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7

8 Abstract 

9

10 Introduction: Despite significant advances in treatment and prevention, graft-versus-host disease 

11 (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic 

12 stem cell transplantation. Thus, considerable research efforts have been made to find and validate 

13 reliable biomarkers for diagnosis, prognosis and risk stratification of GVHD.

14 Areas covered: In this review the most recent evidences on different types of biomarkers studied 

15 for GVHD, such as genetic, plasmatic, cellular markers and those associated with microbiome, were 

16 summarized. A comprehensive search of peer-review literature was performed in PubMed including 

17 meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-

18 versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation.

19 Expert opinion: In the near future, several validated biomarkers will be available to help clinicians 

20 in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in 

21 patients’ stratification according to its severity. Then, immunosuppressive treatment could be 

22 tailored on each patient’s real needs. However, more efforts are needed to achieve this goal. 

23 Although most of the proposed biomarkers currently lack validation with large scale clinical data, 

24 their study led to improved knowledge of the biological basis of GVHD, and ultimately to 

25 implementation of GHVD treatment.

26 Keywords: Circulating endothelial cells, Cytokines, Extracellular vesicles, Graft-versus-host 

27 disease, Microbiome, microRNA, Natural killer, Proteomics, Regulatory T-cells, SNPs. 
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28 Article highlights: 

29  Considerable research efforts have been done to find and validate relevant biomarkers for 

30 graft-versus-host disease (GVHD), as new tools to tailor the use of immunosuppressive 

31 drugs and to optimize GVHD management. 

32  The complex pathophysiology of GVHD makes the identification of reliable biomarkers 

33 challenging.

34  A combined model including clinical and genetic variables could be able to correctly predict 

35 grades III-IV acute GVHD (aGVHD) and chronic GVHD (cGVHD).

36  Changes in the composition of intestinal microbiota play a pivotal role in development of 

37 GVHD.

38  T, B and Natural Killer (NK) cells are crucial in the maintenance of peripheral tolerance and 

39 impairment their function after allogeneic transplantation can lead to GVHD onset.

40  aGVHD causes endothelial injury and circulating endothelial cells (CECs) are increased in 

41 affected patients, whether these cells can be used as valid biomarker is under evaluation.

42  microRNAs (miRNAs) are small non-coding RNAs, mainly involved in the regulation of 

43 gene expression. In the context of allografting, many biomarker studies have been focused 

44 on the role of miRNAs involved in T-cell function in aGVHD.

45  Extracellular vesicles (EVs) play an essential role in inter-cellular communications and their 

46 extraction from biological fluids requires relatively non-invasive protocols, which makes 

47 them attractive as biomarkers in GVHD setting.

48  The development of high throughput technologies enabling the study of an entire spectrum 

49 of molecules led to the identification of a panel of cytokines which is, at the moment, the 

50 GVHD biomarker closer to clinical application.

51  Despite many advances, the identification of valid GVHD biomarkers is still an unmet 

52 clinical need.

53

54

55

56
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57 1. Introduction 

58 Graft-versus-host disease (GVHD) can be a life-threatening complication of allogeneic 

59 hematopoietic stem cell transplantation (HSCT). Many advances have been made in GVHD 

60 treatment and prevention and several risk factors have been identified [1,2]. However, since 

61 morbidity and mortality related to both acute and chronic GVHD still represents a major concern, 

62 new diagnostic and therapeutic tools are needed to tailor the use of immunosuppressive drugs and to 

63 optimize GVHD prevention and treatment. With this purpose, considerable research efforts have 

64 been made to find and validate GVHD-relevant biomarkers.

65 However, the complex pathophysiology of GVHD that can be considered in a framework of distinct 

66 sequential phases of immune system dysregulation and cytokine production, makes the 

67 identification of reliable biomarkers challenging [3,4].

68 Potential applications of biomarkers in GVHD clinical trials and routine patient management 

69 include: (1) risk stratification for GVHD development; (2) diagnosis and assessment of GVHD 

70 severity, including distinguishing irreversible damage from continued disease activity especially in 

71 cGVHD; and (3) prediction of response to therapy [5].

72 Here, we summarize the main biomarkers being studied with the aim of helping clinicians in GVHD 

73 management, or, at least, of improving knowledge of GVHD. The correlation of each biomarkers 

74 with GVHD pathogenesis is illustrated in Figure 1, whereas the role of biomarkers (diagnostic, 

75 prognostic or predictive) in Table 1. 

76

77 2. Pathogenesis of acute and chronic GVHD 

78 GVHD biology is extremely complex and remains incompletely understood, involving intracellular 

79 signalling, soluble mediators, and cellular trafficking and interactions.

80  

81 2.1. Donor and patient genetic background

82 In HSCT, although patients and donors can result HLA-identic according to major 

83 histocompatibility complex (MHC) antigens, they may differ for one or more proteins presented in 

84 form of HLA-peptide complexes to T cells acting as minor histocompatibility antigens (mHAs). 

85 Indeed, the human genome includes greater than 107 polymorphic sequences outside HLA and the 

86 role of mHAs is supported by genome-wide analysis of single-nucleotide polymorphisms (SNPs), 

87 which has revealed differences in the coding of amino acids and a variety of mechanisms related to 

88 DNA structural variation between recipients and donors [6-9]. Moreover, interesting results were 

89 obtained by genome-wide association studies (GWASs) [10], since risk of aGVHD is clinically 

90 increased in HSCT from unrelated as compared with related donors. Indeed, the percentage of 
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91 recipient coding SNPs mismatches was much larger for unrelated donor/recipient pairs than for 

92 sibling pairs [11]. Genome-wide arrays revealed that every 1% increase in genome-wide recipient 

93 mismatching is associated with a 20% increase in the risk of grades III-IV aGVHD [6]. Another 

94 GWAS study, including more than 3000 donor and recipient pairs, demonstrated a significant 

95 association between SNPs in the region of the MHC class II and the overall survival (OS) after 

96 HLA matched unrelated donor (MUD) HSCT [12]. Thus, HLA-mismatching in mHAs could likely 

97 explain most of the increased risk of GVHD after HSCT with unrelated donors [6].

98 Several studies showed a correlation between SNPs and genes involved in innate or adaptive 

99 immunity [e.g. interleukin(IL)-10, IL-6, IL-1 and its receptor, tumor necrosis factor-alfa (TNF-α), 

100 transforming growth factor-beta (TGF-β), cytotoxic T-lymphocyte antigen 4 (CTLA-4)] [13-15], 

101 although other studies failed to confirm this correlation [10,16,17]. More recently, a study 

102 performed on the large DISCOVeRY-BMT cohort showed that donor SNPs in the 2q12.1 region, 

103 which contains the IL-1 receptor ligand-1 (IL1R1) gene, were associated with elevated soluble 

104 suppression of tumorigenicity-2 (ST2) protein. Soluble ST2, which is the product of the IL1R1 

105 gene, is a validated post-transplantation GVHD biomarker with a 4-fold risk of death for aGVHD, 

106 paving the way for potential use of this biomarker in donor selection process [18].

107 Despite the limitations of SNPs, Martinez-Laperche and colleagues were able to demonstrate a 

108 significant predictive value for their model which combined 25 SNPs on 12 cytokine genes of HLA 

109 matched related donors (MRD) and recipients with clinical variables (sex, age, female donor/male 

110 recipient, stem cell source, conditioning regimen and disease). In particular, the combined (clinical 

111 and genetic) model was able to correctly predict 100% of grades III-IV aGVHD cases (vs 88% of 

112 the model based on genetic variables only and 50% of that based on clinical variables only) and 

113 80% of extensive cGVHD ones [19]. Using another combined model, Kim and colleagues were also 

114 able to predict the risk of aGVHD, but not of cGVHD [20]. 

115

116 2.2. Acute GVHD pathogenesis

117 In this complex genetic background, aGVHD pathophysiology can be simplified in a three-step 

118 model: (1) host antigen-presenting cells (APCs) activation due to tissue damage in the recipient by 

119 the conditioning regimen and antibiotic-mediated changes [21-23] in the microbiome (that cause a 

120 decline in protective microbial-derived metabolites); (2) subsequent donor T cells activation; and 

121 (3) pathogenic effector cells and inflammatory mediators producing the disease (Figure 1) [24].

