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Abstract 

Introduction: Cerebrovascular diseases encompass various disorders of the brain 

vasculature, such as ischemic and hemorrhagic strokes, aneurysms, and vascular 

malformations, and may also affect the central nervous system leading to a large 

variety of transient or permanent neurological disorders. They represent major 

causes of mortality and long-term disability worldwide, and some of them can be 

inherited, including Cerebral Cavernous Malformation (CCM), an autosomal 

dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2 or 

CCM3/PDCD10 genes. 

Areas covered: Besides marked clinical and etiological heterogeneity, some 

commonalities are emerging among distinct cerebrovascular diseases, including key 

pathogenetic roles of oxidative stress and inflammation, which are increasingly 

recognized as major disease hallmarks and therapeutic targets. This review provides 

a comprehensive overview of the different clinical features and common 

pathogenetic determinants of cerebrovascular diseases, highlighting major 

challenges, including the pressing need for new diagnostic and therapeutic 

strategies, and focusing on the emerging innovative features and promising benefits 

of nanomedicine strategies for early detection and targeted treatment of such 

diseases. 

Expert opinion: Specifically, we describe and discuss the multiple physico-chemical 

features and unique biological advantages of nanosystems, including 

nanodiagnostics, nanotherapeutics and nanotheranostics, that may help improving 

diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, 

with an emphasis on CCM disease. 

 

Keywords: Central nervous system (CNS); cerebrovascular diseases; cerebral 

cavernous malformation (CCM); inflammation, oxidative stress, nanosystems; 

nanodiagnostics; nanotherapeutics; nanotheranostics; nose-to-brain delivery. 
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Article highlights 

1. Cerebrovascular diseases, including strokes, aneurysms and vascular 

malformations, are leading causes of mortality and adult long-term disability 

worldwide 

2. A few types of cerebrovascular diseases can be inherited, including Cerebral 

Cavernous Malformation (CCM) 

3. Oxidative stress and inflammation are increasingly recognized as major disease 

hallmarks and therapeutic targets of distinct of cerebrovascular diseases 

4. Nanomedicine is emerging as a promising and effective strategy for early 

detection and targeted treatment of cerebrovascular diseases and neurological 

comorbidities 

5. This review critically describes the physico-chemical features and biological 

advantages of nanosystems, including nanodiagnostics, nanotherapeutics and 

nanotheranostics, that may help improving diagnosis and treatment of 

cerebrovascular diseases and neurological comorbidities 

 

1. Introduction 

1.1. Cerebrovascular diseases 

1.1.1. Overview 

Cerebrovascular diseases are an heterogeneous group of either congenital or 

acquired disorders of the blood vessels in the central nervous system (CNS), which 

are classified on the basis of their unique pathophysiologic mechanisms, 

hemodynamic features and clinical manifestations [1]. Major cerebrovascular 

diseases include stroke, brain aneurysms, and cerebrovascular malformations 

(Table 1), which can be detected by an array of imaging technologies, including 

cerebral angiography, computerized tomography (CT), magnetic resonance imaging 

(MRI), and magnetic resonance angiography (MRA) [2,3]. 

Stroke is the the second leading cause of death worldwide, with 5·5 million deaths 

attributed to this cause in 2016, as well as the second most common cause of 

disability-adjusted life-years (DALYs) [4-6]. About 80% of strokes are ischemic, 
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caused by a blood clot formed either in cerebral vessels with dysfunctional 

endothelium and atherosclerotic plaques (thrombotic stroke), or at other locations in 

the circulatory system (embolic stroke). Current guidelines for the early management 

of acute ischemic stroke recommend the fastest possible use of revascularization 

procedures, which consist of intravenous thrombolysis with alteplase and 

endovascular treatment within a few hours after the onset of symptoms [7]. The 

remaining 20% of stokes are hemorrhagic. Hemorrhagic stroke may be further 

subdivided into subarachnoid hemorrhage (SAH), which occurs when a swollen 

artery located on the outer surface of the brain bursts and leaks blood into the 

subarachnoid space, and intracerebral hemorrhage (ICH), which occurs when a 

blood vessel bursts and leaks into the brain parenchyma [4,8]. ICH is potentially 

devastating, with long-term functional independence achieved in only 12–39% of 

cases and mortality rates of 40% at 1 month and 54% at 1 year [9]. The STICH I and 

II trials confirm that early surgery does not increase the rate of death or disability at 6 

months for patients with ICH. Surgery may have a small but clinically relevant 

survival advantage for patients with spontaneous superficial ICH without 

intraventricular hemorrhage [10,11]. Due to the high morbidity and mortality rates 

after ICH, both early diagnosis and the identification of relevant clinical and 

radiographic characteristics and molecular biomarkers that may serve as predictors 

of poor prognosis would enable improved disease outcomes [12,13]. While ischemic 

and hemorrhagic stroke are generally caused by blood clotting disorders and blood 

vessel ruptures, respectively, their molecular pathogenesis is complex and largely 

multifactorial, including the crucial contribution of oxidative stress and inflammatory 

events, susceptibility factors, and genetic determinants [14,15]. Furthermore, both 

ischemic and hemorrhagic strokes can result in either localized or widespread brain 

injury. Despite several generations of both interventional approaches and 

pharmacological therapies have been developed to improve stroke outcomes and 

reduce mortality [16], their efficacy is often limited, and there is still an urgent need of 

new approaches for more effective diagnosis and targeted therapies. In fact, 

whereas the real complexity of risk factors and pathogenetic mechanisms of stroke 

begins to take shape [14,15], the aging population, imbalanced lifestyles and 

environmental causes are expected to increase its incidence and associated 

mortality, particularly in developing countries [4,17]. 
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A brain aneurysm (also called intracranial or cerebral aneurysm) is a saccular or 

fusiform bulging of a cerebral artery, which results in a localized weakening of the 

blood vessel wall and may eventually burst causing life-threatening SAH. Prior to 

rupture, an aneurysm is usually clinically silent, unless it compresses a nerve or 

leaks small amounts of blood [18]. Indeed, despite affecting 3–5% of the adult 

population, most brain aneurysms do not rupture or cause symptoms, and often are 

incidentally discovered during imaging diagnostic tests performed for other clinical 

conditions [19]. Their etiology is unknown, but various risk factors have been 

identified [20]. In particular, it has been demonstrated that oxidative stress and 

inflammation play a major pathogenetic role in both their formation and their rupture 

[21,22]. Moreover, epidemiological studies have demonstrated a familiar occurrence, 

as well as an association with several heritable conditions, suggesting the potential 

contribution of genetic determinants [19,23]. Neurosurgical clipping and 

endovascular coiling are the current standard treatments for ruptured intracranial 

aneurysms, with no statistically significant differences in long-term clinical outcomes 

between the two treatments [24,25]. 

Cerebrovascular malformations are divided into low-flow and high-flow lesions, 

based on their hemodynamic characteristics, and are commonly further subdivided in 

four major groups, namely arteriovenous malformation (AVM), cerebral cavernous 

malformation (CCM), venous malformation (VM), and brain capillary telangiectasia 

(BCT). Moreover, they include also others specific types of cerebrovascular 

anomalies, such as arteriovenous fistula (AVF), vein of Galen malformation (VOGM), 

and mixed vascular malformations [26-28]. In contrast to vascular tumors 

(hemangiomas), which grow by cellular hyperplasia, vascular malformations consist 

of localized defects in vascular morphogenesis [29-31]. MRI is the primary 

noninvasive and effective diagnostic tool for the assessment of cerebrovascular 

malformations due to its ability to highlight their extent and anatomic relationships as 

well as to differentiate high-flow from low-flow lesions by dynamic post-contrast 

sequences [32]. VMs, also called developmental venous anomalies (DVAs), are the 

most frequent cerebrovascular malformations, but they are mostly benign and 

clinically silent [33,34]. BCTs are small, angiographically occult and clinically benign 

lesions, which are usually found incidentally by MRI [35] and should not be treated. 

In contrast, both AVMs and CCMs can cause a wide range of severe clinical 

symptoms, including severe headaches, seizures, progressive neurologic deficits, 
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and hemorrhagic stroke, which may become debilitating or even life-threatening at 

any age [36]. AVMs are high-flow lesions characterized by a nidus of feeder 

arterioles that shunt directly to veins without intervening capillaries [36-38]. They can 

form virtually anywhere in the brain or spinal cord, with a prevalence of about 1% in 

the general population, a risk of hemorrhage of 4% per year, and a 15% chance of 

consequent stroke or death [37]. In addition to rupturing, AVMs can undergo growth, 

remodeling, and regression [39-42]. Both congenital and acquired forms of AVMs 

have been observed to occur either sporadically or in the context of large hereditary 

syndromes, including hereditary hemorrhagic telangiectasia (HHT, also known as 

Rendu-Osler-Weber syndrome). Despite these and other observations have 

suggested potential pathogenetic mechanisms, including a crucial role of oxidative 

stress and inflammatory events [43-45], the etiology of AVMs is still largely unclear, 

and no direct therapeutic approaches are available so far besides neurosurgery or 

stereotactic radiosurgery [36,38,46]. However, a recent study showed that 

conservative medical management alone resulted superior to interventional therapy 

for the prevention of death or symptomatic stroke in patients with an unruptured 

brain AVM, while the long-term risks and differences between the two approaches 

remains uncertain [47]. On the other hand, compelling evidence accumulated over 

the last two decades has consistently shown a clear genetic basis and detailed 

molecular mechanisms for the pathogenesis of CCM disease, a major 

cerebrovascular disorder that affects capillaries in the brain and spinal cord, and may 

cause severe neurological signs and symptoms, including recurrent headaches, 

focal seizures, visual, sensory and motor abnormalities, and life threatening 

hemorrhagic stroke [48]. CCMs are low-flow lesions consisting of clusters of dilated 

and dysplastic capillaries forming cavernous sinusoids. Like AVMs, CCMs may form 

virtually anywhere in the brain or spinal cord, and can cause neurological damage by 

either compressing/displacing parts of the surrounding tissues or leading to ICH. 

