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Abstract— Bounds on differences are widely used in AI to model binary constraints regarding different dimensions, such as time, 

space, costs, calories, etc. Representing and reasoning with them is an important task in several areas such as knowledge 

representation, scheduling and planning. Researchers are increasingly focusing on the treatment of fuzzy or probabilistic constraints, 

to deal with preferences and/or uncertainty. Current approaches to constraints with preferences focus on the evaluation of the optimal 

(i.e., with highest preference) solutions for the set of constraints and propose a wide range of alternative operators to combine 

preferences within constraint propagation. However, in decision support tasks, finding a specific (though optimal) solution is not the 

main goal, but rather it is more important to identify the “space of solutions” (i.e., the minimal network) with their preferences, and to 

provide users with query answering mechanisms to explore it. We propose the first approach that addresses such a need by (i) 

supporting user-defined layered scales of preferences (e.g., Low, Medium, High, Very High), (ii) proposing a family of extensions of 

bounds on differences constraints to deal with such layered preferences, (iii) defining a family of reasoning algorithms to evaluate the 

minimal network, which is parametric with respect to the basic operations to combine preferences (and the scale of preferences), and 

(iv) providing suitable query-answering facilities. The properties of the family of approaches are also analyzed. 
 

Keywords — Temporal constraints with preferences; Temporal reasoning; Temporal constraint propagation 

 

——————————   u   —————————— 

1 INTRODUCTION 

The treatment of fuzzy information in general, and preferences in particular, plays an important role in intelligent 

systems, and, specifically, in Decision Support [74]. As a result, many “classical” AI frameworks have been and are 

being extended to consider preferences. In this paper, we focus on one of them, Bounds on Differences (BoDs), which 

are an important tractable subclass of the general class of Constraint satisfaction problems (CSPs). 

CSPs are the subject of an important stream of research in Artificial Intelligence (AI), since they provide a common 

basis to represent, analyze and solve many seemingly unrelated families of problems. Coping with CSPs is, in general, 

an NP-hard problem. However, polynomial tractable problems can be obtained by restricting the class of constraints. 

A tractable class of constraints is the one of BoDs [16], a particular class of linear inequality problems which consist 

of a conjunction of constraints c	 ≤ 	x	– 	y ≤ d, where the difference between variables x and y is bounded between 

the values c and d (the domain can be either discrete or dense). BoDs assume a particular importance because many 

real-world problems, especially spatial and temporal problems, can be easily modelled as sets of BoDs. BoDs may 

have different interpretations. For instance, x and y may be interpreted as time points, c and d are respectively their 

minimum and maximum distance on the timeline (this is the basis of the Simple Temporal Problem framework – STP, 
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see [19] – which is a milestone in AI temporal reasoning). Alternatively, c and d can be the spatial distance between 

points in space (see, e.g., [47, 59]), or calories [3]. 

For the sake of brevity, in the rest of the paper we propose examples relying on the temporal interpretation of BoDs, 

but, very importantly, all the possible BoD interpretations are supported by our methodology. 

A number of approaches in AI provide reasoning algorithms that propagate a set of BoDs repeatedly applying two 

operators: the resume ⊕	and the	extension ⊙ operators. Given two constraints concerning the same pair of variables i 

and j, the resume operator ⊕ gives as output the new constraint “merging” them; given a constraint between two 

variables i and j and a constraint between j and k, the extension operator ⊙ is used to determine the new “implied” 

constraint between i and k. Reasoning can be performed to achieve different tasks: to check the consistency of the 

constraints or to find a solution or scenario (i.e., an instantiation of all the variables that satisfies all constraints), or to 

compute the minimal network. A minimal network is a set of constraints equivalent to the original ones (i.e., with the 

same solutions) such that the minimum and maximum implied distances between each pair of variables are made 

explicit (see [19] for a formal definition). 

Example 1. To simplify the discussion, we consider an easy STP problem. Let t1, t2 and t3 be time points, let 

granularity be minutes, and let KB be the following set of BoD constraints: KB={10£t2-t1£15, 20£t3-t2£30, 25£t3-

t1£40}, i.e., t2 is between 10 and 15 minutes after t1, t3 is between 20 and 30 minutes after t2, and t3 is between 25 and 

40 minutes after t1. As an example of extension and resume, the extension operation 10£t2-t1£15 ⊙ 20£t3-t2£30 gives 

as result the BoD 30£t3-t1£45 (intuitively, if the difference between t2 and t1 is in the range [10,15] and the difference 

between t3 and t2 is in the range [20,30], the implied difference between t3 and t1 is in the range [30,45]); the resume 

operation 30£t3-t1£45 ⊕ 25£t3-t1£40 gives as result the BoD 30£t3-t1£40 (intuitively, if the difference between t3 and 

t1 is both in the ranges [30,45] and [25,40], the implied difference is in the range [30,40] – see the definition of the 

operators in Section 3). KB is consistent, and {t1=0, t2=10, t3=30} is a scenario (solution) of KB. The tightest 

constraints implied by KB, that is the minimal network, are KB’={10£t2-t1£15, 20£t3-t2£30, 30£t3-t1£40}. In 

particular, notice that in the minimal network we inferred that the minimum distance between t1 and t3 is 30. ■ 

While in several tasks (e.g., in scheduling) finding a solution is sufficient, in other tasks it is necessary to determine a 

compact representation of all the possible solutions in the form of a minimal network of the constraints. This is the 

case, e.g., when considering decision support systems, and/or when supporting users in mixed-initiative approaches. In 

such cases, providing users with a specific solution would be restrictive and not user friendly, since the final choice of 

a specific solution has to be left to the users. 

In such contexts, also query answering is important, to give users a way to explore the space of solutions.  

Example 2. Given KB, the user might ask:  

(Q1) May I execute t3 28 minutes after t1?  

(Q2) If I performed t1 at 21, when (i.e., in which range of time) can I perform t2 and t3? ■ 

The literature shows that the tasks of reasoning and of query answering are strictly connected: in fact, the correctness 

of query answering can be granted only if the minimal network with the tightest constraints is provided by the 

reasoning task. Indeed, computing the minimal network constraints is a fundamental task, and many efforts have been 

devoted to it [19, 56, 61, 69, 71].   
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Example 3. Let us suppose that a not complete reasoning process is employed to a knowledge base KB, so that not all 

the tightest constraints are obtained (or, in technical terms, the reasoning process does not compute the minimal 

network). E.g., let us suppose that KB”={10£t2-t1£15, 20£t3-t2£30, 27£t3-t1£40} is obtained. Considering KB”, user’s 

query Q1 in Example 2 receives an erroneous positive answer. Thus, the unavailability of the minimal network (with 

the tightest constraints) cannot guarantee that the answers are correct and, thus, reliable. ■  

The constraints that we introduced up to this point are “crisp” constraints, i.e., the values of the distances between 

variables are all “equally possible/preferred”. Approaches based on crisp constraints are based on the general 

framework of classical CSP and inherit from it some important limitations in flexibility and support for uncertainty; in 

fact, while classical CPSs’ constraints are hard, in real-world problems often constraints are not hard, and a 

preference among the feasible solutions has to be accounted for [21].  

An important example can be found in the execution of clinical treatments with temporal constraints. Usually, in the 

medical context it is not possible (and often not useful) to express crisp temporal constraints. On the contrary, 

constraints are typically recommendations, to be respected as much as possible, depending on the specific cases.   

Example 4. In the case of antibiotic drugs, drug administrations must be performed with fixed delays (temporal 

distances) between them. For instance, the antibiotic nalidixic acid is a drug used for the treatment of urinary tract 

infections. It must be administered twice a day with a delay of 12 hours between two consecutive administrations. 

This is not a strict recommendation: it has a “high” preference and the delay between two administrations can also be 

of 11-13 hours (with a “medium” preference) or of 10-15 hours (with a “low” preference). In case a patient suffers 

from urinary tract infection, a physician may want to know when (in which ranges of time) nalidixic acid can be 

administered, and what is the preference of the different possibilities. Notably, real-world scenarios can be more 

complex and can involve constraints deriving from different sources. Let us consider a case of a comorbid patient 

treated both for urinary tract infection and for gastroesophageal reflux with a calcium carbonate administration after 

meals, when needed. The concomitant administration of the drugs can lessen the effect of the nalidixic acid. For such 

a reason, nalidixic acid must be administered at least three (with “low” preference) or four (with “high” preference) 

hours after calcium carbonate. Moreover, when executing clinical treatments, also patient preferences must be 

considered. In our example, we hypothesize that a patient takes calcium carbonate after breakfast and dinner, and she 

has the following preferences regarding meal times: breakfast (7am with “high” preference, 6am-7am with “medium” 

preference, 6am-8am with “low” preference), dinner (6pm-8pm with “high” preference, 8pm-9pm with “medium” 

preference, 5pm-10pm with “low” preference). Each breakfast can last up to one hour, while dinner can last up to two 

hours. ■ 

To deal with issues such as the ones discussed above, a vast stream of research provided a fuzzy extension to the CSP 

formalism, by replacing classical crisp constraints with soft non-crisp constraints modeled by fuzzy relations. A 

number of approaches based on the Fuzzy Constraint Satisfaction Problem [21] have been devised (see related work 

in Section 2), and a lot of attention has been devoted, specifically, to non-crisp extensions of BoD constraints (see 

Section 2.3). In this work, we focus on BoDs with preferences, and we propose two main types of contributions. 

First, despite the variety of the CSP approaches in the literature, the approaches about preferences in the area have 

mostly focused their attention on the problem of determining the optimal (i.e., the most preferred) solutions. On the 

other hand, for many applications (e.g., in decision support tasks), providing users with specific solutions may be 

restrictive. Instead, as widely considered in the case on crisp constraints, users may want to be provided with a 
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(compact representation of) the “space of solutions” (minimal network), and with facilities to explore such a space, in 

order to be able to choose among possible solutions. This is the case, for instance, in our long-term project GLARE 

(Guideline Acquisition, Representation and Execution) [63], when supporting physicians in the application of clinical 

guidelines to patients. Notice that it would be very restrictive and definitely not user-friendly to impose a specific time 

of execution of the actions to the physician, even if it is the optimal one (see, e.g., [5]). We overcome such a general 

limitation by proposing an approach coping with BoDs with preferences that aims at (i) evaluating the minimal 

network of the constraints with preferences, and at (ii) proposing query-answering facilities to explore it1. In such a 

way, our work makes available the advantages of non-crisp CSP approaches also for decision-support tasks. 

Second, CSP approaches in the literature propose quite different solutions to the crucial problems of (i) how to define 

preferences, (ii) how to associate preferences with constraints and (iii) how to combine the preferences in the 

constraints while applying the resume (⊕)	and extension (⊙) operators discussed above. The variety of solutions 

indicates that there is not an overall best solution to (i)–(iii): there are several alternative possibilities, and the choice 

between them is usually task- and/or domain-dependent. As a consequence, the goal of our approach is to provide a 

general framework, covering as much as possible all the different possibilities. Specifically, we propose a general and 

homogeneous framework that advances the state of the art of non-crisp BoD constraints in five main directions. 

(1) We support the treatment of non-numeric, finite and totally ordered scales of preferences (e.g., <Low, Medium, 

High, Very High>) called layered preferences henceforth. Since the definition of a scale of preferences is 

usually context- and\or task-dependent, our approach is parametric with respect to any finite scale of 

preferences. 

(2) We consider two different ways (formalisms) to associate layered preferences with BoD constraints: BoD 

constraints with preferences (see Section 3) and BoD constraints with Pyramid preferences (see Section 4).  

(3) For both formalisms, we support user-defined definitions of the basic operations used to compose the 

preferences in the constraints while performing the resume (⊕)	and extension (⊙) operations for propagating 

the constraints. 

(4) We propose a family of constraint propagation algorithms to compute the minimal network of BoD constraints 

with preferences, covering the different possibilities provided by points (2) and (3) above, and we study their 

properties. 

(5) We provide a query-answering mechanism to support the user analysis of the minimal network with 

preferences. 

 The paper is structured in the following way. In Section 2, we discuss related works. In Section 3, we introduce our 

basic representation of BoD constraints with layered preferences, and provide a general constraint propagation 

algorithm grounded on the well-known path-consistency algorithm [44, 66], which computes the minimal network of 

BoDs and propagates the layered preferences (in any finite input scale) on the basis of user-defined composition 

operations; in other words, our algorithm is parametric with respect to the composition operations provided by users. 

In Section 4, we specialize our general approach to the case in which preferences can be represented by “pyramids” 

(which is relevant in many real-world contexts) and specialize our constraint propagation algorithm to such a case. In 

Section 5, we further specialize our approach by showing that, in case the operations which compose constraints 
 

1 To the best of our knowledge, the approach by Terenziani et al. [60] is only other one in the literature about BoDs addressing such issues; the advances 

with respect of such an approach are widely discussed in Section 7 of this paper. 
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constitute a closed semiring, a more efficient constraint propagation algorithm can be used. To substantiate such a 

general claim, we consider a specific instance of the basic operations and we propose an algorithm that computes the 

minimal network in polynomial-time. Finally, in Section 6, we propose a query language and a query-answering 

approach to support users in the analysis of the minimal network, and in Section 7 we propose comparisons and 

conclusions. 

2 RELATED WORK 

BoDs constraints have been widely studied in AI since they constitute a simple and nevertheless useful version of 

CSP. In classical CSPs [41, 44] problems are represented in terms of a set of variables and a set of constraints over 

such variables. CSPs are a very powerful formalism, and several real-life problems (e.g., assignment and scheduling 

problems, network management, transport problems, VLSI design, robotics problems, etc.) can be represented and 

solved through them. However, CSPs have also evident limitations. Indeed, in classic CSPs, constraints can only be 

crisp: in any (complete) assignment of values to the variables, each constraint is either satisfied or not and only those 

assignments that satisfy all the constraints are considered solutions of the problem. Thus, classic CSPs cannot 

naturally cope with scenarios where knowledge is neither complete nor crisp. For such a reason, in the last thirty 

years, a lot of work has been devoted to cope with incomplete or non-crisp constraint problems. Several classes of 

constraints have been considered, and different types of preferences. One of the most prolific fields has been the one 

considering CSPs and fuzzy preferences. For such a reason, in Section 2.1 we present approaches coping with non-

crisp CSPs and CSPs with preferences associated with constraints. Then, since one of the main goals of our approach 

is to provide a parametric approach in which the management of preferences (i.e., the function to combine them) is 

given as an input, in Section 2.2 we go in depth in the description of the different strategies to combine preferences. In 

Section 2.3, we describe the class of BoD constraints and the approaches in literature coping with non-crisp BoDs. 

Finally, in Section 2.4 we discuss other approaches coping with non-crisp temporal problems that are not based on 

BoDs. 

2.1 Non-crisp CSPs and CSPs with preferences 

Several forms of non-crisp CSPs have been proposed in the last thirty years. For instance, probabilistic CSPs [27] 

allow to cope with scenarios in which the problems can be not completely known a priori (e.g., whether a specific 

constraint belongs to a problem). To do that, probabilistic CSPs allow to represent and to cope with the fact that a 

specific constraint has a probability p to be part of the problem. In such problems, the goal is to find a complete 

assignment to the variables that has the highest probability to be a solution of the problem. On the other hand, 

weighted CSPs [57] have been developed to cope with over-constrained CSPs. They associate costs or weights with 

the constraints in the problem. For such problems, the goal is no more to find a solution that satisfies all the 

constraints, but rather to find a solution that maximizes the sum of the weights of the satisfied constraints. Partial 

CSPs [30] are a particular case of weighted CSPs in which all the constraint weights are equal to 1. 

One of the most common situations when coping with real-world problems is the one in which not all the constraints, 

or the values in the domains of the variables, have the same importance. In such situations is quite natural to associate 

some levels of preference with the constraints or with the values allowed for the variables. In such contexts, 

preferences allow to express “less strict aspects of a problem, such as desires, satisfaction levels, rejection degrees and 
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costs” [50]. The general idea underlining the introduction of preferences into CSPs is that a constraint is no longer an 

element with a binary satisfiability (i.e., satisfied or not satisfied), but an element with several levels of satisfiability.  

Starting from the early 1990s, a wide area of research has been devoted to the definition of formalisms and to the 

development of techniques to solve CSPs with preferences. We can distinguish among at least three kinds of them 

depending on the type of preferences: quantitative preferences, qualitative preferences and bipolar preferences. 

Among the approaches coping with quantitative preferences, the fuzzy CSPs [12, 13, 22, 49, 51, 54] associate variable 

assignments with preferences belonging to the interval [0,1]. Semiring-Based (fuzzy) CSPs [12, 13] have a particular 

importance for the work in this paper, since they adopt semirings to cope with fuzzy CSPs and propose forms of local 

consistency to solve them. Similarly to Semiring-Based CSPs, Valued CSPs [55] rely on a different structure, 

monoids, which are composed by an ordered set of elements (e.g., preferences) and an operation to aggregate two 

elements. The main difference between Semiring-Based and Valued CSPs is that the latter cannot cope with partially 

ordered sets of preferences. This choice limits their use, for instance, when coping with preferences that are the result 

of the combination of several criteria through Pareto-like approaches that lead to a partial order. 

As regards qualitative preference approaches, CP-nets [15] model preferences in a qualitative and conditional way 

(e.g., if the main course is meat, red wine is better than white wine).  