122 Both in human and murine models, during the first step neutrophils, monocytes and inflammatory 

123 cells produce reactive oxygen species (ROS) as a consequence of tissue damage caused by 

124 chemo/radiotherapy and eventual infections, infiltrating the gastrointestinal (GI) tract [25-27]. The 
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125 endothelial cell injury, intimal arteritis and loss of microvessels (as observed in mice) [28,29], lead 

126 to the extracellular translocation of damage-associated molecular pattern (DAMPs) and pathogen-

127 associated molecular patterns molecules (PAMPs). An additional consequence of GI tract damage is 

128 the perturbation of gut microbiota. Crypts in both the small and large intestine contain intestinal 

129 stem cells (ISCs) and Paneth cells. The latter act as guardians of the crypt in murine models [30], 

130 since their eosinophilic granules contain a wide range of antimicrobial peptides, including α-

131 defensins, lysozyme, secretory phospholipase A2, and regenerating islet-derived protein 3α 

132 (REG3α). These are key elements of the intestinal mucosal barrier that protect from enteric 

133 pathogens and maintain intestinal homeostasis and microbiome stability through proliferation and 

134 maintenance of neighbouring ISCs [31,32]. Loss of commensal bacteria and microbial diversity 

135 during early post-transplantation period, often caused by mucositis and early use of systemic 

136 antibiotics, permits the overgrowth of pathogens associated with aGVHD [22,23,33,34]. In 

137 preclinical models, alteration of microbial metabolites such as short-chain fatty acids (SCFAs), 

138 tryptophan and butyrate, a histone deacetylase inhibitor, that modulates GVHD in an indoleamine-

139 2,3-dioxygenase (IDO)-dependent manner, also has profound effects on mucosal immunity [35]. 

140 Thus, crypt damage, the break of integrity of the intestinal mucosa, and the loss of Paneth cells and 

141 their proteins result in dysbiosis. Furthermore, in a rodent model of GVHD has been observed that 

142 GVHD itself induces dysbiosis, thus fuelling a vicious pathogenetic circle [33]. 

143 All the mechanisms mentioned above lead finally to APCs activation. During the second phase, 

144 donor T cells are able to recognize allo-antigens on either host APCs (direct presentation) or donor 

145 APCs (indirect presentation). Over time during the post-transplant period, APCs change from 

146 primarily recipient origin to donor origin [36]. It is likely that direct presentation by host APCs is 

147 predominant during early stages of aGVHD, whereas indirect or cross-presentation by donor APCs 

148 is predominant in cGVHD.

149 During the last phase, the release of inflammatory cytokines by multiple cytotoxic effectors, such as 

150 phagocytes, NK cells, neutrophils and T cells, stimulates host tissues to produce inflammatory 

151 mediators directing effector cells into target organs through chemotaxis. This mechanism amplifies 

152 local tissue injury and leads to target tissue destruction, the final effect of humoral immunity in 

153 conjunction with direct cell‐mediated cytolysis. A dysregulated uncontrolled cascade of 

154 immunological events and a lack of proper inhibitory regulatory systems represent the result of this 

155 complex biochemical process [4,37,38].

156 Finally, the interplay between cells and the extracellular matrix, together with the secretion of 

157 soluble factors, could be influenced by extracellular vesicles (EVs) trafficking in humans (see 

158 section 3.3.2) [39,40]. Indeed, biomolecules carried by EVs could be involved in many 
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159 physiological and pathological processes, being representative of their corresponding secreting 

160 cells.

161

162 2.3. Chronic GVHD pathogenesis

163 Similarly to aGVHD, also cGVHD development is associated with alteration in immune cell 

164 populations and immunoregulatory mediators [41]. 

165 The pathophysiology model of cGVHD, mostly derived from preclinical studies [42,43], can be 

166 divided into three phases: early inflammation caused by tissue injury (phase 1); thymic injury, 

167 dysregulated B-cell and T-cell immunity with auto- and/or allo-antibody production and consequent 

168 chronic inflammation (phase 2), culminating in tissue repair with fibrosis (phase 3) [3,44-46]. 

169 The pathogenesis of cGVHD begins with activation of host APCs expressed by damaged tissues 

170 and/or pathogens. As a consequence, donor T-cell proliferation and dysregulated inflammatory 

171 cytokine production [47,48] induce the activation of additional immune effector cells and 

172 perpetuate an adverse cycle of alloreactive inflammation.

173 Rodent models have been important to unravel immunological mechanisms of cGVHD. An 

174 important step in the phase 2 of cGVHD is the impairment in patient thymic function [49-53] due to 

175 thymic injury caused by aging, toxic effects of the conditioning regimen, prophylaxis with 

176 calcineurin inhibitors (CNIs), alloreactive T cells, and immunoglobulin deposition [54-56]. In 

177 rodent models, thymic dendritic cells and medullary and cortical thymic epithelial cells (mTECs 

178 and cTECs, respectively) are targeted by alloreactive T cells and pathologic antibodies, and their 

179 depletion leads to loss of central tolerance [43,57,58]. As a consequence of thymic injury, both 

180 positive and negative selection are affected by cGVHD [59]. Thus, potentially pathogenic T cells 

181 can escape from tolerization or deletion before peripheral export [60]. The net result is the 

182 proliferation of autoreactive and alloreactive CD4+ T cells producing IL-17α, which maintains 

183 inflammation, and the loss of regulatory-cell populations, including regulatory T cells (Tregs) [61], 

184 regulatory B cells (Bregs) [62,63], regulatory natural killer (NKreg) cells [64] and invariant natural 

185 killer T (iNKT) cells [65]. Lack of sufficient Tregs in the context of cGVHD can contribute to 

186 impaired peripheral tolerance, autoimmunity and further cGVHD development in preclinical 

187 models [66]. Besides, Tregs are capable to negatively regulate B-cell responses and selectively kill 

188 B cells [67], so their deficiency would predispose to a failure to control pathogenic B cells. As a 

189 matter of fact, several preclinical and clinical observations support the role of donor B cells in 

190 cGVHD development. The loss of B-cell tolerance, the altered B-cell homeostasis and the 

191 uncontrolled immunoglobulin production, possibly due to thymic dysfunction, could represent 

192 cGVHD triggering mechanisms [68-71]. Analysis in patients with cGVHD suggests that B cells 
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193 with a regulatory phenotype are both decreased and inactive [62,72]. Bregs can produce anti-

194 inflammatory IL-10 and IL-35, being able to suppress the expansion of pathogenic CD4+ and CD8+ 

195 T cells through their immunoregulatory function, which may lessen the severity of sclerodermatous 

196 cGVHD in mice [73]. 

197 In phase 3, the coordination of T helper 2 cells (Th2) CD4+ cells, the up-regulation of TGF-β and 

198 IL-13, and the anti-PDGFR antibodies production, affect fibroblast collagen deposition, leading to 

199 aberrant tissue repair and fibrosis [73,74]. TGF-β-producing fibroblast activation by activated 

200 macrophages results in the production of extracellular matrix, which leads to tissue stiffness and 

201 sclerotic phenotype in murine models [45,74]. The production of isotype-switched immunoglobulin 

202 by differentiated B cells (plasma cells), fueled by B-cell activating factor (BAFF), results in 

203 pathogenic immunoglobulin deposition in various organs, which contributes to organ damage and 

204 fibrosis.  

205

206 3. Biomarkers role  

207 Biomarkers to predict the risk of both aGVHD and cGVHD before and after transplantation might 

208 represent a turning point in the therapeutic approach of HSCT patients. As a consequence, in the 

209 past two decades a growing number of preclinical and clinical studies evaluated target molecules 

210 that looked promising in this field [5,75]. 