Modern imaging indicates that the prevalence of CCM lesions in the general 

population is higher than 0.5%, thus affecting approximately 35 million people 

worldwide [48,49]. Furthermore, genetic studies have demonstrated that this 

cerebrovascular disease is caused by loss-of-function mutations in any of three 

known CCM genes, KRIT1/CCM1, CCM2 and CCM3, and may arise sporadically or 

is inherited as an autosomal dominant condition with incomplete penetrance and 

highly variable expressivity, including wide inter-individual differences in lesion 
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number, size, and susceptibility to ICH [48,50,51]. CCM genes encode for 

intracellular proteins that play major pleiotropic functions, including the coordination 

of key redox-sensitive pathways and mechanisms that govern endothelial cell 

homeostasis and defenses against oxidative stress and inflammation, suggesting the 

crucial implication of such pathways and mechanisms in the pathogenesis of CCM 

disease [52-58]. Consistently, accumulated evidence from animal models and patient 

cohorts has demonstrated that loss-of-function mutations of CCM genes only 

predispose to the development of CCM disease, leading to an increased 

susceptibility to endothelial dysfunction and blood-brain barrier (BBB) disruption 

induced by oxidative stress and inflammatory events [48,50,51,59-61]. In addition, 

the amazing progress in the knowledge of molecular mechanisms underlying CCM 

disease pathogenesis has led to the identification of potential risk factors 

[15,51,62,63], and prompted the development of targeted preventive and therapeutic 

strategies, including promising innovative approaches based on multifunctional 

nanocarriers [48,64-70]. 

 

1.1.2. Differences, commonalities and challenges 

Overall, accumulated evidence shows both differences and commonalities in the 

development of cerebrovascular diseases, highlighting the major influence of a 

complex interplay between genetic and environmental risk factors, as well as 

significant links between cerebrovascular and neurodegenerative diseases [75-79]. 

In particular, it is now clearly established that tightly linked abnormal oxidative stress 

and inflammatory responses underlay the most severe phenotypes of 

cerebrovascular diseases, including BBB destabilization and breakdown [59,80], and 

participate actively also in the development of neurological disorders, suggesting that 

these pathogenetic determinants can eventually bridge the boundary between 

cerebrovascular and neurodegenerative diseases [15,75,81]. Consistently, besides 

CCM disease, oxidative stress and inflammation, which can uniquely be referred to 

as oxy-inflammation due to their established tight interdependence [59], play key 

pathogenetic roles in other major cerebrovascular diseases and associated 

neurological disorders, including stroke [15,75,82-85], brain aneurysms [21,22,86], 

and AVMs [44,87], thus constituting major therapeutic targets for preventing or 

limiting the most severe clinical outcomes of such diseases.  
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Molecular determinants of oxidative stress and inflammatory events, such as 

reactive oxygen species (ROS), pro-inflammatory cytokines, matrix 

metalloproteinases (MMP), and cyclooxygenase 2 (COX-2), have been shown to 

cause BBB disruption by affecting all cellular constituents of the neurovascular unit 

(NVU), including endothelial cells, pericytes, and astrocytes, as well as the 

interposed extracellular matrix [80,88,89]. In turn, BBB disruption can promote 

vicious circles of intertwining oxy-inflammatory molecular responses, causing further 

molecular and cellular dysfunctions, and exacerbating the pathogenesis of both 

acute and chronic cerebrovascular diseases. Consistently, whereas oxy-

inflammation pathways are clearly implicated in most of the different pathogenetic 

mechanisms that lead to BBB dysregulation and consequent clinical outcomes, 

potential therapies for cerebrovascular diseases have been directed toward restoring 

the integrity of the NVU and BBB by modulating such pathways [89-91]. However, 

the restoration of the BBB may represent a limit for the delivery of diagnostic and 

therapeutic agents to the damaged neuronal tissues during the recovery phase of 

cerebrovascular diseases, such as strokes. Therefore, suitable carrier systems 

should be engineered in such a way as to ensure the targeting of injured brain 

tissues in both acute and recovery phases of cerebrovascular damage. Furthermore, 

cerebrovascular diseases should be assessed at different tissue levels by taking 

advantage of the key developments in clinical vascular imaging in the brain that 

occurred in the last decade, including the recent availability of high-sensitive and 

high-resolution imaging techniques, such as 3-T and 7-T MRI [3,92]. Overall, despite 

the great progress in the understanding of pathogenesis and treatment of 

cerebrovascular diseases, there are still major challenges and difficulties, including 

the identification of biomarkers for early diagnosis, prognosis, prediction, and 

monitoring, the specific and targeted delivery of diagnostic and therapeutic 

molecules to pathological sites, the overcoming of biological barriers, such as BBB, 

and the avoidance of fast clearance and undesirable side effects.  

Considering the emerging multifactoriality, complexity and challenges of 

cerebrovascular diseases and associated neurological comorbidities, the scientific 

community is exploring the promising field of nanomedicine, as a major alternative to 

existing diagnostic and therapeutic strategies [71,93,94]. Indeed, the recent rapid 

development of biomedical nanotechnology discoveries applied to the biomedical 

field has provided scientists with a rich toolbox of complex nanosystems that can be 
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harnessed to overcome biological barriers to pharmacological treatments and other 

shortcomings of traditional diagnostic and therapeutic approaches, such as 

unspecific drug delivery to healthy tissues and off-target toxicity, and uncontrolled 

drug release, and unfavorable drug retention and adverse effects of drugs in disease 

sites. Furthermore, innovative approaches have been geared towards the 

development of various targeted combination therapy and precision nanomedicine 

strategies, including those based on composite biomimetic and bioresponsive drug 

delivery nanosystems, for more specific, safe and effective treatment of multifactorial 

diseases. In particular, nanosystems can facilitate the delivery of drugs through the 

BBB owing to either passive or active targeting mechanisms [95]. Moreover, they 

offer the unique possibility to target emerging key pathogenetic determinants, 

including oxy-inflammatory mechanisms, both simultaneously and synergistically, 

thus avoiding the failures of traditional approaches [96]. Consistently, recent results 

demonstrate that innovative biomimetic and bioresponsive nanomedicine strategies 

can be very effective in treating complex diseases directly or indirectly connect to 

oxy-inflammatory mechanisms, such major cardiovascular, neurodegenerative and 

neoplastic diseases [97-104]. 

In this review, we critically describe the recent advances in development of 

nanosystems with either diagnostic (nanodiagnostics), therapeutic 

(nanotherapeutics) or combined (nanotheranostics) properties, and their potential 

advantageous applications and targeted administration via alternative routes for a 

more safe and effective diagnosis, therapy and outcome monitoring of 

cerebrovascular diseases and neurological comorbidities. 

 

1.2 Nanomaterials: manufacture and biomedical applications  

According to the European Commission Recommendation (2011/696/EU), a 

nanomaterial is defined as any form of a material that is composed of discrete 

functional parts, either internally or at the surface, many of which have one or more 

dimensions of the order of 100 nm or less. However, the mean size of 

nanoparticulate systems frequently exceeds 100 nm (Figure 1), as larger particles in 

the submicron size range can still offer improved biological properties due to higher 

superficial energy, despite having a lower capacity to penetrate through biological 

structures [105]. Indeed, the existence of nanotechnology-based products for 

pharmaceutical applications (nanomedicines) with a size greater than 100 nm 
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induced the European Medicines Agency (EMA) to include within the official 

definition of nanomedicines all “structures” with a size lower than 1000 nm that are 

designed to have specific properties and can improve site-specific drug delivery 

and/or significantly alter toxicological profiles [106,107]. 

Nanomedicines can be obtained using several types of matrixes (inorganic, metal, 

polymeric, lipid, surfactant) and various supra-molecular structures, such as 

micelles, dendrimers, vesicles (liposomes and niosomes), nanoemulsions, and 

nanoparticles (NPs), which can be further subdivided in core-shell nanocapsules and 

nanospheres (Figure 1) [108,109]. Different preparation methods can be employed 

to form the nanostructure, including bottom-up and top-down approaches where the 

building blocks are added onto a substrate or removed from it, respectively [110]. 

Moreover, recent advances in the preparation and characterization of nanostructures 

have given the possibility to strictly control their physico-chemical properties, to draw 

structure-function relationships in complex biological systems, and to design hybrid 

and composite nanobiomaterials. Eventually, these technological advancements 

have facilitated the development of innovative nanomedicine strategies, including the 

creation of highly engineered biomimetic and bioresponsive nanosystems that allow 

a fine-tunable, stimuli-responsive and on-demand targeted delivery and release of 

therapeutic compounds, thus overcoming the major shortcomings of traditional 

therapeutic approaches mentioned above. Remarkably, distinct nanomedicine-based 

breakthrough approaches that overcome multiple biological barriers to 

pharmacological treatment of complex diseases are nowadays moving quickly to 

clinical trials [97,98,102,111].  

 

1.3. Nanotechnology for diagnosis and therapy of diseases affecting the CNS 

The extensively growing field of nanomedicine offers excellent solutions for site-

specific targeting, biological imaging, controlled drug delivery and release, and 

efficient therapy for a wide range of CNS diseases, including cerebrovascular, 

neurological and neoplastic [112-120]. Compared with conventional medicines, 

nanomedicines have many physical and biological advantages, such as improved 

solubility and pharmacokinetics, enhanced efficacy, reduced toxic side effects, and 

increased tissue selectivity, thus overcoming the major shortcomings of conventional 

therapeutic approaches [121]. In recent years, multiple nanosystems have indeed 

been developed for advanced therapeutic and diagnostic applications, including 
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controlled targeting of nanoengineered therapeutic agents to pathological sites 

(nanotherapeutics) and visualization/quantitation of pathophysiological processes 

(nanodiagnostics), as well as for combinatorial approaches (nanotheranostics). In 

particular, the latter combine diagnostic and therapeutic properties within the same 

nanocarrier, thus providing innovative and effective solutions for advanced 

personalized nanomedicine interventions, including the possibility of simultaneous 

imaging, monitoring, and therapy [116,122,123]. Furthermore, the emerging 

integration of nanotechnology with stem cell therapy and tissue engineering is 

providing novel promising options for treatment of brain and spinal cord injury 

associated with cerebrovascular diseases [94,124]. 

Several therapeutic agents with either distinct or complementary properties can be 

assembled in nanomaterials as a single platform, thus allowing a multimodal therapy 

for combinatorial and synergistic treatment of specific diseases [125,126]. 

