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Abstract: Insulin resistance (IR) is defined as a lower-than-expected response to insulin action from 

target tissues, leading to the development of type 2 diabetes through the impairment of both glu-

cose and lipid metabolism. IR is a common condition in subjects with nonalcoholic fatty liver dis-

ease (NAFLD) and is considered one of the main factors involved in the pathogenesis of nonalco-

holic steatohepatitis (NASH) and in the progression of liver disease. The liver, the adipose tissue 

and the skeletal muscle are major contributors for the development and worsening of IR. In this 

review, we discuss the sites and mechanisms of insulin action and the IR-related impairment along 

the spectrum of NAFLD, from simple steatosis to progressive NASH and cirrhosis.  
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1. Introduction 

Insulin resistance (IR) is defined as a lower-than-expected response to insulin action 

from target tissues, resulting in the impairment of both glucose and lipid metabolism at 

different levels and predisposing to the development of type 2 diabetes mellitus (T2DM) 

[1]. IR is a metabolic abnormality often observed in subjects with nonalcoholic fatty liver 

disease (NAFLD), and it has been considered one of the major determinants in the 

pathogenesis of nonalcoholic steatohepatitis (NASH) as well as in the progression of liver 

disease. The main sites involved in IR are the skeletal muscle, the liver and the adipose 

tissue; the active crosstalk between these organs is likely to be a major contributor to the 

development of NAFLD and NASH. 

In this review, we discuss the sites and mechanisms of insulin action and IR-related 

impairment along the spectrum of NAFLD, from simple steatosis to progressive NASH 

and cirrhosis.  

2. Metabolic Effects of Insulin 

Insulin is synthesized in pancreatic β-cells of the Langerhans islets as a single chain 

precursor, pre-proinsulin; subsequently, the removal of a signal peptide in the endo-

plasmic reticulum generates proinsulin. Proinsulin consists of three domains: an ami-

no-terminal B chain, a carboxy-terminal A chain and a connecting peptide (CP) in the 

middle. Within the endoplasmic reticulum, proinsulin is exposed to the action of specific 

endopeptidases that cleave the CP, generating the mature form of insulin. In the post-

prandial state, when the beta cells are stimulated, insulin is released by exocytosis into 

the bloodstream, where it maintains blood glucose homeostasis by promoting glucose 

uptake in several tissues, favoring anabolic metabolism. 

The biological action of insulin takes place through the interaction between insulin 

and its specific receptor. The insulin receptor is a glycosylated tetramer consisting of two 

Citation: Armandi, A.; Rosso, C.; 

Caviglia, G.P.; Bugianesi, E. Insulin 

Resistance across the Spectrum of 

Nonalcoholic Fatty Liver Disease. 

Metabolites 2021, 11, 155. https:// 

doi.org/10.3390/metabo11030155 

Academic Editor: Thusitha W.  

Rupasinghe 

Received: 11 January 2021 

Accepted: 1 March 2021 

Published: 8 March 2021 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Metabolites 2021, 11, 155 2 of 16 
 

 

extracellular subunits (alpha) and two transmembrane subunits (beta) with tyrosine ki-

nase activity. Insulin binding promotes the autophosphorylation of the receptor and 

subsequent tyrosine phosphorylation of insulin receptor substrate (IRS) proteins (IRS-1 

and IRS-2), which initiate a cascade of events and promote anabolic effects in several 

organs and tissues [1]. 

Sites and Mechanisms of Insulin Action and Insulin Resistance 

Several factors, such as hyperinsulinemia and hyperglycemia, together with in-

creased free fatty acid (FFA) concentrations and proinflammatory cytokine levels, may 

alter insulin signaling in different tissues. These metabolic alterations, which lead to the 

development and worsening of IR, are common in obese subjects as well as in patients 

with NAFLD and predispose to the development of T2DM. Despite the primary site of IR 

being questionable, a growing body of evidence indicates that the periphery plays an 

important role in the onset of IR, in addition to hepatic steatosis, which exacerbates it [2]. 