211 3.1. Microbiome 

212 The human GI tract is inhabited by a multitude of microorganisms, referred to as the intestinal 

213 microbiota, while their associated genomes are defined as the microbiome. Among an estimated 

214 1014 individual bacteria, most are non-pathogen anaerobic commensal bacteria: bacterial phyla 

215 Firmicutes and Bacteroidetes are prevalent in the intestinal microbiota, followed by Proteobacteria, 

216 Fusobacteria and Actinobacteria. Microbiota shares a lot of variability between individuals, with 

217 only one third of bacterial species being common between two individuals [76-78]. In the last years, 

218 new molecular techniques have allowed a better knowledge of the human microbiota composition, 

219 including 16S rRNA sequencing and the unbiased high-resolution method of metagenomics shotgun 

220 sequencing, while in situ hybridization and PCR are used to identify and quantify bacteria [77].

221 Studies focusing on the human GI microbiota composition before and after HSCT reported a drastic 

222 loss of bacterial diversity after transplantation, often accompanied by the expansion of a single 

223 taxon (mainly Enterococci), and loss of Clostridia species known to produce SCFAs: these changes 

224 are linked to an increased risk of infections and GVHD, and to decreased OS [77,79-81]. Indeed, 

225 death from GVHD in HSCT has been associated with low bacterial species diversity [79], and the 

226 lack of Blautia Luti in the stool microbiota [82] (Table 1).
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227 Golob and colleagues prospectively collected stool samples in patient from pre-transplantation until 

228 day 100 post-transplantation: a total of 694 stool profiles plus 36 microbiotas from healthy donors 

229 were analyzed, showing an association between impaired bacterial species diversity and severe 

230 aGVHD. In particular, some organisms, like oral Actinobacteria and oral Firmicutes, appeared to be 

231 predictive of severe aGVHD. On the contrary, patients that did not develop GVHD had microbiota 

232 similar to those observed in healthy donors, with dominance of Bacterioidaceae and/or 

233 Lachnospiraceae [83]. A subsequent study published in 2018 confirmed these observations, 

234 showing that patients with aGVHD had an impaired microbiota diversity at the time of engraftment, 

235 with dominance by a single microbiota family (i.e. Gammaproteobacteria and Enterobacteriaceae) 

236 and a loss of Lachnospiraceae and Ruminococcaceae which influences Tregs/Th17 balance with the 

237 reduction of Tregs [84].

238 A predictive model based on human gut microbiome sequencing has been recently proposed [85]. 

239 Stool and samples of 150 evaluable patients from two centers were collected at preconditioning, 

240 transplantation and neutrophil engraftment. The algorithm, defined as gut microbiota score (GMS), 

241 defined distinct risks of developing severe aGVHD based on selected features of intestinal bacteria. 

242 GMS has been shown to correlate with Tregs/Th17 balance and the amount of proinflammatory 

243 cytokines. 

244 Changes in microbiome structure cause a change in intestinal metabolites, which may play a role in 

245 aGVHD severity, and could be used as surrogate markers for microbiome characterization as 

246 suggested by both murine and human studies [35,86-89].

247 Besides, it has been observed that urinary 3-indoxyl sulfate (3-IS, a major conjugate of indole) 

248 levels at the time of HSCT and early thereafter were associated with gut microbiota disruption. In 

249 patients, low levels of 3-IS predicted higher transplant-related mortality (TRM), with intestinal 

250 GVHD as the primary cause [90]. Indeed, 3-IS could contribute to GVHD protection by stimulating 

251 Th2 responses and monitoring of urinary 3-IS levels may be a feasible approach to monitor 

252 microbiome changing. 

253 In 2020 Payen and colleagues combined the study of intestinal bacteria and their metabolites at 

254 GVHD onset. A weekly stool sample was collected at the time of aGVHD onset in 35 patients, 

255 whereas 35 non-GVHD patients were used as controls. Bacterial count and diversity were 

256 significantly lower at GVHD onset in patient with severe aGVHD; patients with mild aGVHD had 

257 microbiota similar to controls. As previously demonstrated, Lachnospiraceae (e.g. Blautia) and 

258 Ruminococcaceae were significantly reduced in patients with severe aGVHD. Besides, this study 

259 suggests that butyrate may be a potential marker of GVHD and that propionate and acetate may be 

260 associated with disease severity [91].
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261 Finally, a recent paper highlighted the relationship between microbiota and cGVHD, analyzing 

262 stool and blood samples from 54 cGVHD patients around day 100 post HSCT and 171 controls: 

263 plasma concentrations of butyrate and propionate were significantly lower in cGVHD patients, 

264 reflecting a different microbiota composition in stool samples. Furthermore, abundance of 

265 Akkermansia and Streptococcus were found to positively correlate with cGVHD, while abundance 

266 of Clostridium and Lactoclostridia seemed to be protective. These data showed that the lasting 

267 microbiome damage may impact on cGVHD. SCFA administration might gain a therapeutic role in 

268 this setting [92].

269 Unfortunately, specific microbiota alterations relevant for GVHD development were not always 

270 consistent among studies. Although the microbiome is an exciting and rapidly emerging area, 

271 several important challenges had to be faced by researchers. Each patient has a peculiar 

272 microbiome, reinforcing the notion that there is no single "healthy" microbiome profile. Each host 

273 has a unique biological relationship with its microbiota, characterized by complex molecular 

274 interactions within specific niches in the gut. Differences in the microbiome exist across age, 

275 cultures and geography. Moreover, faecal bacterial community can be detected by different 

276 procedures, sampling and storage protocols, as well as DNA extraction methods. In addition, animal 

277 experiments depend on several factors such as genetic background, sterility of the environment and 

278 diet, so researchers should consider these challenges carefully when designing experiments. 

279 Strategic collaboration of clinicians, microbiologists, molecular biologists, computational scientists, 

280 and bioinformaticians could represent the ideal paradigm for success in this field in the near future.

281

282 3.2. Cellular biomarkers

283 As detailed above, immune cells play a key role in the pathogenesis and in the control of graft-

284 versus-host interaction and several of them have been identified as potential biomarkers of aGVHD 

285 and cGVHD, with a predominant role of T lymphocytes (Table 1).

286

287 3.2.1. T and NK cells 

288 Peripheral tolerance after allogeneic HSCT significantly contributes to establishment of a balance 

289 between recipient tissues and donor-derived immunity. Tregs are crucial in the maintenance of this 

290 process. A significant reduction of Tregs has been observed in aGVHD but also in cGVHD and this 

291 decrease was correlated with severity of manifestations [93]. Thus, Tregs relative counts could be a 

292 prognostic biomarker for GVHD [93]. In addition, the frequencies of Tregs at onset of aGVHD 

293 could predict the response to GVHD treatment in patients [94]. Tregs were shown to be reduced 

294 also in patients with cGVHD compared to healthy subjects, regardless of a previous diagnosis of 
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295 aGVHD [95], as demonstrated by reduced frequency of CD4+CD25+Foxp3+ T lymphocytes 

296 [93,96,97]. Furthermore, a striking inverse correlation between the percentages of Tregs and CD8+ 

297 cytolytic T cells in patients with cGVHD emerged [95]. In a paediatric cohort, Tregs have been 

298 specifically identified as associated with freedom from cGVHD. Fewer data are available on 

299 aGVHD. In both adult and paediatric cohorts, a higher CD4+/CD8+ T-cell ratio was reported in 

300 patients who develop aGVHD [98-100].

301 CD31 is an excellent marker of recent thymic emigrants, within Foxp3+ Tregs population in 

302 humans [96]. Higher percentages of CD4+CD45RA+CD31+ T cells have been seen on day 100 

303 post-HSCT and at onset of cGVHD, and they significantly could predict later development of 

304 cGVHD [101], showing both prognostic and diagnostic role [102].

305 Raised levels of Th17 lymphocytes strongly correlate with the inflammatory process taking place in 

306 aGVHD and active cGVHD, as demonstrated by Dander et al. [103]. Interestingly, an inverse 

307 relationship between Tregs and Th17 has been shown, not only in peripheral blood but also in sites 

308 of active cGVHD in patients [103,104]. Within conventional T and Tregs, a CD4+CD146+CCR5+ 

309 subpopulation with a Th17 profile has been described, which increased in patients with cGVHD 

310 [105]. Moreover, the expansion of this subset appeared to be an early event in the pathogenesis of 

311 GI GVHD and might assume prognostic value in predicting development of aGVHD in subjects 

312 underwent allogeneic HSCT [106].