Accordingly, combination nanotherapy approaches have been proved effective in 

rescuing major pathological features in complex diseases [69,127]. Furthermore, 

drugs can be associated with imaging contrast agents in a theranostic probe for 

simultaneous investigation and therapy of the disease [128]. The ultra-small sizes 

and high surface-to-volume ratios of nanomaterials increase the solubility and 

circulation half-time of loaded drugs, and may also reduce their potential systemic 

toxicity by targeted delivery and controlled release. Moreover, nanomaterials can be 

engineered using molecules capable of responding to various stimuli, including light, 

magnetic field, ultrasound, temperature, pH, and oxy-inflammatory factors, thus 

improving their selective and efficient homing to specific tissues and biomolecular 

targets with appropriate spatial and temporal resolution [129,130]. Specifically, 

among the most auspicious medical applications, nanomedicine is emerging as a 

very promising strategy for improved diagnosis and non-invasive treatment of major 

cerebrovascular diseases and associated neurological comorbidities 

[71,93,94,131,132]. Despite the current great advances and emerging advantages of 

nanomedicine, there are still major challenges and difficulties in the pharmacological 

targeting of cerebrovascular diseases and neurological comorbidities. In particular, a 

limiting step may be the loading of the drug into the nanocarriers. Indeed, some 

nanoparticulate systems are associated with low drug payload, implying that only 

potent drugs can be used effectively, whereas stressful synthetic conditions, such as 

heat, extreme pH, solvents, and highly reactive components, can be harmful to the 
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stability of sensitive drugs [133]. Moreover, rapid blood clearance and premature 

burst drug release are inherent drawbacks of conventional nanoparticles that can 

affect the effective tissue targeting of loaded drugs [134]. On the other hand,  

substantial concerns have been raised regarding the safety of some engineered 

nanomaterials used for drug delivery into the brain, including especially metal NPs 

[135-137]. In particular, it has been reported that NPs can cause neurotoxicity via 

several possible mechanisms, including oxidative stress, autophagy, and lysosome 

dysfunction, and the activation of signaling pathways involved in inflammation and 

cell death, and there is indeed evidence that high exposure to the CNS can cause 

effects on neurotransmission, redox homeostasis and behavior [135,136,138]. 

Furthermore, even if preclinical evaluation of prototype nanosystems proved their 

safety and efficacy, translation to the humans is highly limited by scale-up issues and 

high costs. Therefore, NPs prepared with feasible and easy to scale-up techniques 

and biocompatible matrixes should undergo an easier translation to the humans. The 

high volume of NPs required for administration in human patients is also a relevant 

drawback, implying that NPs loaded with potent drugs that are effective at low 

therapeutic doses should be optimal candidates for human translation [139]. 

However, as a matter of fact, the approval rate for novel nanomedicines is currently 

below 10%, mainly because of safety and efficacy profile failures during preclinical 

and clinical studies [140]. 

 

2. Nanosystems for cerebrovascular diseases 

2.1. Features of nanocarrier matrices 

NPs for nanomedicine applications can be synthesized from various organic or 

inorganic materials, such as synthetic and natural polymers, lipids, proteins, and 

metals. Among the most commonly used matrices there are synthetic polymers 

[141], including poly(lactic acid) (PLA) [142], poly(lactic-co-glycolic acid) (PLGA) 

[143], poly(ethylenimine) (PEI) [144], poly(vanillin oxalate) (PVO) [145], and 

poly(amidoamine) dendrimers (PAMAM) [146]. The advantages of synthetic 

polymeric NPs include easy fabrication and absence of biological contamination. 

However, nanocarriers useful for nanomedicine applications can also be prepared by 

using other materials, including natural biopolymers, inorganic materials, and lipids. 

Furthermore, two or more types of materials can be integrated to obtain 
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nanosystems with specific combinations of desired physicochemical properties, such 

as tailored sizes, shapes and surface functionality, improved drug loading capacity, 

enhanced stability, solubility and biocompatibility, as well as targeted delivery and 

controlled release of various drugs and theranostic agents. Indeed, distinct 

multimaterial nanosystems capable of targeting human diseases, including 

cerebrovascular diseases and cancers, and serving as early diagnostic and 

therapeutic agents, have been already developed into different safety systems that 

simultaneously improve prognosis and therapy [147-152]. 

As compared to polymeric NPs, potential advantages, including in vivo multimodality 

imaging and therapy, are offered by inorganic NPs composed of pure metals or 

metal oxide, such as gold [153,154], silver [155], platinum [156,157], palladium [158], 

iron oxide [93], manganese dioxide [159], and silicon dioxide [160]. Such NPs are 

easy to prepare and functionalize, and can be synthesized in various controllable 

sizes and geometric shapes. Moreover, metal-based composite NPs can easily be 

tracked by different diagnostic techniques, including MRI, transmission electron 

microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) 

[154], as well as by innovative approaches, such as Sputtering-Enabled Intracellular 

X-ray Photoelectron Spectroscopy (SEI-XPS) [161]. In particular, metallic NPs with 

magnetic and super-magnetic properties (MNPs) have attracted great attention due 

to the possibility of combining elective diagnostic imaging studies by MRI, with 

accurate targeted delivery of drugs toward specific regions of the human body 

guided by external magnetic fields [123,162,163]. 

Importantly, a new class of nanomaterials defined as nanozymes is emerging as a 

major tool in nanomedicine applications for the treatment of oxidative stress-related 

diseases, including vascular diseases [164-166]. Among such nanozymes, there are 

noble metal-based NPs, in particular platinum (Pt) and palladium (Pd) NPs, which 

are endowed with intrinsic antioxidant properties, mimicking the catalytic activity of 

first line defense antioxidant enzymes, including superoxide dismutase (SOD), 

catalase (CAT) and glutathione peroxidase (GPX) [165,167-169]. Indeed, both Pt- 

and Pd-NPs have been reported to produce positive biological effects by reducing 

intracellular ROS levels and oxidative stress, as well as by combining this intrinsic 

activity with that of various carried drugs, thereby integrating antioxidant nanozyme 

and nanocarrier functions [66,157,169,170]. Remarkably, distinct metal-based 

nanosystems with antioxidant properties have been demonstrated to rescue 
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endothelial dysfunction induced by oxidative stress and inflammation, thus emerging 

as major candidates for combination therapy of oxy-inflammatory vascular diseases 

[66,69,169,171,172]. 

Along with synthetic polymers and inorganic materials, also natural polymers, such 

as chitosan, and natural lipids are increasingly employed for nanodrug formulations 

with either diagnostic, therapeutic or theranostic purposes due to their particular 

physicochemical and biological properties, including biocompatibility, 

biodegradability and simplicity of functionalization [173-176]. In particular, lipid-based 

nanoformulations, such as micelles, liposomes, nanoemulsions and solid lipid 

nanoparticles (SLN), have become very attractive for their unique size dependent 

properties, as well as for their potential to improve performance of pharmaceuticals, 

and reach the goal of controlled and site specific drug delivery to the brain. Indeed, 

they are highly biocompatible and can enhance drug transport through the BBB by 

targeting specific transport processes in the brain vasculature [177,178]. 

For drug delivery applications, the conjugation between distinct NPs and drugs can 

be achieved through either adsorbing, covalent binding or encapsulating methods, 

whereas the subsequent drug release into target sites may occur by diffusion or 

desorption [177].  

Overall, NPs composed of a specific combination of distinct materials have been 

shown to be well suited for advanced therapeutic strategies based on targeted 

delivery of antioxidant and anti-inflammatory agents to treat various human disease 

[145,162,179-181]. 

 

2.2. Physico-chemical requirements  

Various nanoparticle features, such as size, shape, zeta potential, material 

composition, and lag time of drug release, have significant roles in the design of 

efficient therapeutic and theranostic systems for CNS diseases [182,183]. Particles 

with a size bigger than 200 nm can be rapidly opsonized and massively cleared by 

Kupffer cells or other phagocytic cells, while smaller hydrophilic particles have a 

lower opsonization rate, and show prolonged biodistribution and high site-specific 

targeting properties. On the other hand, nanosystems with a very small size (less 

than 6 nm) are quickly removed from the body by renal filtration. However, 

hydrophilic and biodegradable polymers or surfactants can be applied to increase 

the NP retention [184]. Notably, accumulated evidence has proved inverse 
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correlation between particle size and BBB penetration [177], thereby the size of NPs 

must be optimized according to the final goal. The most studied nanosystems for the 

treatment of brain diseases are 50-100 nm size [177]. Shilo et al. reported that the 

size of gold NPs (GNPs) has strong effect on their intracellular uptake, 

demonstrating that 70 nm GNPs show maximum accumulation in the brain and 20 

nm GNPs offer the maximum free surface [185]. In capsulated nanosystems, both 

capsule size and thickness play an important role for increasing the therapeutic 

capacity. The core-to-surface ratio changes upon size manipulation, and the low 

core-to-surface ratio of small nanosystems may cause drug release once their 

membrane is broken [186]. Moreover, a key factor in cellular uptake and body 

distribution of NPs is the shape of the particle. Among differently shaped NPs, 

including spherical, cubic, rod-, disk- and star-like, spherical NPs have exhibited the 

fastest internalization rate [187]. However, rod shaped NPs showed higher 

accumulation in the brain compared with spherical counterpart [188], further 

highlighting the complex interplay between size, shape and surface property of NPs. 

Indeed, another critical factor to be considered in the formulation of NPs for drug 

delivery to the brain is the electrokinetic potential, also known as zeta potential, 

which has an important effect on the BBB permeation. For sufficient electrostatic 

repulsion of NPs, a zeta potential of at least ±30 mV is needed [189]. On the other 

hand, it has been shown that an high positive zeta potential causes toxicity to the 

BBB [177], as well as that the NP surface charge affects the therapeutic properties of 

the loaded drug [190]. Formulation of NPs with proper zeta potential values is 

therefore critical for nanomedicine applications [191-194]. 

 

2.3. Targeted delivery strategies 

2.3.1 Passive targeting 

The enhanced BBB permeability that occurs after acute ischemic stroke may enable 

both blood substances and nanosystems to cross the BBB and enter the brain 

parenchyma by passive diffusion [80]. In such pathological condition, major 

therapeutic objectives should be neuroprotection, reduced disruption of the NVU, 

and prevention of secondary injuries. Enhanced permeation and retention (EPR)-like 

effects can be achieved depending on chemico-physical features of nanocarriers 

[195], which regulate their biological interactions [196-198]. Indeed, nanosystems 
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should be preserved from the reticulo-endothelial system (RES) and have prolonged 

plasma circulation time. To this aim, hydrophilic surface and reduced particle size are 

the most relevant parameters. Furthermore, compared to EPR effect of leaky vessel 

in tumor/inflamed tissue, additional size restrictions apply to disrupted BBB [199], 

and brain accumulation depends also on injection time and the spatial location of the 

brain injury [200]. Only nanosystems below 100 nm showed relevant accumulation in 

the damaged brain [143]. Indeed, small size dendrimers helped to disclose the size 

effect on overcoming BBB: dendrimer uptake relies on disease severity, extent of 

BBB disruption, and glial cell activation [201-205]. 

