellow and purple lines) that shows how the amount of
ODC, even if initially lowered due to the Teff actions, goes rapidly back to its
maximum value, suggesting that any damage has been avoided or recovered at
most (recoverable damage). This outcome well describes the scenario of healthy
people, in which the peripheral tolerance is able to compensate for a genetic
predisposition in developing the disease. For values of the kinetic constant lower
than 0.109 days−1, an oscillatory behavior of Teff starts to appear (left panel, red
line), becoming more and more pronounced as the value of the kinetic constant
decreases (i.e., left panel, black line). In this scenario, it is possible to observe that
the amount of ODC decreases to around zero in correspondence to each peak
in the number of Teff (left panel, red and black lines), suggesting an ongoing
inflammation that causes neural damage, and thus the possibility of relapses
in correspondence of each peak in the Teff amount. Interestingly, a fixed initial
quantity of EBV seems to be sufficient to start such oscillatory behavior that can
be correlated to multiple relapses. This is somewhat different from the models
presented in [23, 16], where each relapse was triggered by a single spread of virus.

For what concerns the computational time required to execute the PSA on
the GPU, by considering the time necessary to run a single simulation with a
C++ implementation of Dormand and Prince method, exploiting a single core



of a CPU Intel Core i7-6700HQ, 2.6 GHz, we estimated a speed-up around 97×
on the Nvidia GeForce GTX Titan Z, thanks to the parallelization provided by
LASSIE.

5 Conclusions

In this paper we presented a novel framework for the analysis of complex biolog-
ical systems. This framework combines the descriptive power of Stochastic Sym-
metric Nets, which allows one to provide a graphical representation of complex
biological systems in a compact and parametric way, with a tool that automat-
ically derives a system of ODEs corresponding to the net. The resulting ODEs
system is typically composed of hundreds or thousands of reactions and/or chem-
ical species; it is therefore essential to accelerate the simulations by means of a
High Performance Computing solution. In our framework we exploit LASSIE,
a GPU-powered deterministic simulator capable of realizing both a fine-grained
and a coarse-grained parallelization strategy.

The framework presented here was applied to a complex biological system of
relapsing-remitting multiple sclerosis, consisting in 3200 reactions and 700 chem-
ical species. In particular, we realized a parameter sweep analysis to investigate
the effects of possible malfunctions in the Teff-Treg cross regulation mechanisms
that involve a break of peripheral tolerance and bring to the occurrence of re-
lapses. Thanks to the acceleration provided by LASSIE, we obtained around
97× speed-up with respect to a CPU-based execution of the same analysis.

As a future extension of this work, on the one hand, we plan to execute
extensive analyses of the parameter space of the model to better understand the
underlying mechanisms of multiple sclerosis; on the other hand, we will assess the
performance of our framework on different GPUs and on multi-GPU systems.
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