313 Another subset of T helper, follicular helper T cells (cTFH), were reduced in patients with active 

314 cGVHD and their phenotype is skewed toward Th2/Th17 subsets, capable of inducing B-cell 

315 activation and immunoglobulin production. A linear relationship between active cTFH and clinical 

316 grading of cGVHD was shown [107]. 

317 CD30 expression appeared to be increased on effector and central memory CD8+ T cells in patients 

318 with aGVHD [108], acting as diagnostic biomarker and, possibly, as a therapeutic target. 

319 In addition to T cells, also NK cells were correlated with GVHD. In this regard, a delayed 

320 reconstitution of the immune-regulatory CD56bright NK cells was observed in patients with aGVHD 

321 and cGVHD [109]. An inverse relationship between CD56bright NK-cell levels and aGVHD onset 

322 was shown, thus revealing a role as early prognostic biomarker [109]. NK cells could be also 

323 predictors for cGVHD [109]: lower proportion of CD56bright NK regulatory cells results in higher 

324 rate of cGVHD and it is associated with higher levels of C-X-C motif chemokine ligand 10 

325 (CXCL10), a chemokine secreted in response to IFN-gamma (IFN-γ) that binds to C-X-C receptor 3 

326 (CXCR3) and is involved in T-cell recruitment to inflamed tissue [64].

327

328 3.2.2. B cells
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329 The cytokine BAFF plays a critical role in normal B-cell maturation and survival. In the context of 

330 B-cell lymphopenia after HSCT, high soluble BAFF levels promote the selection and expansion of 

331 autoreactive B cells [69,70]. Indeed, BAFF levels and B-cell counts are significantly higher in 

332 patients with active cGVHD than in those without [110]. BAFF/B-cell ratio is an important 

333 indicator of cGVHD [110-112] and it is related to the cGVHD grading [113]. Elevated ratios were 

334 observed in patients with hypogammaglobulinemia and related to onset and activity of cGVHD 

335 [114]. Increased values were observed in patients with lung involvement, confirming the validity of 

336 a potential biomarker for early diagnosis of bronchiolitis obliterans syndrome (BOS), also in 

337 asymptomatic patients [115]. Conversely, low BAFF/B-cell ratios after umbilical cord blood 

338 transplantation have also been associated with a low incidence of cGVHD [111].

339 Within the first year after HSCT, early severe B-cell lymphopenia is followed by the progressive 

340 normalization of B-cell count. In the context of GVHD, elevated immature/transitional CD21- B-

341 cell and low CD27+ memory B-cell counts have been seen in patients with active cGVHD [112] 

342 and are associated with more frequent infectious complications [116]. Increased absolute count of 

343 CD19+CD21low B cells was observed at the onset of de novo cGVHD [117]. Furthermore, the same 

344 panel, assessed at day 100 after HSCT, was predictive for subsequent development of quiescent and 

345 progressive cGVHD [101,112]. Association between low CD19+CD21low levels and activity and 

346 severity of cGVHD has been revealed also in a paediatric cohort [118]. The resolution of cGVHD 

347 correlated with the normalization of CD19+CD21low levels, thus CD19+CD21low might help with 

348 distinction between active vs inactive cGVHD [118]. Similar results were observed in patients 

349 responding to extracorporeal photopheresis (ECP) [119]. Along with high BAFF/B-cell ratios, 

350 elevated levels of CD19+CD21low lymphocytes were observed in patients with new onset of 

351 pulmonary cGVHD and long-lasting BOS, hinting a possible role as biomarker for early diagnosis 

352 of this serious GVHD manifestation [115]. Memory B-cells are profoundly reduced in patients 

353 developing cGVHD [114,116,120]. Active cGVHD has been related to a low proportion of 

354 CD19+CD27+ memory B-cells and persistent low memory B-cell counts predicted an increased 

355 risk of cGVHD during later follow-up in a paediatric cohort [118]. Unlike cGVHD, late-onset 

356 aGVHD was associated with higher levels of unswitched memory B cells and transitional B cells in 

357 children [121]. 

358

359 3.2.3 Invariant NKT 

360 Invariant natural killer T cells (iNKT) are a rare subset of lymphocytes that co-express T-cell and 

361 NK-cell markers selectively activated by glycolipid antigens presented by CD1d and characterized 

362 by an invariant TCR α-chain named Vα24jα18 in humans [122]. iNKT are further distinguished in 
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363 two different subsets, based on CD4 expression, characterized by a different cytokine profile with 

364 CD4-iNKT secreting higher amounts of IFN-γ than IL-4, resulting in a Th1 bias [123]. Both 

365 preclinical mouse models and clinical observations have shown that iNKT cells are capable to 

366 modulate immune response and may represent an important marker to predict the occurrence of 

367 aGVHD. 

368 In a seminal preclinical work by Lan et al. [124], in which mice received reduced intensity 

369 conditioning (RIC), total lymphoid irradiation and anti-thymocyte globulin (ATG), recipient iNKT 

370 cells preferentially survived because of radioresistance resulting in aGVHD abrogation. Such effect 

371 was dependent on host T cells IL-4 secretion [125,126] and on donor T cells STAT-6 expression 

372 [127]. iNKT lead to donor Th2 polarization and resulted in donor Tregs expansion [65,126,128]. 

373 Donor Tregs were not dispensable since the protective effect of α-galactosylceramide infusion was 

374 lost when donor Tregs cells were depleted [65,129].

375 Consistently, both iNKT recovery after transplantation and graft iNKT dose were found to correlate 

376 with the occurrence of aGVHD in humans. In one of the earliest study involving 106 patients 

377 undergoing HSCT either from a MRD or MUD after a myeloablative conditioning (MAC), the 

378 number of iNKT were significantly reduced in patients developing aGVHD after a bone marrow 

379 graft [130]. In another study comprising 71 subjects undergoing MRD or MUD transplantation 

380 either after MAC or RIC [131], the iNKT/T-cell ratio, analyzed between day 15 and day 90 after 

381 transplantation, was found to represent a reasonable surrogate marker of iNKT reconstitution. 

382 Patients with ≥1x10-3 ratio had lower chance to develop aGVHD and Cytomegalovirus infection, 

383 resulting in lower incidence of NRM and enhanced OS. Day 15 iNKT/T-cell ratio could efficiently 

384 discriminate the risk of aGVHD with an AUC of 0.812 and may represent a reliable marker to 

385 identify patients at higher risk to develop aGVHD [131]. In another report comprising 78 patients 

386 receiving peripheral blood stem cell (PBSC) MRD transplantation [132], a higher graft content of 

387 iNKT was associated with a lower chance of aGVHD: 31% vs 64% for iNKT ≥ vs <0.057x106/Kg. 

388 This effect was particularly evident for CD4-iNKT cells and may be due to its direct cytotoxic 

389 activity against CD1d-expressing mature myeloid dendritic cells [123]. Malard et al. [133] analyzed 

390 a cohort of 80 patients receiving MRD, MUD or mismatched unrelated (MMUD) transplantation 

391 employing RIC and ATG, and found that a higher iNKT cell graft content (>0.11x106/Kg) was 

392 associated with improved GVHD-free and progression-free survival (GRFS). This effect was 

393 mainly due to a reduced incidence of disease relapse and cGVHD. In another report [134], only pre-

394 transplantation donor CD4-iNKT expansion capacity was associated with aGVHD in patients 

395 receiving a PBSC graft. Of note, donor iNKT graft content did not correlate with donor age, while 

396 iNKT recovery was lower with increasing recipient age. Therefore, even if we are unable to select a 
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397 particular donor to improve iNKT reconstitution, iNKT graft content and post-transplantation 

398 recovery represent important makers to identify patients at higher risk of aGVHD.

399

400 3.2.4.  Circulating endothelial cells 

401 The endothelium was recently recognized as a significant target of donor T-cell alloreactivity, being 

402 involved in the pathogenesis of aGVHD, especially when steroid refractoriness is established [135]. 