 

2.3.2 Active targeting 

In the presence of an intact BBB, active targeting approaches are required to 

delivery nanosystems into injured brain tissues (Figure 2) [206]. Targeting moieties 

include ligands for carrier-mediated transporters (CMT) and/or receptor-mediated 

transporters (RMT) overexpressed in the BBB [207]. Most of the ligands belong to 

protein/peptide category. Transferrin [208], anti-transferrin receptor antibodies [209-

211], lactoferrin [212], Angiopep-2 [213], and T7 peptide [214] are the commonest 

ligands employed to target the BBB. Moreover, specific targeting to injured brain can 

be performed. Chlorotoxin, a 36-amino acid peptide, can be used to target matrix 

metalloproteinase 2 (MMP-2), which is up-regulated in the ischemic 

microenvironment in the brain [215]. CAQK peptide [216] and stroke homing peptide 

[214] bind to specific sites of brain injury. Neurons can be targeted by Rabies Virus 

Glycoprotein (RVG-acetylcholine receptor) [217] and antibodies against NMDA (N-

methyl-D-aspartate) receptor 1 (NR1) [218]. Fas ligand recruits microglia to injured 

regions for compensatory repair, suggesting that Fas ligand antibody may be used 

for injured brain targeting [211]. Alternatively, targeting to ischemic brain can be 

achieved through neutrophil-mediated inflammatory migration after Pro-Gly-Pro 

(PGP) functionalization [219]. Nonetheless, different critical issues are associated 

with protein mediated targeting, including immunogenicity. Indeed, most of the RMT 

are present also in non-target tissues: the presence of a “spacer” between the 

nanoparticle surface and the grafted protein improves selectivity for the BBB, as well 

as a low amount of grafted protein [220]. Moreover, transferrin-functionalized 

nanocarriers undergo binding competition with the corresponding endogenous 

protein [221], whereas employment of monoclonal antibodies against transferrin 
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receptors raises safety concerns [222]. Lactoferrin, instead, is a cationic iron 

transporting glycoprotein, whose receptor in the BBB has two binding sites with a Kd 

higher than its plasmatic concentration, avoiding the competitive inhibition with 

endogenous ligand [223]. Polysorbate 80 surfactant, instead, adsorbs endogenous 

serum apolipoproteins on NP surface, allowing low density lipoprotein receptor 

(LDLR)-mediated targeting [224]. 

 

2.4. Administration routes 

Traditional strategies for targeted delivery of nanosystems rely mainly upon 

intravenous administration to reach injured tissues. However, such strategies are 

often not suitable for chronic diseases requiring repeated administrations. 

Furthermore, intravenously injected ingredients, such as surfactants, may cause off-

target toxicity, including toxicity to the BBB. Therefore, alternative administration 

routes have been investigated, including cochlear and nose-to-brain routes. The first 

entails the demonstrated communication between labyrinthine perilymph, in the inner 

ear, and cerebrospinal fluid (CSF) through the cochlear aqueduct [225]. Owing to 

this communication, the intra-tympanic injection is becoming of increasing interest for 

the delivery of nanosystems for the treatment of cerebrovascular diseases [226], with 

a size exclusion limit of 1-3 microns [227]. Avoidance of systemic exposure is a 

relevant advantage for cochlear route. However, whereas effective drug delivery to 

the inner ear relies on the retention in the site of administration, unfortunately large 

portions of the administered drugs are usually eliminated through the Eustachian 

tube, leading to unpredictable pharmacokinetic profiles. NPs provide certain 

advantages over conventional drug delivery methods in terms of increased retention 

and targeted drug delivery to specific cells in the cochlea [228]. 

So far, nose-to-brain delivery is the most popular alternative method to target the 

brain [229]. In particular, nose-to-brain delivery works due to the olfactory and 

trigeminal nerves, protruding respectively in the olfactory and the respiratory 

epithelium [230]. It can occur by slow intra-axonal (intra-neuronal or intracellular) 

transport, or by fast transfer into the CSF along the perineural clefts (extra-neuronal 

or paracellular transport), which is also associated to systemic absorption through 

the highly vascularized lamina propria [231]. Systemic uptake, avoiding first pass 

effect, is given by transcellular transport through epithelial cells, and it can reach the 

injured brain in the case of BBB disruption (Figure 3). However, main limitations of 
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nose-to-brain delivery are: I) the small volume administered, meaning that only 

potent drugs can be employed successfully; II) the individual variability of nasal 

uptake, as well as the susceptibility to pathological conditions (rhinitis, etc.). 

Nonetheless, the advantages in terms of patient compliance, fast onset of action and 

efficient BBB bypassing, overcome the existing drawbacks [174,232,233].  

Despite the utility of nanosystems in nose-to-brain delivery is controversial [234,235], 

some potential advantages can be foreseen [236]. Indeed, nanocarriers protect the 

encapsulated drug from biological and/or chemical degradation, and from 

extracellular transport by P-glycoprotein efflux [237]. Moreover, bioadhesive 

nanosystems can increase nasal retention, preventing muco-ciliary clearance, and 

transiently open the tight junctions of the mucosal epithelium, because of the 

surfactants used in the formulation [238]. Thus, they can act as nasal absorption 

promoters, particularly useful for peptides and proteins, whose nasal delivery is 

prevented by molecular weight. Drug payload can be released at the mucous layer, 

and/or entire nanosystems can move along the axon up to the olfactory bulb, via 

pinocytosis and clathrin- (20–200 nm) or caveolae- (200–1000 nm) mediated 

endocytosis [239]. However, since axon diameter is about 100–700 nm, the transport 

of colloidal systems within this size range might be highly limited [240]. Major 

parameters influencing nose-to-brain uptake of nanosystems include surface charge 

(positively charged are easily taken up by intracellular transport), reduced particle 

size, presence of muco-adhesive polymers, such as polysaccharides (including 

positively charged chitosan) and surface functionalization (cell-penetrating peptides, 

lactoferrin, lectins, etc.). The role of PEGylation is more controversial, because its 

mucus-penetrating ability depends upon coating density and chain length [238], 

although the intravenously injection of PEGylated nanoparticles has been 

demonstrated to increase the blood circulation of conjugated-drugs and enhance 

their accumulation within specific tissues [241,242]. Finally, biocompatible 

nanomaterials should be used, because the extended contact with nasal mucosa 

can lead to irritation, ciliotoxicity and damage of the primary olfactory nerves 

[243,244]. 
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2.5. Preclinical and clinical studies 

2.5.1. Nanotherapies for cerebrovascular diseases 

Owing to the targeting mechanisms described above, nanocarriers offer a versatile 

platform for treating acute and chronic cerebrovascular diseases. Intravenous 

thrombolytic agents, such as t-PA, can be administered within 4.5 h from stroke 

onset for reducing infarct size and neuronal death. This approach can be successful 

due to effective nanocarrier-mediated targeting to the ischemic region and fast clot 

dissolution, even if it is associated to a high risk of hemorrhage [245]. However, 

nanocarrier-based drug delivery is mainly addressed towards NVU function recovery 

after acute events, such as stroke, as well as in the case of chronic diseases [206]. 

In particular, given that oxidative stress and inflammation have emerged as major 

causes and consequences of NVU dysfunctions underlying both acute and chronic 

cerebrovascular diseases and neuronal comorbidities [59,81,246,247], antioxidant 

and anti-inflammatory nanotherapies have been recognized as promising strategies 

for an effective treatment of such diseases [104,248]. Over the past decade, 

significant advances have been made in the development of antioxidant and anti-

inflammatory nanosystems based on a number of natural and synthetic materials, 

such as carbon, metals, nanocrystals, lipids, and polymers [104]. Such 

nanotechnology approaches have significantly overcome the shortcomings of 

conventional administration of antioxidant compounds, which showed limited in vivo 

effects owing to their non-specific distribution and low release and retention in 

disease sites, thus improving pharmacokinetics properties and decreasing side 

effects of therapeutic drugs. Specifically, the emergence of various ROS-responsive 

nanocarrier systems, consisting of ROS‐responsive functional moieties integrated 

with either ROS-scavenging inorganic NPs, organic NPs with intrinsic antioxidant 

activity, or NPs loaded with antioxidant and anti-inflammatory drugs or activatable 

prodrugs, allows a spatiotemporally controlled release of drugs for a more effective 

therapy [104,249-252]. Consistently, the increasing availability of various ‘smart’ 

bioresponsive materials that are sensitive to biological signals or to pathological 

abnormalities are expanding the opportunities for the development of next-

generation precision nanomedicines [253,254]. 

Besides the most widely used antioxidant and anti-inflammatory compounds of the 

polyphenol family, other types of materials have been used in the formulation of 
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antioxidant and anti-inflammatory nanosystems, including ceria oxide [213,255], 

carbon-based compounds [256-258], and antioxidant enzymes, such as superoxide 

dismutase (SOD) and catalase (CAT) [218,219,256,258-262]. Furthermore, the 

emerging multiple properties and potential benefits of antioxidant nanozymes, 

including metal-based NPs mimicking SOD and CAT enzymes, have attracted 

extensive attention for both therapeutic and theranostic applications, yielding 

promising results in various experimental models of human diseases associated with 

oxidative stress and inflammation, including cerebrovascular diseases 

[66,69,104,263]. 

Several protein/peptide growth factors have been used for stroke therapy due to their 

ability to promote angiogenesis/neurogenesis, and to inhibit apoptosis and 

inflammatory cascade [264]. In addition, approaches for ex vivo gene therapy 

employing genetically engineered mesenchymal stem cells (MSCs) have also been 

proposed [265,266]. Also in this regard, nanocarriers have become a realistic 

alternative to traditional approaches for achieving better efficacy in both drug and 

gene therapy for cerebrovascular diseases as well as for other human diseases, 

including the use of NPs as non-viral vectors for encapsulation and targeted delivery 

of either plasmid DNA (p-DNA), mRNA, small interfering RNA (siRNA), or microRNA 

(miRNA) [133,267]. 

Special attention should be paid to secondary prevention of both acute and chronic 

cerebrovascular diseases in sensitive subjects. Apart from the aforementioned 

neuroprotective substances, anti-hypertensive drugs have been loaded in 

nanocarriers to prevent stroke, with particular regards to calcium channel blockers 

(such as nimodipine), which also show promising inhibition of atherosclerotic plaque 

deposits [268]. Similarly, lipid lowering statins are being investigated to reduce the 

risk of stroke in dyslipidemic patients [269]. Furthermore, accumulated evidence 

indicates a significant relationship between defective autophagy and abnormal 

inflammatory responses in the pathogenesis of both ischemic stroke and CCM 

disease, thus pointing to autophagy inducers, including mammalian target of 

rapamycin (mTOR) inhibitors, as potential therapeutic compounds for such diseases 

[54,270]. For secondary prevention purposes, nanocarrier-mediated nose-to-brain 

delivery is an emerging approach, as well as co-delivery within the same nanocarrier 

of drugs acting towards multiple mechanisms. 
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A great variety of matrixes and supramolecular structures have been employed for 

drug delivery in cerebrovascular diseases (Table 2). The most promising are lipid 

and polymeric systems, because of a long history of safe use in pharmaceutical 

products [271,272]. Among other emerging approaches, cell mediated delivery is 

gaining importance. Indeed, it can be achieved by exploiting internalization within 

MSCs, which may mediate targeting to the injured tissue [273], or by wrapping NPs 

with platelet cell membranes [274]. 