On the other hand, bipolar preference approaches [11, 23, 24] cope with the fact that preferences can be either 

positive or negative, and these two kinds of preferences are one the opposite of the other.  

2.2 Combining preferences in fuzzy CSPs 

When dealing with constraints with preferences, there is the need of defining a criterion to combine them in order to 

evaluate the preference of a solution based on the preferences of the single constraints. In fuzzy CSPs, solutions are 

usually evaluated considering a pessimistic policy (also called weakest-link optimality policy): the preference of a 

solution is the minimum of the preferences of its constraints. However, different domains might require different 

policies. For example, Grabisch et al. [32] define several types of functions for combining fuzzy elements and discuss 

their properties. They distinguish among three main classes of functions: conjunctive, disjunctive and compensative 

ones. Conjunctive functions connect elements through operators that are similar to the logical “and”. Thus, using 

conjunctive functions, the global preference is high if and only if all the preferences of the constraints are high. An 

example of conjunctive class of operators is the Triangular Norm2 (t-norm) [29, 38, 42]. The literature proposes 

different types of t-norms. Among them, for instance, the Gödel (or Minimum) t-norm combines elements through the 

min function. Thus, the weakest-link optimality policy can be considered a Gödel t-norm aggregation. Another 

relevant form of t-norm is the Product t-norm, which combines preferences with the arithmetic product operator. On 

the other hand, disjunctive functions, the second class of functions, connect elements through operators similar to the 

logical “or”. Thus, the global preference is low if and only if all the partial preferences are low. T-conorms are 

examples of disjunctive functions, and they are dual to t-norms. For instance, the Maximum t-conorm combines 

elements through the max function. Finally, in compensative functions low-preference elements compensate high-

preference elements. Mean operators (e.g., arithmetic, geometric, harmonic, root power means) and median operators 

are examples of compensative functions. Also the utilitarian policy, presented in [64], can be seen as a kind of 

compensative function.  

 
2 Notice that t-norms and t-conorms are binary operators. However, due to their associative property, they can be applied to sets of elements. 
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It is worth stressing that the criterion defined by aggregation functions for fuzzy elements can, in many cases, also 

cope with ordered scales of preferences (e.g., the Gödel t-norm) or they can be generalized to do that. For instance, the 

Drastic t-norm, defined as 𝑇!(𝑎, 𝑏) = 1
𝑏 𝑖𝑓	𝑎 = 1
𝑎 𝑖𝑓	𝑏 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 can be generalized to cope with two preferences a and b 

belonging to an ordered scale of preferences, given a top ⊤ and a bottom ⊥ elements in the scale, as 

 𝑇!(𝑎, 𝑏) = 1
𝑏 𝑖𝑓	𝑎 ≡ ⊤
𝑎 𝑖𝑓	𝑏 ≡ ⊤
⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

 

2.3 Non-crisp BoDs and BoDs with preferences 

BoDs [16] constitute a subclass of CSPs that received much attention due to the fact that many real-world problems, 

especially spatial and temporal problems, can be easily modelled as sets of BoDs, and several problems (i.e., 

consistency checking) can be managed in polynomial time with BoDs. For instance, Simple Temporal Problems 

(STPs) [19] represent temporal problems through sets of BoDs, where variables represent time points and constraints 

limit the span of time between each pair of time points. On the other hand, in several spatial problems (e.g., the 

minimal routing problem) variables represent spatial points and the constraints limit the distances between them. In 

contrast with CSPs, BoD problems can be solved in polynomial time. When coping with BoDs, however, finding one 

or more solutions of the problem is not always the final goal. Rather, finding the minimal network3 is in many cases 

more important. Indeed, problems like STP or the all-pairs shortest paths problem [28, 58] are managed through 

algorithms that find the minimal network. Besides supporting the identification of specific solutions of a problem, the 

minimal network allows to efficiently answer queries considering the set of the solutions of a problem, like “Can 

event A temporally precede event B?” or “Does event A temporally precede event B in all the solutions?”. Without 

the minimal network, answering such types of queries could require computing all the solutions of a problem. Luckily, 

in BoDs both computing the minimal network of constraints of a problem and answering queries using it can be done 

in polynomial time and space (e.g., using algorithms like the Floyd-Warshall’s one [28]).  

BoDs4, as well as classic CSPs, have been extended to cope with non-crisp aspects. For instance, Andolina and 

Terenziani [62] have considered BoD constraints associating a probability value with each possible distance (only 

discrete domains for distances have been considered). They used Floyd-Warshall’s algorithm to propagate such 

temporal constraints and to evaluate the minimal network of distances, adopting new operators to combine constraints 

taking into account both distances and probabilities. Considering preferences, Andolina et al. [60] extended STP to 

associate numeric preferences with distances defined over discrete domains. They used Floyd-Warshall’s algorithm to 

compute the minimal network of distances by propagating such temporal constraints, adopting new “combination” 

operators that consider both distances and numeric preferences. The theory of c-semiring is used to grant that the 

tightest constraints (i.e., the minimal network) are computed between each pair of variables. Query answering on the 

resulting minimal network is also supported. The recent approach by Anselma et al. [4] generalizes and extends the 

 
3 Notice that structures similar to the minimal network can be obtained also for other classes of CSPs. However, computing them often requires non-

polynomial space and/or time.   

4 Actually, there are also other approaches coping with the more general class of linear inequalities. For instance, the work in [72] proposes an approach 

coping with fuzzy linear inequalities. However, in this section we only focus on BoDs. 
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approach in [60] by coping with continuous domains and by supporting user-defined layered preferences. It is worth 

stressing that layered preferences, or “pyramid” ones (see Section 4) can represent a wide range of phenomena. 

Indeed, they can be seen as a discretization of Gaussian functions, which are widely used in preference representation. 

Khatib et al. [37] extended constraint-based temporal reasoning (specifically, the STP and the TCSP frameworks) for 

reasoning about temporal preferences, and they examined the complexity of the resulting formalism. They showed 

that, by exploiting c-semirings in the treatment of preferences, it is possible to achieve tractability. The approaches by 

Andolina et al. [60], Anselma et al. [4] and Khatib et al. [37] are the closest ones to ours: a detailed comparison with 

such approaches is reported in Section 7 after the description of our approach. 

2.4 Other non-crisp temporal approaches 

To conclude this section, we briefly mention other approaches to non-crisp constraints, specifically devoted to the 

treatment of temporal phenomena. Bugarín et al. [17] discussed a wide number of approaches where time is included 

as an additional decision variable in fuzzy propositions and rules. Considering only CSP approaches, a number of 

temporal reasoning approaches based on fuzzy CSPs [6] have been devised. For instance, Barro et al. [8] introduced a 

model for representing and handling fuzzy temporal preferences. They exploited the formalism of possibility theory 

for defining the concepts of dates, time extents, and intervals; the relations between them are interpreted as constraints 

on the distances and projected to fuzzy temporal constraint satisfaction networks. Vila and Godo [70] based a 

propositional temporal language on fuzzy temporal constraints to deal with domains where the knowledge is of 

propositional nature and it is required to explicit handle time, imprecision and uncertainty. The formalism relies on 

natural possibilistic semantics for dealing with the uncertainty arising by the fuzziness of temporal constraints. They 

also presented an inference system based on specific rules dealing with the temporal constraints and a general fuzzy 

modus ponens rule and they showed that the reasoning is sound. Kamide and Koizumi [35] have recently proposed an 

inconsistency-tolerant probabilistic tree logic. Recently, Gammoudy et al. [31] have proposed to model Allen’s 

qualitative relations between fuzzy time intervals, while Billet et al. [10] have considered “ill-known” time intervals. 

In the area of scheduling/planning, many approaches have taken into account the distinction between controllable and 

non-controllable temporal constraints. The simple temporal network with uncertainty (STNU) [33] has been proposed 

to extend STP introducing set-bounded uncertainty to deal with events that are non-controllable. [65] also extended 

STNU providing a probabilistic representation of the uncertainty. In this extension, information regarding the 

distribution of non-controllable events enables planning for more likely outcomes. Many works considered temporal 

planning with uncertainty, for example simple temporal problem (STP) under uncertainty [34], conditional STNU 

[33], disjunctive temporal problems with uncertainty [67], probabilistic temporal plan networks [53], and temporal 

plan networks with uncertainty [25]. Fang et al. [26] introduced pSTN (probabilistic simple temporal network), a 

probabilistic approach for representing temporal problems with bounded risk along with a utility over event timing. 

To grant robust scheduling, the authors also introduced a constrained optimisation algorithm that achieved efficiency 

and compactness for strong controllability [68]. Yorke-Smith et al. [75] proposed an integrated framework supporting 

both uncertainty and preferences related to the problem of controllability. Recent planning approaches have focused 

on the treatment of temporal constraints with preferences [39, 46]. 

A number of approaches dealt specifically with the representation of “non-crisp” temporal constraints between points 

and/or intervals, and with reasoning on them by means of constraint propagation [43]. In this main stream of research, 

a basic distinction is made between qualitative and quantitative temporal constraints (see, e.g., [69]). Qualitative 
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constraints (e.g., “A during B”) are non-metric constraints modelling the relative position of actions/events, while 

quantitative constraints are metric constraints on events/facts (e.g., “A started on 1/1/2018 at 12:00”, “the delay 

between A and B is 20-25 minutes”). Concerning qualitative constraints, i.e., non-metric constraints, Ryabov et al. 

[52] augmented the Allen’s basic interval relations with probabilities and uncertain relations are represented as 

disjunctions of Allen’s probabilistic basic relations. The authors defined the operations of inversion, composition, and 

addition for probabilistic interval relations and used a path-consistency algorithm for propagating such constraints. 

More recently Mouhob and Liu [45] proposed a similar probabilistic approach, inscribed in the general probabilistic 

CSP framework. Another approach in the same line of research, is the one of Badaloni and Giacomin [6], who devised 

an extension of Allen’s interval-based framework by associating a preference degree with relations between intervals. 

 

3 A GENERALIZED AND PARAMETRIC APPROACH TO BOD WITH PREFERENCES 

In this section, we provide a general approach extending BoDs with preferences. For the sake of generality, our 

approach applies to any layered scale of preferences (see Definition 3 below), and to the operations to “combine” 

preferences (see explanations below). Thus, users can simply give in input their own scale and combination operations 

to customize our approach to the specific needs of their applications. 

3.1 BoD with preferences 

BoDs are linear inequalities of the form  𝑐 ≤ 𝑥 − 𝑦 ≤ 𝑑, with 𝑐, 𝑑 ∈ 𝔻,	and	x and y are variables on the same domain,	

and	𝔻	is	a	subset	of ℝ	closed under addition5.	A	BoD	𝑐 ≤ 𝑥 − 𝑦 ≤ 𝑑 can be seen and represented as the interval [c,d] 

denoting all the possible values for the difference 𝑥 − 𝑦. Different interpretations of BoDs have been used in different 

domains. For instance, in temporal reasoning, variables may represent events and [c,d] an interval (range) of temporal 

distances; in spatial applications, variables may represent points in space and [c,d] an interval (range) of spatial 

distances. For the sake of compactness, we explicitly introduce the notion of interval of differences that we term 

“admissibility interval” (for a difference). 

Definition 1. Admissibility Interval (AdI). Given two values 𝑐, 𝑑 ∈ 𝔻, we denote by [c,d] the interval (termed 

admissibility interval) containing all the possible values 𝑣 ∈ 𝔻, 𝑐 ≤ 𝑣 ≤ 𝑑. ■ 

When 𝑐 > 𝑑, the interval is degenerate. 

We denote by 𝔸𝔻 the domain of admissibility intervals over 𝔻.  For generality, in the following we denote by 𝕍 the 

domain of variables. We can thus represent BoDs as follows: 

Definition 2. Bound on Difference (BoD). In our representation, a BoD over a domain 𝔻 is a constraint ⟨𝑥, 𝑦, [𝑐, 𝑑]⟩ 

of the form	𝕍 × 𝕍 × 𝔸𝔻 associating an admissibility interval with an ordered pair of variables6. ■ 

In our approach, we support the possibility of associating layered preferences with BoDs, and, in particular, with the 

(values in the) admissibility intervals. Layered preferences are usually domain- and/or task-independent. We simply 

impose that they form a finite and totally ordered set. 

 
5 Actually, 𝔻 could be a more abstract algebraic structure, such as an ordered semigroup. However, for the sake of simplicity of the proofs in the paper, 

here and in the following we consider a generic subset of ℝ closed under addition. 

6 The variables can represent for example time points or spatial points. 
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Definition 3. Scale of Layered Preferences (SLP). An SLP (or “scale”, for short) Sr of cardinality r consists in an 

enumerative set {𝑝#, … , 𝑝$} of r labels (with r>0), and a strict total ordering relation < over the set. For easiness of 

notation, we denote an SLP by an ordered list ⟨𝑝#, … , 𝑝$⟩, such that ∀𝑖, 1 ≤ 𝑖 < 𝑟, 𝑝% < 𝑝%&#. ■ 

Terminology. Given an SLP Sr of cardinality r, we indicate by 𝑆$(𝑖) the ith value in the scale Sr (1 ≤ 𝑖 ≤ 𝑟). ■ 

The domain of SLPs is denoted as 𝕊. 

For instance, an SLP in 𝕊 dealing with Example 4 is S3ex:<low, medium, high>, and S3ex(2) is “medium”. 

We extend the “standard” BoD approach by introducing preference functions, as a tool to associate preferences with 

difference values. 

Definition 4. Preference function. A preference function PrefS,D over the domain 𝐷 ∈ 𝔸𝔻 and with scale	𝑆 ∈ 𝕊 is a 

total function PrefS,D: D→S.	■ 

Let ℙ𝔻 denote the domain of preference functions, defined as above. A BoD constraint with preferences associates a 

preference with each possible value of difference between two variables. 

Definition 5. BoD with preferences (P_BoD). Given a scale 𝑆 ∈ 𝕊, a P_BoD is a constraint ⟨𝑥, 𝑦, [𝑐, 𝑑], 𝑃𝑟𝑒𝑓',[*,+]⟩	

of the	form	𝕍 × 𝕍 × 𝔸𝔻 × ℙ𝔻	 associating a preference with each possible difference value between an ordered pair 

of variables. ■ 

Example 4(a). In Figure 1, for instance, 

<NA1,NA2,[10,15],{(10,low),(11,medium),(12,high),(13,medium),(14,low),(15,low)}> is a P_BoD representing the 

constraint between the two successive administrations of nalidixic acid NA1 and NA2 of Example 4. Notice that, in 

this example, the preference function Pref is given in the form of a set of pairs (𝑑, 𝑠), with 𝑑 ∈ 𝐷 and 𝑠 ∈ 𝑆, and 𝑆 =

⟨𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ⟩. The formalization of the complete example is given (following the PyP_BoD_G formalism) in 

Figure 3 in Section 4.1. 

It is well known in the literature that a set of BoD constraints can be represented as a graph and that the graphical 

representation can be exploited by reasoning algorithms. We define a graph of P_BoD constraints as follows. 

Definition 6. Graph of BoD with Preferences (P_BoD_G). Given an SLP S of cardinality r, a set B of P_BoD 

⟨𝑥, 𝑦, [𝑐, 𝑑], 𝑃𝑟𝑒𝑓',[*,+]⟩	can be represented as a graph G=<V,E> and a labelling function l, where the set of nodes V is 

the set of variables in B, the set of edges E Í V´V and the labelling function l: E →	𝔸𝔻 × ℙ𝔻. ■ 

Example 4(b). In Figure 1, for instance, we show an edge of the P_BoD_G graph (i.e., a single P_BoD) representing 

the constraint between the two successive administrations of nalidixic acid NA1 and NA2 of Example 4.  

 

 

Figure 1. A P_BoD representing the constraint between the two successive administrations of nalidixic acid 

NA1 and NA2 of Example 4. 
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3.2 Propagation of binary constraints 

In many constraint-based approaches, local consistency algorithms are employed for constraint propagation [44, 66]. 

An important form of local-consistency-enforcing algorithm are path consistency algorithms [44, 66]. We report in 

Figure 2 a general path-consistency algorithm that uses the general operations of resume ⊕ and extend ⊙ between 

constraints. In this section, we do not dwell on the specialized and more efficient forms of path consistency algorithms 

for constraint satisfaction problems [9, 20] and for spatio-temporal constraints [40, 73]. 

The path-consistency algorithm accepts as parameters a labelling function l: E →	𝔸𝔻 × ℙ𝔻 defined on the edges of the 

graph, the vertices V, the edges E, an “extension” operator ⊙, a “resume” operator ⊕, as well as two additional 

parameters, i.e., the identity for ⊙ (indicated as 𝟭), and the identity for ⊕ (indicated as 𝟬). We assume that l(i,j)=𝟬 if 

(i,j)ÏE and that l(i,i)=𝟭. Notably, the path-consistency algorithm is parametric with respect to the ⊕and	 ⊙ 

operations. Indicating as 1,2,…,n the vertices in V, with n=|V|, the resume operator ⊕ takes as input two constraints 

concerning the same pair of variables i and j, and gives as output the new constraint “merging” them; the extension 

operator ⊙ takes as input a constraint between two variables i and j and a constraint between j and k, and determines 

the new “implied” constraint between i and k.  