In the skeletal muscle of healthy subjects, insulin activates intracellular signaling through 

the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)/mammalian target of 

rapamycin (mTOR) pathway, thus promoting the expression and translocation of glucose 

transporter type 4 (GLUT4) from the cytoplasm to the cell membrane. After a glucose 

load, the absorbed glucose is phosphorylated to glucose-6-phosphate (G6P) by the en-

zyme hexokinase, and, in this form, it can be used in either the glycolytic or tricarboxylic 

acid (TCA) pathway, in order to produce energy in the form of adenosine triphosphate 

(ATP); otherwise, it can be stored as glycogen through glycogen synthesis. In healthy 

subjects, ~75% of the disposed muscle glucose is converted into glycogen, while 20–25% 

enters the glycolytic pathway [3]. Moreover, in the skeletal muscle, insulin promotes 

amino acid (AA) uptake, increases the rate of protein synthesis, and decreases the rate of 

protein degradation. In the insulin-resistant condition, insulin-mediated glucose uptake 

in the postprandial state is impaired [3]. In T2DM, the reduction of glycogen synthase 

activity is an early defect, leading to deranged glycogen synthesis, followed by reduced 

glucose oxidation [4]. Diabetic patients also show an impaired phosphorylation of IRS-1, 

leading to a reduced translocation of GLUT4 and a decreased glucose uptake by the 

muscle [5,6]. IR is associated with a low-grade chronic inflammatory state, which is ob-

served in obese, in diabetic and in NAFLD subjects [7]. Inflammation in myocytes may 

promote muscle IR through the expression of proinflammatory cytokines such as tumor 

necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), which in turn activate the 

protein kinase C (PKC), the c-Jun N-terminal kinase (JNK) and the nuclear factor kap-

pa-light-chain-enhancer of activated B cells (IKK/NF-kB) pathways, thus disrupting in-

sulin signaling [7] (Figure 1). 
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Figure 1. Sites and mechanisms of insulin resistance. Inflamed adipose tissue releases several proinflammatory cytokines 

such as TNF-α, IL6 and IL-1β,which inhibit the insulin receptor, impairing insulin signaling. In the insulin-resistant 

condition, the inadequate suppression of lipolysis (due to the impaired inhibition of PKA) promotes the efflux of free 

fatty acids (FFAs) from the adipose tissue, which reach the liver and the muscle, where they contribute to ectopic fat ac-

cumulation. Abbreviations. Adipose tissue insulin resistance (AT-IR); adipose tissue macrophages (AT-M); protein kinase 

B (Akt); branched-chain amino acids (BCAA); ceramides (CER); DAGs (diacylglycerols); cyclic adenosine monophos-

phate (cAMP); de novo lipogenesis (DNL); FFAs (free fatty acids); factor forkhead box 01 (FOXO1); glycogen phosphor-

ylase (GlyPase); glucose transporter type 4 (GLUT4); interleukin 1-beta (IL-1β); interleukin 6 (IL-6); insulin receptor 

(IRec); IRS1/2 (insulin receptor substrate 1/2); protein kinase A (PKA); mammalian target of rapamycin (mTOR); protein 

kinase C isoform ε (PKCε); phosphodiesterase (PDE); peroxisome proliferator-activated receptor gamma co-activator 1α 

(PGC-1α); phosphatidylinositol 3 kinase (PI3K); ribosomal protein S6 kinase β1 (S6Kβ1); sterol regulatory ele-

ment-binding protein-1c (SREBP-1c); tumor necrosis factor alpha (TNF-α). 

