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Running title: Systems analysis of cetuximab responses

Novelty and Impact: A large fraction of patients with metastatic colorectal cancer do 
not respond to anti-EGFR therapy despite KRAS wild type tumours. Statistical 
analysis of RPPA data of colorectal cancer KRAS, BRAF, NRAS and PI3KCA wild 
type PDX models revealed a 14 - 20 (phospho)protein signature that was predicting 
responses to cetuximab. Our findings furthermore emphasise GSK-3β to be 
potentially targetable for a co-treatment with cetuximab.
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Abstract

Antibodies targeting the human epidermal growth factor receptor (EGFR) are used 

for the treatment of RAS wild-type metastatic colorectal cancer. A significant 

proportion of patients remains unresponsive to this therapy. Here, we performed a 

reverse phase protein array-based (phospho)protein analysis of 63 ‘quadruple-

negative’ (KRAS, NRAS, BRAF and PIK3CA wild-type) metastatic CRC tumours. 

Responses of tumours to anti-EGFR therapy with cetuximab were recorded in 

patient-derived xenograft (PDX) models. Unsupervised hierarchical clustering of pre-

treatment tumour tissue identified three clusters, of which cluster C3 was exclusively 

composed of responders. Clusters C1 and C2 showed mixed responses. None of the 

three protein clusters showed a significant correlation with transcriptome-based 

subtypes. Analysis of protein signatures across all PDXs identified 14 markers that 

discriminated cetuximab-sensitive and -resistant tumours: PDK1 (S241), Caspase-8, 

Shc (Y317), Stat3 (Y705), p27, GSK-3β (S9), HER3, PKC- (S657), EGFR (Y1068), 

Akt (S473), S6 Ribosomal Protein (S240/244), HER3 (Y1289), NF-B-p65 (S536) 

and Gab-1 (Y627). Least absolute shrinkage and selection operator and binominal 

logistic regression analysis delivered refined protein signatures for predicting 

response to cetuximab. (Phospo-)protein analysis of matched pre- and post-treated 

models furthermore showed significant reduction of Gab-1 (Y627) and GSK-3β (S9) 

exclusively in responding models, suggesting novel targets for treatment.

Page 2 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 3

Background

Colorectal cancer (CRC) is the third and second most commonly 

diagnosed cancer in males and females, and the second most common 

cause of cancer-related deaths in the developed world. In the advanced 

setting, CRC is routinely treated with fluorouracil (5-FU)-based 

chemotherapy. 30% of CRC patients present in the metastatic setting1 

where response rates to palliative 5-FU/oxaliplatin- or 5-FU/irinotecan-

based chemotherapy range between 40-50%. Median overall survival 

remains poor at around 16-19 months2. Identifying the importance of 

epidermal growth factor (EGF) signalling for the survival of CRC cells 

resulted in the development of targeted therapies that neutralize the 

oncogenic activity of EGF receptors (EGFR). Anti-EGFR therapies have 

significantly improved survival in metastatic CRC patients3. Guidelines 

recommend to test for KRAS, NRAS and BRAF mutations as well as 

microsatellite instability status in CRC patients being considered for anti-

EGFR therapy4, 5 on the bases of the ineffectiveness of anti-EGFR therapy 

is not effective in patients with activating KRAS, BRAF, and NRAS 

mutations6, and favourable responses to immune check point inhibitors in 

microsatellite instability-high patients4. While PI3KCA mutational analysis 

is not recommended yet4, PIK3CA exon 20 mutations were linked with a 

worse outcome compared with wild-type status in patients with metastatic 

colorectal cancer 7. Nevertheless, between 50–60% of patients will not 

benefit from anti-EGFR treatment even when these are KRAS, BRAF, 
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NRAS and PI3KCA wild type (quadruple negative) have a ‘quadruple 

negative’ status7. 

Mutations and copy number alterations in genes encoding for other 

survival signaling proteins have been shown to contribute to anti-EGFR 

resistance. For example, HER2-amplification, IGF2 overexpression or 

increased MET activity resulted in reduced responses to anti-EGFR 

therapy, as demonstrated in patient-derived xenograft (PDX) models of 

metastatic CRC and in patients8, 9. Analysis of the genomic and 

transcriptomic landscape of anti-EGFR resistance in PDX models and 

patients furthermore identified mutations in EGFR, FGFR1, PDGFRA, and 

MAP2K1 or loss of NF1 to contribute to anti-EGF resistance9, 10.

While identification of patient-specific genome alterations provides a 

personalised diagnosis that provides insights into anti-EGFR therapy 

responses and may open opportunities for personalised therapies, 

interpretation of often multiple genomic alterations found in most patients 

is not always straightforward. Other efforts to identify responders and non-

responders to anti-EGFR therapy have therefore focussed on the power of 

unsupervised molecular subtyping of tumours. An international meta-

analysis and bioinformatics effort led to the identification of four distinct 

subtypes in CRC, termed ‘Consensus Molecular Subtypes’ (CMS1-

CMS4)11. A recent study demonstrated that CMS2 patients benefitted 

more from anti-EGFR therapy than patients treated with anti-angiogenic 

therapy, while the opposite was the case in CMS1 patients12. However 

predictions of anti-EGFR therapy responses in CMS3 and CMS4 patients 

were not possible, and significant variability in overall and progression free 
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survival are still seen across all four CMS subtypes. Because stroma-

derived mRNAs in whole tumour transcriptomes may obscure 

transcriptional features displayed by cancer cells, other efforts leveraged 

the power of patient-derived mouse xenograft (PDX) models in which 

human stroma is replaced by mouse stroma to obtain five CRC ‘intrinsic’ 

(CRIS) molecular subtypes, termed CRIS-A to E13. CRIS-C was identified 

as a subtype associated with EGFR signalling and increased sensitivity to 

anti-EGFR therapy. However responses to anti-EGFR therapy strongly 

varied among the other four CRIS subtypes 13.

EGFR activation results in the activation of several downstream signalling 

pathways, including the PI3K/AKT and MAPK pathways14. The activation 

status of these key signalling pathways influences a variety of biological 

processes such as proliferation, apoptosis, cell migration, bioenergetics, 

immune responses, and angiogenesis. A different approach to investigate 

responses to anti-EGFR therapy is to determine the activation status of 

key signalling branches activated by EGFR receptors and their 

downstream effectors, supported by statistical or deterministic modelling15. 

Because processes such as proliferation and apoptosis are controlled by 

complex networks that show significant signalling redundancies, 

deterministic systems models have been developed to estimate more 

precisely proliferative capacity or apoptosis sensitivity of tumours. One 

such tool developed by our group is the systems model, DR_MOMP, 

which calculates the apoptosis sensitivity of tumours based on a 

quantitative analysis of BCL-2 family proteins and their interactions16, 17. 

To identify novel prognostic markers of anti-EGFR therapy, we here 
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comprehensively profiled 83 signalling proteins and (phospho)proteins 

related to EGFR and key cancer signalling pathways in a cohort of 63 

‘quadruple negative’ (KRAS, BRAF, NRAS and PI3KCA wild type) PDX 

models isolated from liver biopsies that were derived from metastatic CRC 

patients9, 18. We performed both statistical and systems modelling 

analyses to identify novel protein signatures of anti-EGFR responsiveness.

Methods

CRC PDX in vivo model 

108 PDX models derived from colorectal cancer liver metastasis originally 

at the Institute for Cancer Research and Treatment, and Mauriziano 

Umberto I (Torino, Italy)18 were used in this study. 63 of 108 were KRAS, 

BRAF, NRAS and PI3KCA wild type quadruple negative (with wild-type 

KRas, NRas, PI3KCA, and B-Raf) based on matched next-generation 

sequencing analysis data from Bertotti et al. 9 and used for statistical 

analysis. Tumour tissues were implanted subcutaneously and passaged in 

NOD/SCID mice. Response data is available for each tumour to cetuximab 

treatment after 3 and 6 weeks19.

Reverse phase protein array

Protein was extracted from PDX tumour tissue and cell line standards and 

RPPA was performed as described previously20. Protein lysates 

normalized to 1μg/μL concentration as assessed by bicinchoninic acid 

assay (BCA, Biorad). Reverse phase protein array (RPPA) with a panel of 

antibodies targeting various key cancer related proteins was used for 
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measuring protein levels in untreated tumours. The response is form 

matching samples of same tumour in different mice. The DAKO 

(Carpinteria, CA) catalyzed signal amplification system was used for 

antibody blotting.

PDX Protein clustering

RPPA data for 93 PDX samples have been clustered using consensus 

Non-negative Matrix Factorization (R package ‘NMF’21, version 0.21.0) on 

centred RPPA data22, 23. NMF was performed 1 000 times with the number 

of clusters k varying from 2 to 8. k = 3 was selected based on visual 

inspection of co-clustering matrices and heatmap of clustered RPPA data.

To represent graphically the correspondence between CRIS subtypes 

classifiers and the RPPA clusters or cetuximab response, Factorial 

Correspondence Analysis (FCA) was used. For each comparison, χ2 

independence test was carried out. In order to have large enough 

numbers in the contingency table so that the χ2 approximation is correct, 

we combined together the closest CRIS subtypes.

DR MOMP, APOPTO-CELL and proliferation signature

The normalised gene expression of BIRC5, CCNB1, CDC20, CDCA1, 

CEP55, NDC80, MKI67, PTTG1, RRM2, TYMS and UBE2C was averaged 

and used as proliferation signature24, 25 of each PDX. The gene expression 

data for respective PDX models was downloaded from GSE7640213.

To calculate the sensitivity of patients' cancer cells to undergo apoptosis, 

the mathematical models APOPTO-CELL26 and DR_MOMP16 were 

applied, using PRO-CASPASE-3, PRO-CASPASE-9, SMAC, and XIAP 
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protein for APOPTO-CELL, and BAK, BAX, BCL2 and BCL(X)L for 

DR_MOMP as input for the models. MCL1 protein levels were assumed to 

be 0 nM for DR_MOMP. SMAC concentrations were assumed to be 122.7 

nM for APOPTO-CELL26. Protein levels were normalized to HeLa cells that 

were placed on the RPPA together with the cancer tissue16, 26.

Statistical analysis

Statistical analysis of RPPA data was done using ‘SAMR’27 (Significance 

Analysis of Microarrays, version 3.0) and ‘PAMR’28 (Prediction Analysis for 

Microarrays; version 1.56.1) R Packages (R version 3.6.2). LASSO was 

performed using the ‘glmnet’ R package (version 2.0-18). The packages 

‘ComplexHeatmap’29 (version 2.1.0) and ‘Circlize’30 (version 0.4.7) were 

used to create Figure 1. Week 3 response was used for all the statistical 

analysis as not all the mice were followed through after 3 weeks. Student’s 

t-test and ANOVA was used for measuring statistical significance. ANOVA 

was followed by Tukey's HSD (honest significant difference) test for 

multiple pair comparison. Fisher’s exact test was used for count data.

Results

Characterisation of KRAS, BRAF, NRAS and PI3KCA wild 

type metastatic CRC (phospho)protein signatures

To investigate cetuximab responses in patients with metastatic CRC, we 

analyzed a large collection of genomically annotated PDX models, for 

which information on response to cetuximab in mice was available18. Of 

the 108 patient-derived xenografts (PDX) ‘KRAS wild-type’ models 
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originally collected (determined by Sanger sequencing), 63 samples were 

identified to bear no somatic sequence alteration of the KRAS, NRAS, 

BRAF and PIK3CA genes as identified by exome sequencing with an 

average coverage within the target regions of nearly 150-fold for each 

sample 9. Protein levels were quantitatively profiled by Reverse Phase 

Protein Array (RPPA) analysis of fresh-frozen pre-treatment tumour 

samples derived from each PDX model (Figure 1A; Supplementary Table 

1).