 

2.5.2. Nanodiagnostics and nanotheranostics for advanced imaging of 

cerebrovascular diseases 

Taken together, the growing understanding of pathogenetic mechanisms and the 

rapid development of nanotechnologies have provided promising possibilities for 

advanced imaging of cerebrovascular lesions, as well as for the production of 

nanotheranostics with multiple functions, including targeting, multimodal imaging and 

monitoring, and synergistic therapies [253]. In particular, smart nanodiagnostics and 

nanotheranostics responsive to key components in the pathogenesis of 

cerebrovascular diseases, such as oxidative stress and inflammation (oxy-

inflammation), have emerged as innovative nanosystems with advanced diagnostic 

and therapeutic properties. Major evidence concern CT and MRI nanodiagnostics. 

Among smart nanodiagnostics, there are ferumoxytol, an iron oxide nanoparticle 

coated by a carbohydrate shell that is used in MRI studies as an inflammatory 

marker, and di-5-hydroxytryptamide of gadopentetate dimeglumine, a 

myeloperoxidase (MPO)-specific paramagnetic MRI contrast agent [93]. Indeed, 

these nanosystems may allow noninvasive assessment of the inflammatory status of 

cerebral aneurysms and arteriovenous malformations by contrast-enhanced MRI, 

with the potentiality to differentiate lesions that require early intervention [93]. 

Consistently, MRI paired with ultrasmall superparamagnetic iron oxide NPs 

(USPIOs) injection has demonstrated great potential for inflammation imaging, 

whereby USPIOs serve as contrast agent and tracking system [275,276]. In 

particular, it has been demonstrated that USPIO-enhanced MRI could constantly 

monitor therapeutic effects of minocycline treatment in cerebral ischemia [275]. 

Furthermore, Park et al. have designed poly(ethylene glycol)-coated cross-linked 

iron oxide NPs (PCIONs) as a therapeutic approach and simultaneous tracking 

system for MSCs via MRI. Magnetic MSCs can be precisely visualized in vitro and in 
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vivo and it is conceivable to monitor their translocation from infusion site to 

cerebrovascular ischemic area. Moreover, PCIONs can mediate aggregation and 

retention resulting from magnets at the target site, which also improve the precision 

of in vivo cell monitoring [273]. Besides iron oxide, also manganese-enhanced MRI 

might be used, as it enhances neuroarchitecture visualization. Joen et al. developed 

hollow manganese oxide NPs (HMONs) as a T1 MRI contrast agent. The large 

water-accessible surface of HMONs facilitate and enhance the relaxation of target 

site, thus producing a positive contrast [277]. Since the quick imaging improve the 

outcome of the therapy, the demand for advanced imaging in cerebrovascular 

diseases is daily increasing. In this regard, IONs are able to upgrade the microwave 

images to rapidly distinguish emergent ischemic stroke from hemorrhagic stroke 

[278]. Furthermore, CT is used for time-critical decision in stroke, having been 

applied by Kim et al. for thrombolytic treatment with t-PA [153]. This study showed 

that GNPs sensitively and quantitatively allowed high-resolution in vivo micro CT 

imaging of in situ thrombosis, as well as optimized managing of thrombolytic therapy. 

In addition, a single administration of nanosystems for imaging allowed to monitor 

patients up to 3 weeks. This approach offers also the possibility for personalized 

therapy and stratification of patients, thus preventing excessive or dangerous 

treatments [153]. Distinct approaches have been used for monitoring and preventing 

complications of SAH as well as of surgical and endovascular treatments for 

intracranial aneurysms [279,280], including the use of a label-free cellulose surface-

enhanced Raman spectroscopy (SERS) biosensor chip with pH-functionalized, GPN-

enhanced localized surface plasmon resonance (LSPR) effects for early diagnosis of 

SAH-induced complications [279]. Finally, the recent development of ROS-

responsive diagnostic imaging nanosystems has also been described [251].  

Besides CT and MRI, a growing number of studies is emerging on the potential use 

of positron emission tomography (PET) and single photon emission computed 

tomography (SPECT) emitter isotopes integrated into NPs and/or linked to NPs 

surface for advanced brain imaging [281]. Indeed, through clinical PET imaging it is 

possible to investigate the contribution of neuroinflammation and the evolution of 

microglial activation, and evaluate the effects of pharmacological intervention over 

an extended period after stroke events [282]. Notably, many PET ligands have been 

developed and clinically used as biomarkers of neuroinflammation to image the 

accumulation of activated microglia and astrocytes in various diseases, and a better 
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signal-to-noise ratio and sensitivity have been achieved with second-generation PET 

ligands [283-285]. On the other hand, SPECT investigation can detect cerebral 

perfusion changes during the management for preventing the delayed cerebral 

ischemia after aneurysmal SAH [286]. Alongside the promising benefits, both PET 

and SPECT imaging techniques also harbor potential pitfalls and shortcomings, 

including the use of radioactive tracers and the limited spatial resolution relative to 

the biological process [287]. 

Also photoacoustic (PA) tomography/imaging (PAT/PAI) and optical imaging, based 

on the differences in light absorption of various biological tissues, are alternative 

noninvasive, nonionizing modalities to track changes in cerebral vasculature with 

excellent contrast and great spatial resolution, and have indeed contributed to a 

better knowledge of the brain microvasculature and cerebrovascular diseases in 

mouse models [288-290]. Specifically, PAI is a hybrid imaging modality that 

integrates high optical contrasts with high ultrasonic spatial resolution in deep 

tissues, and may combine the intrinsic hemoglobin contrast PA neuroimaging with 

the specific properties of distinct NPs, including near-infrared (NIR) absorbing NPs, 

which greatly enhance the vascular contrast in deep-brain PAI, and multifunctional 

NPs, which allow comprehensive brain examination through multimodal imaging 

[289]. Different types of NPs can be employed, including porphysomes, 

perfluorocarbon nanodroplets and perylene-3,4,9,10-tetracarboxylic diimide NPs. 

However, many clinically approved NPs, such as iron oxide NPs, do not exhibit 

strong absorption in the NIR region, therefore encapsulation of light absorption 

materials may be required. Moreover, acoustic distortion from skull must be 

minimized by mapping the bone profile through another modality, such as X-ray or 

ultrasound CT, and incorporating it into PAI reconstruction [289]. 

Optical brain imaging, including fluorescence-based imaging in the visible and 

traditional near-infrared regions (400-900 nm), is an alternative methodology that can 

provide real-time and high-resolution assessment of blood flow anomaly in mouse 

models of cerebrovascular diseases, but currently requires craniotomy, cranial 

windows and skull thinning techniques, and the penetration depth is limited to 1-2 

mm due to light scattering [290]. Nevertheless, higher spatial resolution and larger 

penetration depth have been achieved by fluorescence bioimaging in the second 

NIR spectral region (NIR-II, 900-1700 nm). In particular, fluorescence imaging of 

cerebral vasculature in mouse was obtained using the inherent photoluminescence 
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property of single-walled carbon nanotubes in the 1.3-1.4 micrometer NIR window. In 

this spectral range, decreased photon scattering enables fluorescence imaging to 

exceed a depth of 2 mm in the mouse brain with high resolution without craniotomy 

[290]. Accordingly, fluorescence bioimaging in the NIR-II spectral region and its 

related imaging-guided therapy based on biocompatible fluorescence NPs are 

considered as a promising nanotheranostic method for cerebrovascular imaging and 

disease treatment in clinical practice [291]. 

Overall, nanotheranostics offer a versatile platform to merge advanced imaging and 

targeted drug delivery in the same NP, thus overcoming the multiple shortcoming of 

conventional diagnostic and therapeutic approaches mentioned above, and 

facilitating the development of precision medicine strategies based on smart, 

multifunctional NPs [289,292]. Furthermore, a major advantage of such delivery 

systems is the ability to monitor disease progression along with targeted drug 

administration [293]. Specifically, multiple aspects of cerebrovascular diseases and 

neurological comorbidities, including tissue injuries and oxy-inflammatory responses, 

can be treated and monitored simultaneously [150,294,295]. For instance, there is 

evidence that plain liposomal citicoline, a well-known neuroprotective drug, can 

serve as a multifunctional nanotheranostic tool in the treatment of ischemic stroke, 

owing to its recently disclosed inherent chemical exchange saturation transfer 

(CEST) MRI signal [296]. 

 

3. Nanosystem-based therapy for CCM disease 

3.1. CCM disease: pathogenic mechanisms and treatment 

Despite the widespread use of improved diagnostic imaging techniques, including 

MRI, allows a clear diagnosis of CCM disease, to date there are no direct therapeutic 

approaches besides the neurosurgical removal of accessible lesions in patients with 

recurrent hemorrhage or intractable seizures. However, the identification of CCM 

genes and the characterization of their physiopathological functions have suggested 

distinct promising pharmacological strategies for preventing or limiting symptomatic 

disease onset and severity in susceptible individuals [48]. Indeed, compelling 

evidence accumulated over the last decade has clearly demonstrated that loss-of-

function mutations of CCM genes affect major mechanisms of cellular antioxidant 

and anti-inflammatory defenses, including redox homeostasis and signaling, and 
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autophagy, pointing to a major role for oxy-inflammation in the pathogenesis of CCM 

disease [48,59]. Specifically, loss-of-function of CCM proteins induces an increase in 

intracellular levels of dysfunctional mitochondria and ROS through the 

downregulation of major antioxidant mechanisms, including the signaling pathway 

involving forkhead box protein O1 (FoxO1) and superoxide dismutase 2 

(SOD2/MnSOD) [52,64], the glutathione redox buffer system [58], and autophagy 

[54]. In turn, the altered redox homeostasis causes the upregulation of the JNK/c-Jun 

pathway and the consequent induction of COX-2, a major oxidative stress and 

inflammatory biomarker involved in vascular dysfunctions [52-54]. Furthermore, there 

is also an abnormal and sustained activation of the major antioxidant transcription 

factor Nrf2, which results in a chronic adaptive redox homeostasis that sensitizes 

cells to additional stressful events [56,57]. Conversely, growing evidence in cellular 

and animal models demonstrates that limiting oxidative stress and inflammatory 

responses via distinct approaches may contribute significantly in preventing or 

reversing CCM disease phenotypes [48]. In particular, it is noteworthy that all of the 

different therapeutic candidates for CCM disease proposed so far are endowed with 

either antioxidant or autophagy-inducing properties or both [48]. Specifically, among 

the major therapeutic candidates for CCM disease there are statins [368,369], which 

have been shown to exert powerful antioxidant and pro-autophagic activities, as well 

as significant benefits in the treatment of other cerebrovascular diseases [370-372]. 