In the liver, endogenous glucose production is not inhibited due to IR, and glycogen 

lysis is active, increasing blood glucose levels. The overload of toxic lipids such as DAGs 

and ceramides activates the PKCεpathway, disrupting insulin signaling and promoting 

gluconeogenesis through the regulation of FOXO1. Moreover, de novo lipogenesis (DNL) 

is increased by the regulation of the mTOR and SREBP-1c pathways; branched-chain 

amino acids (BCAA) can directly activate mTOR, enhancing DNL. In the skeletal muscle, 

IR impairs the release of GLUT4 from intracellular vesicles to the cell membrane, de-

creasing glucose uptake. BCAA can activate the mTOR and PGC-1α pathways, affecting 

the insulin signaling cascade. Similarly, proinflammatory cytokines activate an inflam-

matory cascade through the PKC/JNK/IKK-NF-kB pathway, disrupting insulin signaling. 

Another important cause of IR is the increased amount of FFAs caused by the im-

paired lipolysis in the adipose tissue. In studies performed both in animal models and in 

humans, lipid infusion increases diacylglycerol (DAG) levels and PKC signaling, leading 

to a defective activation of the IRS-1/Akt pathway in the skeletal muscle [8]. An increased 

lipid content in the myocytes has been observed in type 2 diabetic patients as well as in 

their offspring. Diacylglycerols, ceramides and long-chain acyl-CoA are directly involved 

in the development of IR by the inhibition of the Akt pathway, leading to a defective 

glucose uptake [9–12]. Recently, Luukkonen P.K. et al. demonstrated that a diet enriched 
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in saturated FFAs increases ceramide levels in overweight nondiabetic subjects, leading 

to IR by disrupting insulin signaling [13]. 

Insulin also exerts its activity through branched-chain amino acids (BCAA) (espe-

cially leucine), leading to opposite responses: on one hand, leucine can potentiate insulin 

action through the phosphorylation of IRS and Akt/mTOR [14,15]; on the other hand, 

high leucine levels can activate mTOR through the ribosomal protein S6 kinase β1 

(S6Kβ1), leading to an impairment of insulin signaling, thus promoting IR [16,17]. BCAA 

can also impair mitochondrial function through the downregulation of peroxisome pro-

liferator-activated receptor gamma co-activator 1α (PGC-1α)-responsive genes, involved 

in mitochondrial oxidative phosphorylation [18]. Specifically, PGC-1α enhances valine 

catabolism, leading to the production of the intermediate 3-hydroxyisobuterate (3-BOH) 

that, in turn, acts as a paracrine factor, reducing insulin sensitivity by inhibiting Akt 

phosphorylation in C2C12 myotubes [18]. Of note, acylcarnitine, a product of the in-

complete oxidation of both BCAA and free fatty acids (FFAs), can induce oxidative stress, 

thus interfering with insulin signaling [19,20]. 

In the liver, glucose can be 1. oxidized for energy in the glycolytic pathway, 2. me-

tabolized to CO2 and H2O through the tricarboxylic acid (TCA) pathway or 3. stored as 

glycogen via glycogen synthesis. Most of the glucose (about 88%) enters the third meta-

bolic pathway; it is phosphorylated to G6P and contributes to the hepatic glycogen de-

pots [21]. The amount of glycogen in the liver is higher compared to that in the skeletal 

muscle [21]. During fasting, glucose homeostasis is maintained by hepatic glucose pro-

duction (HGP), which has two main components: glycogen lysis and gluconeogenesis. 

The lysis of glycogen is regulated by the enzyme glycogen phosphorylase through the 

phosphorylation and activation of protein kinase A (PKA) and by the enzyme phos-

phoglucomutase, which regulates the release of glucose-1-phosphate from the glycogen 

molecule and its conversion to G6P. After a glucose load, the activation of PKB in the 

insulin receptor cascade leads to the inhibition of gluconeogenic enzymes via the phos-

phorylation of FoxO1 and to the inactivation of the enzyme glycogen synthase kinase 3β 