To explore whether cetuximab responses were related to differences in 

cell signalling pathways as evaluated by RPPA (phospho)protein analysis, 

we first performed unsupervised clustering using Nonnegative Matrix 

Factorizations (NMF) of the 63 quadruple negative samples 

(Supplementary Table 2). Clustering identified three distinct protein 

clusters termed C1, C2 and C3 (Figure 1A). We also performed clustering 

in all n = 93 KRAS wild type samples and found 88.9% consistency of the 

clusters (Supplementary Table 1).

Protein cluster C1 contained 35 PDX models of which 13 were regressing, 

14 showed no change in volume, and 8 were progressing at week 3 

(Figure 1B). Samples in C1 had predominantly high levels of 

phosphorylated Chk-1 (S345), c-RAF (S338), S6 Ribosomal Protein 

(S235/236 and S240/244), Gab-1 (Y627) and GSK-3β (S9; Figure 1A and 

Supplementary Figure 1). In contrast, C1 samples had low levels of 

phosphorylated p38 MAPK (T180/Y182), AMPK (T172), FAK (Y925), Src 

(Y527), and Src (Y416). Furthermore, samples had low levels of SMAC, 

BCL(X) and STAT3 proteins.
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Cluster C2 contained 18 PDXs of which 4 were regressing, 10 showed no 

change in volume, and 4 were progressing after cetuximab treatment 

(Figure 1B). C2 tissues were characterised by high levels of 

phosphorylated EGFR (Y1068), BCL2 (S70 and T56), Src (Y527), and 

STAT3 (Y705) (Figure 1A and Supplementary Figure 1). Furthermore, the 

cluster had low p27 and PTEN levels. This cluster was also characterised 

by low levels of phosphorylated GSK-3β (S9), MAPK (T202/Y204) and 

MEK1/2 (S217/221).

Interestingly, cluster C3 contained no progressing tumour models, 6 with 

no change in volume and 4 regressing PDX models (Figure 1B). C3 

tissues had high levels of phosphorylated p38 MAPK (T180/Y182), AKT 

(S473), MEK1/2 (S217/221), MAPK (T202/Y204) and PDK1 (S241), 

together with high levels of p70 S6 Kinase and p27 protein levels (Figure 

1A and Supplementary Figure 1). Compared to clusters C1 and C2, C3 

showed low IGFI-Rβ, PARP, cIAP-1, APAF-1 and EGFR protein levels, 

together with low levels of cleaved caspase 9 (D330).

There was no difference in genetic alterations between the clusters (not 

shown). Overall, TP53 mutations were found in 90% (n = 57; from 89% in 

C1 to 94% in C2), APC mutations in 89% (n = 56; from 89% in C1 to 90% 

in C3) and TTN mutations in 48% (n = 30; from 40% in C1 to 70% in C3) 

of PDX models (genetic data from Bertotti et al.9). Further, we did not find 

protein clusters to be significantly associated with a specific CRIS 

molecular subtype (Figure 1C). C1 consisted of 4 CRIS-A, 7 CRIS-B, 16 

CRIS- C, 5 CRIS-D and 3 CRIS- E. C2 consisted of 2 CRIS-A, 3 CRIS-B, 

16 CRIS-C, 3 CRIS-D and 4 CRIS-E. C3 consisted of zero CRIS-A, 1 
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CRIS-B, 7 CRIS-C, 1 CRIS-D and 1 CRIS-E. Likely due to the small size 

of the tested collection, we did not find significant differences in response 

relative to the CRIS subtypes (Fisher’s exact p = 0.49; Figure 1D).

Identification of a (phospho)protein signature predicting 

responses to cetuximab

In a subsequent analysis we used a statistical method for class prediction 

from gene expression data using nearest shrunken centroids (prediction 

analysis for microarrays; PAM)28 to determine to what extent proteins were 

either up- or down-regulated in all PDX models when grouped according to 

their response to cetuximab at week 3 (Figure 2; Supplementary Table 3). 

Overall, proteins levels were found to be inverted when comparing 

regressing models with progressing models. Progressing tumour models 

had high levels of phosphorylated EGFR (Y1173 and Y1068), AKT (S373), 

S6 ribosomal protein (S235/236 and S240/244), HER3 (Y1289), cRAF 

(S338), Gab-1 (Y627) and BCL2 (T56), together with high protein levels of 

cIAP-1, IGFI-Rβ, PARP, BAK, BAX, EGFR and APAF-1 compared to 

regressing models. In contrast, levels of phosphorylated PDK1 (S241), 

Shc (Y317), STAT3 (Y705), FAK (Y925), phosphorylated GSK-3β (S9), 

Src (Y416), MAPK (T202/Y204), NF-κB-p65 (S536), Caspase-8, p27, Src, 

Xiap and SMAC were low in progressing compared to regressing models. 

When comparing responses at week 6, we observed high levels of AKT 

(S473), HIAP-2 and PARP, and low p27 levels in progressing compared to 

regressing models (Supplementary Figure 2).
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Refinement of a (phospho)protein response score 

As a next step, we aimed to further reduce the number of proteins required 

for a predictive (phospho)protein signature. For this purpose we employed 

least absolute shrinkage and selection operator (LASSO; L1 

regularization) and binominal logistic regression (progression versus 

regression) to identify the variables strongest associated with treatment 

response from the markers identified above. The advantage of LASSO is 

that the method exploits sparsity by shrinking less important features’ 

coefficients to zero. Using only progressing (n = 12) or regressing (n = 22) 

PDX models, LASSO reduced the required proteins to 22 markers (Figure 

3AB): PDK1 (S241; β = 2.4687), Caspase-8 (β = 2.3486), Shc (Y317; β = 

0.2415), Stat3 (Y705; β = 1.4916), p27 (β = 1.5234), XIAP (β = 0.2372), 

GSK-3β (S9; β = 1.3425), PI3-Kinase p110α (β = 0.4648), HER3 (β = 

0.2071), cleaved Caspase-9 (D330; β = 0.0043), MAPK - ERK 1/2 (β = 

0.2350) and PKC-alpha (S657; β = 0.9340) were found with a positive 

coefficient (Figure 3B). BAK (β = -1.6263), EGFR (Y1068; β = -0.1290), 

Akt (S473; β = -2.5973), S6 Ribosomal Protein (S240/244; β = -1.6658), 

HER3 (Y1289; β = -1.9349), mTOR (β = -1.600), NF-B-p65 (S536; β = -

1.9424), Gab-1 (Y627; β = -1.5928) and Bcl-2 (T56; β = -0.5066) were 

found with a negative coefficient (Figure 3B). The interception was 2.2000. 

To gain a deeper understanding of the role of these markers, we used the 

Spearman correlation coefficients (Figure 3A) to construct a co-expression 

network (Figure 3B). While proteins such as EGFR (Y1068) and NF-B-

p65 (S536) had the same coefficient in the LASSO model and were co-

expressed, Shc (Y317), GSK-3β (S9), HER3, Caspase-8, PDK1 (S241), 
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BAK and mTOR had disagreeing signs. Assuming that co-expressed 

proteins fell in the same, active or respectively inactive, signalling pathway 

and hence conducted a similar signal, the disagreement in the coefficients’ 

sign suggested a critical difference of the proteins’ role in responses to 

cetuximab.

We then applied the regression model to the PDXs that showed no or only 

minor changes in tumour volume (n = 30), in order to test whether the 

model is able to define models with any increase in tumour volume as 

“progressing” (n = 16) or “regressing” (n = 14). Although this is a 

challenging task, the model identified 12 models as true “progressing” 

(true positive), 9 as true “regressing” (true negative), 5 “regressing” as 

“progressing” and 4 ”progressing” as “regressing” models. Hence the 

majority of marginally progressing or regressing PDXs were correctly 

identified by the regression model.

Comparison of pre- and post-treatment protein profiles

In further exploratory analysis, we also investigated whether cetuximab 

treatment altered protein levels during treatment. We randomly selected 

15 PDX models, one from protein cluster C1, seven from cluster C2 and 

seven from cluster C3. Protein quantification using RPPA were repeated 

for pre- and post-treatment tumour tissues on a separate RPPA run. The 

pre-treated PDX tissues had a mean correlation coefficient of 0.79 (25th - 

75th percentile = 0.74 – 0.85) compared with the post-treated tissues 

(Supplementary Figure 3). Pairwise comparison of pre- and post-treatment 

samples showed that 6 out of 69 (phospho)proteins were significantly 

altered by more (or less) than factor 2 (or ½) in response to cetuximab. 
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Levels of phosphorylated Gab-1 (Y627; p < 0.001), MEK1/2 (S217/221; p 

< 0.001), p70 S6 kinase (T389; p < 0.001) and GSK-3β (S9; p < 0.01), 

together with levels of MEK1 (p < 0.001), cleaved Caspase-7 (D198; p < 

0.1) proteins, were significantly lower in post-treatment compared to pre-

treatment tissues (Figure 3C). The full list of changes in protein levels can 

be seen in Supplementary Table 4.

Levels of only 2 of the 6 proteins that were differential expressed were 

prognostic for the response to cetuximab when measured prior to 

treatment. Models not responding to cetuximab were more likely to lack 

Gab-1 (Y627) and GSK-3β (S9; Figure 2). Abundance of MEK1/2 

(S217/221) was characteristic for models of the protein cluster without 

progressing tumours (C3, Supplementary Figure 1). Levels of p70 S6 

kinase (T389; p < 0.001), MEK1 (p < 0.001) and cleaved Caspase-7 

(D198; p < 0.1) were neither associated with a specific response to 

cetuximab nor a protein cluster.

Proliferation rather than apoptosis systems score predicts 

responses to cetuximab

To determine whether apoptosis competence was a prognostic marker for 

anti-EGFR therapy responses, we used protein levels of BCL-2, BCL-XL, 

MCL-1, BAX, BAK, APAF1, SMAC, XIAP, PROCASPASE-3 and -9 in the 

63 PDX models as model inputs for two deterministic models of apoptosis 

competence, one describing the process of mitochondrial 

permeabilization, DR_MOMP16, and one the process of caspase activation 

downstream of mitochondrial permeabilization, APOPTO-CELL26 (Figure 

Page 14 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 15

4A). Both models were developed and validated by our group and 

previously shown to be prognostic for survival of stage 2 and 3 CRC 

patients16, 17, 31. DR_MOMP calculates the ‘stress dose’ of tumour cells 

required to undergo mitochondrial permeabilisation, with low values 

indicating a high apoptosis competence16. For quantitative evaluation of 

protein levels, cell lysates of the PDX models were normalized to lysates 

of HeLa cells in which absolute protein levels were previously determined 

by quantitative Western blotting using purified proteins16, 26. The mean 

levels of the proteins required as model inputs are shown in Figure 4BC. 

Employing DR_MOMP using the generated quantitative protein profiles, 

we determined a mean ‘stress dose’ of 171.4 nM (SD 56.4 nM) across all 

PDXs. PDXs with a ‘stress dose’ greater than the mean also had 

significantly less cleaved caspase 9 (D330) compared to models with 

‘stress dose’ less than the mean (t-test p < 0.01), confirming impaired 

apoptosis in models with high DR_MOMP ‘stress dose’ values. However, 

the DR_MOMP score did not correlate with cetuximab responses (ANOVA 

p = 0.6; Figure 4E). The DR_MOMP apoptosis score was lowest in PDX 

models in cluster C1 (mean = 152.9 nM) and, greatest in C3 (mean = 

246.0 nM; ANOVA p < 0.0001, Tukey post-hoc p ≤ 0.02; Figure 4F). There 

were no significant differences in DR_MOMP apoptosis scores when 

PDXs were grouped based on the CRIS subtypes (ANOVA p = 0.6; Figure 

4G).