403 Preclinical mouse models and clinical observations showed that markers of neovascularization and 

404 endothelial damage are associated with the occurrence of aGVHD and may be useful to predict its 

405 onset and response to front-line therapy. In a seminal work, Penack et al. [28] described that a 

406 hallmark of target organs of aGVHD is represented by neovascularization driven by donor-derived 

407 vasculogenesis in a murine model. Donor circulating endothelial progenitor cells (EPCs) were 

408 found to be increased in the peripheral blood of mice with aGVHD, resulting in increased 

409 vascularization of the liver, the colon and the bone marrow. These observations are consistent with 

410 histologic findings in the human counterpart, where donor bone marrow derived vasculogenesis was 

411 found to contribute to neovascularization of the skin and the intestine of patients with aGVHD 

412 [136,137]. Given this background, the authors proposed a model linking endothelial cells (ECs) and 

413 aGVHD [138]: in the early phase, endothelial damage is caused by different toxic agents such as the 

414 conditioning regimen (chemo- or radio-therapy), infections or drugs (such as CNIs); in the second 

415 phase, vessels react by recruiting new donor-derived ECs and neovascularization takes place; in the 

416 third phase, alloreactive T cells target the endothelium and blood vessels are destroyed. 

417 Two main implications stem from these findings: 1) inhibition of vasculogenesis may ameliorate 

418 aGVHD; 2) markers of endothelial damage and circulating endothelial cells (CECs) may be helpful 

419 in the diagnosis of aGVHD in humans. To address the first question Penack et al. [28] treated mice 

420 with an anti-VE cadherin antibody named EG410, that specifically bind and depletes EPCs, 

421 resulting into abrogation of aGVHD and increased survival. The second question has been answered 

422 by several clinical reports investigating whether markers of ECs injury or CECs are increased in 

423 patients with aGVHD. Almici et al. [139] described a significant relative increase in the number of 

424 CECs in patients with aGVHD relative to patients without aGVHD (44% vs 0%, p=0.04). An 

425 inverse correlation was found at the time of the engraftment, with a reduced number of CECs in 

426 patients who will develop aGVHD compared to aGVHD free subjects. Of relevance, not the 

427 absolute numbers, but the relative changes (either incremental or decremental) of CECs were 

428 significantly associated with aGVHD and engraftment. Moreover, CECs values were a marker of 

429 response to aGVHD therapy because they returned to pre-transplantation levels in responding 

430 patients. In a subsequent report, Almici et al. [140] confirmed these observations and described that 
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431 CECs changes after allogeneic HSCT are a dynamic phenomenon influenced by conditioning 

432 regimen, engraftment, infections and immunosuppressive treatments. Nevertheless, enumeration of 

433 CECs is still not a standardized procedure yet, since the CellSearch system (CED identified as 

434 CD146+CD106+CD45-cells) or polychromatic flow-cytometry (CEC defined as CD34+CD45-

435 CD146+cells) bring complimentary, but not completely overlapping, results [141].

436

437 3.3. 6. Plasma biomarkers

438 In addition to altered immune cells subsets count, the balance between pro- and anti-inflammatory 

439 cytokines, chemokines, soluble cell receptors and proteins, miRNAs, EVs, and immune activated 

440 biomarkers plays a key role in both the initiation of GVHD and its progression. Serum biomarkers 

441 associated with GVHD, reflecting underlying biological process of both aGVHD and cGVHD, have 

442 shown not only to be useful in predicting GVHD occurrence before the onset of clinical symptoms, 

443 but also to estimate its risk and to predict patient’s outcomes (Table 1).

444

445 3.3.1.  miRNAs 

446 MicroRNAs (miRNAs) are small non-coding RNAs, mainly involved in the regulation of gene 

447 expression, thus controlling crucial cellular processes, including cell proliferation, differentiation, 

448 apoptosis [142,143]. Easily detectable in body fluids, their measurement represents a potential non-

449 invasive diagnostic and predictive tools for many diseases [144], including GVHD upon HSCT 

450 [143,145,146].

451 In the context of HSCT, most studies on miRNAs focused on their role in T-cell function and 

452 aGVHD onset, while less data are available on miRNAs role as biomarkers of cGVHD.

453 The increased expression of miR181a, regulating T-cell maturation and TCR signalling, was able to 

454 prevent aGVHD onset in rodent models of HSCT [147,148]. Similarly, the expression of miR146a, 

455 a negative regulator of inflammation prevalently expressed in Tregs, has been shown to have a 

456 protective role against aGVHD. In agreement, low expression of miR146a was associated with an 

457 increased incidence of aGVHD during the first 28 days post-HSCT [149] and mice treated with a 

458 mimic of miR146a showed a reduced aGVHD severity and a better prognosis [150]. On the 

459 contrary, miR155, physiologically involved in B and T-cell proliferation and in controlling effector 

460 and regulatory T-cell function [151], was upregulated in T cells from mice developing aGVHD 

461 after allogeneic HSCT. Moreover, miR155 expression blockade ameliorated aGVHD severity and 

462 survival in mice [152].
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463 The clinical relevance of miR181a and miR155 has been confirmed in patients receiving allogeneic 

464 HSCT. MiR155 level was increased and miR181a expression was reduced before aGVHD onset 

465 and their levels directly and inversely correlated with aGVHD severity, respectively [148,153]. 

466 Together these data suggest that miRNAs could act in concert to regulate inflammatory responses, 

467 thus indicating that the investigation of miRNA clusters as aGVHD biomarkers could be more 

468 informative than the study of a single miRNA.

469 In this context, the upregulation of miR20a and 15a and the downregulation of miR181a, miR146a, 

470 miR30b-5p, and miR374-5p showed diagnostic utility for aGVHD, being differentially expressed 

471 already 14 days post-HSCT in patients who later developed aGVHD [154].

472 Moreover, a global microRNA expression profiling on skin biopsies identified the miR34a-3p and 

473 miR503-5p as related to cutaneous aGVHD. The expression of these two miRNAs, together with 

474 miR34a-5p appeared to be elevated also in the sera of aGVHD patients [155]. 

475 Investigating a specific plasma miRNA signature on 196 patients underwent HSCT, Xiao and 

476 coworkers identified a 4-miRNA-based diagnostic panel, composed by miR423, miR199a-3p, 

477 miR93 and miR377, which was able to early predict the occurrence and severity of aGVHD [156]. 

478 This evidence was further confirmed by the observation that increased levels in serum and urine of 

479 miR423, miR199, and miR93 at day 14 after HSCT could predict the occurrence of aGVHD 

480 [157,158]. 

481 Furthermore, circulating miR26b, miR374a, miR28-5p, miR489 and miR671-3p could improve 

482 early diagnosis of aGVHD [159], similarly to what was observed for miR194 and miR518f in a 

483 cohort of 24 lymphoma patients [160].

484

485 3.3.2.  Extracellular vesicles

486 In recent years, the rapidly growing research area on EVs has demonstrated they have essential role 

487 in inter-cellular communications, thus being involved in many physiological and pathological 

488 juxtacrine signalling processes (i.e. immune response modulation, inflammation, cancer, 

489 cardiometabolic, neurologic and infectious diseases) [161]. EVs are membrane enclosed organelles 

490 circulating in biological fluids, and are secreted by virtually all cell types carrying different 

491 biomolecules, including nucleic acids (DNA [162,163], RNA [164,165] and miRNAs), proteins 

492 [166-169], lipids, and carbohydrates [40,170,171].

493 EVs extraction from biological fluids requires relatively non-invasive protocols, which makes them 

494 attractive as biomarkers. Moreover, the biomolecules carried by EVs could be representative of the 

495 secreting cells, representing an attractive tool for molecular diagnosis, together with molecules 

496 presented on the EVs surface. Thus, the analysis of their molecular cargo is emerging as a new form 
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497 of “liquid biopsy”, useful to gain insights about disease clinical features, biological characteristics, 

498 and therapy response, without being invasive.

499 Wu et al. observed that EVs from endothelial origin were altered after HSCT before aGVHD onset 

500 [172], while Lia et al. investigated the potential role of EVs as biomarkers of GVHD [173]. In this 

501 latter study, a statistically significant correlation between three EVs membrane antigens (CD146, 

502 CD31, CD140a) with the risk of developing aGVHD was retrospectively observed. Furthermore, all 

503 the three biomarkers showed a significant level change on EVs membrane before the onset of 

504 aGVHD [173]. Correlation of EVs membrane antigen (CD146 and CD31) with aGVHD onset was 

505 also confirmed by preliminary results in a new prospective study [174].