The path-consistency algorithm revises each constraint Lij between the nodes i and j considering each pair of 

constraints Lik and Lkj and applying the operations of resume ⊕ and extend ⊙ between them. This is iterated until a 

quiescence state is reached or until some constraint becomes empty (in such a case the network is inconsistent). 

Notice that, in general, the algorithm is not guaranteed to terminate, since, because of the generality of the resume ⊕ 

and extend ⊙ operators, there is no guarantee that at each iteration of the main loop the network gets tighter, so that a 

state of quiescence, in which no constraints can be further changed, can be eventually reached. 

 

Path-Consistency(l,V,E,⊕,⊙,𝟬,𝟭) algorithm  

1. n ← |V| 

2. for i←1 to n do 

3.    for j←1 to n do 

4.  Lij ←	l(i,j) 
6. repeat  

7. for k←1 to n do 

8.  for i←1 to n do 

9. for j←1 to n do 

10.      Lij ← Lij ⊕	(Lik ⊙ Lkj) 

11.until no constraint is changed 

12.return L 

Figure 2. Path-Consistency algorithm. 

   

As an example of ⊕ and of ⊙, in the case of crisp BoD constraints, ⊕. and of ⊙/ are defined as follows. The 

resume operator ⊕/ computes the intersection of the admissibility intervals. If the result is a degenerate interval [𝑐, 𝑑] 

with 𝑐 > 𝑑 then an inconsistency has been detected. 
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Definition 7. Resume (⊕𝑩). Given two BoDs 𝐶1 = ⟨𝑥, 𝑦, [𝑐1, 𝑑1]⟩, and 𝐶1 = ⟨𝑥, 𝑦, [𝑐′′, 𝑑11]⟩, 𝐶1⊕/ 𝐶11 =

⟨𝑥, 𝑦, [max(𝑐1, 𝑐′′),min(𝑑1, 𝑑′′)]⟩. ■ 

 

Definition 8. Extend (⊙𝑩). Given two BoDs 𝐶1 = ⟨𝑥, 𝑦, [𝑐1, 𝑑1]⟩, and 𝐶1 = ⟨𝑦, 𝑧, [𝑐′′, 𝑑11]⟩, 𝐶1⊙/ 𝐶11 =

⟨𝑥, 𝑧, [𝑐1 + 𝑐11, 𝑑1 + 𝑑′′]⟩. ■ 

 

As an example of extension and resume, = ⟨𝑡#, 𝑡$, [10,15]⟩ ⊙% 	 ⟨𝑡$, 𝑡&, [20,30]⟩ = ⟨𝑡#, 𝑡&, [30,45]⟩ and 

⟨𝑡#, 𝑡&, [30,45]⟩ ⊕% 	 ⟨𝑡#, 𝑡&, [25,40]⟩ = ⟨𝑡#, 𝑡&, [30,40]⟩. 

 

Notably, it is well known that, for crisp BoD constraints, the outer cycle of the algorithm enforcing path-consistency 

is not necessary. The minimal network of a set of BoD constraints can be computed directly by the three nested loops, 

and, specifically, by Floyd-Warshall’s algorithm and its optimized versions [19, 48]. 

 

3.3 Propagation of P_BoDs 

We adopt the standard path-consistency algorithm in Figure 2 to propagate our P_BoD constraints, by providing an 

appropriate definition of the ⊕and	 ⊙	 operators, that we indicate by ⊕2/ 	and	 ⊙2/. Indeed, ⊕2/ 	and	 ⊙2/ 

operate separately on the two components of P_BoD constraints. As regards the admissibility intervals (i.e., the 

minimal distance c and the maximal distance d) in the P_BoD constraints, we operate in the standard way, using the 

⊕𝑩and ⊙𝑩 operators in Definitions 7 and 8. However, we have also to indicate how to resume (⊕3456 operator) and 

extend (⊙7$89 operator) the preferences associated with distances in the constraints.  

As discussed in Section 2, several different proposals have been already presented in the literature for combining 

preferences, and the choice among them seems to be closely dependent on the specific task and/or goal of the 

approaches. Indeed, we aim at providing the maximum possible generality, so that we also envision the possibility that 

new approaches propose new combination functions. For such a reason, we propose a general and flexible approach, 

which is parametric with respect to the operations ⊕7$89 	and	 ⊙7$89	to combine preferences (in other words, our 

approach takes the ⊕7$89 and ⊙7$89 operations as parameters provided by users). 

Our general definition of ⊕2/ 	and	 ⊙2/	 is provided in the following. 

The resume operator ⊕2/ computes the intersection of the admissibility intervals (as the ⊕/ operator); if the result is 

a degenerate interval [𝑐, 𝑑] with 𝑐 > 𝑑 then an inconsistency has been detected. Moreover, for each value v in the 

resulting admissibility interval [max	(𝑐1, 𝑐′′),min	(𝑑1, 𝑑′′)], ⊕2/ combines through the ⊕7$89 operator the preference 

of v in the first P_BoD constraint (i.e., 𝑃𝑟𝑒𝑓1',:*!,+!;(𝑣)) and in the second P_BoD constraint (i.e., 𝑃𝑟𝑒𝑓11',:*!!,+!!;(𝑣)). 

Definition 9. Resume (⊕𝑷𝑩). Given two P_BoDs 𝐶1 = ⟨𝑥, 𝑦, [𝑐1, 𝑑1], 𝑃𝑟𝑒𝑓′',[*!,+!]⟩ and 

𝐶11 = ⟨𝑥, 𝑦, [𝑐′′, 𝑑11], 𝑃𝑟𝑒𝑓′′',[*!!,+!!]⟩, 𝐶1⊕2/ 𝐶11 = ⟨𝑥, 𝑦, [max(𝑐1, 𝑐′′),min(𝑑1, 𝑑′′)], 𝑃𝑟𝑒𝑓⊕',[>?@AB!,B!!C,>DE(G!,G!!)]⟩,  

with 𝑃𝑟𝑒𝑓⊕',[>?@AB!,B!!C,>DE(G!,G!!)] defined as 

∀𝑣 ∈ [max(c1, c11) ,min(d1, d11)]	𝑃𝑟𝑒𝑓⊕',[>?@AB!,B!!C,>DE(G!,G!!)](𝑣) = 𝑃𝑟𝑒𝑓1',:*!,+!;(𝑣)⊕
7$89 𝑃𝑟𝑒𝑓11',:*!!,+!!;(𝑣). ■ 
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Our extend operator ⊙2/ combines the admissibility intervals by summing their endpoints (like the ⊙/ operator). As  

regards preferences, for each value v in the resulting admissibility interval [𝑐1 + 𝑐11, 𝑑1 + 𝑑′′],	it evaluates the new 

preference as follows: (i) it considers each pair of distances <w,z> such that 𝑣 = 𝑤 + 𝑧 and 𝑤 ∈ [𝑐1, 𝑑1], 𝑧 ∈

[𝑐11, 𝑑11],	and it combines the preferences of w (in the first P_BoD) and of z (in the second P_BoD) through the ⊕7$89 

operator (i.e., it evaluates 𝑃𝑟𝑒𝑓1',:*!,+!;(𝑤)⊙
7$89 𝑃𝑟𝑒𝑓11',:*!!,+!!;(𝑧)); (ii) the resulting preferences are “merged” 

through the ⊙7$89operator.  

 

Definition 10. Extend (⊙𝑷𝑩). Given two P_BoDs 𝐶1 = ⟨𝑥, 𝑦, [𝑐1, 𝑑1], 𝑃𝑟𝑒𝑓′',[*!,+!]⟩ and  

𝐶11 = ⟨𝑦, 𝑧, [𝑐′′, 𝑑11], 𝑃𝑟𝑒𝑓′′',[*!!,+!!]⟩, 𝐶1⊙2/ 𝐶11 = ⟨𝑥, 𝑦, [𝑐1 + 𝑐11, 𝑑1 + 𝑑′′], 𝑃𝑟𝑒𝑓⊙',:*!&*!!,+!&+!!;⟩,  

with 𝑃𝑟𝑒𝑓⊙',:*!&*!!,+!&+!!; defined as 	

𝑃𝑟𝑒𝑓⊙',:*!&*!!,+!&+!!;(𝑣) = ⨀ (𝑃𝑟𝑒𝑓1',:*!,+!;(𝑤) ⊕
7$89 𝑃𝑟𝑒𝑓11',:*!!,+!!;(𝑧))

7$89
JKL&M∧	L∈[*!,+!]	∧	M∈[*!!,+!!] . ■ 

 

In the following, we term PC_GP (Path Consistency with General Preferences) our instantiation of the path-

consistency algorithm of Figure 2, instantiating the operators ⊕and	 ⊙		with the operators ⊕P. and ⊙P.	above. 

Notably, it is not a specific instantiation, but a family of instantiations, depending on the SLP and on the chosen 

operators	⊕3456 and	 ⊙7$89	to combine preferences. We assume that, as soon as an inconsistency is detected, PC_GP 

stops and reports the inconsistency. 

 

Since our operators work in the standard way on the admissibility intervals, the following property trivially holds. 

 

Property 1. PC_GP evaluates the minimal network of the distances in a set of P_BoDs. ■ 

 

Indeed, in the degenerate case in which the chosen SLP has a unique value p (and supposing that ⊕3456 and ⊙3456 are 

trivially defined in such a way that (𝑝 ⊕3456 𝑝) = (𝑝⊙3456 𝑝) = 𝑝), our approach trivially corresponds to the 

application of path-consistency to standard BoD constraints. 

 

The complexity of the evaluation of ⊕P. and ⊙P. is discussed below. 

 

Complexity of ⊕𝐏𝐁 and ⊙𝑷𝑩. In the complexity analysis of the operators, we assume that the computational 

complexities of the operators ⊕3456 and ⊙3456 are 𝑂z𝑇⊕"#$%{ and 𝑂z𝑇⊙"#$%{, respectively7.  

If we assume that the domain 𝔻 is countable (for example it is the domain of the integers in ℤ), the complexity of 

⊕P. is Oz𝑑 ⋅ 𝑇⊕"#$%{ and the complexity of ⊙2/ is O(𝑑S ⋅ max	(𝑇⊙"#$% , 𝑇⊕"#$%)), where d is the cardinality of D, 

the domain of the preference function. In fact, ⊕P. must examine all values in D, which are Θ(𝑑), and apply the 

⊕3456 operator to each one, and ⊙2/ must consider each pair of addends, which are Θ(𝑑S), and apply the ⊕3456 and 

⊙3456 operators.  

 
7 These operators could be computed in constant time. For instance, the user can provide a tabular definition of such operations, stating, for each pair of 

preferences pi and pj in the scale, the value of p!⊕"#$% 𝑝&  and of p!⊙"#$% 𝑝&. 
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Notably, if the domain 𝔻 is uncountable (for example it is the domain of the real numbers in ℝ), ⊕P. and⊙P. are 

not effectively computable for cardinality reasons. ■ 

 

As in the general case (see the discussion in Section 3.2), even in case the domain 𝔻 is countable, we cannot grant the 

termination of PC_GP. In our approach, this is due to the fact that, informally speaking, no quiescence is necessarily 

reached in the general case in which no assumption can be made on the operators ⊕7$89 and ⊙7$89 provided in input 

by the user. For example, it is possible that the operation on preferences, e.g., alternatively increases and decreases 

them (with respect to the total ordering in the scale) and no fixed point is reached. However, simple and “natural” 

restrictions on the definitions of the ⊕3456 operator such as the “boundedness” property below are sufficient to grant 

the termination of PC_GP (in case the domain 𝔻 of differences is discrete). 

 

Definition 11. Boundedness. We say that the ⊕3456	operator defined over a SLP S is upper bounded if ∀𝑝#, 𝑝S ∈

𝑆, (𝑝#⊕7$89 𝑝S) ≤ min(𝑝#, 𝑝S) and they are lower bounded if ∀𝑝#, 𝑝S ∈ 𝑆, (𝑝#⊕7$89 𝑝S) ≥ max(𝑝#, 𝑝S) where min 

and max are the obvious operators, based on the total ordering of the SLP scale S. ■ 

 

Property 2. The PC_GP algorithm, when applied to the operators ⊕𝑷𝑩 and ⊙𝑷𝑩, to a discrete domain 𝔻 for 

differences, and to upper or lower bounded operator ⊕7$89, terminates. 

Proof. Let us define the order relations ≼2_/U! and ≺2_/U! between two P_BoDs and the order relations ≼'8V_2_/U! 

and ≺'8V_2_/U! between two sets of P_BoDs. 

 

Definition 12. Given two P_BoDs 𝐶1 = ⟨𝑥, 𝑦, [𝑐, 𝑑], 𝑃𝑟𝑒𝑓1',[*,+]⟩ and 𝐶11 = ⟨𝑥, 𝑦, [𝑐, 𝑑], 𝑃𝑟𝑒𝑓11',[*,+]⟩ over the same 

AdI [c,d], 𝐶1 ≼2_/U! 𝐶11 if and only if for each value 𝑣 ∈ [𝑐, 𝑑], 𝑃𝑟𝑒𝑓1',[*,+](𝑣) ≤ 𝑃𝑟𝑒𝑓1',[*,+](𝑣). 

Definition 13. Given two P_BoDs 𝐶1 = ⟨𝑥, 𝑦, [𝑐, 𝑑], 𝑃𝑟𝑒𝑓1',[*,+]⟩ and 𝐶11 = ⟨𝑥, 𝑦, [𝑐, 𝑑], 𝑃𝑟𝑒𝑓11',[*,+]⟩ over the same 

AdI [c,d], 𝐶1 ≺2_/U! 𝐶11 if and only 𝐶1 ≼2_/U! 𝐶11 and there exists a value 𝑣 ∈ [𝑐, 𝑑] such that 

 𝑃𝑟𝑒𝑓1',[*,+](𝑣) < 𝑃𝑟𝑒𝑓1',[*,+](𝑣). 

Definition 14. Given two sets B’ and B’’ of P_BoDs over the same set of variables X, 𝐵1 ≼'8V_2_/U! 𝐵′′ if and only if 

for each pair of variables 𝑥, 𝑦 ∈ 𝑋, indicating with 𝐶W,X1  the constraint between x and y in B’ and 𝐶W,X11  the constraint 

between x and y in B’’, 𝐶W,X1 	≼2_/U! 𝐶W,X11 . 

Definition 15. Given two sets B’ and B’’ of P_BoDs over the same set of variables X, 𝐵1 ≺'8V_2_/U! 𝐵′′ if and only if 

𝐵1 ≼'8V_2_/U! 𝐵′′ and there exists a pair of variables 𝑥, 𝑦 ∈ 𝑋 such that 𝐶W,X1 	≺2_/U! 𝐶W,X11 . 

 

After the first iteration of the outer loop of PC_GP, the AdIs over which the P_BoDs are defined do not change 

anymore since they have reached the state of minimal network (see Property 1). Thus, the next iterations can only 

change the preference values associated with the values in the AdIs. 

If the boundedness property holds, since at each iteration the operator ⊕7$89 is applied, we have that, if Bi is the set of 

P_BoDs obtained after the ith iteration of the outer loop, 𝐵% ≼'8V_2_/U! 𝐵%&#. Thus, either 𝐵% = 𝐵%&# and the fixed 

point has been reached and the algorithm terminates, or 𝐵% ≺'8V_2_/U! 𝐵%&# and, since the SLP scale S has a finite 

number of elements the algorithm eventually terminates. ■ 
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Now we have a sufficient condition for the termination of the PC_GP algorithm and we can analyse its complexity. 

 

Complexity of the PC_GP algorithm. The PC_GP algorithm, when applied to the operators ⊕2/ and ⊙2/, to a 

discrete domain 𝔻 for differences, and to bounded operator ⊕3456, has complexity O(𝑟 ⋅ 𝑑 ⋅ |𝑉|Y ⋅

maxz𝑇⊕&' , 𝑇⊙&'{), where r is the cardinality of the SLP S, d is the cardinality of 𝔻, V are the variables, and 𝑇⊕&' 

and 𝑇⊙&' are the complexities of the resume and extend operations, respectively. This is motivated by the 

consideration that the inner loop, which is O(|𝑉|Z ⋅ maxz	𝑇⊕&' , 𝑇⊙&'{), can be repeated O(𝑟 ⋅ 𝑑 ⋅ |𝑉|S) times, since at 

each iteration any single preference value of any value for any constraint can be decreased. 
 

4 “PYRAMID” PREFERENCES 

In Section 3 above, we have considered the most general case: any preference function can be used to associate 

preferences with BoD constraints, and any user-defined function can be used to combine preferences. The high 

computational complexity of the constraint propagation algorithm is a natural consequence of such a generality. 

Nevertheless, in many fields and applications, preference values distribute in a more regular way: they assume a 

maximum value at a maximum point and they decrease monotonically while moving away from such a maximum 

point [12]. For instance, the Gaussian distribution of preferences (over distances) is a typical example. In case 

preferences are layered (so that they can be expressed as a SLP), such a distribution leads to a pyramid of nested 

admissibility intervals, where the top interval has the highest preference while the bottom interval has the lowest one. 

This is the case, for instance, of many medical applications (consider, e.g., the running example in this paper). Other 

examples are vehicle routing problems, or the management of transport network. 

The vehicle routing problems with soft time windows is a realistic generalization of the Travel Salesman Problem – 

TSP – considering multiple vehicles and soft constraints on time arrivals. In particular, Vehicle Routing Problem with 

Soft Time Windows (VRPSTW) is an extension of the vehicle routing problem where for each customer the service 

(e.g., food delivery) must be provided within a given time interval with penalty costs for early and late servicing [59]. 