APOPTO-CELL predicts apoptosis susceptibility of cells by modelling 

activation of executioner caspases and cleavage of their downstream 

substrates26. Exceeding a threshold of 25% substrate cleavage within 300 
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minutes served in previous studies as a surrogate for the competence of 

cells to undergo executioner (caspase 3) activation, in line with previous 

single-cell imaging findings 26, 31. APOPTO-CELL identified 24 PDX 

samples with less than 25% predicted substrate cleavage and 36 models 

with more than 25 % predicted substrate cleavage. However the predicted 

substrate cleavage did not correlate with responses of the PDX models to 

cetuximab (Fisher’s exact p = 0.89; Figure 4E). Further, there was no 

significant difference in the number of PDXs with substrate cleavage less 

or greater than 25% between protein clusters C1-C3 (Fisher’s exact p = 

0.09) or CRIS subtypes (Fisher’s exact p = 0.85; Figures 4FG).

We also questioned whether apoptosis signalling contributed to cetuximab 

responses only in specific protein clusters/molecular subtypes. There was 

no significant differences between DR_MOMP ‘stress dose’ scores and 

treatment responses when PDX models broken down into the three protein 

clusters C1, C2 and C3 (ANOVA interaction p = 0.9) or into the CRIS 

subtypes (ANOVA interaction p = 0.9). Similarly, there was no significant 

differences between the APOPTO-CELL class and treatment responses 

after stratifying for the protein cluster or CRIS (not-adjusted Fisher’s exact 

p > 0.12). Collectively, these data suggest that BCL2-dependent 

mitochondrial apoptosis and caspase-3 activation does not play a major 

role in cetuximab responses.

Next, we calculated the individual proliferative capacity of each PDX using 

an 11 gene signature index24, 25 using existing gene expression profiles13. 

Numerically, proliferation indices were lowest in protein cluster C3, and 

highest in C2. Statistical analysis revealed no significantly differences 
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between protein clusters (ANOVA p = 0.1; Figure 4H). CRIS-D had 

significant higher indices compared to the CRIS-B molecular subtype 

(Tukey post-hoc p = 0.02) and C (Tukey post-hoc p < 0.001; ANOVA p = 

0.001). Across all PDXs, the proliferation index gradually increased from 

PDXs with regressing toward progressing responses to cetuximab 

(ANOVA p-value of 0.01, Figure 4

J). Progressing PDX models had higher proliferation indices compared to 

stable (Tukey post-hoc p = 0.01 and 0.03) or regressing PDX models 

(Tukey post-hoc p = 0.001 and 0.02) if adjusted for either CRIS (ANOVA p 

= 0.01) or protein clusters (ANOVA p = 0.02). Collectively, these data 

suggested that proliferation rather than apoptosis score is a key 

determinant of cetuximab responses in ‘quadruple negative’ metastatic 

CRC PDX models. 

We also condensed the cell death scores of DR_MOMP and APOPTO-

CELL and the proliferation score to an overall growth score by classifying 

models with impaired apoptosis and high proliferation as high growth (n = 

19), models with impeccable apoptosis competency and low proliferation 

as low growth (n = 6), and all other models as intermediate growth (n = 35; 

Figure 3K). Growths score did not reflect response to cetuximab with the 

PDX models being equally likely to show progression or regression in 

response to cetuximab (Fisher’s Exact p = 0.18; Figure 3L).
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Development of an improved (phospho)protein response 

score

Because our previous protein analysis identified cell death markers (Figure 

2 and 3B; BAK, BCL2, cleaved Caspase-9, XIAP, etc.) that indicated 

responses to cetuximab, we finally decided to repeat the LASSO analysis 

with the 22 proteins, but replaced the apoptosis-related markers (BAK, 

BCL-2 (T56), cleaved Caspase-9 (D330) and XIAP) with the normalised 

DR_MOMP score. In addition, we removed the protein markers for AKT, 

mTOR, MAPK-ERK1/2 and PI3-Kinase p110α based on the assumption 

that these markers will likely not indicate the activation status of their 

respective signalling pathway. This enabled us to reduce the overall 

number of proteins analysed. The LASSO analysis set only the coefficient 

of DR_MOMP to zero: PDK1 (S241; β = 6.3505), Caspase-8 (β = 5.2772), 

Shc (Y317; β = 4.2598), Stat3 (Y705; β = 2.6455), p27 (β = 0.6169), GSK-

3β (S9; β = 6.0001), HER3 (β = 3.5702) and PKC-alpha (S657; β = 

0.8191) were found with a positive coefficient. EGFR (Y1068; β = -1.065), 

Akt (S473; β = -5.5777), S6 Ribosomal Protein (S240/244; β = -4.3452), 

HER3 (Y1289; β = -5.4732), NF-kB-p65 (S536; β = -6.3106) and Gab-1 

(Y627; β = -4.6551) were found with a negative coefficients. The 

interception was 4.9424. The coefficients were in line with the first LASSO 

model (Spearman’s rank correlation rho = 0.88, p < 0.0001). Testing the 

updated regression model (14 markers) on PDX models showing no or 

only minor changes in tumour volume (n = 30), showed a significant 

improvement compared with the initial score, with 13 PDX models 

identified as true “progressing” (true positive), 10 as true “regressing” (true 
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negative), 4 “regressing” as “progressing” and 3 ”progressing” as 

“regressing” models.

Discussion

The discovery of new prognostic biomarkers for cetuximab response is of 

crucial importance for improving efficiency, and efficacy, of the treatment 

of metastatic CRC. The genetic heterogeneity of metastatic CRC cancer 

makes it unlikely that one single protein will serve as a biomarker in all 

instances, and high throughput techniques such as RPPA may therefore 

be helpful in identifying predictive biomarker sets. Statistical analysis of 

our RPPA data showed significant correlation between levels of 20 

(phospho)proteins with changes in tumour volume, as detected in PDX 

models. We identified markers indicating active signalling of the EGFR 

pathway such as EGFR (Y1068) itself and Akt (S473), Gab-1 (Y627), Shc 

(Y317), Stat3 (Y705) and PDK1 (S241) to significantly predict responses 

to cetuximab. Overall we found a high cross correlation between levels of 

these proteins markers across all samples, emphasising their potential to 

act as predictive biomarkers for cetuximab responses.

Interestingly, we found that high levels of phosphorylated EGFR at 

Tyr1068 and Akt at Ser473 indicated tumour progression, whereas 

regressing tumours showed a lack of phosphorylated Shc at Tyr317 and 

Stat3 at Tyr705. Phosphorylation of EGFR on Tyr1068 (and Tyr1086) 

leads to activation of the MAPK cascade and AKT activation32. Signal 

transducer and activator of transcription 3 (STAT3) and its phosphorylation 

are associated with cell growth and transformation33. The scaffolding 
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protein Src homology and collagen domain protein (Shc) directs the EGF 

stimuli to pro-mitogenic, pro-survival and invasion signalling pathways in a 

time-dependent manner34. Phosphoinositide Dependent Protein Kinase 1 

(PDK1) is a crucial enzyme in transducing signals to multiple effector 

pathways including phosphoinositide 3-kinase (PI3K/AKT), Ras/mitogen-

activated protein kinase (MAPK), serum/glucocorticoid regulated kinase 

(SGK), p70 ribosomal protein S6 kinase (p70 S6 K) and members of 

protein kinase C (PKC) family. Phosphorylation of PDK1 on Ser241 is 

necessary for its activation35. Some of its substrates require a prior 

conformational switch to allow subsequent phosphorylation by PDK135 

rendering it as gatekeeper for those signalling pathways. We also found 

that models expressing the human epidermal growth factor receptor 3 

(HER3, also EGFR3) were more likely to respond with tumour regression 

in response to cetuximab. In contrast, phosphorylation of HER3 on 

Tyr1289 was indicative for tumour progression. HER3 cannot be activated 

by ligand alone but its heterodimer with EGFR and HER2 is highly 

mitogenic36. Existing literature on the expression and relevance of HER3 is 

inconsistent, reporting association with either increased or decreased 

survival of CRC patients36. In advanced non-small cell lung cancer, 

abundant HER3 expression identifies gefitinib (EGFR inhibitor) sensitive 

cell lines37. In addition, Bosch-Vilaró et al.38 described a cetuximab-

induced feedback HER3 activation that reduces the response to 

cetuximab, and in pancreatic cancer, dimerization of EGFR and HER3 was 

reported to be necessary for downstream signalling39.
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Further LASSO and binominal logistic regression analysis of these protein 

biomarkers delivered a refined protein signatures for predicting responses 

to cetuximab. Given that many of the identified markers in our signature 

are predicted to regulate cell proliferation, we also investigated a 

previously published, transcriptome-based proliferation score as to its 

predictive power24, 25. Using this score, we also found a significant 

correlation between cetuximab responses and the transcriptome-based 

proliferation score across all 63 PDX models investigated. Although the 

focus of our study was the delivery of a (phospo)protein signature, 

combining our protein score with the transcriptome-based proliferation 

score did not further increase the predictive power  of the protein 

signature, suggesting that the signature was sufficient to describe the 

proliferation status of the PDX models in relation to cetuximab responses.

We also found that responses to cetuximab were dependent on protein 

clusters identified through unsupervised cluster analysis. One of the 

clusters, protein cluster 3 (C3), represented a cluster without progressing 

PDX models. C3 was characterised by PDK1-dependend active AKT 

signalling and inhibition of the cell cycle. The largest protein cluster (C1) in 

contrast showed mixed responses, and was characterised by genotoxic 

stress, inflammation and cell survival signalling. Cluster C2 was also 

composed of mixed responders and characterised by active EGFR 

signalling and inhibition of apoptosis. Compared to PDX models in C1 and 

C2, PDX models in C3 had lower levels of phosphorylated MEK1/2 

(S217/221). This suggests that cetuximab-resistant models in C1 and C2 

may potentially benefit from MEK inhibitors. We also explored the 
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relationship between protein clusters and transcriptome-based molecular 

subtypes. CRIS molecular subtypes capture very well differences in 

intrinsic tumour cell gene expression13. CRIS-C was previously associated 

with sensitivity to cetuximab13, potentially a consequence of the lower 

representation of KRAS and NRAS mutations in this subtype13. We did not 

find that any of the three protein clusters showed a significant association 

with CRIS molecular subtypes. We also found that, when focusing on 

KRAS, NRAS, BRAF and PIK3CA quadruple wild type models, CRIS-C 

was not enriched in cetuximab responders (Figure 1D). Overall, this 

suggests that sensitivity to anti-EGFR therapy is predicted well by an 

analysis of (phospho)protein clusters.

While we observed that increased proliferative capacity was associated 

with disease progression during cetuximab treatment (Figure 4J), 

competence to undergo mitochondrial apopotosis was not a major 

determinant of cetuximab responses. Both the DR_MOMP and APOPTO-

CELL apoptosis models have been shown to be prognostic for stage II and 

III CRC patients, but have not yet not been tested in the setting of 

metastatic CRC17, 31. 