506 In the last years, exploratory study on miRNA profiles has been extended also on EVs. As a matter 

507 of fact, EVs are also natural carriers of miRNAs and they support the release of such molecules to 

508 recipient cells, protecting them from degradation of plasma ribonucleases. MiR155 is an example of 

509 miRNA which is dysregulated and upregulated in aGVHD patients in both cell free- and EVs 

510 carried form. Furthermore, a study in vitro demonstrated that after TNF-α stimulation of human 

511 umbilical vein ECs, EVs are enriched in miR155 [175]. Levels of miR155 were significantly higher 

512 in EVs compared to plasma level in aGVHD patients as well as in mouse models. Moreover, 

513 inhibition of miR155 by loading antagomir-155 inside EVs reduced differentiation toward Th1, Th9 

514 and Th17 cells and skewed differentiation towards Th2 cells and Tregs, which ameliorated clinical 

515 and pathological manifestations of aGVHD. In another preliminary study, expression change of 

516 miR155, with miR100 and miR194b before aGVHD onset was also observed in serum EVs [174]. 

517 Circulating miR423, miR199, and miR93 in serum derived EVs could be also used as diagnostic 

518 and prognostic biomarkers for aGVHD [158].

519 Further studies are needed to better characterize and define EVs as reliable biomarkers for aGVHD, 

520 and no data are presently available in cGVHD context. Nevertheless, the aforementioned findings 

521 strongly suggest the potential clinical applications of EVs in this setting.

522

523 3.3.3.  Cytokines and chemokines 

524 Cytokines and chemokines are small proteins which are secreted by various cells to mediate 

525 immune response and trafficking, to recruit immune cells to inflammation sites and to promote T-

526 cell differentiation and expansion. These effects are mediated by their binding to specific receptors 

527 on target cells which modify transcription patterns, protein expression, and migratory behaviour 

528 [176,177]. Moving from the evidence that a “cytokine storm” is a peculiar feature of aGVHD, 

529 cytokines and their receptors have been explored as potential target for studies on biomarkers on 

530 patients [19] (Table 1), among others, IL-2, IL-6, IL-12, IL-15, IL-18, IL-33, IFN-γ and TNF-α 
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531 [4,178,179]. Soluble TNF-α is an inflammatory mediator of tissue damage during aGVHD and its 

532 role in the pathogenesis of aGVHD prompted the evaluation of TNF-blocking agents for the 

533 treatment of steroid-refractory aGVHD (SR-aGVHD) [180-182]. Moreover, an increase in the 

534 concentration of serum TNF-α and tumor necrosis factor receptor 1 (TNFR1) at day 7 post-HSCT 

535 were associated with disease severity and survival in both adult and paediatric patients [183,184]. 

536 Nevertheless, this association is not specific enough to allow TNF-α to be used as an independent 

537 predictor for GVHD development. Indeed, an increase of TNF-α was also observed, in both human 

538 and murine models, before major transplant-related complications such as interstitial pneumonitis 

539 and veno-occlusive disease [183,185].

540 IL-2 is a cytokine primarily produced by CD4+ T cells after their activation, being implicated in T-

541 cell activation and proliferation. Monoclonal antibodies (mAbs) directed towards IL-2 receptor α-

542 chain (IL-2Rα), such as daclizumab or basiliximab, are currently used to inhibit activated 

543 alloreactive T cells in patients with SR-aGVHD and GI aGVHD [186,187]. Furthermore, soluble 

544 IL-2Rα levels were increased prior to clinical onset of aGVHD in many studies and could be used 

545 to predict both aGVHD development and severity [188]. Nevertheless, sIL-2Rα levels, like TNF-α 

546 ones, rise also in the setting of other transplant-related complications [189]. In addition, sIL-2Rα 

547 levels can be altered by CNIs, commonly used for GVHD prophylaxis [190]. 

548 IL-33 is a member of the IL-1 superfamily of cytokines, thought to be released from damaged 

549 tissues as an alarmin to induce Th2 responses and repair through ST2 receptor. Dysregulation of 

550 ST2/IL-33 signalling pathway was originally described in the context of different inflammatory 

551 diseases[191]. Several preclinical and clinical studies investigated the contribution of CCR5 and its 

552 ligands in the development of GVHD [192]. In preclinical models, CCR5+CD8+ T lymphocytes 

553 significantly contributed to liver GVHD. Administration of anti-CCR5 antibody dramatically 

554 reduced the infiltration of donor T cells into the liver, and consequently reduced hepatic damage 

555 [193]. The Seattle group reported that lymphocyte infiltrated in the skin samples of patients with 

556 aGVHD were predominantly CCR5+ T cells [194]. Genetic polymorphisms of cytokines and 

557 chemokines correlated with GVHD risk and severity in patients [195]. Studies showed that genetic 

558 deletion of CCR5 in both human recipients and donors resulted in a decreased incidence of GVHD 

559 [196,197]. Recently, a phase 2 study showed the safety and efficacy of CCR5 antagonist maraviroc 

560 for the prophylaxis of GVHD in patients undergoing HSCT [198,199].

561 Several preclinical and clinical studies investigated the contribution of CCL8, CXCL10, and 

562 CXCL11 with its ligands, in the development of aGVHD [192,200,201]. Soluble BAFF (sBAFF), 

563 CXCL-9, CXCL-10, CXCL-11, ST2 and IL-33 have been frequently associated with the risk of 

564 cGVHD in several studies [64,110,202-204]. In addition to its correlation with aGVHD [205], ST2 
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565 possess a good cGVHD predictive ability in combination with CXCL9, matrix metalloproteinase 3 

566 (MMP3), and osteopontin (OPN). Furthermore, this 4-biomarker panel showed a significant 

567 correlation with cGVHD diagnosis and severity, together with NRM [203]. The receptor for 

568 CXCL9, CXCL10 and CXCL11 is CXCR3, predominantly expressed on the surface of Th1 cells. 

569 Recent studies demonstrated the involvement of CXCR3 ligands in GVHD pathogenesis, revealing 

570 a central role for chemokine-mediated recruitment of CXCR3+ T cells in this setting [204]. The 

571 hypothesis that CXCR3 ligands (in particular CXCL9) act as gatekeepers for tissue distribution of 

572 alloreactive T cells in cGVHD was supported by high levels of these chemokines in oral, ocular, 

573 and mucosal cGVHD [206,207]. Furthermore, CXCR3 ligands could be associated with 

574 progression, organ dysfunction and complications of cGVHD. However, the importance of these 

575 chemokines in the diagnosis of cGVHD needs to be further evaluated.

576 Most studies showed an increase in pro-inflammatory cytokines in cGVHD cases, including TNF-α, 

577 IL-6, IL-17, IL-1β, IL-8, sIL-2Rα shed by activated T cells and IL-1Rα [103,206-208]. Conversely, 

578 only TGF-β, IL-15, IL-4 and IL-2 were decreased at cGVHD onset [209,210]. Patients with lower 

579 serum levels of IL-15 at day 7 post-HSCT had 3-fold higher risk of developing cGVHD 

580 subsequently [209], and IL-15 levels were inversely correlated with CD8+ T cells levels, cellular 

581 subtypes involved in the development of cGVHD. Severity of established cGVHD correlated with 

582 level of TNF-α, IL-6, and IL-1β [41]. Among all the cGVHD biomarkers, a decreased level of sIL-

583 2R and sBAFF were associated to response to therapy [208,211],whereas increased levels were 

584 associated with higher mortality [211]. 

585 Since infectious diseases, immune factors, immunosuppressive drugs and aGVHD can modify the 

586 levels of the aforementioned biomarkers, their predictive value remains difficult to establish. 

587 Indeed, only CXCL9 was confirmed as a robust cGVHD biomarker in a recent multicenter study 

588 [203]. Moreover, the levels of some biomarkers (e.g. BAFF and CXCL9) could be modified also by 

589 corticosteroids [110,202]. Hence, many efforts are needed to independently validate the role of 

590 these promising biomarker candidates in large studies. 