In some specific formalizations of the VRPSTW problem, the soft constraints on the delivery times can be seen as a 

set of delivery time intervals with an associated preference value. Other scheduling problems, such as the management 

of transport networks [47], where each vehicle (e.g., a train) should arrive in each site (e.g., rail station) in a specific 

time, could be modeled by using pyramid preferences. A peculiar category of scheduling problems that could be 

modeled by using pyramid preferences involves problems where the preferences arise from the human judgment (see, 

e.g., [7]). 

In the rest of the section, we focus on nested preferences, showing that, with nested preference distributions, also 

uncountable domains 𝔻 for distances can be considered, and that such distributions can be exploited to achieve a more 

efficient propagation of the constraints based on a new definition of the ⊕ 	and	 ⊙ operators. 

 

4.1 BoD with Pyramid preferences (PyP_BoD)  

The following definition formalizes the notion of preferences forming a pyramid of preferences. Given an AdI D, the 

preference function can be represented by a pyramid if there is at least a maximum point 𝑣 ∈ 𝐷 such that preferences 

are monotonically increasing on the left of v, and are monotonically decreasing on the right of v. 
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Definition 16. Pyramid preference function (PPF). A pyramid preference function 𝑃𝑟𝑒𝑓'#,! over the domain 𝐷 ∈

𝔸𝔻 with scale 𝑆$ ∈ 𝕊 is a total function 𝑃𝑟𝑒𝑓'#,!: 𝐷 → 𝑆$	such that: 

∃𝑣 ∈ 𝐷, ∀𝑣#, 𝑣S ∈ 𝐷, 

	�(𝑣# ≤ 𝑣 ∧ 𝑣S ≤ 𝑣	∧ 𝑣# ≤ 𝑣S) ⇒ 𝑃𝑟𝑒𝑓'#,!(𝑣#) ≤ 	𝑃𝑟𝑒𝑓'#,!(𝑣S)�			∧ 

�(𝑣 ≤ 𝑣# ∧ 𝑣 ≤ 	𝑣S ∧ 𝑣# ≤ 𝑣S) ⇒ 𝑃𝑟𝑒𝑓'#,!(𝑣#) ≥ 	𝑃𝑟𝑒𝑓'#,!(𝑣S)�						 

If ps is the maximum of a PPF, we say the PPF has height s. 

Let ℙℙ𝔻 be the domain of PPFs. BoD with pyramid preferences is defined as following.  

Definition 17. BoD with Pyramid preferences (PyP_BoD). Given a scale 𝑆$ ∈ 𝕊, a PyP_BoD is a constraint 

⟨𝑥, 𝑦, [𝑐, 𝑑], 𝑃𝑟𝑒𝑓',[*,+]⟩	of	the	form	𝕍 × 𝕍 × 𝔸𝔻 × ℙℙ𝔻.  ■ 

Terminology. We call the height of PyP_BoD as the height of its preference function. 

By exploiting the fact that preferences form a pyramid of height s of nested AdIs, it is possible to define a compact 

representation of PyP_BoD of height s. 

Definition 18. Compact representation of BoD with Pyramid preferences. Given a scale 𝑆$ ∈ 𝕊 of cardinality r, a 

PyP_BoD of height s (s£r) can be represented in a compact way by a constraint ⟨𝑥, 𝑦, ⟨⟨[𝑐#, 𝑑#], 𝑝#⟩, … , ⟨[𝑐[, 𝑑[], 𝑝[⟩⟩⟩ 

of	the	form	𝕍 × 𝕍 × (𝔸𝔻 × 𝕊)[ in which 𝑐% ≤ 𝑐%&# ∧ 𝑑% ≥ 𝑑%&#, 1 ≤ 𝑖 < 𝑠 and 𝑝#, … , 𝑝[ are the s lowest values in the 

scale 𝑆$ (i.e., 𝑝% = 𝑆$(𝑖), 1 ≤ 𝑖 ≤ 𝑠). ■ 

Let ℙ𝕪ℙ_𝔹𝕠𝔻 be the domain of the PyP_BoDs as defined above. 

In the definition, for the sake of clarity, the preference value of each AdI is made explicit8. The semantics of a 

PyP_BoD of the form ⟨𝑥, 𝑦, ⟨⟨[𝑐#, 𝑑#], 𝑝#⟩, … , ⟨[𝑐[, 𝑑[], 𝑝[⟩⟩⟩	over a scale 𝑆$ ∈ 𝕊 of cardinality r (s£r) corresponds to a 

constraint ⟨𝑥, 𝑦, [𝑐#, 𝑑#], 𝑃𝑟𝑒𝑓',[*,+]⟩ where 𝑃𝑟𝑒𝑓',[*,+] is such that: 

(i) ∀𝑣 ∈ [𝑐[, 𝑑[]	𝑃𝑟𝑒𝑓',!(𝑣) = 𝑆$(𝑠) 

(ii) ∀𝑖	1 ≤ 𝑖 < 𝑠	∀𝑣 ∈ ([𝑐% , 𝑑%] − [𝑐%&#, 𝑑%&#])	𝑃𝑟𝑒𝑓',!(𝑣) = 𝑆$(𝑖). 

The intuitive meaning of a PyP_BoD ⟨𝑥, 𝑦, ⟨⟨[𝑐#, 𝑑#], 𝑝#⟩, … , ⟨[𝑐[, 𝑑[], 𝑝[⟩⟩⟩ over a scale Sr (s£r) is that the difference 

𝑦 − 𝑥  between y and x is in [𝑐[, 𝑑[] with  preference 𝑆$(𝑠), or in [𝑐[\#, 𝑑[\#] − [𝑐[, 𝑑[] with preference Sr(s-1), or …. 

or in [𝑐#, 𝑑#] − [𝑐S, 𝑑S] with preference 𝑆$(1). 

Example 4(c). For instance, the PyP_BoD constraint 

⟨𝑁𝐴1,𝑁𝐴2, 〈⟨[10,15], 𝑙𝑜𝑤⟩, ⟨[11,13],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[12,12], ℎ𝑖𝑔ℎ⟩⟩⟩ represents the constraint between the two 

successive administrations of nalidixic acid NA1 and NA2 of Example 4, i.e. the fact that the delay between two 

successive administrations of nalidixic acid should be of 12 hours (with a “high” preference), of 11-13 hours (with a 

“medium” preference) or of 10-15 hours (with a “low” preference). 

As for general BoDs, also a set of PyP_BoD has a corresponding graph representation. 

 
8 Notably, it might be made implicit, since the preference of [ci,di] (i.e., of the ith AdI in a PAI) is pi (denoting S(i) the ith value in the scale S). 
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Definition 19. Graph of PyP_BoD (PyP_BoD_G). Given an SLP Sr of cardinality r, a set B of PyP_BoD 

⟨𝑥, 𝑦, ⟨⟨[𝑐#, 𝑑#], 𝑝#⟩, … , ⟨[𝑐[, 𝑑[], 𝑝[⟩⟩⟩ can be represented by an oriented graph 𝐺 = ⟨𝑉, 𝐸⟩ with a labelling function l, 

where the set of nodes V represents the set of variables in B, E Í V´V, and 𝜆: 𝐸 → ℙ𝕪ℙ_𝔹𝕠𝔻. ■ 

Example 4(d). For instance, Figure 3 shows the graph of BoD with preferences (PyP_BoD_G) representing Example 

4. In the figure, each node represents a variable of the original example. RT represents the reference time (in our 

example, 12 of the current day); Bs, Be, Ds, De are, respectively, the breakfast and the dinner starting and ending 

points; NA1 and NA2 are the time points of the nalidixic acid administrations and CC1 and CC2 are the time points of 

the two calcium carbonate administrations. Edges in the graph represent the constraints (i.e., the PyP_BoDs) between 

the variables. ■  

 

 

4.2 Propagating PyP_BoDs  

As shown above, nested preferences support a more compact representation of preferences. Indeed, instead of 

associating a preference with each distance value in an AdI, we can discretise preferences into a finite set of nested 

AdIs. This fact does not only discretise the representation of dense domains of distances, but supports also a more 

efficient combination of preferences, since intervals of distances having the same preferences can be treated as 

“primitive” entities within the constraint propagation algorithms. Such a goal can be achieved through the introduction 

of a new definition of the ⊕and	 ⊙	operators, i.e., ⊕P]P. 	and	 ⊙P]P., specialized to cope with nested preference 

distributions. Specifically, in the definition below, we adopt for PyP_BoDs the compact representation presented in 

Definition 18. 

Figure 3. The PyP_BoD_G representing Example 4. 
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Notably, as in the general approach described in Section 3 above, the definitions of ⊕and	 ⊙ operators are still 

parametric with respect to the SLP scale adopted, and with respect to the operators ⊕3456 	and	 ⊙3456	on preferences. 

As in Section 3, to grant the termination of the propagation algorithm, we impose that the operators are bounded. 

Obviously, we also have to assume that the ⊕3456 	and	 ⊙3456	operators support a definition of 

⊕P]P. 	and	 ⊙P]P.	that is closed with respect to the PPFs (i.e., we assume that ⊕3456 	and	 ⊙3456 are defined in such 

a way that the combination of two pyramids is still a pyramid). 
 

The resume ⊕P]P. and extend ⊙P]P. operators exploit the representation in form of pyramid to more compactly 

compute the results of the operators. Both operators proceed roughly in the following way:  

1) they split the admissibility intervals of each PyP_BoD into fragments (the fragments are formed using the 

endpoints of the admissibility intervals of the operands – this step is done by the fragments function for ⊕P]P. 

and the comp_fragments function for ⊙P]P.),  

2) they combine such fragments using the user-defined ⊕3456 and ⊙3456 operators (this step is done by the 𝐹⊕ 

function for ⊕P]P. and by the 𝐹⊙ function for ⊙P]P.),  

3) they obtain back the syntactical form of a PyP_BoD combining the fragments and their resulting preference values 

(this step is done by the union operator both in ⊕P]P. and ⊙P]P.). 

 

Regarding the ⊕P]P. operator, the function 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([𝑐, 𝑑], {[c#, d#], … , [c^, d^]}) accepts an interval [c,d] and a 

set of intervals. It splits [c,d] in a set of intervals that meet (in the sense of Allen [2], i.e., the ending point of an 

interval is the starting point of the next interval) having c, d, c1, d1, …, ck, dk as endpoints. In the appendix we report 

an algorithm implementing the fragments function. 

Example 4(e). 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([10,39], {[10,39], [11,37], [12,36]}) = {[10,11], [11,12], [12,36], [36,37], [37,39]}. 

The function 𝐹⊕ accepts as input two PyP_BoDs. It applies the fragment function to the AdIs of the two PyP_BoDs. 

For each fragment returned by the function, it considers the preference value of the fragment in the two input 

PyP_BoDs and uses the ⊕3456 function to compute its preference value. Thus, 𝐹⊕(C1, C′′) returns a set of pairs 

⟨[c, d], p⟩ where the intervals are non-overlapping, cover the resulting interval and are associated with a preference 

value. In the 𝐹⊕ function, we denote by pref([c,d],C) the (maximum) preference of the AdI [c,d] in the PyP_BoD C. 

 

Definition 21. 𝐹⊕ function.  Given a scale Sr, and given two PyP_BoDs 𝐶1 =

⟨𝑥, 𝑦, £⟨[c′#, d′#], p#⟩, … , ⟨[c′^, d′^], p^⟩¤⟩ and C11 = ⟨𝑥, 𝑦, ⟨⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩ (with 1 ≤ 𝑘 ≤ 𝑟 and 1 ≤

𝑙 ≤ 𝑟), 

𝐹⊕(C′, C′′) = {	⟨[s, e], p⟩	|	[s, e] ∈ fragments([c#1 , d#1 ] ∩ [c#11, d#11], {[c#1 , d#1 ], … , [c^1 , d^1 ], [c#11, d#11], … , [c_11, d_11]}) ∧ 

p = (pref([s, e], C1)⊕3456 pref([s, e], C11))	}  

 

Example 4(f). 𝐹⊕(⟨𝑁𝐴1,𝑁𝐴2, ⟨⟨[10,39], 𝑙𝑜𝑤⟩, ⟨[11,37],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,36], ℎ𝑖𝑔ℎ⟩⟩⟩, 

⟨𝑁𝐴1,𝑁𝐴2, 〈⟨[0,24], 𝑙𝑜𝑤⟩, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[0,24], ℎ𝑖𝑔ℎ⟩⟩⟩) =  

{£[10,11], 𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ¤, £[11,12],𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ¤, £[12,24], ℎ𝑖𝑔ℎ ⊕3456 ℎ𝑖𝑔ℎ¤}} 
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Finally, the resume operator ⊕P]P. performs the union of the fragments at the various preference levels in order to 

have a PyP_BoD as an output.  

 

Definition 22. Resume (⊕𝐏𝐲𝐏𝐁). Given a scale Sr and given two PyP_BoDs 𝐶1 =

⟨𝑥, 𝑦, £⟨[c′#, d′#], p#⟩, … , ⟨[c′^, d′^], p^⟩¤⟩ and C11 = ⟨𝑥, 𝑦, ⟨⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩ (with 1 ≤ 𝑘 ≤ 𝑟 and 1 ≤

𝑙 ≤ 𝑟), 

𝐶′ ⊕P]P. 𝐶′′ = ⟨𝑥, 𝑦, £⟨[𝑐% , 𝑑%], 𝑝%⟩, 𝑖 = 1,… , 𝑟	©	[𝑐% , 𝑑%] = ⋃ [𝑠, 𝑒]⟨[[,8],7⟩∈c⊕(d!,d!!)	∧	7e7) ∧ [𝑐% , 𝑑%] ≠ ∅⟩⟩.  

 

Example 4(g). As an example, we compute ­𝑁𝐴1,𝑁𝐴2, £⟨[10,39], 𝑙𝑜𝑤⟩, ⟨[11,37],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,36], ℎ𝑖𝑔ℎ⟩¤® ⊕P]P. 

⟨𝑁𝐴1,𝑁𝐴2, 〈⟨[0,24], 𝑙𝑜𝑤⟩, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[0,24], ℎ𝑖𝑔ℎ⟩⟩⟩ assuming that the ⊕3456 operator is the min function 

(with 𝑙𝑜𝑤	 < 	𝑚𝑒𝑑𝑖𝑢𝑚	 < 	ℎ𝑖𝑔ℎ). Since 𝐹⊕(⟨𝑁𝐴1,𝑁𝐴2, ⟨⟨[10,39], 𝑙𝑜𝑤⟩, ⟨[11,37],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,36], ℎ𝑖𝑔ℎ⟩⟩⟩, 

⟨𝑁𝐴1,𝑁𝐴2, 〈⟨[0,24], 𝑙𝑜𝑤⟩, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[0,24], ℎ𝑖𝑔ℎ⟩⟩⟩) = 	

{£[10,11], 𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ¤, £[11,12],𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ¤, £[12,24], ℎ𝑖𝑔ℎ ⊕3456 ℎ𝑖𝑔ℎ¤}}, for obtaining the AdI for 

the preference level 𝑙𝑜𝑤, the ⊕P]P. operator performs the union ⋃{[10,11], [11,12], [12,24]}, and for obtaining the 

AdI for the preference level 𝑚𝑒𝑑𝑖𝑢𝑚, it performs the union ⋃{[11,12], [12,24]}. Finally, to obtain the AdI for the 

preference level ℎ𝑖𝑔ℎ, it performs the singleton union ⋃{[11,12], [12,24]}. Thus, 

­𝑁𝐴1,𝑁𝐴2, £⟨[10,39], 𝑙𝑜𝑤⟩, ⟨[11,37],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,36], ℎ𝑖𝑔ℎ⟩¤® ⊕P]P. 

­𝑁𝐴1,𝑁𝐴2, 〈⟨[0,24], 𝑙𝑜𝑤⟩, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[0,24], ℎ𝑖𝑔ℎ⟩¤® =  

⟨𝑁𝐴1,𝑁𝐴2, £⟨[10,24], low⟩, ⟨[11,24],𝑚𝑒𝑑𝑖𝑢𝑚⟩, ⟨[12,24], ℎ𝑖𝑔ℎ⟩¤⟩. 

 

Regarding the ⊙PyPB operator, the function 𝑐𝑜𝑚𝑝_𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠(⟨[c#, d#], … , [c^, d^]⟩, ⟨[c#1 , d#1 ], … , [c_1, d_1]⟩) accepts as 

arguments two sets of nested AdIs, and returns a set of non-overlapping intervals that have as endpoints the sum of the 

endpoints of the intervals passed as arguments (considering each interval resulting from the first argument paired with 

each interval resulting from the second argument).  

 

Definition 23. comp_fragments function. comp_fragments(⟨[s#, e#], … , [s^, e^]⟩, ⟨[s#1 , e#1 ], … , [s_1, e_1]⟩) =	

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([𝑠# + 𝑠#1 , 𝑒# + 𝑒#1], {[𝑠 + 𝑠1, 𝑒 + 𝑒1]	|	[𝑠, 𝑒] ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([s#, e#], {[s#, e#], … , [s^, e^]}) ∧ [𝑠1, 𝑒1] ∈

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([s#1 , e#1 ], {[s#1 , e#1 ], … , [s_1, e_1]})}). 