Our data suggest that resistance to mitochondrial apoptosis is not critical 

for responses of metastatic CRC to cetuximab. While cetuximab was 

shown to induce apoptosis to a minor extent in colorectal cancer cells in 

previous studies40, combination therapy for example with regorafenib has 

been shown to be required for significant apoptosis induction by 

cetuximab41. In the setting of colorectal cancer, we have previously also 

shown that activation of Caspase-3 may be associated with a 
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compensatory stimulation of cancer cell proliferation and adverse effects 

on clinical outcome42. Here, we also observed that PDX models with 

progressing tumours tended to have higher levels cleaved Caspase-3 

compared to models with stable or regressing tumours (Figure 2). It might 

be possible that activating apoptosis may have both beneficial and 

detrimental effects in the setting of metastatic CRC.

By comparing matched pre- and post-treatment samples, we also found 

that levels of GSK-3β (S9) were reduced in tissue after cetuximab 

treatment. The Glycogen synthase kinase 3β (GSK-3β) is a key player in 

the β-catenin/Wnt signalling pathway but also phosphorylates various 

transcription factors and structural, metabolic and signalling proteins43, 44. 

Inhibition of GSK-3β activity by phosphorylation at Ser945 is a critical factor 

to allow many coupled signalling pathways to proceed43, 44. 96% of CRCs 

harbour increased oncogenic Wnt pathway alteration46 and dysregulation 

of GSK-3β signalling is associated with cancer and metabolic and 

degenerative disorders47. Inhibition of GSK-3β was reported to induce 

apoptosis and attenuated proliferation in colon cancer cells in vitro48 and in 

colon cancer xenografts49. It is possible that inhibition of GSK-3β would be 

desirable co-treatment with cetuxiumab. Lithium, which also acts as an 

inhibitor of GSK-3β50, was reported to supress cell proliferation in prostate 

cancer xenographs51 and may inhibit colon cancer metastatsis by blocking 

transforming growth factor-β-induced protein (TGFBIp) expression52 

downstream of GSK-353. Combining cetuximab with lithium or other GSK-

3 inhibitors may improve response to cetuximab.
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In conclusion, we present here a 14 (phospho)protein marker signature 

that was predicting responses to cetuximab in mCRC tissue. Likewise, our 

findings emphasises GSK-3β to be potentially targetable for a co-

treatment with cetuximab.

Further Disclosures

Ethics approval and consent to participate: Informed consent for 

research use was obtained from all patients and the study was conducted 

under the approval of the RCSI Research Ethics Committee and Comitato 

Etico Istituto di Candiolo-FPO IRCCS. All animal procedures were 

approved by the Ethical Commission of the Candiolo Cancer Institute and 

by the Italian Ministry of Health (806/2016-PR).

Data Accessibility: Data is provided as supplementary materials. 

Extended data and scripts will be made available upon reasonable 

request.

Conflict of interest: The authors declare no conflict of interest.

Funding: This study was supported by grants from Science Foundation 

Ireland and the Health Research Board to JHMP (13/IA/1881, 14/IA/2582, 

15/ERACSM/3268 and 16/US/3301). LT is supported by AIRC 

(Associazione Italiana per la Ricerca sul Cancro) Investigator Grant 

22802, AIRC 5x1000 grant 21091 (to LT), AIRC/CRUK/FC AECC 

Accelerator Award 22795, Fondazione Piemontese per la Ricerca sul 

Cancro-ONLUS, and 5x1000 Ministero della Salute 2014, 2015 and 2016. 

LT is a member of the EuroPDX Consortium.

Page 24 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 25

Authors' contributions: ABa, AUL, SC, NM, MS and JHMP wrote the 

manuscript. ABa, AUL, SC, NM and MS performed data analysis and 

prepared figures. ABe and ERZ performed acquisition of sample data. 

BTH, ERZ, ROB, SC and MC collected samples and conducted the protein 

quantification using RPPA. ABe, BTH, LT and JHMP supervised the 

project. All authors read, reviewed and approved the final manuscript for 

publication.

Page 25 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 26

References

1. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, Aranda Aguilar E, 
Bardelli A, Benson A, Bodoky G, Ciardiello F, D'Hoore A, et al. ESMO consensus guidelines for the 
management of patients with metastatic colorectal cancer. Ann Oncol 2016;27: 1386-422.
2. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, 
Pitot HC, Alberts SR. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, 
and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. 
J Clin Oncol 2004;22: 23-30.
3. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pinter T, 
Lim R, Bodoky G, Roh JK, Folprecht G, et al. Cetuximab and chemotherapy as initial treatment for 
metastatic colorectal cancer. N Engl J Med 2009;360: 1408-17.
4. Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, 
Kopetz SE, Lieu C, Lindor NM, Minsky BD, Monzon FA, Sargent DJ, et al. Molecular Biomarkers 
for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical 
Pathology, College of American Pathologists, Association for Molecular Pathology, and the 
American Society of Clinical Oncology. J Clin Oncol 2017;35: 1453-86.
5. Chiorean EG, Nandakumar G, Fadelu T, Temin S, Alarcon-Rozas AE, Bejarano S, Croitoru AE, 
Grover S, Lohar PV, Odhiambo A, Park SH, Garcia ER, et al. Treatment of Patients With Late-
Stage Colorectal Cancer: ASCO Resource-Stratified Guideline. JCO Glob Oncol 2020;6: 414-38.
6. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, 
Kotoula V, Papamichael D, Laurent-Puig P, Penault-Llorca F, Rougier P, et al. Effects of KRAS, 
BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in 
chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. 
Lancet Oncol 2010;11: 753-62.
7. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN 
mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 
2011;12: 594-603.
8. Zanella ER, Galimi F, Sassi F, Migliardi G, Cottino F, Leto SM, Lupo B, Erriquez J, Isella C, 
Comoglio PM, Medico E, Tejpar S, et al. IGF2 is an actionable target that identifies a distinct 
subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Sci 
Transl Med 2015;7: 272ra12.
9. Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, Sausen M, Phallen J, Hruban CA, 
Tokheim C, Niknafs N, Nesselbush M, et al. The genomic landscape of response to EGFR 
blockade in colorectal cancer. Nature 2015;526: 263-7.
10. Woolston A, Khan K, Spain G, Barber LJ, Griffiths B, Gonzalez-Exposito R, Hornsteiner L, 
Punta M, Patil Y, Newey A, Mansukhani S, Davies MN, et al. Genomic and Transcriptomic 
Determinants of Therapy Resistance and Immune Landscape Evolution during Anti-EGFR 
Treatment in Colorectal Cancer. Cancer Cell 2019;36: 35-50 e9.
11. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman 
P, Nyamundanda G, Angelino P, Bot BM, Morris JS, et al. The consensus molecular subtypes of 
colorectal cancer. Nat Med 2015;21: 1350-6.
12. Lenz HJ, Ou FS, Venook AP, Hochster HS, Niedzwiecki D, Goldberg RM, Mayer RJ, Bertagnolli 
MM, Blanke CD, Zemla T, Qu X, Wirapati P, et al. Impact of Consensus Molecular Subtype on 
Survival in Patients With Metastatic Colorectal Cancer: Results From CALGB/SWOG 80405 
(Alliance). J Clin Oncol 2019;37: 1876-85.
13. Isella C, Brundu F, Bellomo SE, Galimi F, Zanella E, Porporato R, Petti C, Fiori A, Orzan F, 
Senetta R, Boccaccio C, Ficarra E, et al. Selective analysis of cancer-cell intrinsic transcriptional 
traits defines novel clinically relevant subtypes of colorectal cancer. Nat Commun 2017;8: 15107.

Page 26 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 27

14. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted 
therapy. Clin Cancer Res 2006;12: 5268-72.
15. Marzi L, Combes E, Vie N, Ayrolles-Torro A, Tosi D, Desigaud D, Perez-Gracia E, Larbouret C, 
Montagut C, Iglesias M, Jarlier M, Denis V, et al. FOXO3a and the MAPK p38 are activated by 
cetuximab to induce cell death and inhibit cell proliferation and their expression predicts 
cetuximab efficacy in colorectal cancer. Br J Cancer 2016;115: 1223-33.
16. Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, Boland K, Kehoe J, 
McNamara DA, Murray F, Kay EW, Hector S, et al. Systems analysis of BCL2 protein family 
interactions establishes a model to predict responses to chemotherapy. Cancer Res 2013;73: 
519-28.
17. Lindner AU, Salvucci M, Morgan C, Monsefi N, Resler AJ, Cremona M, Curry S, Toomey S, 
O'Byrne R, Bacon O, Stuhler M, Flanagan L, et al. BCL-2 system analysis identifies high-risk 
colorectal cancer patients. Gut 2017;66: 2141-8.
18. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, Cora D, Di Nicolantonio F, Buscarino 
M, Petti C, Ribero D, Russolillo N, et al. A molecularly annotated platform of patient-derived 
xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-
resistant colorectal cancer. Cancer Discov 2011;1: 508-23.
19. Puig I, Chicote I, Tenbaum SP, Arques O, Herance JR, Gispert JD, Jimenez J, Landolfi S, Caci K, 
Allende H, Mendizabal L, Moreno D, et al. A personalized preclinical model to evaluate the 
metastatic potential of patient-derived colon cancer initiating cells. Clin Cancer Res 2013;19: 
6787-801.
20. Guo H, Liu W, Ju Z, Tamboli P, Jonasch E, Mills GB, Lu Y, Hennessy BT, Tsavachidou D. An 
efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for 
reverse phase protein arrays. Proteome Sci 2012;10: 56.
21. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC 
Bioinformatics 2010;11: 367.
22. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 
1999;401: 788-91.
23. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery 
using matrix factorization. Proc Natl Acad Sci U S A 2004;101: 4164-9.
24. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, 
Quackenbush JF, Stijleman IJ, et al. Supervised risk predictor of breast cancer based on intrinsic 
subtypes. J Clin Oncol 2009;27: 1160-7.
25. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, Davies SR, Snider J, Stijleman IJ, 
Reed J, Cheang MC, Mardis ER, et al. A comparison of PAM50 intrinsic subtyping with 
immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-
positive breast cancer. Clin Cancer Res 2010;16: 5222-32.
26. Rehm M, Huber HJ, Dussmann H, Prehn JH. Systems analysis of effector caspase activation 
and its control by X-linked inhibitor of apoptosis protein. EMBO J 2006;25: 4338-49.
27. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing 
radiation response. Proc Natl Acad Sci U S A 2001;98: 5116-21.
28. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken 
centroids of gene expression. Proc Natl Acad Sci U S A 2002;99: 6567-72.
29. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in 
multidimensional genomic data. Bioinformatics 2016;32: 2847-9.
30. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances circular 
visualization in R. Bioinformatics 2014;30: 2811-2.
31. Salvucci M, Wurstle ML, Morgan C, Curry S, Cremona M, Lindner AU, Bacon O, Resler AJ, 
Murphy AC, O'Byrne R, Flanagan L, Dasgupta S, et al. A Stepwise Integrated Approach to 
Personalized Risk Predictions in Stage III Colorectal Cancer. Clin Cancer Res 2017;23: 1200-12.