591

592 3.3.4.  Proteomics 

593 The development of high throughput technologies enabling the study of an entire spectrum of 

594 molecules has provided new insights into the comprehension of the pathophysiological mechanism 

595 of a disease and the identification of novel biomarkers useful in diagnosis and prognostic 

596 stratification. In the context of GVHD, both mass spectrometry (MS)-based and non-MS-based 

597 approaches have been used to identify candidate biomarkers [212].
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598 Among the non-MS-based assays, antibody microarrays have been used to screen aGVHD 

599 biomarkers in peripheral blood. By investigating 120 proteins on plasma of HSCT patients, 

600 Paczesny and coworkers identified 8 potential biomarkers for aGVHD diagnosis. After their 

601 validation by enzyme-linked immunosorbent assay (ELISA), the authors defined a 4-protein 

602 composite biomarker panel [IL-2Rα, TNFR1, IL-8, and hepatocyte growth factor (HGF)] able to 

603 discriminate patients with and without aGVHD and to predict their survival independently from 

604 GVHD severity [213]. Subsequently, the same group identified three organ-specific biomarkers, 

605 namely the skin-specific marker elafin, the GI GVHD-specific biomarker REG3α and cytokeratin-

606 18 fragments (KRT18), which correlated with intestinal and liver GVHD, with prognostic 

607 significance [214-216]. In particular, REG3α, a marker secreted by Paneth cells associated with GI 

608 epithelial injury and repair, was validated as predictive and prognostic biomarker of aGVHD and 

609 showed higher diagnostic precision for lower GI GVHD. [214]. Furthermore, REG3α 

610 concentrations at GVHD onset predicted response to therapy at 4 weeks, NRM and survival [217]. 

611 All above-mentioned biomarkers are unfortunately not specific for liver GVHD, being produced 

612 also in the setting of other transplant-related [214].

613 By combining this knowledge, a multicenter, randomized, 4-arm phase 2 clinical trial (Clinical 

614 Trials Identifier NCT00224874) was undertaken to investigate whether the above-mentioned 6 

615 markers (IL-2Rα, TNFR1, IL-8, HGF, elafin and REG3α)  could be able to define the prognosis and 

616 therapy response of aGVHD patients. The authors demonstrated that the 6-protein biomarker 

617 measurement at GVHD onset, 2 and 4 weeks after treatment start was able to identify therapy non-

618 responsive patients and to predict their survival [218]. 

619 Two ST2 isoforms having opposite roles have been described: a transmembrane form and a soluble 

620 isoform, that acts as a decoy receptor sequestering IL-33. During aGVHD, an altered secretion of 

621 soluble ST2 by intestinal cells was observed in experimental models [191]. Soluble ST2 

622 measurement at the time of GVHD diagnosis was validated as a biomarker for treatment-resistant 

623 aGVHD, and elevated circulating ST2 at day 7 or 14 post-HSCT could also be predictive of NRM 

624 following HSCT [219,220].The combined measurement at day 7 post-HSCT of TNFR1, IL-2Rα, 

625 REG3α and ST2 enabled the development of a predictive algorithm (Mount Sinai Acute GVHD 

626 International Consortium or MAGIC), mainly based on ST2 and REG3α concentrations after one 

627 week of systemic glucocorticoid treatment, to early identify patients at high risk for lethal GVHD 

628 and NRM in a multicenter cohort of 1287 patients [221]. In agreement, the prognostic relevance of 

629 the measurement of REG3α and ST2 was recently confirmed in a cohort of 110 consecutive patients 

630 who underwent haploidentical HSCT. In this report, higher plasma levels of REG3α and ST2 were 

631 associated with a higher incidence of grade II-IV aGVHD and NRM, but only 30 day after 
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632 transplantation [222]. MAGIC algorithm demonstrated to be accurate when measured at multiple 

633 time-points during the course of transplantation, implying that it could be a used as a response 

634 biomarker to provide a dynamic tool that predicts outcomes more accurately than change in clinical 

635 symptoms [223].

636 In addition to the biomarker panels described above, other biomarker combinations, including 

637 ST2+REG3α+TNFR1 [224], ST2+TNFR1, TIM3+TNFR1+IL6 [225], ST2+TIM3 [226], have been 

638 investigated in the plasma of HSCT patients to predict the aGVHD occurrence and severity. 

639 Since different patient cohorts and different endpoints have been considered to test each biomarker 

640 combination, it is difficult to define the best one to identify robust early indicator(s) of GVHD 

641 occurrence and severity. In this regard, Etra and coworkers tested the ability of the different 

642 biomarker combination to predict 1-year lethal GVHD on more than 500 patients. Their results 

643 demonstrated that the measurement of ST2 and REG3α serum levels had a higher predictive 

644 accuracy [227].

645 In addition to circulating aGVHD biomarkers, a wide range of MS-based proteomic approaches 

646 have been recently used on urine and saliva. In this regard, by using capillary electrophoresis and 

647 tandem mass spectrometry, Wessinger and colleagues identified in urine a 17-peptide panel, named 

648 aGVHD_MS17, able to accurately and early detect aGVHD patients and to predict grade III-IV 

649 aGVHD [228]. In addition, the same group defined a second 14-peptide biomarker for early 

650 diagnosis of cGVHD [229]. Similarly, Chiusolo and coworkers trough high-performance liquid 

651 chromatography combined with electrospray-ionization mass spectrometry identified two proteins, 

652 S100A8 and S100A9, as possible aGVHD biomarkers [230].

653

654 4. Conclusions 

655 In the past years, advances in technology have permitted the discovery of numerous biomarkers for 

656 diagnosis, prognosis and prediction of GVHD together with progress in understanding its 

657 pathophysiology. Importantly, studies on biomarkers improved our understanding of GVHD 

658 pathogenesis and found new pathways that could be targeted by antibodies or small molecules, 

659 finally contributing to the development of new effective treatments for GVHD. For instance, given 

660 the important role of IL-6 in GVHD pathogenesis [231], a trial assessing tocilizumab for the 

661 treatment of cGVHD therapy is ongoing (NCT02174263) [46]. Also ibrutinib, a Bruton’s tyrosine 

662 kinase (BTK) inhibitors, which is critical for B-cell survival, proliferation, and migration [232], is 

663 an irreversible inhibitor of IL-2 inducible kinase [233] and interfere with many cytokine cascades 

664 involved in GVHD development [3,44,45], has been recently introduced in SR-GVHD treatment
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665 Although many specific and sensitive biomarkers for both aGVHD and cGVHD have been 

666 identified over the past decades, much efforts are still needed to move from bench to daily clinical 

667 practice.

668

669 Expert opinion 

670

671 Reliable and validated biomarkers in GVHD have many potential future applications. First, 

672 implementation of donor and patient selection for HSCT, thanks to genetic polymorphisms or 

673 microbiome modifications studies that might identify patterns at high risk of GVHD development. 

674 Furthermore, the identification of specific changes in microbiome, cellular subtypes and/or panel of 

675 molecules specific for GVHD could greatly help physicians in GVHD management and in 

676 differential diagnosis between GVHD and other post-HSCT complications which sometimes can be 

677 challenging. Similarly, biomarkers that allow an early recognition of patients who are very likely to 

678 develop SR-GVHD could led to early treatment intensification in those patients, and a treatment 

679 sparing in the others. 

680 Weak points are the limited sample size of patient cohorts and the lack of large-scale validation. 

681 Furthermore, more efforts should be done to minimize confounding variables, such as different 

682 conditions, other than GVHD, affecting the same biomarker. Another important limit to their 

683 widespread use is the complexity and the cost of the analyses necessary to measure biomarkers. 

684 Finally, to be employed in the clinical setting, biomarkers should be detectable on easy-to-collect 

685 samples with non-invasive methods, however most of the reported studies were in line with that.