Example 4(h). Since 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([0,24], {[0,24], [0,24], [0,24]}) = {[0,24]} and 

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([10,15], {[10,15], [11,13], [12,12]}) = {[10,11], [11,12], [12,12], [12,13], [13,15]}, 

𝑐𝑜𝑚𝑝_𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠(⟨[0,24], [0,24], [0,24]⟩, ⟨[10,15], [11,13], [12,12]⟩) =

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([10,39], {[10,35], [11,36], [12,36], [12,37], [13,39]}) =

{[10,11], [11,12], [12,12], [12,13], [13,35], [35,36], [36,37], [37,39]}.  

 

The function 𝐹⊙(C′, C′′) computes the preference value for each of the fragments [s,e] returned by comp_fragments. 

The preference value is determined by considering the preference values of the fragments of C’ and C’’ whose 

composition contains [s,e] (by construction, the fragments returned by comp_fragments are always contained in the 
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fragments of C’ and of C’’). Thus, for each pair of fragments [si’,ei’] of C′ and [sj”,ej”] of C′′ such that  [si’+sj”, 

ei’+ej”] contains a fragment [s,e] in comp_fragments, 𝐹⊙(C′, C′′) first computes the preference value of the 

combination of the two preference values holding together using the ⊕7$89 operator and then – to determine the 

preference value of [s,e] – it merges these preference values using the ⊙7$89 operator.  

 

Definition 24. 𝐹⊙ function. Given a scale Sr, and given two PyP_BoDs 𝐶1 = ⟨𝑥, 𝑦, £⟨[c#1 , d#1 ], p#⟩, … , ⟨[c^1 , d^1 ], p^⟩¤⟩ 

and C11 = ⟨𝑥, 𝑦, ⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩ (with 1 ≤ 𝑘 ≤ 𝑟 and 1 ≤ 𝑙 ≤ 𝑟), 

𝐹⊙(C′, C′′) = {	⟨[s, e], p⟩	|	[s, e] ∈ comp_fragments(⟨[c#1 , d#1 ], … , [c^1 , d^1 ]⟩, ⟨[c#11, d#11], … , [c_11, d_11]⟩) ∧	

p =⊙ :f*
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!!m∈64?g>5EhfA:B+
!!,G+

!!;,i:B+
!!,G+

!!;,…,:B.
!!,G.

!!;kC	∧	

lf*
!&f-

!!,5*
!!&5-

!!m⊇[f,5]

7$89 ±pref([sD1, eD1], C′) ⊕7$89 prefz²so11, eo11³, C′′{´. 

 

Example 4(i).  

𝐹⊙z£⟨[0,24], 𝑙𝑜𝑤〉, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[0,24], ℎ𝑖𝑔ℎ〉¤, £⟨[10,15], 𝑙𝑜𝑤〉, ⟨[11,13],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,12], ℎ𝑖𝑔ℎ〉¤{ = 

⟨£[10,11], 𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ¤, 

£[11,12], z𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ{ ⊙7$89 z𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ{¤, 

£[12,12], z𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ{ ⊙7$89 z𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ{⊙7$89 zℎ𝑖𝑔ℎ ⊕3456 ℎ𝑖𝑔ℎ{¤,	 

£[12,13], z𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ{ ⊙7$89 z𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ{⊙7$89 zℎ𝑖𝑔ℎ ⊕3456 ℎ𝑖𝑔ℎ{¤, 

£[13,35], z𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ{ ⊙7$89 z𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ{⊙7$89 zℎ𝑖𝑔ℎ ⊕3456 ℎ𝑖𝑔ℎ{¤,  

£[35,36], z𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ{ ⊙7$89 z𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ{⊙7$89 zℎ𝑖𝑔ℎ ⊕3456 ℎ𝑖𝑔ℎ{¤, 

£[36,37], z𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ{ ⊙7$89 z𝑚𝑒𝑑𝑖𝑢𝑚⊕3456 ℎ𝑖𝑔ℎ{¤, 

£[37,39], 𝑙𝑜𝑤 ⊕3456 ℎ𝑖𝑔ℎ¤ 

 

Finally, as the resume ⊕P]P. operator, also the extension operator ⊙P]P. performs the union of the fragments 

returned by 𝐹⊙ at the various preference levels in order to have a PyP_BoD as an output.  

 

Definition 25. Extension (⊙PyPB). Given a scale Sr, and given two PPCs 𝐶1 = ⟨𝑥, 𝑦, £⟨[c#1 , d#1 ], p#⟩, … , ⟨[𝑐p1 , e^1 ], p^⟩¤⟩ 

and  𝐶11 = ⟨𝑦, 𝑧, ⟨⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩  (with 1£k£r and 1£l£r), their extension is 

𝐶′ ⊙P]P. 𝐶′′ = ⟨𝑥, 𝑧, ⟨⟨[𝑐% , 𝑑%], 𝑝%⟩, 𝑖 = 1,… , 𝑟		|	[𝑐% , 𝑑%] = µ [𝑠, 𝑒]
⟨[[,8],7⟩∈c⊙(d!,d!!)	∧	7e7)

	∧ 	 [𝑐% , 𝑑%] ≠ ∅⟩⟩	 

Example 4(j). As an example, we compute ­𝑅𝑇,𝑁𝐴1, £⟨[0,24], 𝑙𝑜𝑤〉, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[0,24], ℎ𝑖𝑔ℎ〉¤® ⊙P]P. 

­𝑁𝐴1,𝑁𝐴2, £⟨[10,15], 𝑙𝑜𝑤〉, ⟨[11,13],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,12], ℎ𝑖𝑔ℎ〉¤® assuming that the ⊕3456 operator is the min 

function and that the ⊙7$89 is the max function. Since, 

𝐹⊙z£⟨[0,24], 𝑙𝑜𝑤〉, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[0,24], ℎ𝑖𝑔ℎ〉¤, £⟨[10,15], 𝑙𝑜𝑤〉, ⟨[11,13],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,12], ℎ𝑖𝑔ℎ〉¤{ =

⟨⟨[10,11], 𝑙𝑜𝑤⟩, ⟨[11,13],𝑚𝑒𝑑𝑖𝑢𝑚⟩, ⟨[12,12], ℎ𝑖𝑔ℎ⟩, ⟨[12,13], ℎ𝑖𝑔ℎ⟩, ⟨[13,35], ℎ𝑖𝑔ℎ⟩, ⟨[35,36], ℎ𝑖𝑔ℎ⟩, ⟨[36,37],𝑚𝑒𝑑𝑖𝑢𝑚⟩, 

⟨[37,39], 𝑙𝑜𝑤⟩⟩, for obtaining the AdI for the preference level 𝑙𝑜𝑤, the ⊙P]P. operator performs the union 

⋃{[10,11], [11,12], [12,12], [12,13], [13,35], [35,36], [36,37], [37,39]}, for obtaining the AdI for the preference 
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level 𝑚𝑒𝑑𝑖𝑢𝑚, it performs the union ⋃{[11,12], [12,12], [12,13], [13,35], [35,36], [36,37]}, and, for obtaining the 

AdI for the preference level ℎ𝑖𝑔ℎ, it performs the union ⋃{[12,12][13,35][35,36]}. Thus, 

­𝑅𝑇,𝑁𝐴1, £⟨[0,24], 𝑙𝑜𝑤〉, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[0,24], ℎ𝑖𝑔ℎ〉¤® ⊙P]P. 

­𝑁𝐴1,𝑁𝐴2, £⟨[10,15], 𝑙𝑜𝑤〉, ⟨[11,13],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,12], ℎ𝑖𝑔ℎ〉¤® =

⟨𝑅𝑇,𝑁𝐴2, ⟨⟨[10,39], 𝑙𝑜𝑤〉, ⟨[11,37],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,36], ℎ𝑖𝑔ℎ〉⟩⟩. 

 

Complexity. Regarding the ⊕P]P. operator, the fragments function can operate in time O(𝑟), where r is the number 

of preference values in Sr, because the function 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([𝑐, 𝑑], {[c#, d#], … , [c^, d^]}) – since the endpoints are 

already sorted – can basically operate linearly by considering the endpoints of the AdIs passed as parameters, which 

are at most 4r (since the two constraints can have at most r AdIs and each one has two endpoints). The 𝐹⊕ function 

invokes the fragments function and, for each of the O(r) fragments, obtains its preference value and applies the ⊕3456 

operator. We assume that the preference value can be obtained in O(1) and we denote the complexity of the ⊕3456 

operator as O(𝑇⊕"#$%). Thus, the 𝐹⊕ function operates in time O(𝑟 ⋅ 𝑇⊕"#$%). The ⊕P]P. operator invokes the 𝐹⊕ 

function, which returns O(r) fragments, and for each preference value it performs the union of the fragments that have 

at least the given preference value. Since we assume that the fragments are already sorted, the union can be computed 

in linear time and, in the worst case, the union must consider r times the output of the 𝐹⊕ function, the ⊕P]P. 

operator operates in O(maxz𝑟 ⋅ 𝑇⊕"#$% , 𝑟S{). 

Regarding the ⊙P]P. operator, the comp_fragments function invokes the fragments function on the two AdIs and, 

considering each pair of fragments, invokes again the fragments function. Thus, it operates in time O(𝑟S), where r is 

the number of preference values in Sr. The 𝐹⊙ function invokes the comp_fragments function and, for each pair of 

fragments resulting from the AdIs of the two constraints (whose sum contains a fragment returned by 

comp_fragments), it applies the ⊕3456 operator (and then the ⊙3456 operator). Since fragments is O(𝑟), 

comp_fragments is O(𝑟S) and there are O(𝑟S) pairs of fragments, the 𝐹⊙ function in the worst case applies the ⊕3456 

and ⊙3456 operators once for each pair and operates in time O(𝑟S ⋅ 𝑇⊕"#$% ⋅ 𝑇⊙"#$%). Finally, the ⊙P]P. operator 

invokes the 𝐹⊙ function, which can return O(𝑟S) fragments, and, for each preference value, it performs the union of 

the fragments returned by 𝐹⊙. Thus, in the worst case, ⊙P]P. must consider r times the output of the 𝐹⊙ function, 

thus it operates in O(maxz𝑟S ⋅ 𝑇⊕"#$% ⋅ 𝑇⊙"#$% , 𝑟Z{). 

 

Notably, the ⊕P]P. and ⊙P]P. operators, unlike the ⊕P. and ⊙P. operators, can deal both with discrete and dense 

domains, since they operate not on the single values in 𝔻 but on the intervals induced by the pyramid structure. 

At this point, we can summarise the main points of this section. At the beginning of the section, we have defined a 

special form of BoDs with preferences called PyP_BoDs. Then, in order to define the extend and resume operators on 

PyP_BoDs, we introduced the functions 𝐹⊕ and 𝐹⊙ and the notion of fragment. In the remaining part of this section, 

we connect the formalism presented in Section 3 and the formalism presented in this section with Property 3. Indeed, 

Property 3 shows that the definitions of the resume and extend operators on PyP_BoDs are a particular case of the 

definitions of the corresponding operators on P_BoDs. To define such a property, we first introduce an auxiliary 

conversion function. 
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We define a function 𝜌2X2/→2/ that converts a PyP_BoD into a P_BoD by following the definition of the PyP_BoDs 

introduced above. 

Definition 26. 𝝆𝑷𝒚𝑷𝑩→𝑷𝑩. Given a scale Sr and a PyP_BoD 𝐶 = ⟨𝑥, 𝑦, £⟨[𝑐#, 𝑑#], p#⟩, … , ⟨[c^, d^], p^⟩¤⟩, 𝜌2X2/→2/(𝐶) 

is a P_BoD such that 

𝜌2X2/→2/(𝐶) = ⟨𝑥, 𝑦, [𝑐#, 𝑑#], 𝑃𝑟𝑒𝑓',[*+,++]⟩ 

with ∀𝑣 ∈ [𝑐p , 𝑑p], 𝑃𝑟𝑒𝑓',[*+,++](𝑣) = 𝑆$(𝑘) and ∀𝑖	1 ≤ 𝑖 < 𝑘	∀𝑣 ∈ ([𝑐% , 𝑑%] − [𝑐%&#, 𝑑%&#])	𝑃𝑟𝑒𝑓',[*+,++](𝑣) = 𝑆$(𝑖). 

 

Property 3. Assuming that the ⊕7$89 and ⊙7$89 operators are closed with regard to PPFs, given two PyP_BoDs 

𝐶1 = ⟨𝑥, 𝑦, £⟨[c′#, d′#], p#⟩, … , ⟨[c′^, d′^], p^⟩¤⟩ and C11 = ⟨𝑥, 𝑦, ⟨⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩,  

𝜌2X2/→2/(𝐶1⊕2X2/ 𝐶11) = 𝜌2X2/→2/(𝐶′)⊕P. 𝜌2X2/→2/(𝐶′′) 

and, given two PyP_BoDs 𝐶1 = ⟨𝑥, 𝑦, £⟨[c′#, d′#], p#⟩, … , ⟨[c′^, d′^], p^⟩¤⟩ and C11 =

⟨𝑦, 𝑧, ⟨⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩,  

𝜌2X2/→2/(𝐶1⊙2X2/ 𝐶11) = 𝜌2X2/→2/(𝐶′) ⊙P. 𝜌2X2/→2/(𝐶′′). 

Proof. For the sake of brevity, we consider the resume operators ⊕2X2/ and ⊕2/; the proof for the extend operators 

⊙2X2/ and ⊙2/ is developed in a similar way. 

We prove the equivalence by proving that the left-hand side (henceforth, lhs) and the right-hand side (henceforth, rhs) 

are defined on the same pair of variables, on the same domain and that the preference functions are the same. 

In the case of the resume operators, it is trivial to verify that they use the same pairs of variables. 

Regarding the domain, by definition of ⊕2X2/, the domain of the Pref function on the lhs is the union of all the 

fragments returned by the 𝐹⊕ function, which is (by definition of 𝐹⊕) the interval [𝑐#1 , 𝑑#1 ] ∩ [𝑐#11, 𝑑#11]; by definition of 

⊕2/, the domain of the Pref function on the rhs is the intersection between the domain of 𝜌2X2/→2/(𝐶′) and the 

domain of 𝜌2X2/→2/(𝐶′′), i.e.,  [𝑐#1 , 𝑑#1 ] ∩ [𝑐#11, 𝑑#11]. 

Regarding the preference values, we prove that, given an arbitrary value 𝑣 ∈ [𝑐#1 , 𝑑#1 ] ∩ [𝑐#11, 𝑑#11] with preference value 

𝑃𝑟𝑒𝑓',:*+! ,++! ;∩:*+!!,++!!;(𝑣) = 𝑆$(𝑖) on the lhs, 𝑣 has the same preference value on the rhs (part 1 of the proof in the 

following), and vice versa (part 2). 

 

(Part 1) Given an arbitrary value 𝑣 ∈ [𝑐#1 , 𝑑#1 ] ∩ [𝑐#11, 𝑑#11] on the lhs with preference value 𝑃𝑟𝑒𝑓',:*+! ,++! ;∩:*+!!,++!!;(𝑣) =

𝑆$(𝑖), by definition of 𝜌2X2/→2/, there exists a PyP_BoD 𝐶111 = ­𝑥, 𝑦, £⟨[c111#, d111#] = [𝑐#1 , 𝑑#1 ] ∩

[𝑐#11, 𝑑#11], p#⟩, … , ⟨[c111>, d111>], p>⟩¤® such that 𝐶111 = 𝐶1⊕2X2/ 𝐶11 where either a) there is an AdI [𝑐% , 𝑑%], 1 ≤ 𝑖 <

𝑚	such that 𝑣 ∈ ([𝑐% , 𝑑%] − [𝑐%&#, 𝑑%&#]) or b) 𝑣 ∈ [𝑐t, 𝑑t] (and 𝑚 = 𝑖). Let us consider the case a), the other is 

analogous and simpler.  

By definition of ⊕P]P., [𝑐% , 𝑑%] is the union of all the fragments ⟨[𝑠, 𝑒], 𝑝⟩ returned by 𝐹⊕(𝐶′, 𝐶′′) such that 𝑝 ≥ 𝑝%. 

Since 𝑣 ∈ ([𝑐% , 𝑑%] − [𝑐%&#, 𝑑%&#]), there does not exist any fragment ⟨[𝑠, 𝑒], 𝑝%&#⟩ returned by 𝐹⊕(𝐶′, 𝐶′′) such that 𝑣 ∈

[𝑠, 𝑒] and there exists a fragment ⟨[𝑠, 𝑒], 𝑝%⟩ returned by 𝐹⊕(𝐶′, 𝐶′′) such that 𝑣 ∈ [𝑠, 𝑒].  

By definition of 𝐹⊕, there exists an interval [𝑠, 𝑒] ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([𝑐#1 , 𝑑#1 ] ∩

[𝑐#11, 𝑑#11], {[𝑐#1 , 𝑑#1 ], … , [𝑐p1 , 𝑑p1 ], [𝑐#11, 𝑑#11], … , [𝑐v11, 𝑑v11]}) such that 𝑣 ∈ [𝑠, 𝑒] and 𝑝% =
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(𝑝𝑟𝑒𝑓([𝑠, 𝑒], 𝐶1)⊕7$89 𝑝𝑟𝑒𝑓([𝑠, 𝑒], 𝐶11)) and there does not exist any interval [𝑠, 𝑒] ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([𝑐#1 , 𝑑#1 ] ∩

[𝑐#11, 𝑑#11], {[𝑐#1 , 𝑑#1 ], … , [𝑐p1 , 𝑑p1 ], [𝑐#11, 𝑑#11], … , [𝑐v11, 𝑑v11]}) such that 𝑝%&# = (𝑝𝑟𝑒𝑓([𝑠, 𝑒], 𝐶1)⊕7$89 𝑝𝑟𝑒𝑓([𝑠, 𝑒], 𝐶11)) and 

𝑣 ∈ [𝑠, 𝑒]. 