(GSK3β), which regulates glycogen synthesis [22,23]. When glycogen depots gradually 

decrease, gluconeogenesis becomes the most important source of glucose [24]. Glucone-

ogenesis is the synthesis of glucose from noncarbohydrate carbon substrates such as 

lactate, pyruvate or alanine. It is activated by the induction of the enzymes pyruvate 

carboxylase (PK) and phosphoenolpyruvate carboxykinase (PEPCK); the latter is inhib-

ited by insulin through Akt/transcription factor forkhead box 01 (FoxO1) phosphoryla-

tion. Nuclear magnetic resonance (NMR) 13C spectroscopy combined with the infusion 

of labelled glucose tracers revealed that after 22, 46 and 64 h of fasting, gluconeogenesis 

significantly increases from 64% to 82% to 96% and is a major contributor to the HGP in 

healthy subjects [24]. 

The excess of glucose is converted into FFAs through the de novo lipogenesis (DNL) 

pathway, which is regulated by the transcriptional factors sterol regulatory ele-

ment-binding protein-1c (SREBP-1c) and carbohydrate response element binding protein 

(ChREBP) by the activation of the transcription of several genes involved in lipogenesis 

such as acetyl-CoA carboxylase, fatty acid synthetase, acetyl-CoA synthetase and 

ATP-citrate lyase [25,26]. Diabetic patients are characterized by a defect in glycogen 

synthesis, which contributes to the increased risk of hypoglycemia during night, and by a 

20-fold higher gluconeogenesis when compared to healthy subjects [27]. Several molec-

ular mechanisms play a role in the development of IR in the liver. The impairment of 

FOXO1 regulation contributes to the increase in gluconeogenesis in patients with T2DM 

through the increased synthesis of gluconeogenic enzymes [28]. The upregulation of 

FOXO1 in obese mice leads to IR; conversely, mice knocked out for FOXO-1 show an 

improvement in insulin sensitivity and normalization of glucose tolerance [29]. 

Recently, it has been reported that PGC-1α is able to affect IRS-1 and IRS-2 expres-

sion, impacting normal glucose homeostasis [30]. Mice fed with a high fat diet show an 

increase in hepatic DAG content, and DAG can activate PKCε, the primary PKC isoform 
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in the liver [31]. Accordingly, the ectopic lipid accumulation both in the liver and in the 

muscle, due to adipose tissue IR, leads to the activation of the DAG/PKCε axis in the 

liver, which in turn inhibits insulin signaling [32]. The association between DAG levels 

and IR in humans is controversial, and further studies are necessary to understand which 

lipid species could be considered a signature of IR-associated conditions [33,34]. 

The adipose tissue is the third major site of insulin action and influences both glu-

cose and lipid homeostasis by releasing adipokines, proinflammatory cytokines and 

FFAs. The most important role of insulin in the adipose tissue is to suppress lipolysis, a 

process in which triglycerides are hydrolyzed into glycerol and FFAs, in turn used to 

provide energy during fasting. Briefly, insulin activates the IRS/PI3K/Akt pathway, thus 

promoting the phosphorylation of phosphodiesterase 3B, which in turn converts cyclic 

adenosine monophosphate (cAMP) into 5’-AMP. The reduction in cAMP decreases the 

phosphorylation of PKA and reduces the lipolysis rate [35]. Insulin-stimulated glucose 

disposal in the adipose tissue is negligible when compared to that in the skeletal muscle, 

but FFAs that are released into the bloodstream impact glucose homeostasis, exacerbat-

ing muscle IR. 

The second metabolic pathway regulated by insulin in the adipose tissue is lipo-

genesis, which leads to the accumulation of triglycerides in the adipocytes [27]. Excess 

food intake and energy storage leads to hypertrophic and inflamed adipose tissue. Sev-

eral proinflammatory factors such as TNF-α, IL-6 and IL-1β are overexpressed in en-

larged adipocytes compared to smaller ones, linking hypertrophic obesity to IR [36,37]. 