Furthermore, rapamycin and Torin1, two well-known autophagy stimulators that 

resulted effective in rescuing defective autophagy in cellular models of CCM disease 

[54], have been also shown to reduce mitochondrial dysfunction and oxidative stress 

[69,373-375]. Recently, two other compounds known to exert multiple health benefits 

due to their established antioxidant, anti-inflammatory and pro-autophagic activities, 

such as vitamin D and avenanthramides [15,65,68], have been demonstrated to 

either prevent or rescue pathological phenotypes in mouse models of CCM disease 

[60,64], thus emerging as promising therapeutic candidates. 

 

3.2. Nanomedicine approaches for CCM disease 

Given the established major role of oxy-inflammatory mechanisms in the 

pathogenesis of CCM disease, it was tempting to hypothesize that the development 

of specific nanosystems endowed with combined and synergistic antioxidant and 

anti-inflammatory properties may represent a promising therapeutic strategy for its 
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treatment [59,62,69]. Consistently, we demonstrated the reliability and effectiveness 

of both Pt- and Pd-NPs in rescuing increased intracellular ROS levels and oxidative 

stress in cellular models of CCM disease [66,69,169]. Furthermore, this possibility 

was strongly supported and extended by the demonstration that a multitargeted 

therapy approach based on a composite nanosystem endowed with intrinsic 

antioxidant activity and carrying a pro-autophagic drug was effective in rescuing 

major molecular and cellular mechanisms of CCM disease pathogenesis, suggesting 

its potential for the treatment of this and other oxidative stress-related diseases [69]. 

Specifically, this composite multifunctional nanosystem combined the intrinsic ROS 

scavenging activity of Pt nanozymes with the autophagy-stimulating activity of 

rapamycin (Rapa), and was tested in distinct cellular models of CCM disease, 

including KRIT1 knockout mouse embryonic fibroblasts (MEF) [52] and KRIT1-

silenced human endothelial cells [54]. The experimental outcomes highlighted the 

advantages of composite platinum/rapamycin nanosystems (Pt@Rapa NPs), 

including the enhancement of rapamycin physicochemical properties, such as 

solubility, permeability, stability and bioavailability. Furthermore, they showed that 

cellular uptake of Pt@Rapa NPs occurred via endocytosis and resulted in synergistic 

biological effects, including the rescue of established hallmarks of CCM disease, 

such as altered redox homeostasis and signaling [52,53], mitochondrial and 

autophagy dysfunctions [52,54,55,67], and endothelial to mesenchymal transition 

(EndMT) [54,376] (Figure 4). Overall, the outcomes of these in vitro studies stimulate 

their further implementation for precision nanomedicine approaches in animal 

models of CCM disease, thus paving the way for the development of advanced 

combinatorial nanotherapeutic and nanotheranostic strategies to overcome current 

diagnostic and therapeutic limitations [69]. 

 

4. Expert opinion 

The incidence of major diseases affecting the CNS, such as cerebrovascular, 

neurodegenerative and neoplastic diseases, is increasing with the rising life 

expectancy, posing a heavy burden not only on patients and their families but also 

on society and governments, through enormous use of health care services and 

resources. Therefore, there is a pressing need for new diagnostic and therapeutic 

strategies that can be used in patients with CNS diseases, including the 
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development of tailor-made drug delivery systems that allow a more precise and 

selective targeting of the pathological sites without harmful side-effects on normal 

tissues and cellular processes. The urgent need for innovative diagnostic and 

therapeutic approaches is further highlighted by new research outcomes providing 

strong evidence for a causal relationship between cerebrovascular disorders, 

including stroke and cerebrovascular malformations, and the onset and progression 

of major neurodegenerative diseases associated with high morbidity rates, such as 

Alzheimer’s disease, multiple sclerosis and Parkinson disease. 

Altered BBB is a major common feature of the major cerebrovascular diseases, such 

as ischemic and hemorrhagic stroke, and cerebrovascular malformations, and 

represent therefore a primary therapeutic target [80]. However, reconstitution of BBB 

restraint can drastically hamper the delivery of therapeutic and diagnostic agents into 

the brain in the recovery phase. Therefore, suitable drug carrier systems should be 

engineered in such a way as to be able to target the brain both in the acute and in 

the recovery phase of cerebrovascular damage. In light of this and other difficulties, 

including the multifactoriality and complexity of the pathogenetic mechanisms 

underlying cerebrovascular disorders nanomedicine has rapidly and powerfully 

emerged as one of the most dynamic and promising technological frontiers for the 

development of integrated, precise and effective diagnostic and therapeutic 

strategies aimed at detecting and counteracting the disease phenotypes. Indeed, the 

growing understanding of key pathogenetic mechanisms underlying the onset, 

progression and severity of major cerebrovascular diseases and associated 

comorbidities has disclosed novel opportunities for multimodal diagnostic imaging, 

controlled drug targeting and release, and combined and synergistic therapies. 

Specifically, despite being complex, multifactorial disorders characterized by marked 

clinical and etiological heterogeneity, the most severe cerebrovascular diseases, 

including stroke, brain aneurysms, AVMs and CCMs, share oxidative stress and 

inflammation as major triggers of disease pathogenesis and severity, suggesting that 

oxy-inflammatory phenotypes may represent crucial nanomedicine targets for 

monitoring and counteracting distinct cerebrovascular diseases (Figure 5). In 

particular, the development of smart nanosystems responsive to physical, chemical, 

and biological triggers, including pathological stimuli such as altered pH, oxidative 

stress, inflammation, and reactive biomolecules [253,254,377], may allow their 
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selective homing to specific tissues and biomolecular targets, thus increasing their 

effectiveness and reducing their potential systemic toxicity. 

Notably, various nanosystems developed so far for the prevention and treatment of 

cerebrovascular diseases are endowed with antioxidant and anti-inflammatory 

properties [378-380], and could be further implemented according to recent 

innovative advances in nanomedicine strategies. Furthermore, given the emerging 

molecular links between cerebrovascular and neurological diseases [79,247], 

additional biological benefits may result from multitargeted, combinatorial 

nanomedicine approaches that simultaneously and synergistically target 

cerebrovascular diseases and associated neurological comorbidities in response to 

pathological stimuli. Consistently, whereas the effectiveness of multidisciplinary 

strategies of precision medicine and combination therapies based on targeted 

delivery of stimuli‐responsive nanotherapeutics has been clearly demonstrated [381-

387], the combinatorial targeting of oxidative stress and defective autophagy by a 

composite nanosystem endowed with both antioxidant and pro-autophagic activities 

has recently emerged as a potential nanomedicine strategy for CCM disease [69]. 

Nonetheless, several relevant hurdles are still limiting the clinical translation of 

nanotechnology for cerebrovascular diseases. Indeed, the term “nanocarriers” 

include a great variety of nanomaterials, with different size and biological properties. 

To this regard, while metal NPs are characterized by a very small size that favors 

BBB overcoming owing to passive targeting mechanisms, they have raised major 

neurotoxicity concerns [137]. Indeed, the assessment of the quality, safety, and 

efficacy profiles of a new nanomedicine is the main limiting step to its clinical 

translation [388]. On the other hand, polymeric and lipid NPs are made up of 

biocompatible materials or physiological lipids, and have a safe history of clinical 

use. However, such NPs have often a large size and are associated to rapid blood 

clearance. To overcome this issue, surface functionalization can be optimized in 

order to avoid RES uptake and/or to achieve active targeting to the BBB and the 

injured brain [80,389-391], taking into account that this procedure is usually 

associated with high costs and scale-up issues. It is worth to stress that the high 

heterogeneity of NP synthetic methods, sizes, shapes, purity, and the variability of 

experimental conditions (i.e. cell types used for toxicity assessments) make a clear 

picture of the toxic profile of NPs difficult. Furthermore, the surface properties of NPs 

(coating/functionalization), along with protein corona effects, govern the interactions 
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with tissues and cells, significantly influencing their biological fate. Nonetheless, the 

presence of potential contaminants in solution, such as residual solvents, reaction 

by-products and endotoxins, could play a considerable role in the cellular toxicity of 

NP preparations. Therefore, the following procedures should be recommended in 

order to achieve safe and biocompatible NP preparations: 1) complete batch-to-

batch physico-chemical assessment of NP properties (size distribution, stability, zeta 

potential, aggregation state, protein corona formation), in particular in complex 

environment like cell culture media; 2) extensive purification procedures, crucial to 

minimize the presence of contaminants, that can easily overcome the benefits of the 

NP pure material and of the coatings; 3) assessment of the toxicological effect of 

each reagent employed for NPs preparation, including solvents; 4) control of the 

absence of endotoxin and bacterial contamination: 5) Evaluation of the toxicity of the 

coating materials per se [392]. 

Within this context, nose-to-brain offers a new paradigm to target cerebrovascular 

diseases, being suitable for chronic administration and allowing a rapid BBB 

overcoming. Bioadhesive nanosystems can increase nasal retention, preventing 

muco-ciliary clearance, and transiently open the tight junctions of the mucosal 

epithelium, due to the surfactants used in the formulation [238], while a 100–700 nm 

size limit can be hypothesized for intra-axonal transport [240]. On the other side, 

relevant achievements can be obtained in the near future by employing NPs as non-

viral vectors for gene therapy of cerebrovascular diseases. Indeed, along with 

current applications relying on gene over-expression (p-DNA), or gene silencing 

(siRNA, miR) in stroke, the usage of novel mRNA-based technologies allows 

interesting translational perspectives [393]. Unlike p-DNA, mRNA does not need to 

overcome nuclear membrane to achieve transfection, and circumvents the need of a 

specific promoter. Moreover, although protein expression arising from mRNA 

transfection is more transient than from p-DNA, mRNA does not integrate into the 

genome and thus poses no risk of insertional mutagenesis [394]. In this light, mRNA 

complexed NPs could be suitable as a novel potential therapeutic approach also in 

cerebrovascular disorders of genetic origin, such as CCM disease. 

Taken together, the great progress toward a comprehensive characterization of 

disease mechanisms, and the rapidly growing variety of effective 

therapeutic/diagnostic nanosystems and alternative administration routes allow to 

foresee significant improvements of existing diagnostic and therapeutic approaches 
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for CCM and other cerebrovascular diseases, pointing to precision risk stratification 

and personalized nanomedicine strategies. With this growing trend, the future for an 

early and more effective treatment of cerebrovascular diseases and associated 

comorbidities looks bright. 
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Table legends 

 

Table 1. Clinical features of major cerebrovascular diseases. AVM: arteriovenous 

malformation; BCT: brain capillary telangiectasia; CCM: cerebral cavernous 

malformation; CT: computerized tomography; CTA: CT angiography; DVA: 

developmental venous anomaly; ICH: intracerebral hemorrhage; MRI: magnetic 

resonance imaging; MRA: magnetic resonance angiography; SAH: subarachnoid 

hemorrhage. 