Page 27 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 28

32. Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J. A novel positive feedback loop 
mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth 
factor receptor signaling. Mol Cell Biol 2000;20: 1448-59.
33. Bromberg J, Darnell JE, Jr. The role of STATs in transcriptional control and their impact on 
cellular function. Oncogene 2000;19: 2468-73.
34. Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N, Pasculescu A, Taylor L, Tate SA, 
Hardy WR, Colwill K, Dai AY, Bagshaw R, et al. Temporal regulation of EGF signalling networks by 
the scaffold protein Shc1. Nature 2013;499: 166-71.
35. Casamayor A, Morrice NA, Alessi DR. Phosphorylation of Ser-241 is essential for the activity 
of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation 
in vivo. Biochem J 1999;342 ( Pt 2): 287-92.
36. Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and 
role in signaling, tumor biology, and cancer therapy. Clin Cancer Res 2010;16: 1373-83.
37. Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C, Cichowski K, Johnson 
BE, Cantley LC. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-
small cell lung cancer cell lines. Proc Natl Acad Sci U S A 2005;102: 3788-93.
38. Bosch-Vilaro A, Jacobs B, Pomella V, Abbasi Asbagh L, Kirkland R, Michel J, Singh S, Liu X, Kim 
P, Weitsman G, Barber PR, Vojnovic B, et al. Feedback activation of HER3 attenuates response to 
EGFR inhibitors in colon cancer cells. Oncotarget 2017;8: 4277-88.
39. Frolov A, Schuller K, Tzeng CW, Cannon EE, Ku BC, Howard JH, Vickers SM, Heslin MJ, 
Buchsbaum DJ, Arnoletti JP. ErbB3 expression and dimerization with EGFR influence pancreatic 
cancer cell sensitivity to erlotinib. Cancer Biol Ther 2007;6: 548-54.
40. Li X, Fan Z. The epidermal growth factor receptor antibody cetuximab induces autophagy in 
cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 
complex. Cancer Res 2010;70: 5942-52.
41. Napolitano S, Martini G, Rinaldi B, Martinelli E, Donniacuo M, Berrino L, Vitagliano D, 
Morgillo F, Barra G, De Palma R, Merolla F, Ciardiello F, et al. Primary and Acquired Resistance of 
Colorectal Cancer to Anti-EGFR Monoclonal Antibody Can Be Overcome by Combined Treatment 
of Regorafenib with Cetuximab. Clin Cancer Res 2015;21: 2975-83.
42. Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, John K, Boland KC, McNamara 
DA, Kay EW, Bantel H, Schulze-Bergkamen H, et al. Low levels of Caspase-3 predict favourable 
response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a 
therapeutic approach. Cell Death Dis 2016;7: e2087.
43. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular 
signaling. Prog Neurobiol 2001;65: 391-426.
44. Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE 2001;2001: re12.
45. Frame S, Cohen P, Biondi RM. A common phosphate binding site explains the unique 
substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 2001;7: 1321-7.
46. Yaeger R, Chatila WK, Lipsyc MD, Hechtman JF, Cercek A, Sanchez-Vega F, Jayakumaran G, 
Middha S, Zehir A, Donoghue MTA, You D, Viale A, et al. Clinical Sequencing Defines the 
Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell 2018;33: 125-36 e3.
47. Martinez A. Preclinical efficacy on GSK-3 inhibitors: towards a future generation of powerful 
drugs. Med Res Rev 2008;28: 773-96.
48. Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, Mai M, Takahashi Y, 
Minamoto T. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell 
survival and proliferation. Biochem Biophys Res Commun 2005;334: 1365-73.
49. Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, Kawakami K, Minamoto T. 
Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. 
Cancer Sci 2007;98: 1388-93.
50. Phiel CJ, Klein PS. Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001;41: 
789-813.

Page 28 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 29

51. Zhu Q, Yang J, Han S, Liu J, Holzbeierlein J, Thrasher JB, Li B. Suppression of glycogen 
synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate 2011;71: 
835-45.
52. Maeng YS, Lee R, Lee B, Choi SI, Kim EK. Lithium inhibits tumor lymphangiogenesis and 
metastasis through the inhibition of TGFBIp expression in cancer cells. Sci Rep 2016;6: 20739.
53. Liang MH, Chuang DM. Differential roles of glycogen synthase kinase-3 isoforms in the 
regulation of transcriptional activation. J Biol Chem 2006;281: 30479-84.

Figure Legends

Figure 1

(A) Heatmap of protein levels determined by RPPA. PDX models were annotated 

with the, CRIS, the consensus protein cluster subtype, and response to cetuximab 

(top). Clustering was performed using Nonnegative Matrix Factorization (NMF) 

consensus clustering algorithm. The right annotations indicates proteins’ 

association to the protein clusters (Supplementary Figure 1). Chord diagrams show 

overlap between RPPA clusters and (B) response to cetuximab and (C) CRIS, and 

(D) overlap between CRIS and response to cetuximab.

Figure 2

Protein scores indicating proteins’ association to the PDX models’ response to 

cetuximab. Proteins’ scores for response to cetuximab after 3 week was calculated 

using PAM 27.

Figure 3

(A) Heatmap of Spearman’s rank correlation coefficients for proteins associated 

with differences in response to cetuximab from Figure 2. (B) Undirected graph of 

proteins found to be relevant in LASSO analysis. Intensity and colour of the edges 

indicate the correlation coefficient of (A). Grouping based on the signs of the 
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correlation coefficients and signs of the coefficients found by LASSO are indicated 

black & white nodes and plus & minus icons, respectively. (C) Protein found to be 

differential expressed in PDX models after treatment with cetuximab, based on 

pairwise comparison and Benjamin & Hochberg adjusted p-value. Dashed red lines 

indicate 0.05 significance threshold for p-value, and 2-fold or 1/2-fold protein level. 

The protein marker names and n-fold differences (treated to un-treated) in brackets 

were added for proteins passing all thresholds.

Figure 4

(A) Simplified illustration of the apoptotic signalling modelled in DR_MOMP and 

APOPTO-CELL. Absolute protein levels normalised to HeLa cells were measured 

using RPPA and used as input for (B) DR_MOMP and (C) APOPTO-CELL. 

Calculated DR MOMP values against (D) APOPTO-CELLs’ calculated substrate 

cleavage class with (E) differences in response to cetuximab, (F) RPPA protein 

cluster C3 and (G) CRIS. Calculated proliferation against (H) protein clusters, (I) 

CRIS and (J) response to cetuximab. (K) The proliferation score was combined with 

both models to a tumour growth score. (L) n-numbers of tumour growth score 

classes against response to cetuximab, RPPA protein cluster and CRIS.
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Running title: Systems analysis of cetuximab responses

Novelty and Impact: A large fraction of patients with metastatic colorectal cancer do 
not respond to anti-EGFR therapy despite KRAS wild type tumours. Statistical 
analysis of RPPA data of colorectal cancer KRAS, BRAF, NRAS and PI3KCA wild 
type PDX models revealed a 14 - 20 (phospho)protein signature that was predicting 
responses to cetuximab. Our findings furthermore emphasise GSK-3β to be 
potentially targetable for a co-treatment with cetuximab.
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phase protein array, deterministic modelling, apoptosis, proliferation
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Abstract

Antibodies targeting the human epidermal growth factor receptor (EGFR) are used 

for the treatment of RAS wild-type metastatic colorectal cancer. A significant 

proportion of patients remains unresponsive to this therapy. Here, we performed a 

reverse phase protein array-based (phospho)protein analysis of 63 KRAS, NRAS, 

BRAF and PIK3CA wild-type metastatic CRC tumours. Responses of tumours to 

anti-EGFR therapy with cetuximab were recorded in patient-derived xenograft (PDX) 

models. Unsupervised hierarchical clustering of pre-treatment tumour tissue 

identified three clusters, of which cluster C3 was exclusively composed of 

responders. Clusters C1 and C2 showed mixed responses. None of the three protein 

clusters showed a significant correlation with transcriptome-based subtypes. 

Analysis of protein signatures across all PDXs identified 14 markers that 

discriminated cetuximab-sensitive and -resistant tumours: PDK1 (S241), Caspase-8, 

Shc (Y317), Stat3 (Y705), p27, GSK-3β (S9), HER3, PKC- (S657), EGFR (Y1068), 

Akt (S473), S6 Ribosomal Protein (S240/244), HER3 (Y1289), NF-B-p65 (S536) 

and Gab-1 (Y627). Least absolute shrinkage and selection operator and binominal 

logistic regression analysis delivered refined protein signatures for predicting 

response to cetuximab. (Phospo-)protein analysis of matched pre- and post-treated 

models furthermore showed significant reduction of Gab-1 (Y627) and GSK-3β (S9) 

exclusively in responding models, suggesting novel targets for treatment.
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Background

Colorectal cancer (CRC) is the third and second most commonly 

diagnosed cancer in males and females, and the second most common 

cause of cancer-related deaths in the developed world. In the advanced 

setting, CRC is routinely treated with fluorouracil (5-FU)-based 

chemotherapy. 30% of CRC patients present in the metastatic setting1 

where response rates to palliative 5-FU/oxaliplatin- or 5-FU/irinotecan-

based chemotherapy range between 40-50%. Median overall survival 

remains poor at around 16-19 months2. Identifying the importance of 

epidermal growth factor (EGF) signalling for the survival of CRC cells 

resulted in the development of targeted therapies that neutralize the 

oncogenic activity of EGF receptors (EGFR). Anti-EGFR therapies have 

significantly improved survival in metastatic CRC patients3. Guidelines 

recommend to test for KRAS, NRAS and BRAF mutations as well as 

microsatellite instability status in CRC patients being considered for anti-

EGFR therapy4, 5 on the bases of the ineffectiveness of anti-EGFR therapy 

in patients with activating KRAS, BRAF, and NRAS mutations6, and 

favourable responses to immune check point inhibitors in microsatellite 

instability-high patients4. While PI3KCA mutational analysis is not 

recommended yet4, PIK3CA exon 20 mutations were linked with a worse 

outcome compared with wild-type status in patients with metastatic 

colorectal cancer7. Nevertheless, between 50–60% of patients will not 

benefit from anti-EGFR treatment even when these are KRAS, BRAF, 

NRAS and PI3KCA wild type7.
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Mutations and copy number alterations in genes encoding for other 

survival signaling proteins have been shown to contribute to anti-EGFR 

resistance. For example, HER2-amplification, IGF2 overexpression or 

increased MET activity resulted in reduced responses to anti-EGFR 

therapy, as demonstrated in patient-derived xenograft (PDX) models of 

metastatic CRC and in patients8, 9. Analysis of the genomic and 

transcriptomic landscape of anti-EGFR resistance in PDX models and 

patients furthermore identified mutations in EGFR, FGFR1, PDGFRA, and 

MAP2K1 or loss of NF1 to contribute to anti-EGF resistance9, 10.

While identification of patient-specific genome alterations provides a 

personalised diagnosis that provides insights into anti-EGFR therapy 

responses and may open opportunities for personalised therapies, 

interpretation of often multiple genomic alterations found in most patients 

is not always straightforward. Other efforts to identify responders and non-

responders to anti-EGFR therapy have therefore focussed on the power of 

unsupervised molecular subtyping of tumours. An international meta-

analysis and bioinformatics effort led to the identification of four distinct 

subtypes in CRC, termed ‘Consensus Molecular Subtypes’ (CMS1-

CMS4)11. A recent study demonstrated that CMS2 patients benefitted 

more from anti-EGFR therapy than patients treated with anti-angiogenic 

therapy, while the opposite was the case in CMS1 patients12. However 

predictions of anti-EGFR therapy responses in CMS3 and CMS4 patients 

were not possible, and significant variability in overall and progression free 

survival are still seen across all four CMS subtypes. Because stroma-

derived mRNAs in whole tumour transcriptomes may obscure 
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transcriptional features displayed by cancer cells, other efforts leveraged 

the power of patient-derived mouse xenograft (PDX) models in which 

human stroma is replaced by mouse stroma to obtain five CRC ‘intrinsic’ 

(CRIS) molecular subtypes, termed CRIS-A to E13. CRIS-C was identified 

as a subtype associated with EGFR signalling and increased sensitivity to 

anti-EGFR therapy. However responses to anti-EGFR therapy strongly 

varied among the other four CRIS subtypes13.