By definition of the fragments function, there exist an AdI [cD!
1 , dD!

1 ] of 𝐶1 and an AdI [cD!!
11 , dD!!

11 ] of 𝐶11 such that 𝑣 ∈

[cD!
1 , dD!

1 ], 𝑣 ∈ [cD!!
11 , dD!!

11 ], and pD = pD! ⊕3456 pD!! and there do not exist any AdI [co!
1 , do!

1 ] of 𝐶1 and any AdI [co!!
11 , do!!

11 ] of 

𝐶11 such that 𝑣 ∈ [co!
1 , do!

1 ], 𝑣 ∈ [co!!
11 , do!!

11 ], and po! ⊕3456 po!! > 𝑝%. 

Thus, moving to the rhs, by definition of 𝜌2X2/→2/, 𝑃𝑟𝑒𝑓',:*+! ,++! ;(𝑣) = 𝑆$(𝑖1) and 𝑃𝑟𝑒𝑓',:*+!!,++!!;(𝑣) = 𝑆$(𝑖11). 

By definition of ⊕2/, 𝑃𝑟𝑒𝑓⊕',[>?@AB!,B!!C,>DE(G!,G!!)](𝑣) = 𝑃𝑟𝑒𝑓1',:*!,+!;(𝑣)⊕
7$89 𝑃𝑟𝑒𝑓11',:*!!,+!!;(𝑣). Thus, 

𝑃𝑟𝑒𝑓⊕',[>?@AB!,B!!C,>DE(G!,G!!)](𝑣) = 𝑆$(𝑖1) ⊕7$89 𝑆$(𝑖11) = 𝑝𝑟𝑒𝑓([𝑠, 𝑒], 𝐶1) ⊕7$89 𝑝𝑟𝑒𝑓([𝑠, 𝑒], 𝐶11) = 𝑝% = 𝑆$(𝑖).  

 

(Part 2) Given an arbitrary value 𝑣 ∈ [𝑐#1 , 𝑑#1 ] ∩ [𝑐#11, 𝑑#11] on the rhs with preference value 𝑃𝑟𝑒𝑓',:*+! ,++! ;∩:*+!!,++!!;(𝑣) =

𝑆$(𝑖), by definition of ⊕2/, there exist two P_BoDs 𝐶2/1 = ⟨𝑥, 𝑦, [𝑐1, 𝑑1], 𝑃𝑟𝑒𝑓′',[*!,+!]⟩ and 𝐶2/11 =

⟨𝑥, 𝑦, [𝑐′′, 𝑑11], 𝑃𝑟𝑒𝑓′′',[*!!,+!!]⟩ such that 𝑣 ∈ [𝑐1, 𝑑1], 𝑣 ∈ [𝑐11, 𝑑11] and 𝑃𝑟𝑒𝑓1',:*!,+!;(𝑣)⊕
7$89 𝑃𝑟𝑒𝑓11',:*!!,+!!;(𝑣) =

𝑆$(𝑖). Let 𝑃𝑟𝑒𝑓1',:*!,+!;(𝑣) be 𝑝%! = 𝑆$(𝑖1)	and 𝑃𝑟𝑒𝑓11',:*!!,+!!;(𝑣) be 𝑝%!! = 𝑆$(𝑖11). 

By definition of 𝜌2X2/→2/, there exist two PyP_BoDs 𝐶1 = ⟨𝑥, 𝑦, £⟨[𝑐′#, 𝑑′#], 𝑝#⟩, … , ⟨[𝑐′t! , 𝑑′t!], 𝑝t!⟩¤⟩ and 𝐶11 =

⟨𝑥, 𝑦, ⟨⟨[𝑐#11, 𝑑#11], 𝑝#⟩, … , £²𝑐t!!
11 , 𝑑t!!

11 ³, 𝑝t!!¤⟩⟩ such that, considering 𝐶1, either a’) there is an AdI [𝑐%! , 𝑑%!], 1 ≤ 𝑖′ <

𝑚1	such that 𝑣 ∈ ([𝑐%! , 𝑑%!] − [𝑐%!&#, 𝑑%!&#]) or b’) 𝑖1 = 𝑚1 and 𝑣 ∈ [𝑐t! , 𝑑t!]; the same holds for 𝐶11: either a’’) there 

is an AdI [𝑐%!! , 𝑑%!!], 1 ≤ 𝑖′′ < 𝑚11	such that 𝑣 ∈ ([𝑐%!! , 𝑑%!!] − [𝑐%!!&#, 𝑑%!!&#]) or b’’) 𝑖11 = 𝑚11 and 𝑣 ∈ [𝑐t!! , 𝑑t!!]. As 

above, we consider cases a’) and a’’) since the other combinations of cases (i.e., a’ and b’’, b’ and a’’, b’ and b’’) are 

analogous and simpler. 

Moving to the lhs, since 𝑣 ∈ ([𝑐%! , 𝑑%!] − [𝑐%!&#, 𝑑%!&#]) and [𝑐%!&#, 𝑑%!&#] ⊆ [𝑐%! , 𝑑%!], either (i) 𝑐%! ≤ 𝑣 ≤ 𝑐%!&# or (ii) 

𝑑%!&# ≤ 𝑣 ≤ 𝑑%!, and, similarly, since 𝑣 ∈ ([𝑐%!! , 𝑑%!!] − [𝑐%!!&#, 𝑑%!!&#]) and [𝑐%!!&#, 𝑑%!!&#] ⊆ [𝑐%!! , 𝑑%!!], either (a) 

𝑐%!! ≤ 𝑣 ≤ 𝑐%!!&# or (b) 𝑑%!!&# ≤ 𝑣 ≤ 𝑑%!!. Thus, there are four cases. Let us consider the case (i)(a), thus 

max(𝑐%! , 𝑐%!!) 	≤ 𝑣 ≤ min(𝑐%!&#, 𝑐%!!&#). The other three cases are analogous. 

Following the definition of ⊕2X2/, we consider the function 𝐹⊕(𝐶′, 𝐶′′). Since 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠([𝑐#1 , 𝑑#1 ] ∩

[𝑐#11, 𝑑#11], {[𝑐#1 , 𝑑#1 ], … , [𝑐p1 , 𝑑p1 ], [𝑐#11, 𝑑#11], … , [𝑐v11, 𝑑v11]}) returns a set of non-overlapping intervals covering [𝑐#1 , 𝑑#1 ] ∩

[𝑐#11, 𝑑#11] and having 𝑐#1 , 𝑑#1 , … , 𝑐p1 , 𝑑p1 , 𝑐#11, … , 𝑑#11, … , 𝑐v11	, … , 𝑑v11 as endpoints, there is exactly one fragment [𝑠, 𝑒] 

returned by fragments such that 𝑣 ∈ [𝑠, 𝑒]. By definition of PyP_BoD, 𝑐#1 ≤ ⋯ ≤	𝑐p\#1 ≤ 𝑐p1 ≤ 𝑑p1 ≤ 𝑑p\#1 ≤ ⋯ ≤ 𝑑#1  

and 𝑐#11 ≤ ⋯ ≤	𝑐v\#11 ≤ 𝑐v11 ≤ 𝑑v11 ≤ 𝑑v\#11 ≤ ⋯ ≤ 𝑑#11. Thus, [𝑠, 𝑒] = [max(𝑐%! , 𝑐%!!) ,min(𝑐%!&#, 𝑐%!!&#)]. By 

construction, pref([s, e], C1) = 𝑝%! and pref([s, e], C11) = 𝑝%!!, and the 𝐹⊕ function returns the pair 

	⟨[𝑠, 𝑒], 𝑝%! ⊕7$89 𝑝%!!⟩. By construction, 𝑝%! ⊕7$89 𝑝%!! = 𝑝%. For the definition of ⊕2X2/, in order to build an AdI 

[𝑐% , 𝑑%] with preference value 𝑝%, a union is performed over all the pairs returned by 𝐹⊕ that have preference values 

higher than or equal to 𝑝%. Since we assume that ⊕7$89 is defined in such a way that PPFs are closed under ⊕2X2/, 

the intervals included between max(𝑐%! , 𝑐%!!) = 𝑐% and min(𝑑%! , 𝑑%!!) = 𝑑% are all and only the ones that have 

preference value higher than or equal to 𝑝%. For the definition of 𝜌2X2/→2/, since 𝑣 ∈ [𝑠, 𝑒] =

[max(𝑐%! , 𝑐%!!) ,min(𝑐%!&#, 𝑐%!!&#)], 𝑃𝑟𝑒𝑓',[*+,++](𝑣) = 𝑝%. ■ 
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5 CLOSED SEMIRING-BASED OPERATIONS ON “PYRAMID” CONSTRAINTS 

For the sake of generality, until now we have considered arbitrary (user-provided) operators for specifying how the 

preferences can be combined (Section 3). We now show that, if the resume and extend operators satisfy certain 

conditions, PyP_BoDs can be managed in a much more efficient way. To achieve such a goal, we consider a general 

property of a class of algorithms proposed in [18]. Indeed, the simplification of the path-consistency algorithm shown 

is Figure 2 obtained by removing from it the “repeat … until no constraint is changed” (i.e., removing lines 6 and 11; 

see Figure 4 below) exactly corresponds to Cormen et al.’s general algorithm Compute-Summaries(l,V,E,⊕,⊙,𝟬,𝟭) in 

[18].  

 

Compute-Summaries(l,V,E,⊕,⊙,𝟬,𝟭) algorithm  

1. n ← |V| 
2. for i←1 to n do 
3. for j←1 to n do 

4.  Lij ← l(i,j) 

5. for k←1 to n do 

6. for i←1 to n do 

7.   for j←1 to n do 

8.    Lij ← Lij ⊕ (Lik ⊙ Lkj) 

9. return L 

Figure 4. Cormen et al.’s general algorithm Compute-Summaries (adapted from [18]). 

 

Compute-Summaries is a parametric all-pairs shortest paths algorithm that solves a number of problems involving 

directed paths in graphs. As in the case of the path consistency algorithm, also compute-summaries is parametric with 

respect to the labelling function l:E → L, the “extension” operator ⊙, and the “resume” operator ⊕, as well as on two 

additional parameters, i.e., the identities for ⊙ (indicated by 𝟭) and for ⊕ (indicated by 𝟬). Cormen et al. show that, if 

⟨𝐿,⊕,⊙, 𝟎, 𝟏⟩ is a closed semiring, the algorithm computes the all-pairs shortest paths, which corresponds in our 

context to the minimal network of the constraints. Therefore, we rely on such a result and define the extension ⊙P  

operator, the resume ⊕P operator and their identities on the compact PyP_BOD constraints (that is the operators 

consider both admissibility intervals and preferences) so that ⟨𝐿,⊕2,⊙2, 𝟎, 𝟏⟩ is a closed semiring. In such a way, we 

can compute the minimal network of the distances, and their preferences, without the need of the external loop of the 

algorithm in Figure 2. Obviously, this move is very advantageous from the computational point of view. 

 

Complexity. The complexity of the algorithm Compute-Summaries is Θ(|𝑉|Z ⋅ maxz	𝑇⊕, 𝑇⊙{), where V are the 

variables, and 𝑇⊕ and 𝑇⊙ are the complexities of the resume and extend operations, respectively.  

To be able to exploit Compute-Summaries to evaluate the minimal network of our PyP_BoD constraints, we cannot 

anymore assume that the operations ⊕7$89 and ⊙7$89 on preference are arbitrary operations provided in input by the 

users. They have to be defined in such a way that the extension ⊙P and resume ⊕P operators (which operate on both 

distances and preferences, adopting  ⊕7$89 and ⊙7$89 to combine preferences) can form a closed semiring.  
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Before moving to an example of a closed semiring, we briefly summarize and comment its definition. 

Definition 27. Closed semiring [1]. A closed semiring is a structure ⟨𝑆,⊕,⊙ ,0,1⟩, where S is a set of elements, and 

⊕ and ⊙ are binary operations on S satisfying the properties: 

• ⟨𝑆,⊕ ,0⟩ is a monoid (i.e., it is closed under ⊕, ⊕ is associative, and 0 is an identity). ⟨𝑆,⊙ ,1⟩ is a monoid 

and 0 is an annihilator. 

• ⊕ is commutative. 

• ⊙ distributes over ⊕. 

• if 𝑎#, 𝑎S, … , 𝑎% , … is a countable sequence of elements in S, 𝑎#⊕𝑎S⊕…⊕𝑎% ⊕… exists and is unique. 

Moreover, associativity, commutativity and idempotence apply to infinite as well as finite sums. 

• ⊙ must distribute over countably infinite sums as well as finite ones. 

If ⟨ℙ𝕪ℙ_𝔹𝕠𝔻	,⊕2,⊙2, ⊥, ⊤⟩ is a closed semiring, Cormen et al.’s Compute-Summaries algorithm computes the all-

pairs shortest paths of a graph, by determining new labels for the edges through the operators resume (⊕) and 

extension (⊙) [1]. As an intuition, the properties of closed semirings grant that the result of the application of resume 

and extension is independent of the order in which such operations are applied. In fact, such an independence is 

granted by: 

(1) the associativity property derived by the monoids for the single operators, and  

(2) the distributive property of the extension operator with respect to the resume operator. In this case, given two 

constraints C1 and C2 between variables x and y, and a constraint C3 between y and z, one obtains the same result (a) 

by first resuming C1 and C2, and then by composing the result with C3 through the extension operator to obtain the 

constraint between x and z, or (b) by first composing C1 and C2, and C2 and C3 through the extension operator, to 

obtain two new constraints between C1 and C3, and then combine them through the resume operator. 

Any instance of closed semiring is feasible. In the following, we propose a concrete example, that we obtain by using 

the min function to resume preferences (i.e., we instantiate ⊕7$89with the min function) and max to extend them (i.e., 

we instantiate ⊙7$89	with the max function). Notably, the choice of such operations to combine preferences is quite 

widely adopted by the specialized literature (consider, e.g., [13]). In particular, such a choice is suitable for medical 

applications, such as the one in examples above.  

We now show that, with the above choice of min for ⊕7$89and max for ⊙7$89 ,	and assuming that the domain 𝔻 

contains also the elements 0 and ∞, we can provide a suitable (and compact) definition of the resume (⊕P) and extend 

(⊙P) operators on PyP_BoDs in such a way to obtain a closed semiring (so that the algorithm in Figure 4 can be 

exploited to obtain the minimal network of a graph of PyP_BoD constraints).  

Indeed, the above choice of the ⊕7$89and ⊙7$89 operators supports a compact and efficient definition of ⊕P and ⊙P, 

in which operations (on both distances and preferences) are performed “layer-by-layer”. 

Specifically, the resume operator ⊕P computes, at each level i of the PyP_BoDs, the intersection (i.e., 

[max	(𝑐%1, 𝑐%11),min(𝑑%1, 𝑑%11)]) between the AdI at level i in C’ (i.e., [𝑐%1, 𝑑%1] in the definition of the resume operator 

below) and C’’ (i.e., [𝑐%11, 𝑑%11] in the definition below), and pairs its result with the preference value pi corresponding 

with that level, until it reaches the highest level for both constraints. 
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Definition 28. Resume (⊕P). Given a scale Sr, and given two PyP_BoDs 𝐶1 = ⟨𝑥, 𝑦, ⟨⟨[𝑐#1 , 𝑑#1 ], 𝑝#⟩, … , ⟨[𝑐p1 , 𝑑p1 ], 𝑝p⟩⟩⟩ 

and 𝐶11 = ⟨𝑥, 𝑦, ⟨⟨[𝑐#11, 𝑑#11], 𝑝#⟩, … , ⟨[𝑐v11, 𝑑v11], 𝑝v⟩⟩⟩ (with 1 ≤ 𝑘 ≤ 𝑟 and 1 ≤ 𝑙 ≤ 𝑟), the resume of C’ and C’’ is 

obtained as following (where Ç denotes the intersection operator between intervals): 

𝐶′ ⊕2 	𝐶11 = ⟨𝑥, 𝑦, ⟨⟨[max(𝑐%1, 𝑐%11),min(𝑑%1, 𝑑%11)], 𝑝%⟩, 𝑖 = 1,… ,min(𝑘, 𝑙)⟩⟩⟩ 

Example 4(k). Given the two PyP_BoDs 𝐶1 = ⟨𝑅𝑇,𝑁𝐴2, ⟨⟨[0,24], 𝑙𝑜𝑤〉, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[0,24], ℎ𝑖𝑔ℎ〉⟩⟩ (the 

original constraint in the PyP_BoD_G between nodes 𝑅𝑇 and 𝑁𝐴2) and  

𝐶11 = ⟨𝑅𝑇,𝑁𝐴2, ⟨⟨[10,39], 𝑙𝑜𝑤〉, ⟨[11,37],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,36], ℎ𝑖𝑔ℎ〉⟩⟩ (see below), the result of the resume operation 

between them is 𝐶′ ⊕2 	𝐶11 = ⟨𝑅𝑇,𝑁𝐴2, ⟨⟨[10,24], 𝑙𝑜𝑤〉, ⟨[11,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,24], ℎ𝑖𝑔ℎ〉⟩⟩. 