 

Table 2. Nanoparticulate systems employed for cerebrovascular diseases. ADSC: 

adipose-derived stem cells; Apo E: apoliprotein E; AQP-1: aquaporin-1; AVM: Arterio 

Venous Malformations; bFGF: Basic fibroblast growth factor; BBB: blood brain 

barrier; Bcl-2 B-cell lymphoma 2; CAT: catalase; CCM: Cerebral Cavernous 

Malformation; CT: computer tomography; EC: endothelial cells; EPCs: Endothelial 

progenitor cells; EV: extracellular vesicles; HSP70: Heat Shock Protein 70 

kilodaltons; EC: Endothelial cell, FK506: tacrolimus; ICH: intracerebral haemorrhage; 
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iNOS: inducible Nitric Oxide Synthase; ION: iron oxide nanoparticles; I/R: ischemia-

reperfusion; LDC: Lipid Drug Conjugates; LNC: Lipid nanocapsules; MCAO: middle 

cerebral artery occlusion; MEKi: inhibitor of the Mitogen-activated protein kinase; 

MESC: embryonic stem cell; miR: microRNA; MRA: magnetic resonance 

angiography; MRI: magnetic resonance imaging; MRP: magnetic resonance 

perfusion; MSC: multipotent mesenchymal stromal cells; mTOR: mammalian target 

of rapamycin; MV: microvesicles; NEP1-40: Nogo-66 receptor antagonist peptide; 

NDMA R1: N-methyl-D-aspartate receptor 1; NGF: nerve growth factor ; NIRF: near-

infrared fluorescence; NPs: nanoparticles; NSC: Neural stem cells; OX26: anti 

trasnferrin receptor antibody; PAMAM: Hydroxyl polyamidoamine; pDNA: plasmid 

DNA; PEDF: pigment epithelium-derived factor; PEG: polyethylene glycol; PELG: 

poly(ethylenediamine L-glutamate; PET: Positron Emission Tomography; PGP: Pro-

Gly-Pro; PLGA: poly(lactic-co-glycolic acid); PLL: poly(L-lysine); RVG: rabies virus 

glycoprotein; SHp: stroke homing peptide ; siRNA : small interfering RNA; SLNs: 

Solid Lipid Nanoparticles; SOD: superoxide dismutase; SPION: paramagnetic iron 

oxide nanoparticles; sPirB: soluble PirB (Paired immunoglobulin‐like receptor B) 

ectodomain; T7: T7 peptide; TBI: traumatic brain injury; TfR: transferrin receptor; 

TNF: tumor necrosis factor; t-PA: tissue plasminogen activator; USPION: ultrasmall 

paramagnetic iron oxide nanoparticles; VEGF: Vascular Endothelial Growth Factor; 

ZL006: neuroprotectant drug ZL006. 

 

 

Figure legends 

 

Figure 1. Schematic representation of the main available nanoparticulate systems. 

LUVs: large unilamellar vesicles; MLVs: multi-lamellar vesicles; MVVs: multi-

vesicular vesicles; NPs: nanoparticles; PLA: poly(lactic acid); PLGA: poly(lactic-

glycolic acid); SUVs: small unilamellar vesicles. 

 

Figure 2. Schematic representation of different strategies for drug delivery to the 

brain. BBB: blood brain barrier; CMT: carrier mediated transport; CTX: chlorotoxin; 

EPR: enhanced permeability and retention; LDL: low density lipoprotein; Lf: 

lactoferrin; MMP: matrix metalloproteinase; NMDA R1: N-methyl-D-aspartate 

receptor 1; R: receptor; RMT: receptor mediated transport; T7: T7 peptide;  Tf: 
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transferrin. 

 

Figure 3. Scheme of nose-to-brain uptake pathway of nanoparticulate systems. 

BBB: blood brain barrier. 

 

Figure 4. Schematic representation of the synergistic rescue effects of composite 

platinum/rapamycin nanosystems (Pt@Rapa NPs) in KRIT1-deficient cells. Red and 

green arrows indicate the detrimental effects of KRIT1 loss-of-function, and the 

beneficial multifunctional biological activities of platinum/rapamycin nanosystems, 

respectively. KRIT1 loss-of-function impairs redox homeostasis, mitochondrial 

function, and autophagy, leading to major molecular and cellular hallmarks of CCM 

disease pathogenesis, including the aberrant accumulation of intracellular ROS and 

autophagy markers, such as the p62/SQTSM1 protein, and the induction of 

endothelial to mesenchymal transition (EndMT), which are synergistically rescued by 

Pt@Rapa NPs [69]. 

 

Figure 5. Schematic representation of major cerebrovascular diseases that might be 

targeted by nanodiagnostic, nanotherapeutic and nanotheranostic precision 

medicine approaches. 
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Disease Disease 
subtype 

Predominant 
vessel types 

Causes Pathological and 
clinical outcomes 

Diagnostic 
Tests 

Treatment References 
 

Stroke  Ischemic Mixed  Cerebral 
thrombosis or 
embolism. 
Multifactorial 
etiology. 
Oxy-inflammation 

Brain ischemia. 
Neurological 
disorders. 
Temporary or 
permanent 
disabilities 

CT; MRI Pharmacological 
therapies and 
interventional 
mechanical 
devices aimed at 
restoring 
cerebral blood 
flow. 
Nanotechnology 

[4,14-17,71] 

Hemorrhagic Mixed Rupture or leakage 
of a weakened 
blood vessel. 
Multifactorial 
etiology. 
Oxy-inflammation 

SAH or ICH. 
Neurological 
disorders. 
Severe morbidity and 
high mortality 

CT; MRI Surgical or 
endovascular 
treatments. 
Strategies to 
reduce the 
secondary injury 

Aneurysm Saccular Arterial The exact etiology 
remains unclear. 
Oxy-inflammation 

Brain aneurysms can 
remain clinically 
silent or cause life-
threatening 
hemorrhagic stroke 
(SAH) 

CTA; MRA; 
Cerebral 
Angiography 

Preventive 
treatments 
(endovascular or 
surgical 
aneurysm 
repair), or 
conservative 
management 
with follow-up 
imaging 

[19,20,23] 
Non-saccular 

AVM  Arteriovenous The exact etiology 
remains unclear. 
Oxy-inflammation 

SAH or ICH. 
Neurological damage 
related to lesion 
location 

Cerebral 
angiography; 
CTA  

Conventional 
surgery, 
endovascular 
embolization, 
and 
radiosurgery 

[36-42,46] 

DVA  Venous The exact etiology 
remains unclear 

Mostly benign and 
clinically silent. 
Often found 
associated with 
sCCM 

MRI Conservative 
management 

[33,34] 

CCM Sporadic 
(sCCM) 

Capillary  Proven genetic 
origin. 
Oxy-inflammation 

Recurrent headaches, 
neurological deficits, 
seizures, ICH. 

MRI Surgery or 
conservative 
management 
with follow-up 
imaging 

[15,48,59,72-74] 

Familial 
(fCCM) 

 BCT  Capillary The exact etiology 
remains unclear 

Mostly benign and 
clinically silent 

MRI Conservative 
management 

[35] 
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Nanosystem Drug/probe delivered Use Outcomes Ref. 

Micelles Neuroprotective drug edaravone
Therapeutic: 
stroke 

Enhancements of ischemic brain targeting; 
improved neuroprotection  

[297] 

Nanoemulsions 

Triolein Diagnostic 
Increased vascular permeability with minimal 
risk of cerebral edema 

[298] 

Antioxidants 
Therapeutic: 
stroke, ICH 

Enhancement of bioavailability by nose-to-
brain (thymoquinone); 
Improvement in the motor skills and 
haematoma size decrement (quercetin) 

[299,300] 

Statins (simvastatin) 
Therapeutic: 
brain injury 

Enhancement of the nose-to-brain transport [269] 

Calcium channel antagonist 
nimodipine 

Therapeutic: 
stroke 

Decreased toxicity and irritation after i.v. 
administration  

[301] 

L
ip

id
 N

P
s 

LDC 
Neuroprotective squalenoil-
adenosine 

Therapeutic 
stroke 

Improved brain bioavailability  [302] 

SLN 
 

Neuroprotective drugs 
Therapeutic: 
stroke  

Ischemic brain targeting by FAS-ligand 
antibody conjugation (3-n-butylphthalide); 
BBB overcoming (andrographolide); 
Nose-to-brain delivery of muco-adhesive SLNs 
(vinpocetine) 

[303-305] 

Polyphenols (antioxidants) 
Therapeutic: 
stroke 
 

Brain targeting by OX26 conjugation, and 
improved relieve of neuronal injury (baicalin); 
Reduced clearance by PEGylation (daidzein); 
Increased oral bioavailability and brain 
delivery (hydroxysafflor yellow A); 
Protection from ischemia injury by up-
regulation of Bcl-2 and HSP70 expression and 
down-regulation of Caspase-3 expression 
(puerarin); 
Improved brain bioavailability 
(epigallocatechin gallate) 

[210,306-309] 

LNC 

Calcium channel antagonist 
nimodipine 

Therapeutic: 
stroke  

Brain targeting through lactoferrin 
functionalization and reduced clearance by 
PEGylation 

[212] 

Polyphenols: baicalin and 
salvianolic acid B 

Therapeutic: 
stroke 

Brain targeting by OX26 conjugation [211] 

L
ip

os
om

es
 

PEGylated 

Antioxidant enzyme SOD 

Therapeutic: 
stroke 

Improved drug pharmacokinetics and brain 
delivery through anti-NDMA R1 receptor 
antibody conjugation  

[218] 

Thrombolytics, vasodilators 

Improved neuroprotection due to co-delivery of 
dexamethasone and t-PA; 
Accumulation in the ischemic area with 
amelioration of I/R injury and motor score;  
Accumulation in the ischemic area with 
amelioration of I/R injury and motor score; 
(fasudil):  
Extended therapeutic time window (t-PA and 
fasudil) 

[310-312] 

Statins (simvastatin) Improved brain bioavailability (simvastatin) [313] 
mTOR inhibitors enhanced therapeutic efficacy of FK506 [314] 
Anti-inflammatory cyclosporine 
A 

Significant effective dose reduction  [315] 

Neuroprotective drugs 
Theranostic: 
stroke 

Enhanced accumulation in the ischemic area of 
T7 and SHp dual targeting with improved 
therapeutic outcomes (ZL006); 
Improved motor function and reduced water 
retention and protection from cognitive 
impairment (hemoglobin); 
Improved drug delivery of the MRI-traceable 
PEG-immuno-liposomes in the ischemic area 
with significantly reduction of lesion volumes 
(citicoline); 