EGFR activation results in the activation of several downstream signalling 

pathways, including the PI3K/AKT and MAPK pathways14. The activation 

status of these key signalling pathways influences a variety of biological 

processes such as proliferation, apoptosis, cell migration, bioenergetics, 

immune responses, and angiogenesis. A different approach to investigate 

responses to anti-EGFR therapy is to determine the activation status of 

key signalling branches activated by EGFR receptors and their 

downstream effectors, supported by statistical or deterministic modelling15. 

Because processes such as proliferation and apoptosis are controlled by 

complex networks that show significant signalling redundancies, 

deterministic systems models have been developed to estimate more 

precisely proliferative capacity or apoptosis sensitivity of tumours. One 

such tool developed by our group is the systems model, DR_MOMP, 

which calculates the apoptosis sensitivity of tumours based on a 

quantitative analysis of BCL-2 family proteins and their interactions16, 17. 

To identify novel prognostic markers of anti-EGFR therapy, we here 

comprehensively profiled 83 signalling proteins and (phospho)proteins 

related to EGFR and key cancer signalling pathways in a cohort of 63 
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KRAS, BRAF, NRAS and PI3KCA wild type PDX models isolated from 

liver biopsies that were derived from metastatic CRC patients9, 18. We 

performed both statistical and systems modelling analyses to identify novel 

protein signatures of anti-EGFR responsiveness.

Methods

CRC PDX in vivo model 

108 PDX models derived from colorectal cancer liver metastasis originally 

at the Institute for Cancer Research and Treatment, and Mauriziano 

Umberto I (Torino, Italy)18 were used in this study. 63 of 108 were KRAS, 

BRAF, NRAS and PI3KCA wild type based on matched next-generation 

sequencing analysis data from Bertotti et al. 9 and used for statistical 

analysis. Tumour tissues were implanted subcutaneously and passaged in 

NOD/SCID mice. Response data is available for each tumour to cetuximab 

treatment after 3 and 6 weeks19.

Reverse phase protein array

Protein was extracted from PDX tumour tissue and cell line standards and 

RPPA was performed as described previously20. Protein lysates 

normalized to 1μg/μL concentration as assessed by bicinchoninic acid 

assay (BCA, Biorad). Reverse phase protein array (RPPA) with a panel of 

antibodies targeting various key cancer related proteins was used for 

measuring protein levels in untreated tumours. The response is form 

matching samples of same tumour in different mice. The DAKO 
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(Carpinteria, CA) catalyzed signal amplification system was used for 

antibody blotting.

PDX Protein clustering

RPPA data for 93 PDX samples have been clustered using consensus 

Non-negative Matrix Factorization (R package ‘NMF’21, version 0.21.0) on 

centred RPPA data22, 23. NMF was performed 1 000 times with the number 

of clusters k varying from 2 to 8. k = 3 was selected based on visual 

inspection of co-clustering matrices and heatmap of clustered RPPA data.

To represent graphically the correspondence between CRIS subtypes 

classifiers and the RPPA clusters or cetuximab response, Factorial 

Correspondence Analysis (FCA) was used. For each comparison, χ2 

independence test was carried out. In order to have large enough 

numbers in the contingency table so that the χ2 approximation is correct, 

we combined together the closest CRIS subtypes.

DR MOMP, APOPTO-CELL and proliferation signature

The normalised gene expression of BIRC5, CCNB1, CDC20, CDCA1, 

CEP55, NDC80, MKI67, PTTG1, RRM2, TYMS and UBE2C was averaged 

and used as proliferation signature24, 25 of each PDX. The gene expression 

data for respective PDX models was downloaded from GSE7640213.

To calculate the sensitivity of patients' cancer cells to undergo apoptosis, 

the mathematical models APOPTO-CELL26 and DR_MOMP16 were 

applied, using PRO-CASPASE-3, PRO-CASPASE-9, SMAC, and XIAP 

protein for APOPTO-CELL, and BAK, BAX, BCL2 and BCL(X)L for 

DR_MOMP as input for the models. MCL1 protein levels were assumed to 
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be 0 nM for DR_MOMP. SMAC concentrations were assumed to be 122.7 

nM for APOPTO-CELL26. Protein levels were normalized to HeLa cells that 

were placed on the RPPA together with the cancer tissue16, 26.

Statistical analysis

Statistical analysis of RPPA data was done using ‘SAMR’27 (Significance 

Analysis of Microarrays, version 3.0) and ‘PAMR’28 (Prediction Analysis for 

Microarrays; version 1.56.1) R Packages (R version 3.6.2). LASSO was 

performed using the ‘glmnet’ R package (version 2.0-18). The packages 

‘ComplexHeatmap’29 (version 2.1.0) and ‘Circlize’30 (version 0.4.7) were 

used to create Figure 1. Week 3 response was used for all the statistical 

analysis as not all the mice were followed through after 3 weeks. Student’s 

t-test and ANOVA was used for measuring statistical significance. ANOVA 

was followed by Tukey's HSD (honest significant difference) test for 

multiple pair comparison. Fisher’s exact test was used for count data.

Results

Characterisation of KRAS, BRAF, NRAS and PI3KCA wild 

type metastatic CRC (phospho)protein signatures

To investigate cetuximab responses in patients with metastatic CRC, we 

analyzed a large collection of genomically annotated PDX models, for 

which information on response to cetuximab in mice was available18. Of 

the 108 patient-derived xenografts (PDX) ‘KRAS wild-type’ models 

originally collected (determined by Sanger sequencing), 63 samples were 

identified to bear no somatic sequence alteration of the KRAS, NRAS, 
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BRAF and PIK3CA genes as identified by exome sequencing with an 

average coverage within the target regions of nearly 150-fold for each 

sample 9. Protein levels were quantitatively profiled by Reverse Phase 

Protein Array (RPPA) analysis of fresh-frozen pre-treatment tumour 

samples derived from each PDX model (Figure 1A; Supplementary Table 

1).

To explore whether cetuximab responses were related to differences in 

cell signalling pathways as evaluated by RPPA (phospho)protein analysis, 

we first performed unsupervised clustering using Nonnegative Matrix 

Factorizations (NMF) of the 63 quadruple negative samples 

(Supplementary Table 2). Clustering identified three distinct protein 

clusters termed C1, C2 and C3 (Figure 1A). We also performed clustering 

in all n = 93 KRAS wild type samples and found 88.9% consistency of the 

clusters (Supplementary Table 1).

Protein cluster C1 contained 35 PDX models of which 13 were regressing, 

14 showed no change in volume, and 8 were progressing at week 3 

(Figure 1B). Samples in C1 had predominantly high levels of 

phosphorylated Chk-1 (S345), c-RAF (S338), S6 Ribosomal Protein 

(S235/236 and S240/244), Gab-1 (Y627) and GSK-3β (S9; Figure 1A and 

Supplementary Figure 1). In contrast, C1 samples had low levels of 

phosphorylated p38 MAPK (T180/Y182), AMPK (T172), FAK (Y925), Src 

(Y527), and Src (Y416). Furthermore, samples had low levels of SMAC, 

BCL(X) and STAT3 proteins.

Cluster C2 contained 18 PDXs of which 4 were regressing, 10 showed no 

change in volume, and 4 were progressing after cetuximab treatment 
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(Figure 1B). C2 tissues were characterised by high levels of 

phosphorylated EGFR (Y1068), BCL2 (S70 and T56), Src (Y527), and 

STAT3 (Y705) (Figure 1A and Supplementary Figure 1). Furthermore, the 

cluster had low p27 and PTEN levels. This cluster was also characterised 

by low levels of phosphorylated GSK-3β (S9), MAPK (T202/Y204) and 

MEK1/2 (S217/221).

Interestingly, cluster C3 contained no progressing tumour models, 6 with 

no change in volume and 4 regressing PDX models (Figure 1B). C3 

tissues had high levels of phosphorylated p38 MAPK (T180/Y182), AKT 

(S473), MEK1/2 (S217/221), MAPK (T202/Y204) and PDK1 (S241), 

together with high levels of p70 S6 Kinase and p27 protein levels (Figure 

1A and Supplementary Figure 1). Compared to clusters C1 and C2, C3 

showed low IGFI-Rβ, PARP, cIAP-1, APAF-1 and EGFR protein levels, 

together with low levels of cleaved caspase 9 (D330).

There was no difference in genetic alterations between the clusters (not 

shown). Overall, TP53 mutations were found in 90% (n = 57; from 89% in 

C1 to 94% in C2), APC mutations in 89% (n = 56; from 89% in C1 to 90% 

in C3) and TTN mutations in 48% (n = 30; from 40% in C1 to 70% in C3) 

of PDX models (genetic data from Bertotti et al.9). Further, we did not find 

protein clusters to be significantly associated with a specific CRIS 

molecular subtype (Figure 1C). C1 consisted of 4 CRIS-A, 7 CRIS-B, 16 

CRIS- C, 5 CRIS-D and 3 CRIS- E. C2 consisted of 2 CRIS-A, 3 CRIS-B, 

16 CRIS-C, 3 CRIS-D and 4 CRIS-E. C3 consisted of zero CRIS-A, 1 

CRIS-B, 7 CRIS-C, 1 CRIS-D and 1 CRIS-E. Likely due to the small size 
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of the tested collection, we did not find significant differences in response 

relative to the CRIS subtypes (Fisher’s exact p = 0.49; Figure 1D).

Identification of a (phospho)protein signature predicting 

responses to cetuximab

In a subsequent analysis we used a statistical method for class prediction 

from gene expression data using nearest shrunken centroids (prediction 

analysis for microarrays; PAM)28 to determine to what extent proteins were 

either up- or down-regulated in all PDX models when grouped according to 

their response to cetuximab at week 3 (Figure 2; Supplementary Table 3). 

Overall, proteins levels were found to be inverted when comparing 

regressing models with progressing models. Progressing tumour models 

had high levels of phosphorylated EGFR (Y1173 and Y1068), AKT (S373), 

S6 ribosomal protein (S235/236 and S240/244), HER3 (Y1289), cRAF 

(S338), Gab-1 (Y627) and BCL2 (T56), together with high protein levels of 

cIAP-1, IGFI-Rβ, PARP, BAK, BAX, EGFR and APAF-1 compared to 

regressing models. In contrast, levels of phosphorylated PDK1 (S241), 

Shc (Y317), STAT3 (Y705), FAK (Y925), phosphorylated GSK-3β (S9), 

Src (Y416), MAPK (T202/Y204), NF-κB-p65 (S536), Caspase-8, p27, Src, 

Xiap and SMAC were low in progressing compared to regressing models. 

When comparing responses at week 6, we observed high levels of AKT 

(S473), HIAP-2 and PARP, and low p27 levels in progressing compared to 

regressing models (Supplementary Figure 2).
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Refinement of a (phospho)protein response score 

As a next step, we aimed to further reduce the number of proteins required 

for a predictive (phospho)protein signature. For this purpose we employed 

least absolute shrinkage and selection operator (LASSO; L1 

regularization) and binominal logistic regression (progression versus 

regression) to identify the variables strongest associated with treatment 

response from the markers identified above. The advantage of LASSO is 

that the method exploits sparsity by shrinking less important features’ 

coefficients to zero. Using only progressing (n = 12) or regressing (n = 22) 

PDX models, LASSO reduced the required proteins to 22 markers (Figure 

3AB): PDK1 (S241; β = 2.4687), Caspase-8 (β = 2.3486), Shc (Y317; β = 

0.2415), Stat3 (Y705; β = 1.4916), p27 (β = 1.5234), XIAP (β = 0.2372), 

GSK-3β (S9; β = 1.3425), PI3-Kinase p110α (β = 0.4648), HER3 (β = 

0.2071), cleaved Caspase-9 (D330; β = 0.0043), MAPK - ERK 1/2 (β = 

0.2350) and PKC-alpha (S657; β = 0.9340) were found with a positive 

coefficient (Figure 3B). BAK (β = -1.6263), EGFR (Y1068; β = -0.1290), 

Akt (S473; β = -2.5973), S6 Ribosomal Protein (S240/244; β = -1.6658), 

HER3 (Y1289; β = -1.9349), mTOR (β = -1.600), NF-B-p65 (S536; β = -

1.9424), Gab-1 (Y627; β = -1.5928) and Bcl-2 (T56; β = -0.5066) were 

found with a negative coefficient (Figure 3B). The interception was 2.2000. 