Notably, in the constraint propagation algorithm, if an empty interval is obtained at a level i (i.e., the resume operator 

computes as intersection a degenerate interval), there is an inconsistency at level i and all the AdIs higher or equal 

than i can be removed from the set of PyP_BoDs. If an empty interval is obtained at the first level of the PyP_BoD, all 

the PyP_BoDs are inconsistent. 

The extension operator ⊙P, at each level i of the pyramids, computes the new AdI by summing pairwise the starting 

points and the ending points of the input AdIs at level i. It pairs the resulting AdI with the preference corresponding 

with that level, until it reaches the highest level for both constraints. 

Definition 29. Extension (⊙P). Given a scale Sr, and given two PyP_BoDs 𝐶1 =

⟨𝑥, 𝑦, ⟨⟨[𝑐#1 , 𝑑#1 ], 𝑝#⟩, … , ⟨[𝑐p1 , 𝑑p1 ], 𝑝p⟩⟩⟩ and 𝐶11 = ⟨𝑦, 𝑧, ⟨⟨[𝑐#11, 𝑑#11], 𝑝#⟩, … , ⟨[𝑐v11, 𝑑v11], 𝑝v⟩⟩⟩ (with 1 ≤ 𝑘 ≤ 𝑟 and 1 ≤ 𝑙 ≤

𝑟), their extension is defined as following: 

𝐶1⊙2 𝐶11 = ⟨𝑥, 𝑧, ⟨⟨[𝑐%1 + 𝑐%11, 𝑑%1 + 𝑑%11], 𝑝%⟩, 𝑖 = 1,… ,min(𝑘, 𝑙)⟩⟩ 

Example 4(l). Given the two PyP_BoDs 𝐶1 = ⟨𝑅𝑇,𝑁𝐴1, ⟨⟨[0,24], 𝑙𝑜𝑤〉, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[0,24], ℎ𝑖𝑔ℎ〉⟩⟩ and 𝐶11 =

⟨𝑁𝐴1,𝑁𝐴2, ⟨⟨[10,15], 𝑙𝑜𝑤〉, ⟨[11,13],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,12], ℎ𝑖𝑔ℎ〉⟩⟩, the result of the extension operation between them 

is 𝐶′ ⊙2 	𝐶11 = ⟨𝑅𝑇,𝑁𝐴2, ⟨⟨[10,39], 𝑙𝑜𝑤〉, ⟨[11,37],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[12,36], ℎ𝑖𝑔ℎ〉⟩⟩. 

 

Complexity. Because the operations of resume and extension perform, for each preference value, an intersection and 

a sum of two intervals and such basic operations can be computed in constant time, both the ⊕P and ⊙P operators’ 

time complexity is O(𝑟), i.e., they are linear in the number of preference values in Sr. 

 

Notably, also the ⊕P and ⊙P operators, as ⊕P]P. and ⊙P]P., can deal both with discrete and dense domains. 

 

To complete our definition of closed semiring, we now add our definition of the identity 𝟭 for ⊙P and of the identity 

𝟬 for ⊕P.  As an intuition, the identity 𝟬 for ⊕P corresponds to the non-existing constraint, and the identity 𝟭 for ⊙P 

represents the distance between a point and itself. 
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Identities for ⊙P and ⊕P. Given a Scale Sr with cardinality r, the identity 𝟭 for ⊙P is ⊥= ⟨⟨[0,0], 𝑝#⟩, … , ⟨[0,0], 𝑝$⟩⟩ 

since, given any PyP_BoD 𝐶 = ⟨⟨[𝑐#, 𝑑#], 𝑝#⟩, … , ⟨[𝑐$ , 𝑑$], 𝑝$⟩⟩9 of	 the	 form	 (𝔸𝔻 × 𝕊)$ , 

𝐶 ⊙2 	 £⟨[0,0], 𝑝#⟩, … , ⟨[0,0], 𝑝$⟩¤ = £⟨[0,0], 𝑝#⟩, … , ⟨[0,0], 𝑝$⟩¤ ⊙2 𝐶 = 𝐶. 

The identity 𝟬 for ⊕P is ⊤ = £⟨[−∞	, +∞], 𝑝#⟩, … , ⟨[−∞	, +∞], 𝑝$⟩¤ since, given any PyP_BoD 𝐶 =

⟨⟨[𝑐#, 𝑑#], 𝑝#⟩, … , ⟨[𝑐$ , 𝑑$], 𝑝$⟩⟩ of	 the	 form	 (𝔸𝔻 × 𝕊)$ , 𝐶 ⊕2 £⟨[−∞	, +∞], 𝑝#⟩, … , ⟨[−∞	, +∞], 𝑝$⟩¤ =

£⟨[−∞	, +∞], 𝑝#⟩, … , ⟨[−∞	, +∞], 𝑝$⟩¤ ⊕2 𝐶 = 𝐶.  

£⟨[−∞	, +∞], 𝑝#⟩, … , ⟨[−∞	, +∞], 𝑝$⟩¤ is also the annihilator for operator ⊙P since, given any PyP_BoD 𝐶 =

⟨⟨[𝑐#, 𝑑#], 𝑝#⟩, … , ⟨[𝑐$ , 𝑑$], 𝑝$⟩⟩ of	the	form	(𝔸𝔻 × 𝕊)$ , 

𝐶 ⊙2 £⟨[−∞	, +∞], 𝑝#⟩, … , ⟨[−∞	, +∞], 𝑝$⟩¤ = £⟨[−∞	, +∞], 𝑝#⟩, … , ⟨[−∞	, +∞], 𝑝$⟩¤ ⊙2 𝐶 =

£⟨[−∞	, +∞], 𝑝#⟩, … , ⟨[−∞	, +∞], 𝑝$⟩¤. 

We can finally show that, indeed, we have defined a closed semiring. 

Property 4. ⟨ℙ𝕪ℙ_𝔹𝕠𝔻,⊕2,⊙2, ⊥, ⊤⟩ is a closed semiring. 

Proof (sketch). The operators ⊕P and ⊙P are both closed over ℙ𝕪ℙ_𝔹𝕠𝔻 by definition. ⊕P is associative, because it 

performs two associative operators, i.e., maximum and minimum, to the endpoints of the AdIs. Analogously, ⊕P is 

also idempotent and commutative. Therefore, as ⊥	 is the identity for ⊕P, ⟨ℙ𝕪ℙ_𝔹𝕠𝔻,⊕2, ⊥⟩ is a idempotent and 

commutative monoid.	⊙P is associative, because it performs an associative operation, i.e., the pairwise sum, to the 

endpoints of the AdIs. Therefore, as ⊤ is the identity for ⊙P, ⟨ℙ𝕪ℙ_𝔹𝕠𝔻,⊙2, ⊤⟩ is a monoid. Finally, ⊤ is an 

annihilator for ⊙P and, since pairwise sum distributes over the maximum and minimum operators, ⊙P distributes 

over finite and countably infinite ⊕P. Thus, ⟨ℙ𝕪ℙ_𝔹𝕠𝔻,⊕2,⊙2, ⊥, ⊤⟩ is a closed semiring. ■ 

Given the above proof, we can thus use our instantiation of Compute-Summaries to compute the minimal network of a 

graph of PyP_BoD constraints. Obviously, such a computation exploits the computational efficiency of Compute-

Summaries: 

Property 5. The complexity of the Compute-Summaries algorithm instantiated on the resume and extend operators 

⊕P and ⊙P is Θ(|𝑉|Z ⋅ 𝑟). 

Proof (sketch). In Compute-Summaries, ⊕ and ⊙ are applied |V|3 times. In our definition, they operate separately (in 

constant time) on each layer, and, given a scale Sr, layers are at most r. 

Example 4(m). In Figure 5, we show the result of the application of Compute-Summaries (i.e., the minimal network) 

to the PyP_BoD_G of Figure 3. Due to readability reasons, in the figure we only show the most significative 

PyP_BoDs. In particular, with red color and bold text we represent the constraints modified or created by the 

application of Compute-Summaries. For instance, let us notice that the constraint between the time points 𝑅𝑇 and 

𝑁𝐴2, which originally was ⟨𝑅𝑇,𝑁𝐴2, 〈⟨[0,24], 𝑙𝑜𝑤⟩, ⟨[0,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[0,24], ℎ𝑖𝑔ℎ⟩⟩⟩, has been restricted to 

⟨𝑅𝑇,𝑁𝐴2, 〈⟨[20,24], 𝑙𝑜𝑤⟩, ⟨[22,24],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[23,24], ℎ𝑖𝑔ℎ⟩⟩⟩ (thus restricting the span of time in which the second 

administration of nalidixic acid can be performed). On the other hand, in the original graph, there was no constraint 

between 𝑅𝑇 and 𝐶𝐶1. Instead, in the minimal network, we have the constraint 

 
9 For the sake of convenience, in the rest of the paper we included in the constraints also the variables; here we indicate only the constraint itself.  
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⟨𝑅𝑇, 𝐶𝐶1, 〈⟨[6,10], 𝑙𝑜𝑤⟩, ⟨[6,9],𝑚𝑒𝑑𝑖𝑢𝑚〉, 〈[7,8], ℎ𝑖𝑔ℎ⟩⟩⟩ (restricting the span of time in which the first administration 

of calcium carbonate can be performed).      

 

In this section, we have introduced a restricted form of aggregation operators for PyP_BoDs. Property 6 shows that 

the operators ⊕2 and ⊙2 are an instance of the operators ⊕2X2/ and ⊙2X2/ in case the min function is used as the 

⊕7$89 operator and the max function is used as the ⊙7$89 operator. In this way, we show that the formalism in this 

section is a particular case of the formalism in Section 4. 

Property 6. Given a scale Sr, and given two PyP_BoDs 𝐶1 = ⟨𝑥, 𝑦, ⟨⟨[𝑐#1 , 𝑑#1 ], 𝑝#⟩, … , ⟨[𝑐p1 , 𝑑p1 ], 𝑝p⟩⟩⟩ and 𝐶11 =

⟨𝑥, 𝑦, ⟨⟨[𝑐#11, 𝑑#11], 𝑝#⟩, … , ⟨[𝑐v11, 𝑑v11], 𝑝v⟩⟩⟩ (with 1 ≤ 𝑘 ≤ 𝑟 and 1 ≤ 𝑙 ≤ 𝑟), assuming that ⊕7$89 corresponds to the min 

function and that ⊙7$89 corresponds to the max function, 𝐶1⊕2X2/ 𝐶11 = 𝐶1⊕2 𝐶11 and 𝐶1⊙2X2/ 𝐶11 = 𝐶1⊙2 𝐶11. 

Proof (sketch). Let us consider the resume operators ⊕2X2/ and ⊕2. The proof for the extend operators ⊙2X2/ and 

⊙2 is similar. We want to prove that 𝐶1⊕2X2/ 𝐶11 = 𝐶1⊕2 𝐶11. Let us denote the result of 𝐶1⊕2X2/ 𝐶11 =

𝐶1⊕2 𝐶11 as ⟨𝑥, 𝑦, ⟨⟨[𝑐#111, 𝑑#111], 𝑝#⟩, … , ⟨[𝑐t111, 𝑑t111], 𝑝t⟩⟩⟩. 

We prove the property considering two cases. The first case consists in proving that both operators compute the same 

top level ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ of the result. This corresponds to proving that both ⊕2X2/ and ⊕2 determine that the values 

in [𝑐t111, 𝑑t111] are all and only those values which have a preference value of pm. The second case consists in proving 

that for an arbitrary non-top level i, 1 ≤ 𝑖 < 𝑚, both operators determine that ⟨[𝑐%111, 𝑑%111], 𝑝%⟩ is in the result, and that 

the values in [𝑐%111, 𝑑%111] are all and only those values which have preference value of pi or higher. 

Figure 5. Minimal network of the PyP_BoD_G of Figure 3. 
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First case. We prove that ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ is the top level of 𝐶1⊕2X2/ 𝐶11 if and only if ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ is the top level 

of 𝐶1⊕2 𝐶11.  

If ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ is the top level of 𝐶1⊕2 𝐶11 then, for the semantics of Pyp_BoDs and by the definition of ⊕2, there 

is no other level n, 𝑚 < 𝑛 ≤ 𝑟, such that [𝑐w1 , 𝑑w1 ] ∩ [𝑐w11, 𝑑w11] ≠ ∅ where ⟨[𝑐w1 , 𝑑w1 ], 𝑝w⟩ ∈ 𝐶′ and ⟨[𝑐w11, 𝑑w11], 𝑝w⟩ ∈ 𝐶′′ 

(otherwise ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ would not be at the top level). Thus, there is no value in both the domains of C’ and C’’ 

which has a preference value higher than m both in 𝐶1 and in 𝐶11. In other words, either in 𝐶1 or in 𝐶11 every value in 

[𝑐t111, 𝑑t111] has m as maximum preference value. Thus, for the definition of ⊕2X2/, ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ is the top level of 

𝐶1⊕2X2/ 𝐶11. 

If ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ is the top level of 𝐶1⊕2X2/ 𝐶11 then, for the semantics of Pyp_BoDs and by the definition of 

⊕2X2/, [𝑐t111, 𝑑t111] is an interval whose preference value both in 𝐶1 and in 𝐶11 is at least 𝑝t and there is no other 

interval for which there is a preference value higher than 𝑝t both in 𝐶1 and in 𝐶11. Thus, there is no other level 𝑛, 𝑚 <

𝑛 ≤ 𝑟, such that ⟨[𝑐w1 , 𝑑w1 ], 𝑝w⟩ ∈ 𝐶′, ⟨[𝑐w11, 𝑑w11], 𝑝w⟩ ∈ 𝐶′′ and [𝑐w1 , 𝑑w1 ] ∩ [𝑐w11, 𝑑w11] ≠ ∅, and, therefore, ⟨[𝑐t111, 𝑑t111], 𝑝t⟩ ∈

𝐶1⊕𝐶′′. 

Second case. We prove that ⟨[𝑐%111, 𝑑%111], 𝑝%⟩, 1 ≤ 𝑖 < 𝑚, is a non-top level of 𝐶1⊕2X2/ 𝐶11 if and only if 

⟨[𝑐%111, 𝑑%111], 𝑝%⟩ ∈ 𝐶1⊕2 𝐶11 at the same (non-top) level. 

If ⟨[𝑐%111, 𝑑%111], 𝑝%⟩ ∈ 𝐶1⊕2X2/ 𝐶11, for the semantics of Pyp_BoDs, [𝑐%111, 𝑑%111] contains all and only the values that have 

a preference value of pi or higher. By the definition of ⊕2X2/, [𝑐%111, 𝑑%111] is built by performing the union of all the 

fragments returned by the 𝐹⊕ function that have a preference value of pi or higher. For the definition of the 𝐹⊕ 

function (where the min function is used as ⊕2$89), these fragments contain the values that both in 𝐶1 and 𝐶11 have a 

preference value of at least pi (otherwise the value of the minimum would be less than pi). For the semantics of 

PyP_BoDs, the values of 𝐶1 that have a preference value of at least pi are all and only the values in [𝑐%1, 𝑑%1] such that 

⟨[𝑐%1, 𝑑%1], 𝑝%⟩ ∈ 𝐶′ and the values of 𝐶11 that have a preference value of at least pi are all and only the values in [𝑐%11, 𝑑%11] 

such that ⟨[𝑐%11, 𝑑%11], 𝑝%⟩ ∈ 𝐶′′. Thus, the values that have a preference value of at least pi in both PyP_BoDs are all and 

only in their intersection [𝑐%111, 𝑑%111] = [𝑐%1, 𝑑%1] ∩ [𝑐%11, 𝑑%11], and ⟨[𝑐%1, 𝑑%1] ∩ [𝑐%11, 𝑑%11], 𝑝%⟩ ∈ 𝐶1⊕2 𝐶′′. 

If ⟨[𝑐%111, 𝑑%111], 𝑝%⟩ ∈ 𝐶1⊕2 𝐶11, for the semantics of PyP_BoDs, the values in [𝑐%111, 𝑑%111] are all and only the values both 

in 𝐶1 and 𝐶11 that have a preference value of at least 𝑝%. By the definition of ⊕2, there exist two intervals 

⟨[𝑐%1, 𝑑%1], 𝑝%⟩ ∈ 𝐶 and ⟨[𝑐%11, 𝑑%11], 𝑝%⟩ ∈ 𝐶′′ such that [𝑐%111, 𝑑%111] = [𝑐%1, 𝑑%1] ∩ [𝑐%11, 𝑑%11]. By the semantics of PyP_BoDs, 

[𝑐%1, 𝑑%1] and [𝑐%11, 𝑑%11] are all and only the values with a preference value of at least pi in 𝐶1 and 𝐶11 respectively. By the 

definition of ⊕2X2/, the operator performs the union of all the fragments returned by the 𝐹⊕ function that have a 

preference value of pi or higher. For the definition of the 𝐹⊕ function (where the min function is used as ⊕2$89), 

these fragments contain the values that both in 𝐶1 and 𝐶11 have a preference value of at least pi (otherwise the value of 

the minimum would be less than pi), i.e., the values in [𝑐%1, 𝑑%1] ∩ [𝑐%11, 𝑑%11]. Thus, [𝑐%111, 𝑑%111] ∈ 𝐶1⊕2X2/ 𝐶′′. ■ 

As shown in the following corollary, the formalism introduced in this section is a particular case of the formalism in 

Section 3 since, given Properties 4 and 6 above, we have that the operators ⊕2 and ⊙2 are also an instance of the 

operators ⊕𝑷𝑩 and ⊙𝑷𝑩.  