[95,214,296,316] 

Plain 

Antioxidant panax 
notoginsenoside 

Therapeutic: 
stroke 

Brain edema inhibition, reduction of infarct 
volume and increased SOD level  

[259] 

Neuroprotective drugs & 
peptides 

Improved neurologic deficit score and 
locomotor activity by intranasally administered 
gelatin-coated nanoliposome (bFGF);  
Improvement of neuroprotective outcomes and 
disclosure of novel neuroprotection mechanism 
by regulating iron metabolism in ischemic 
brain (lycopene); 
Improved brain delivery, promotion of 
neuroprotection and vascular regeneration in 
the chronic stage of cerebral infarction due to 

[208,317-319] 

ACCEPTED M
ANUSCRIP

T



 

 

Information Classification: General 

TfR-targeted liposomes (VEGF) 
Improved drug pharmacokinetics and increased 
neuroprotective effects (acetate); 

Neuroprotective drugs 
Theranostic: 
stroke 

Accumulation in the ischemic regions and 
improved ischemic stroke recovery (sPirB); 
Accumulation in the ischemic regions detected 
by PET (hemoglobin) 

[294,295] 

Dendrimers Neuroprotective drugs 
Therapeutic: 
brain injury 

Active targeting of microglia and damaged 
neurons in injured brain: potential role of 
PAMAM dendrimers in brain delivery; 
Attenuation of the inflammatory response and 
improvement in myelination and in the 
Therapeutic time window: potential delivery 
system for neonatal brain injury treatment; 
Effective brain delivery and accumulation in 
injured areas of neutral dendrimers: possible 
role of dendrimers as biomarkers for disease 
phenotypes; 
Significant reduction of the adverse side effects 
of N-acetyl cysteine and valproic acid 

[201-205] 

E
xo

so
m

es
, M

V
. E

V
 

MSC-derived miR 

Therapeutic: 
stroke, ICH 

Enhancement in the efficacy of miR based 
therapy; 
Improvement in functional recovery, neurite 
remodeling, neurogenesis and angiogenesis 
(miR-133b-overexpressing and miR-17–92 
cluster–enriched); 
Improved safety profile 

[320-326] 

ADSC-derived miR 

Prevention of cerebral injury by inhibiting 
autophagy-mediated microglial polarization 
(enriched with miR-30d-5p); 
Ameliorated cerebral I/R injury by autophagy 
activation and neuronal apoptosis suppression 
(PEDF-overexpressing exosomes); 

[327,328] 

MESC-derived Antioxidant curcumin Improvement in neurovascular restoration  [329] 

NSC-derived  
Alteration of the systemic immune response 
with a neuroprotective effect; improved neural 
tissue preservation and functional levels 

[330] 

EC-derived  
Modulation of astrocyte functions, BBB 
integrity and cerebral blood flow with a 
neuroprotective effect  

[331] 

Surface 
fucntionalized 

miR 

Efficient RVG targeted delivery of gene drugs 
(miR-124) to the brain; 
Efficient targeted brain delivery associated at a 
large-scale production  

[332,333] 

P
ol

ym
er

ic
 N

P
s 

Polystyrene   
Therapeutic: 
stroke 

Colloidal stability determines overcoming of 
disrupted BBB  

[199] 

Chitosan 
Anti-oxidative and anti-
inflammatory silymarin 

Therapeutic: 
stroke 

Prevention of oxidative/inflammatory brain 
damage by I/R after oral administration 

[334] 

Gelatin  iNOS siRNA 
Therapeutic: 
stroke 

Increased therapeutic potency of intranasal NPs 
in the postischemic brain 

[335] 

dendrigraft PLL  Antioxidant enzyme CAT 
Therapeutic: 
stroke 

PGP funtionalization allows neutrophil 
mediated delivery to inflamed injured brain 

[219] 

PEG-b-(PELG-g-
PLL)  

Neuroprotective TNF-α 
Therapeutic: 
stroke 

enhanced bioavailability, reduced oxidative 
stress, inflammation, and apoptosis in I/R 

[336] 

PLGA  

Antioxidant enzymes CAT and 
SOD 

Therapeutic: 
stroke 

CAT/SOD loaded NPs co-administered with t-
PA mitigated inflammatory response, induced 
neuroprotection, and inhibited edema formation 
in I/R injury 

[261] 

Neuroprotective drugs 
Significantly reduced infarct volumes and 
enhanced survival with lexiscan and NEP1-40 
loaded NPs 

[215] 

Antioxidants 

Curcumin loaded PEGylated NPs induced 
neuroprotection in I/R injury by reducing 
oxidative damage neuronal apoptosis 

[337] 

Increased quercetin oral bioavailability and 
remarkable mitochondrial localization post I/R 
injury 

[338] 

800CW imaging agent 
Diagnostic: 
stroke 

Smaller (100-nm) PEG-coated NPs penetrated 
deeper into the mouse brain than large 
containing NPs (800nm) 

[143] 

PLGA-chitosan Antioxidant thymoquinone 
Therapeutic: 
stroke 

Intranasally administered NPS reduced 
ischemia infarct volume and enhanced 
locomotor activity and grip strength in MCAO 

[339] 

Platelet selective spleen tyrosine kinase Theranostic: Platelet membrane coating allows delivery of [274] 
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membrane 
wrapped PLGA 

inhibitor piceatannol and SPION stroke piceatannol to adherent neutrophils, detaching 
them into circulation, and thus decreasing their 
infarct infiltration 

PEG-PLA siRNA 
Therapeutic: 
stroke 

Inhibiting microglial neurotoxicity [340] 

PEG-PLGA 
nanoceria 

Therapeutic: 
stroke 

Reduction of focal ischemia by 60% and brain 
edema by 78% in MCAO 

[255] 

Acrylate SPION and t-PA 
Theranostic: 
embolic stroke

Accelerated thrombolysis and reduced infarct 
area in cerebral embolism model 

[341] 

PAMAM  MRI and NIRF probes 
Theranostic: 
diabetic stroke

ανβ3 integrin-targeted NPs allow early 
detection of angiogenesis and therapy in 
photothrombotic stroke 

[342] 

Peptide siRNA 
Therapeutic: 
TBI 

Accumulation into the injured site and 
downregulation of a therapeutic candidate 

[343] 

Albumin 
Neuroprotective NGF, MEKi 
U0126 and USPION 

Theranostic: 
stroke 

Infarct size reduction [276] 

Gd-conjugated 
oxygen reactive 
polymer 

 
Theranostic: 
TBI 

MRI guided 3-fold reduction of H2O2 levels  [344] 

C
ar

bo
n 

N
P

s 

silicon–graphene 
oxide core–shell 

siRNA 
Therapeutic: 
injured brain 

RVG targeted NPs caused 2-fold greater 
cellular uptake and gene silencing 

[217] 

Fullerene 
Glucosamine conjugated 
fullrenol 

Therapeutic: 
stroke 

Reduced immunoreactivity, infarct volume and 
cerebral inflammation 

[345] 

Carbon  
Therapeutic 
stroke 

Antioxidant activity acting as a biomimetic 
SOD; 
Restored balance between nitric oxide and 
superoxide in MCAO  

[256,258] 

Fullerenol  
Therapeutic 
stroke 

Reduced neurological dysfunction, brain edema 
and infarction of ischemic brain due to ROS 
quenching  

[257] 

In
or

ga
ni

c 
N

P
s 

Silver siRNA. 
Therapeutic: 
TBI 

Gene silencing in injured brain parenchyma [216] 

Gold  

Theranostic: 
stroke 

Visualize cerebrovascular thrombi in CT and 
guide thrombolytic therapy 

[153] 

Therapeutic: 
AVM 

Radiation dose enhancers in radiosurgery [346] 

Diagnostic: 
ICH 

Raman spectroscopy [279] 

Diagnostic: 
AVM 

MRA contrast agent [347] 

IO
N

 

SPION 

 
Diagnostic: 
stroke 

Contrast for Microwave Imaging Resonance; 
Early detection of endothelial activation and 
neuroinflammation by P-selectin targeted 
SPION; 
MRI of BBB alteration by PEG-SPION; 
No post-stroke passive targeting by certain 
types of SPION; 
Neuroinflammation detection via MRI in 
absence of lesions and symptoms; 

[278,348-351] 

Fluorescent Sulphorhodamine B 
linked to valylalanylaspartic 
acid fluoromethyl ketone 
(caspase inhibitor) 

Theranostic: 
stroke 

Strong platform for non-invasive imaging and 
targeting delivery to apoptotic cells 

[352,353] 
 

USPION  
Diagnostic: 
stroke 

USPION-enhanced MRI: 
Passive diffusion of USPION after BBB 
disruption and by intravascular trapping; 
Non-invasive monitoring of macrophage 
recruitment into ischemic brain lesions 

[275,354-357] 

SPION-
labeled MSC 

 

Theranostic: 
stroke 

Therapeutic role of stem cells conjugated with 
SPION to monitor efficacy  

[358] 

Nucleic acids 

Translocations of loaded VEGF-pDNA into 
MSC, allowing MRI tracking due to combined 
PEG-SPION; 
Improved therapeutic efficacy and imaging 
tracking of transplanted EPCs due to siRNA-
loaded SPION 

[273,359] 

Platinum mTOR inhibitor rapamycin 
Therapeutic: 
CCM 

Antioxidant and pro-autophagic activity [66,69] 

Manganese oxide  
Diagnostic: 
stroke 

Determine and monitor apoptotic area via MRI 
after hypoxic-ischemic injury  

[277] 

Ceria Neuroprotective drug edavarone
Therapeutic: 
stroke 

Highly effective BBB crossing by angiopep-2 
targeted NPs and synergistic ROS elimination 
by both the loaded edaravone and ceria NPs 

[213] 

Hydrophobic  Diagnostic: Improve diagnostic efficiency of acute [360] 
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NaYF4 :Yb/Er  stroke ischemia and stroke via MRI, MRA and MRP 

Copper/zinc SOD 
Therapeutic: 
stroke 

Decreased infarct volume and improved 
sensorimotor in MCAO and I/R injury 

[260] 

Perfluorocarbon NPs  

Diagnostic: 
stroke 

Visualize inflammatory processes by MRI;   
Identify ischemic penumbra and propose;  
Enhance sensitivity of MRI to detect penumbra 
in acute stroke patients 

[361-363] 

Theranostic: 
stroke 

Treatment based on metabolic status of the 
brain tissue, independent of time from stroke 
onset 

[364] 

Therapeutic: 
stroke 

Thrombolytic agent for treating acute stroke;   
Decrease ischemic stroke infarct volume and 
protect brain 

[365-367] 
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