To gain a deeper understanding of the role of these markers, we used the 

Spearman correlation coefficients (Figure 3A) to construct a co-expression 

network (Figure 3B). While proteins such as EGFR (Y1068) and NF-B-

p65 (S536) had the same coefficient in the LASSO model and were co-

expressed, Shc (Y317), GSK-3β (S9), HER3, Caspase-8, PDK1 (S241), 

Page 42 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 13

BAK and mTOR had disagreeing signs. Assuming that co-expressed 

proteins fell in the same, active or respectively inactive, signalling pathway 

and hence conducted a similar signal, the disagreement in the coefficients’ 

sign suggested a critical difference of the proteins’ role in responses to 

cetuximab.

We then applied the regression model to the PDXs that showed no or only 

minor changes in tumour volume (n = 30), in order to test whether the 

model is able to define models with any increase in tumour volume as 

“progressing” (n = 16) or “regressing” (n = 14). Although this is a 

challenging task, the model identified 12 models as true “progressing” 

(true positive), 9 as true “regressing” (true negative), 5 “regressing” as 

“progressing” and 4 ”progressing” as “regressing” models. Hence the 

majority of marginally progressing or regressing PDXs were correctly 

identified by the regression model.

Comparison of pre- and post-treatment protein profiles

In further exploratory analysis, we also investigated whether cetuximab 

treatment altered protein levels during treatment. We randomly selected 

15 PDX models, one from protein cluster C1, seven from cluster C2 and 

seven from cluster C3. Protein quantification using RPPA were repeated 

for pre- and post-treatment tumour tissues on a separate RPPA run. The 

pre-treated PDX tissues had a mean correlation coefficient of 0.79 (25th - 

75th percentile = 0.74 – 0.85) compared with the post-treated tissues 

(Supplementary Figure 3). Pairwise comparison of pre- and post-treatment 

samples showed that 6 out of 69 (phospho)proteins were significantly 

altered by more (or less) than factor 2 (or ½) in response to cetuximab. 
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Levels of phosphorylated Gab-1 (Y627; p < 0.001), MEK1/2 (S217/221; p 

< 0.001), p70 S6 kinase (T389; p < 0.001) and GSK-3β (S9; p < 0.01), 

together with levels of MEK1 (p < 0.001), cleaved Caspase-7 (D198; p < 

0.1) proteins, were significantly lower in post-treatment compared to pre-

treatment tissues (Figure 3C). The full list of changes in protein levels can 

be seen in Supplementary Table 4.

Levels of only 2 of the 6 proteins that were differential expressed were 

prognostic for the response to cetuximab when measured prior to 

treatment. Models not responding to cetuximab were more likely to lack 

Gab-1 (Y627) and GSK-3β (S9; Figure 2). Abundance of MEK1/2 

(S217/221) was characteristic for models of the protein cluster without 

progressing tumours (C3, Supplementary Figure 1). Levels of p70 S6 

kinase (T389; p < 0.001), MEK1 (p < 0.001) and cleaved Caspase-7 

(D198; p < 0.1) were neither associated with a specific response to 

cetuximab nor a protein cluster.

Proliferation rather than apoptosis systems score predicts 

responses to cetuximab

To determine whether apoptosis competence was a prognostic marker for 

anti-EGFR therapy responses, we used protein levels of BCL-2, BCL-XL, 

MCL-1, BAX, BAK, APAF1, SMAC, XIAP, PROCASPASE-3 and -9 in the 

63 PDX models as model inputs for two deterministic models of apoptosis 

competence, one describing the process of mitochondrial 

permeabilization, DR_MOMP16, and one the process of caspase activation 

downstream of mitochondrial permeabilization, APOPTO-CELL26 (Figure 
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4A). Both models were developed and validated by our group and 

previously shown to be prognostic for survival of stage 2 and 3 CRC 

patients16, 17, 31. DR_MOMP calculates the ‘stress dose’ of tumour cells 

required to undergo mitochondrial permeabilisation, with low values 

indicating a high apoptosis competence16. For quantitative evaluation of 

protein levels, cell lysates of the PDX models were normalized to lysates 

of HeLa cells in which absolute protein levels were previously determined 

by quantitative Western blotting using purified proteins16, 26. The mean 

levels of the proteins required as model inputs are shown in Figure 4BC. 

Employing DR_MOMP using the generated quantitative protein profiles, 

we determined a mean ‘stress dose’ of 171.4 nM (SD 56.4 nM) across all 

PDXs. PDXs with a ‘stress dose’ greater than the mean also had 

significantly less cleaved caspase 9 (D330) compared to models with 

‘stress dose’ less than the mean (t-test p < 0.01), confirming impaired 

apoptosis in models with high DR_MOMP ‘stress dose’ values. However, 

the DR_MOMP score did not correlate with cetuximab responses (ANOVA 

p = 0.6; Figure 4E). The DR_MOMP apoptosis score was lowest in PDX 

models in cluster C1 (mean = 152.9 nM) and, greatest in C3 (mean = 

246.0 nM; ANOVA p < 0.0001, Tukey post-hoc p ≤ 0.02; Figure 4F). There 

were no significant differences in DR_MOMP apoptosis scores when 

PDXs were grouped based on the CRIS subtypes (ANOVA p = 0.6; Figure 

4G).

APOPTO-CELL predicts apoptosis susceptibility of cells by modelling 

activation of executioner caspases and cleavage of their downstream 

substrates26. Exceeding a threshold of 25% substrate cleavage within 300 
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minutes served in previous studies as a surrogate for the competence of 

cells to undergo executioner (caspase 3) activation, in line with previous 

single-cell imaging findings 26, 31. APOPTO-CELL identified 24 PDX 

samples with less than 25% predicted substrate cleavage and 36 models 

with more than 25 % predicted substrate cleavage. However the predicted 

substrate cleavage did not correlate with responses of the PDX models to 

cetuximab (Fisher’s exact p = 0.89; Figure 4E). Further, there was no 

significant difference in the number of PDXs with substrate cleavage less 

or greater than 25% between protein clusters C1-C3 (Fisher’s exact p = 

0.09) or CRIS subtypes (Fisher’s exact p = 0.85; Figures 4FG).

We also questioned whether apoptosis signalling contributed to cetuximab 

responses only in specific protein clusters/molecular subtypes. There was 

no significant differences between DR_MOMP ‘stress dose’ scores and 

treatment responses when PDX models broken down into the three protein 

clusters C1, C2 and C3 (ANOVA interaction p = 0.9) or into the CRIS 

subtypes (ANOVA interaction p = 0.9). Similarly, there was no significant 

differences between the APOPTO-CELL class and treatment responses 

after stratifying for the protein cluster or CRIS (not-adjusted Fisher’s exact 

p > 0.12). Collectively, these data suggest that BCL2-dependent 

mitochondrial apoptosis and caspase-3 activation does not play a major 

role in cetuximab responses.

Next, we calculated the individual proliferative capacity of each PDX using 

an 11 gene signature index24, 25 using existing gene expression profiles13. 

Numerically, proliferation indices were lowest in protein cluster C3, and 

highest in C2. Statistical analysis revealed no significantly differences 
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between protein clusters (ANOVA p = 0.1; Figure 4H). CRIS-D had 

significant higher indices compared to the CRIS-B molecular subtype 

(Tukey post-hoc p = 0.02) and C (Tukey post-hoc p < 0.001; ANOVA p = 

0.001). Across all PDXs, the proliferation index gradually increased from 

PDXs with regressing toward progressing responses to cetuximab 

(ANOVA p-value of 0.01, Figure 4

J). Progressing PDX models had higher proliferation indices compared to 

stable (Tukey post-hoc p = 0.01 and 0.03) or regressing PDX models 

(Tukey post-hoc p = 0.001 and 0.02) if adjusted for either CRIS (ANOVA p 

= 0.01) or protein clusters (ANOVA p = 0.02). Collectively, these data 

suggested that proliferation rather than apoptosis score is a key 

determinant of cetuximab responses in ‘quadruple negative’ metastatic 

CRC PDX models. 

Development of an improved (phospho)protein response 

score

Because our previous protein analysis identified cell death markers (Figure 

2 and 3B; BAK, BCL2, cleaved Caspase-9, XIAP, etc.) that indicated 

responses to cetuximab, we finally decided to repeat the LASSO analysis 

with the 22 proteins, but replaced the apoptosis-related markers (BAK, 

BCL-2 (T56), cleaved Caspase-9 (D330) and XIAP) with the normalised 

DR_MOMP score. In addition, we removed the protein markers for AKT, 

mTOR, MAPK-ERK1/2 and PI3-Kinase p110α based on the assumption 

that these markers will likely not indicate the activation status of their 

respective signalling pathway. This enabled us to reduce the overall 
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number of proteins analysed. The LASSO analysis set only the coefficient 

of DR_MOMP to zero: PDK1 (S241; β = 6.3505), Caspase-8 (β = 5.2772), 

Shc (Y317; β = 4.2598), Stat3 (Y705; β = 2.6455), p27 (β = 0.6169), GSK-

3β (S9; β = 6.0001), HER3 (β = 3.5702) and PKC-alpha (S657; β = 

0.8191) were found with a positive coefficient. EGFR (Y1068; β = -1.065), 

Akt (S473; β = -5.5777), S6 Ribosomal Protein (S240/244; β = -4.3452), 

HER3 (Y1289; β = -5.4732), NF-kB-p65 (S536; β = -6.3106) and Gab-1 

(Y627; β = -4.6551) were found with a negative coefficients. The 

interception was 4.9424. The coefficients were in line with the first LASSO 

model (Spearman’s rank correlation rho = 0.88, p < 0.0001). Testing the 

updated regression model (14 markers) on PDX models showing no or 

only minor changes in tumour volume (n = 30), showed a significant 

improvement compared with the initial score, with 13 PDX models 

identified as true “progressing” (true positive), 10 as true “regressing” (true 

negative), 4 “regressing” as “progressing” and 3 ”progressing” as 

“regressing” models.

Discussion

The discovery of new prognostic biomarkers for cetuximab response is of 

crucial importance for improving efficiency, and efficacy, of the treatment 

of metastatic CRC. The genetic heterogeneity of metastatic CRC cancer 

makes it unlikely that one single protein will serve as a biomarker in all 

instances, and high throughput techniques such as RPPA may therefore 

be helpful in identifying predictive biomarker sets. Statistical analysis of 

our RPPA data showed significant correlation between levels of 20 
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(phospho)proteins with changes in tumour volume, as detected in PDX 

models. We identified markers indicating active signalling of the EGFR 

pathway such as EGFR (Y1068) itself and Akt (S473), Gab-1 (Y627), Shc 

(Y317), Stat3 (Y705) and PDK1 (S241) to significantly predict responses 

to cetuximab. Overall we found a high cross correlation between levels of 

these proteins markers across all samples, emphasising their potential to 

act as predictive biomarkers for cetuximab responses.