686 In the future, a special interest should be placed on the role of microbiome in GVHD pathogenesis, 

687 although its role is not so easy to establish due to the frequent controversial results. The concept that 

688 the manipulation of GI microorganisms (i.e. through different use of antibiotics, 

689 immunomodulators, chemotherapy) could eventually influence the development of aGVHD, and 

690 likely cGVHD and other HSCT complications as well, is fascinating. Other promising and growing 

691 sections are EVs, miRNAs and CECs, which play a crucial role in cellular interactions. We are not 

692 completely aware of all the potential information that these markers carry, but more research in 

693 these fields will hopefully led to greater knowledge in pathophysiology and eventually to the 

694 possibility of interfering with cellular crosstalk. 

695 Given the complexity of mechanisms involved, it is likely that a panel of markers rather than a 

696 single one will result meaningful. Furthermore, biomarkers for aGVHD will be available to 

697 clinicians in the next future, as the research is more advanced in this setting. Hopefully, validated 

Page 21 of 44

URL: https://mc.manuscriptcentral.com/ehm   Email: IERR-peerreview@journals.tandf.co.uk

Expert Review of Hematology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

698 markers for cGVHD will follow, as the interest and the number of published studies is growing over 

699 the time also in this field.

700 Among the illustrated biomarkers, the plasmatic panel proposed by MAGIC consortium is the most 

701 advanced in clinical development. The first trial which include a panel of biomarkers (TNFR1, ST2, 

702 and REG3α) [224] to assign GVHD treatment has been conducted by the Bone Marrow Transplant 

703 Clinical Trials Network (Clinical Trials Identifier NCT02806947), and the results should be 

704 available in the near future.

705 At present, the search of GVHD biomarkers is not part of clinical routine, and their application 

706 remains restricted to clinical trials. Nevertheless, biomarkers studies play an important role in 

707 improving the knowledge of the complex pathophysiology of aGVHD and cGVHD. Finally, a 

708 better understanding of the mechanisms leading to GVHD has been crucial to the introduction on 

709 new treatments for SR-GVHD.

710

711
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BIOMARKER LEVELS aGVHD cGVHD diagnostic prognostic predictive clinical trial

SNPs [18-20] [19] [18-20]

microbiota
impaired 
bacterial 
species

[83-85] [83-85]

SCFAs (butyrate) reduced [88,91] [88,91]

Cellular biomarkers
Tregs reduced [93,94] [93,95-97] [95-97] [93,95-97] [94]
CD4+CD45RA+CD31+ increased [101] [101] [101]
CD4+/CD8+ increased [98-100] [98-100]
Th17 increased [103,104] [103,104]
CD4+CD146+CCR5+ increased [106] [105] [105] [106]
cTFH reduced [107] [107]
CD56bright NK cells reduced [109] [64,210] [64] [109,210]
CD8+CD30+ T cells expressed [108] [108] [108]
BAFF/B cells increased [110-112] [110-112]

CD19+CD21low B cells increased [112,115,
117,118]

[112,115,117,
118] [101,112] [118,119]

CD27+ memory B cells reduced [114,116,
120] [114,116,120] [118]

iNKT reduced [130,133] [130] [133]
iNKT/T cells reduced [131] [131]
CD4−iNKT graft 
content

protective if 
increased [132] [132] [132]

CECs reduced at 
engraftment [139,140] [139,140] [139,140]

miRNAs and EVs
miR146a reduced [155,234] [234] [155]
miR155 increased [153,155] [153] [155]
miR181a reduced [148] 

[234]
[148,234]

miR423, miR199a-3p, 
miR93, miR377 increased [156,235] [156,157,235] [156,157,235]

miR26b, miR374a, 
miR489, miR28-5p, 
miR671-3p

increased [159] [159]

EVs membrane 
antigens (CD146, CD31, 
CD140a)

increased [173] [173]

Cytokines and Chemokines
sIL-2Rα increased [188] [188]
sST2 increased [219,220] [219] [220]
sST2, CXCL9, OPN, 
MMP3 increased [203] [203] [203]

CCR5Δ32 allele protective if 
present [196,197] [196,197]

CXCL9 Increased [202,203] [202,203]
CXCL10, CXCL11 increased [204] [204]
sBAFF increased [208] [208] [208]
IL-15 reduced [209] [209]

Proteomics
IL-2Rα, HGF, IL-8, 
TNFR increased [213,218] [213] [218] [218] NCT00224874

REG3α, elafin, KRT18 increased [214,217,
218] [214] [214,217,218] [217,218] NCT00224874

REG3α, ST2, TNFR1, 
IL-2Rα increased [221,222,

224] [221,222,224] [221,223,
224,227] NCT02806947

aGVHD_MS17 variable [228] [229] [228,229] [228]
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 List of biomarkers involved in acute and chronic Graft-versus-host disease, according to their diagnostic, prognostic or predictive value.

Abbreviations: aGVHD=acute graft-versus-host disease; cGVHD=chronic graft-versus-host disease; miRNAs=microRNAs; EVs=extracellular vesicles; 

SNPs=single-nucleotide polymorphisms; SCFAs=short-chain fatty acids; Tregs=regulatory T cells; Th17=T helper 17 cells; cTFH=follicular helper T cells; 

BAFF=B-cell activating factor; iNKT=invariant natural killer T cells; CECs=circulating endothelial cells; IL-2Rα=interleukin-2 receptor alpha-chain; 

sST2=soluble suppressor of tumorigenicity 2; CXCL9=C-X-C motif chemokine ligand 9; OPN=osteopontin; MMP3=matrix metalloproteinase 3; IL-

15=interleukin-15; HGF=hepatocyte growth factor; IL-8=interleukin-8; TNFR1=tumor necrosis factor receptor 1; REG3α=regenerating islet-derived protein 

3α; KRT18=cytokeratine-18 fragments 

Page 38 of 44

URL: https://mc.manuscriptcentral.com/ehm   Email: IERR-peerreview@journals.tandf.co.uk

Expert Review of Hematology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Page 39 of 44

URL: https://mc.manuscriptcentral.com/ehm   Email: IERR-peerreview@journals.tandf.co.uk

Expert Review of Hematology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Figure 1 
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Figure 1 legend

The pathophysiology of acute GVHD (aGVHD) has been historically divided into three distinct 

phases: (1) the first step involves conditioning-induced tissue damage and subsequent release of 

inflammatory cytokines, including TNF-α, IL-6, IL-1α, and alarmins such as IL-33. In addition, loss 

of diversity in intestinal microbiota leads to loss of homeostasis with host immune system; (2) in 

the second phase, both host and donor derived antigen presenting cells (APCs) activate and expand 

alloreactive T cells. The inflammatory response is partly mediated by innate immune effectors 

(neutrophils, phagocytes, NK cells) stimulated by translocation through the damaged intestinal 

mucosa of lipopolysaccharide (LPS), damage associated molecular patterns (DAMPs) and 

pathogen-associated molecular patterns (PAMPs); (3) in the third phase, pathogenic effector cells 

and inflammatory mediators lead to the disease. Activated T cells migrate to target organs where 

they cause tissue damage and produce proinflammatory cytokines attracting other cellular effectors. 

Of note, damage of Paneth cells induces release of REG3α into bloodstream.
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List of biomarkers involved in acute and chronic Graft-versus-host disease, according to their diagnostic, prognostic or predictive value.

Abbreviations: aGVHD=acute graft-versus-host disease; cGVHD=chronic graft-versus-host disease; miRNAs=microRNAs; EVs=extracellular vesicles; 

SNPs=single-nucleotide polymorphisms; SCFAs=short-chain fatty acids; Tregs=regulatory T cells; Th17=T helper 17 cells; cTFH=follicular helper T cells; 

BAFF=B-cell activating factor; iNKT=invariant natural killer T cells; CECs=circulating endothelial cells; IL-2Rα=interleukin-2 receptor alpha-chain; 

sST2=soluble suppressor of tumorigenicity 2; CXCL9=C-X-C motif chemokine ligand 9; OPN=osteopontin; MMP3=matrix metalloproteinase 3; IL-

15=interleukin-15; HGF=hepatocyte growth factor; IL-8=interleukin-8; TNFR1=tumor necrosis factor receptor 1; REG3α=regenerating islet-derived protein 

3α; KRT18=cytokeratine-18 fragments 
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