Corollary. Given two PyP_BoDs 𝐶1 = ⟨𝑥, 𝑦, £⟨[c′#, d′#], p#⟩, … , ⟨[c′^, d′^], p^⟩¤⟩ and C11 =

⟨𝑥, 𝑦, ⟨⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩,  
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𝜌2X2/→2/(𝐶1⊕2 𝐶11) = 𝜌2X2/→2/(𝐶′) ⊕P. 𝜌2X2/→2/(𝐶′′) 

and, given two PyP_BoDs 𝐶1 = ⟨𝑥, 𝑦, £⟨[c′#, d′#], p#⟩, … , ⟨[c′^, d′^], p^⟩¤⟩ and C11 =

⟨𝑦, 𝑧, ⟨⟨[c#11, d#11], p#⟩, … , ⟨[c_11, d_11], p_⟩⟩⟩,  

𝜌2X2/→2/(𝐶1⊙2 𝐶11) = 𝜌2X2/→2/(𝐶′) ⊙P. 𝜌2X2/→2/(𝐶′′). 

Proof. Trivial given Properties 4 and 6. ■ 

 

6 QUERY ANSWERING FACILITIES 

In this paper, we have proposed a family of approaches coping with BoDs with layered preferences. We have 

considered (i) the most general case, in which a preference can be associated with each distance, and user-defined 

operations are used to combine preferences (Section 3), (ii) the case in which preferences are “nested” (Section 4), and 

(iii) the case in which the min and max operations are used to combine “nested” preferences (Section 5). Though the 

complexity of the reasoning process in the three cases is different, in all cases the output is a minimal network 

representing the strictest distances between variables, and the preference of each distance. Intuitively speaking, such a 

minimal network represents the space of possible solutions, with their preferences. Such a result is very important: as 

we have already motivated in the introduction, in decision support systems, and in mixed-initiative approaches, the 

choice of a specific solution relies on users, within the space of possible ones. To support users in such a selection 

task, besides the minimal network, we also provide query answering facilities, to give users a way to explore the space 

of solutions. Such facilities are provided for approaches of all types (i)-(iii) mentioned above. 

Notably, though in the following we exemplify the queries considering Example 4, in which PyP_BoDs are 

considered, the query facilities above can be applied (with different complexities in case propagation is needed) to all 

the formalisms discussed in this paper.  

Now, first we give a formal definition in terms of the extended BNF grammar of our query language (see Figure 6), 

and second, we provide a number of different types of query that we support. 

 

<Query> ::= <HypQ> | <StandardQ> 

<HypQ>  ::= <StandardQ> IF (Constr)+ 

<StandardQ> ::= {<BaseQList>} | PREFERENCE <Op> <Pref> | {<BoolQ>} 

<BaseQList> ::= (<Var> ? <Var>)+  

<BoolQ> ::= <SBQ> | <CBQ>  

Figure 6. Query language (extended BNF grammar). 

 

Hypothetical queries (<HypQ>) are standard queries <StandardQ> that are answered by assuming that some 

additional constraints (indicated by (Constr)+ in the extended grammar) hold. 

We consider four types of standard queries. 
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BASIC EXTRACTION QUERIES (<BaseQList>) query the temporal distances (and their preferences) between 

pairs of variables in a list. Such queries are trivially answered by considering the constraints in the minimal network. 

Example 4(o). In Example 4, the basic extraction query (RT ? NA2) asks for the temporal constraint between the 

reference time RT and the second administration of nalidixic acid NA2. The result of such a query for Example 4 is 

the constraint ⟨𝑅𝑇,𝑁𝐴2, ⟨⟨[20,24], 𝑙𝑜𝑤〉, ⟨[22,24],𝑚𝑒𝑑𝑖𝑢𝑚⟩〈[23,24], ℎ𝑖𝑔ℎ〉〉⟩. ■ 

PREFERENCE QUERIES provide as output the constraints obtained by retaining (in each constraint) only those 

distances such that their preference p is in the relation <Op> with the query parameter <Pref>, where <Op> is a 

comparison operator (one of =, ³, >), and <Pref> is a preference value in the given Scale. Then, the remaining 

constraints are propagated, using the proper reasoning algorithm, and the output constraints are provided as output.   

Example 4(p).  In Example 4, one might want to obtain only the constraints with preference greater or equal to 

𝑚𝑒𝑑𝑖𝑢𝑚. The corresponding query is PREFERENCE ³ medium. Part of the result of such a query is shown in 

Figure 7 (such as for Figure 5, we show only the most interesting constraints). ■ 

BOOLEAN (<BoolQ>) QUERIES can be simple (SBQ) or composite (CBQ). Such queries ask whether one (SBQ) 

or more (CBQ) constraints between pairs of variables hold and return a Boolean value. 

An SBQ vi<(d1 Op p)>vj (e.g., “v1<(3 ³ p>v2”) is answered by considering whether the distance between vi and vj can 

be d1 in the corresponding constraint in the minimal network, and whether its preference satisfies the condition 

imposed by the Op operator. 

Example 4(q). In Example 4, one may want to know whether the second administration of Nalidixic Acid can be 

administered at 22, with preference high, or not. The answer to query RT(22 = high)NA2, in Example 4, is 

FALSE. 

A CBQ query is a set (conjunction) of SBQ queries. Answering a CBQ query (e.g., “{v1<(3 ³ p)>v2, v1<(5 ³ p’)>v3}) 

requires four steps: 

(1) For each SBQ vi <(d1 Op p)> vj all the distances except d1 are removed from the corresponding constraint relating 

vi and vj in the minimal network. 

(2) (An instantiation of) the proper constraint-propagation algorithm (i.e., path consistency with resume and extend in 

Definitions 9 and 10, or Compute-Summaries with resume and extend in Definitions 22 and 25, or Compute-

Summaries with resume and extend in Definitions 28 and 29) propagates the resulting constraints. 

(3) If the resulting set of constraints is inconsistent, the answer is NO. 

(4) Otherwise, each SBQ is checked separately. If at least one constraint is not satisfied, the answer is NO, otherwise 

the answer is YES. 

 

Example 4(r). In Example 4, one may want to know whether Nalidixic Acid can be administered at 12 (first 

administration NA1) and at 24 (second administration NA2), both with preference high. The answer to query {RT(12 

= high)NA1, RT(24 = high)NA2}, in Example 4, is TRUE. 

Hypothetical queries (<HypQ>) are queries <StandardQ> as above, to be answered after assuming some additional 

constraints. To answer such queries, we first provisionally add, to the set of constraints, the new hypothetical 

constraints, and, then, we apply the proper constraint-propagation algorithm for obtaining the new tightest constraints. 

In case the new constraints are inconsistent with regard to the previous ones, a warning is given. Finally, <StandardQ> 
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is answered (as detailed above) on the basis of the new set of constraints. Notice also that, in order to add the new 

constraints, the resume operator must be used.  

Example 4(s). For instance, considering Example 4, a user may want to know when she can take the second 

administration of nalidixic acid (NA2), if the first administration of nalidixic acid (NA1) is done at 10. The respective 

hypothetical query is  

(𝑁𝐴2	? 𝑅𝑇)𝐼𝐹{⟨𝑅𝑇,𝑁𝐴1, ⟨⟨[10,10], 𝑙𝑜𝑤⟩, ⟨[10,10],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[10,10], ℎ𝑖𝑔ℎ⟩⟩⟩} 

The answer is the PyP_BoD constraint ⟨𝑅𝑇,𝑁𝐴2, ⟨⟨[20,24], 𝑙𝑜𝑤⟩, ⟨[22,23],𝑚𝑒𝑑𝑖𝑢𝑚〉, ⟨[22,22], ℎ𝑖𝑔ℎ⟩⟩⟩. ■ 

 

7 COMPARISONS AND CONCLUSIONS  

The literature about CSP is moving from treating crisp constraint to dealing with fuzzy or probabilistic constraints, so 

that preferences and/or uncertainty can be supported, and a vast number of approaches have been proposed. Our work 

provides a significant number of original contributions along two main directions.  

First, while in the context of crisp BoD constraints the problem of determining the “space of solutions” by means of 

the minimal network and of exploring it through queries have been widely addressed, the approaches considering 

preferences have focused their attention only on the problem of determining the optimal (i.e., the most preferred) 

solutions. Our approach overcomes such a main limitation (see points (iv) and (v) below), expanding the areas of 

applicability of non-crisp CSP techniques (e.g., to tasks such as decision making, or to mixed-initiative approaches).  

Figure 7. Result of the query “IP ³ medium”. For the sake of simplicity, the figure reports only the constraints 
shown in Figure 5. 
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Second, given the variety of solutions in the CSP area, to increase the generality and the applicability of our proposal, 

we do not propose one specific approach, but a whole family of approaches, parametric with respect to: 

(i) the scale for layered preferences, and 

(ii) the operations (extend and resume) to combine preferences during constraint propagation. 

Notably, thanks to feature (ii) above, as far as we know, our approach is the first one in the context of constraints with 

preferences able to consider user-defined operations to combine preferences. Additionally,  

(iii) we consider not only general preferences (Section 3), but also nested ones (Sections 4 and 5). 

In particular, the identification and management of nested preferences are another original feature of our approach, 

leading to a user-friendly and compact representation, and to computational advantages.  

For each family of approaches, we provide: 

(iv) reasoning algorithms to compute the minimal network of constraints (with their preferences) covering the 

different cases; 

(v) query answering facilities for exploring the minimal network covering the different cases. 

As discussed above, issues (iv) and (v) have been widely addressed in the area of crisp BoDs, but not yet in the 

context of BoDs with preferences (except in [60], see the comparisons below). 

Additionally, to address efficiency issues,  

(vi) we exploit the property of closed semirings to efficiently compute the minimal network in case of nested 

preferences, and in case min and max are used to combine preferences. 

No other approach in the literature covers such a wide range of phenomena within a single and homogeneous 

framework.  

While a general overview of the mostly related works has been already presented in Section 2, here we conclude by 

comparing our approach with the two approaches that are more strictly related to ours: the one by Khatib et al. [37] 

(and its evolution [36]) and the one by Andolina et al. [60] . 

 

Khatib et al. [37] take into account STP [19] (which is, intuitively, the temporal interpretation of BoDs; notably, also 

TCSP [19] – a form of disjunctions of BoDs— are also considered). Their approach is general and takes into account 

two main types of preference functions from values in the admissibility range of BoDs to the domain of preferences: 

(i) general functions and (ii) semi-convex functions. As regards the extend and revise operations to combine 

preferences, they focus their attention on operations forming a closed semiring (as we do in Section 5), providing as 

an example the semiring obtained by adopting the min function to resume preferences and max to extend them (that 

we also adopt in Section 5). The goal of constraint propagation in their approach is to determine the optimal solutions, 

i.e., solutions with the maximal preference. They explore the complexity of such a constraint propagation both in 

cases (i) and (ii) above, and provide an algorithm to find the optimal solutions in case (ii) studying the conditions 

under which it operates in polynomial time.  

The similarities and differences between our approach and Khatib et al.’s one are schematized in Table 1, considering 

five main parameters: (i) (type of) constraints, (ii) preference functions, (iii) preference combination operations, (iv) 

goals of the constraint propagation algorithms, and (v) query answering facilities.  
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 Khatib et al.’s approach This approach 

Constraints 

BoDs with temporal interpretation 

BoDs (any interpretation) A form of disjunctions of BoDs with 

temporal interpretation 

Preference functions 
PointsàAny PointsàScale 

Semiconvex Nested preferences 

Preference combination Closed semiring 
Any 

Closed semiring 

Reasoning task Optimal solutions only Minimal network with preferences 

Query answering No Yes 

Table 1. Comparison between Khatib et al’s approach [37] and the approach in this paper. 

 

(i) Constraints. Both approaches operate on BoD constraints (though Khatib et al. not only consider STP –i.e., the 

temporal interpretation of BODs– but also take into account TCSP).  

(ii) Preference functions. Both approaches consider both (i) general functions to associate preferences with BODs, 

and (ii) functions with specific features (functions leading to nested preferences in our approach, semi-convex 

functions in Khatib et al.’s approach). Notably, we focus on functions whose co-domain is a scale (i.e., a finite and 

ordered set of values), and, in such a context, the convex functions exactly correspond to our nested preference 

functions. 

(iii) Preference combination operators (extend and revise). Both approaches consider operations to combine 

preferences during constraint propagation that form a closed-semiring algebraic structure. However, we also 

generalize our approach to consider also user-defined resume and extend operations to combine preferences. 

(iv) Reasoning task. The two approaches substantially differ about the tasks of constraint propagation. In Khatib et 

al., reasoning algorithms aim at identifying the optimal solutions (i.e., solutions with highest preference). On the other 

hand, our algorithms aim to determine a compact representation of the space of solutions with their preferences. 

(v) Query Answering. Since we provide the space of solutions, we also provide query answering mechanisms to 

explore it, while this task is neglected in Khatib et al., where just optimal solutions are considered.  

 

Notably, considering also user-defined preference combination operations (see point (iii)) greatly enhances the 

generality of our approach, and issues (iv) and (v) make our approach suitable also to tasks such as decision support 

and mixed-initiative approaches, in which the “exploration” and the choice between possible solutions must be left to 

the users. Indeed, as far as we know, the only approach in the literature coping with BoDs with preferences, and 

facing the problem of providing the minimal network instead of the optimal solutions is the one in Andolina et al. 

[60]. Andolina et al. have recently proposed an approach to fuzzy temporal constraints in which a numeric preference 

is associated with each possible distance between time points [60] (considering only discrete domains for distances). 

They have chosen a specific way to combine preferences, in such a way that the extend and resume operators form a 

closed semiring, and the Compute-Summaries algorithm can be exploited to evaluate the minimal network (as we do 

in the version of our approach concerning “nested” preferences; see Section 5). Additionally, it is the first approach in 
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the fuzzy-constraint literature that proposes query-answering facilities for exploring the minimal network with 

preferences. Our approach extends and generalizes [60] in many ways, namely: 

(i) we operate on BoD constraints, with no specific commitment to their temporal interpretation, 

(ii) we generalize the approach in [60] for operating also on continuous domains, while [60] supports discrete 

domains only, 

(iii) we support user-defined layered preferences, while in [60] only numeric preferences are supported, and we 

take into account also nested distributions of preferences. 

(iv) we support user-defined operators to combine preferences, while just one specific definition of resume and 

extend is supported by [33]. 

Notably, in many practical tasks and domains (e.g., in medicine) the treatment of nested preferences facilitates users, 

that are not restricted to assign to each distance a definite numeric preference value. In addition, in Sections 4 and 5 of 

this paper we move from general preferences to nested ones, which are not considered in [60]. Nested preferences are 

not only useful in many practical tasks and domains, but their adoption also involves several practical and theoretical 

advantages. They reduce both space and time complexity. Regarding space complexity, while in [60] for each 

constraint all possible distance values must be explicitly stored, together with their preference, our approach allows a 

more compact representation. Moreover, nested preferences reduce the time complexity of the algorithm computing 

the minimal network (which in [60] is 𝜃(𝑛Z ⋅ |𝐷1|S), where n is the number of points and D’ is the domain of the 

distance values).   

 Moreover, Andolina et al. only consider a specific definition for the extend and revise operators to combine 

preferences, while Kathib et al. take into account only operations forming a closed semiring. Since many more options 

have been proposed in literature (see Section 2.2), and the choice between them seems domain-/task-dependent, we 

regard the fact that our general approach (see Sections 3 and 4) can support also user-defined operators to combine 

preferences (i.e., it is parametric with respect to such operators) as a relevant step forward in the state of the art, 

improving the applicability of constraint-based approaches. 

Finally, the approach in this paper is a substantial extension of the one we have recently proposed in [4]. Indeed, such 

a work addresses the problems of determining the minimal network and querying it considering BoD constraints with 

preferences, but only in the context of “pyramid” constraints, and considering the min function to resume preferences 

and max to extend them (i.e., the approach in [4] constitutes the preliminary version of the “specific” approach 

presented in Section 5 of this paper).   

As a final note, we would like to highlight that, although the approach we propose is totally domain- and task-

independent, we devise to apply it within GLARE [14], a long-term project started in 1997 with one of the major 

hospitals in Italy, aiming at assisting physicians in the management of clinical guidelines with decision support 

techniques. 
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Appendix. 

 

An algorithm describing the fragments function in Definition 20. 

 

fragments([s,e], {[s1,e1], …, [sk,ek]}) { 

P ← {𝑎% 	|	𝑎% ∈ {𝑠, 𝑒, 𝑠#, 𝑒#, … , 𝑠p , 𝑒p} ∧ 𝑠 ≤ 𝑎% ≤ 𝑒} 

R ← {} 

Card ←|P|-1 

for i←1…Card do 

   c ← min(P)   

   P ← P – {c} 

   d ← min(P) 

   R ← R ∪ {[c,d]} 

return R 

} 