Interestingly, we found that high levels of phosphorylated EGFR at 

Tyr1068 and Akt at Ser473 indicated tumour progression, whereas 

regressing tumours showed a lack of phosphorylated Shc at Tyr317 and 

Stat3 at Tyr705. Phosphorylation of EGFR on Tyr1068 (and Tyr1086) 

leads to activation of the MAPK cascade and AKT activation32. Signal 

transducer and activator of transcription 3 (STAT3) and its phosphorylation 

are associated with cell growth and transformation33. The scaffolding 

protein Src homology and collagen domain protein (Shc) directs the EGF 

stimuli to pro-mitogenic, pro-survival and invasion signalling pathways in a 

time-dependent manner34. Phosphoinositide Dependent Protein Kinase 1 

(PDK1) is a crucial enzyme in transducing signals to multiple effector 

pathways including phosphoinositide 3-kinase (PI3K/AKT), Ras/mitogen-

activated protein kinase (MAPK), serum/glucocorticoid regulated kinase 

(SGK), p70 ribosomal protein S6 kinase (p70 S6 K) and members of 

protein kinase C (PKC) family. Phosphorylation of PDK1 on Ser241 is 

necessary for its activation35. Some of its substrates require a prior 

conformational switch to allow subsequent phosphorylation by PDK135 

rendering it as gatekeeper for those signalling pathways. We also found 
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that models expressing the human epidermal growth factor receptor 3 

(HER3, also EGFR3) were more likely to respond with tumour regression 

in response to cetuximab. In contrast, phosphorylation of HER3 on 

Tyr1289 was indicative for tumour progression. HER3 cannot be activated 

by ligand alone but its heterodimer with EGFR and HER2 is highly 

mitogenic36. Existing literature on the expression and relevance of HER3 is 

inconsistent, reporting association with either increased or decreased 

survival of CRC patients36. In advanced non-small cell lung cancer, 

abundant HER3 expression identifies gefitinib (EGFR inhibitor) sensitive 

cell lines37. In addition, Bosch-Vilaró et al.38 described a cetuximab-

induced feedback HER3 activation that reduces the response to 

cetuximab, and in pancreatic cancer, dimerization of EGFR and HER3 was 

reported to be necessary for downstream signalling39.

Further LASSO and binominal logistic regression analysis of these protein 

biomarkers delivered a refined protein signatures for predicting responses 

to cetuximab. Given that many of the identified markers in our signature 

are predicted to regulate cell proliferation, we also investigated a 

previously published, transcriptome-based proliferation score as to its 

predictive power24, 25. Using this score, we also found a significant 

correlation between cetuximab responses and the transcriptome-based 

proliferation score across all 63 PDX models investigated. Although the 

focus of our study was the delivery of a (phospo)protein signature, 

combining our protein score with the transcriptome-based proliferation 

score did not further increase the predictive power  of the protein 

Page 50 of 63

John Wiley & Sons, Inc.

International Journal of Cancer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page | 21

signature, suggesting that the signature was sufficient to describe the 

proliferation status of the PDX models in relation to cetuximab responses.

We also found that responses to cetuximab were dependent on protein 

clusters identified through unsupervised cluster analysis. One of the 

clusters, protein cluster 3 (C3), represented a cluster without progressing 

PDX models. C3 was characterised by PDK1-dependend active AKT 

signalling and inhibition of the cell cycle. The largest protein cluster (C1) in 

contrast showed mixed responses, and was characterised by genotoxic 

stress, inflammation and cell survival signalling. Cluster C2 was also 

composed of mixed responders and characterised by active EGFR 

signalling and inhibition of apoptosis. Compared to PDX models in C1 and 

C2, PDX models in C3 had lower levels of phosphorylated MEK1/2 

(S217/221). This suggests that cetuximab-resistant models in C1 and C2 

may potentially benefit from MEK inhibitors. We also explored the 

relationship between protein clusters and transcriptome-based molecular 

subtypes. CRIS molecular subtypes capture very well differences in 

intrinsic tumour cell gene expression13. CRIS-C was previously associated 

with sensitivity to cetuximab13, potentially a consequence of the lower 

representation of KRAS and NRAS mutations in this subtype13. We did not 

find that any of the three protein clusters showed a significant association 

with CRIS molecular subtypes. We also found that, when focusing on 

KRAS, NRAS, BRAF and PIK3CA wild type models, CRIS-C was not 

enriched in cetuximab responders (Figure 1D). Overall, this suggests that 

sensitivity to anti-EGFR therapy is predicted well by an analysis of 

(phospho)protein clusters.
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While we observed that increased proliferative capacity was associated 

with disease progression during cetuximab treatment (Figure 4J), 

competence to undergo mitochondrial apopotosis was not a major 

determinant of cetuximab responses. Both the DR_MOMP and APOPTO-

CELL apoptosis models have been shown to be prognostic for stage II and 

III CRC patients, but have not yet not been tested in the setting of 

metastatic CRC17, 31. 

Our data suggest that resistance to mitochondrial apoptosis is not critical 

for responses of metastatic CRC to cetuximab. While cetuximab was 

shown to induce apoptosis to a minor extent in colorectal cancer cells in 

previous studies40, combination therapy for example with regorafenib has 

been shown to be required for significant apoptosis induction by 

cetuximab41. In the setting of colorectal cancer, we have previously also 

shown that activation of Caspase-3 may be associated with a 

compensatory stimulation of cancer cell proliferation and adverse effects 

on clinical outcome42. Here, we also observed that PDX models with 

progressing tumours tended to have higher levels cleaved Caspase-3 

compared to models with stable or regressing tumours (Figure 2). It might 

be possible that activating apoptosis may have both beneficial and 

detrimental effects in the setting of metastatic CRC.

By comparing matched pre- and post-treatment samples, we also found 

that levels of GSK-3β (S9) were reduced in tissue after cetuximab 

treatment. The Glycogen synthase kinase 3β (GSK-3β) is a key player in 

the β-catenin/Wnt signalling pathway but also phosphorylates various 

transcription factors and structural, metabolic and signalling proteins43, 44. 
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Inhibition of GSK-3β activity by phosphorylation at Ser945 is a critical factor 

to allow many coupled signalling pathways to proceed43, 44. 96% of CRCs 

harbour increased oncogenic Wnt pathway alteration46 and dysregulation 

of GSK-3β signalling is associated with cancer and metabolic and 

degenerative disorders47. Inhibition of GSK-3β was reported to induce 

apoptosis and attenuated proliferation in colon cancer cells in vitro48 and in 

colon cancer xenografts49. It is possible that inhibition of GSK-3β would be 

desirable co-treatment with cetuxiumab. Lithium, which also acts as an 

inhibitor of GSK-3β50, was reported to supress cell proliferation in prostate 

cancer xenographs51 and may inhibit colon cancer metastatsis by blocking 

transforming growth factor-β-induced protein (TGFBIp) expression52 

downstream of GSK-353. Combining cetuximab with lithium or other GSK-

3 inhibitors may improve response to cetuximab.

In conclusion, we present here a 14 (phospho)protein marker signature 

that was predicting responses to cetuximab in mCRC tissue. Likewise, our 

findings emphasises GSK-3β to be potentially targetable for a co-

treatment with cetuximab.
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671 Figure Legends

672 Figure 1

673 (A) Heatmap of protein levels determined by RPPA. PDX models were annotated 

674 with the, CRIS, the consensus protein cluster subtype, and response to cetuximab 

675 (top). Clustering was performed using Nonnegative Matrix Factorization (NMF) 

676 consensus clustering algorithm. The right annotations indicates proteins’ 

677 association to the protein clusters (Supplementary Figure 1). Chord diagrams show 

678 overlap between RPPA clusters and (B) response to cetuximab and (C) CRIS, and 

679 (D) overlap between CRIS and response to cetuximab.

680 Figure 2

681 Protein scores indicating proteins’ association to the PDX models’ response to 

682 cetuximab. Proteins’ scores for response to cetuximab after 3 week was calculated 

683 using PAM 27.

684 Figure 3

685 (A) Heatmap of Spearman’s rank correlation coefficients for proteins associated 

686 with differences in response to cetuximab from Figure 2. (B) Undirected graph of 

687 proteins found to be relevant in LASSO analysis. Intensity and colour of the edges 

688 indicate the correlation coefficient of (A). Grouping based on the signs of the 
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689 correlation coefficients and signs of the coefficients found by LASSO are indicated 

690 black & white nodes and plus & minus icons, respectively. (C) Protein found to be 

691 differential expressed in PDX models after treatment with cetuximab, based on 

692 pairwise comparison and Benjamin & Hochberg adjusted p-value. Dashed red lines 

693 indicate 0.05 significance threshold for p-value, and 2-fold or 1/2-fold protein level. 

694 The protein marker names and n-fold differences (treated to un-treated) in brackets 

695 were added for proteins passing all thresholds.

696 Figure 4

697 (A) Simplified illustration of the apoptotic signalling modelled in DR_MOMP and 

698 APOPTO-CELL. Absolute protein levels normalised to HeLa cells were measured 

699 using RPPA and used as input for (B) DR_MOMP and (C) APOPTO-CELL. 

700 Calculated DR MOMP values against (D) APOPTO-CELLs’ calculated substrate 

701 cleavage class with (E) differences in response to cetuximab, (F) RPPA protein 

702 cluster C3 and (G) CRIS. Calculated proliferation against (H) protein clusters, (I) 

703 CRIS and (J) response to cetuximab.
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(A) Heatmap of protein levels determined by RPPA. PDX models were annotated with the, CRIS, the 
consensus protein cluster subtype, and response to cetuximab (top). Clustering was performed using 

Nonnegative Matrix Factorization (NMF) consensus clustering algorithm. The right annotations indicates 
proteins’ association to the protein clusters (Supplementary Figure 1). Chord diagrams show overlap 

between RPPA clusters and (B) response to cetuximab and (C) CRIS, and (D) overlap between CRIS and 
response to cetuximab. 
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Protein scores indicating proteins’ association to the PDX models’ response to cetuximab. Proteins’ scores for 
response to cetuximab after 3 week was calculated using PAM[27]. 
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(A) Heatmap of Spearman’s rank correlation coefficients for proteins associated with differences in response 
to cetuximab from Figure 2. (B) Undirected graph of proteins found to be relevant in LASSO analysis. 

Intensity and colour of the edges indicate the correlation coefficient of (A). Grouping based on the signs of 
the correlation coefficients and signs of the coefficients found by LASSO are indicated black & white nodes 
and plus & minus icons, respectively. (C) Protein found to be differential expressed in PDX models after 
treatment with cetuximab, based on pairwise comparison and Benjamin & Hochberg adjusted p-value. 

Dashed red lines indicate 0.05 significance threshold for p-value, and 2-fold or 1/2-fold protein level. The 
protein marker names and n-fold differences (treated to un-treated) in brackets were added for proteins 

passing all thresholds. 
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(A) Simplified illustration of the apoptotic signalling modelled in DR_MOMP and APOPTO-CELL. Absolute 
protein levels normalised to HeLa cells were measured using RPPA and used as input for (B) DR_MOMP and 
(C) APOPTO-CELL. Calculated DR MOMP values against (D) APOPTO-CELLs’ calculated substrate cleavage 
class with (E) differences in response to cetuximab, (F) RPPA protein cluster C3 and (G) CRIS. Calculated 

proliferation against (H) protein clusters, (I) CRIS and (J) response to cetuximab. 
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