TNF-α promotes the serine phosphorylation of IRS-1, decreasing its association with 

PI3K, thus disrupting insulin signaling [38] (Figure 1). In the IR condition, the activation 

of PKA by cAMP leads to the phosphorylation of hormone-sensitive lipase (HSL) and 

perilipin; the subsequent translocation of HSL from the cytosol to the lipid droplet sur-

face enhances lipolysis. The result of the impaired suppression of lipolysis is an increased 

release of FFAs and glycerol into the bloodstream and ectopic fat accumulation [38]. 

Among ectopic lipids, toxic species such as DAG and ceramides can disrupt insulin sig-

naling by inhibiting insulin receptor and Akt activation [39]. Adipose tissue IR has also 

been linked to mitochondrial dysfunction and mitophagy; decreased mitochondrial bio-

genesis and reduced mitochondrial oxidative protein content lead to a reduced oxidative 

capacity [40,41]. 

3. Insulin Resistance in Nonalcoholic Fatty Liver Disease 

3.1. Relation between Hepatic Steatosis and Insulin Resistance 

The association between NAFLD and IR has been widely investigated. The preva-

lence of IR is high in NAFLD and even higher in subjects with NASH compared to those 

with simple steatosis [42]; to date, IR is considered the main pathogenetic mechanism 

involved in the onset of NAFLD and its progression to NASH [43–45]. In the IR state, fat 

accumulation in the liver is caused by the impaired uptake, synthesis, export and oxida-

tion of FFAs. In NAFLD subjects, the amount of hepatic steatosis correlates with in-

creased plasma levels of FFAs due to the impaired suppression of lipolysis from the ad-

ipose tissue; subcutaneous adipose tissue represents a major source of intrahepatic fat 

(~62–82% of intrahepatic triglycerides). This mechanism is independent of obesity and 

diabetes, as it has also been demonstrated in nonobese, nondiabetic NAFLD patients; in 

the latter group, IR affects HGP, glucose disposal (glycogen synthesis and glucose oxi-

dation), lipolysis and lipid oxidation. Although visceral fat is not the main supplier of 

circulating FFAs, it represents the main source of inflammatory cytokines reaching the 

liver, as confirmed by the correlation between IL-6 and C-reactive protein levels in the 

portal vein [46,47]. 

In the insulin-resistant condition, the liver loses its ability to suppress HGP in re-

sponse to insulin and enhances DNL through the activation of the Notch signaling 

pathway [48]. This explains, on one hand, the increase in DNL that, in NAFLD patients, is 
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5-fold higher when compared to that in healthy subjects (26 vs. 5%, respectively) and, on 

the other hand, the predisposition to diabetes in subjects with NAFLD [48]. 

3.2. Insulin Resistance in the Progression from Simple Steatosis to Nonalcoholic Steatohepatitis 

and Fibrosis 

The development of NASH has been linked to a variety of factors, including nutrient 

intake, endocrine derangements (insulin, leptin, adiponectin and ghrelin), alterations in 

gut microbiota (endotoxemia) and epigenetic factors, possibly acting on a genetic pre-

disposition [49]. Unfortunately, the molecular mechanisms leading to NASH and fibrosis 

development have not been fully elucidated yet. Hepatic triglyceride depositions into li-

pid droplets are considered a sort of inert storage; notwithstanding this, excessive lipid 

overload may enhance lipid oxidation and reactive oxygen species (ROS) release, making 

the liver susceptible to the action of proinflammatory factors. In obese and in diabetic 

patients, ROS levels correlate with the C-reactive protein concentration as well as fi-

brinogen levels, suggesting a subclinical proinflammatory state [49,50]. In NAFLD, the 

saturated FFA palmitate seems to play an important role in the progression of liver 

damage; it is synthesized in the DNL pathway and is able to trigger fibrogenesis in the 

liver through the activation of hepatic macrophages [51]. 

Several factors are able to mediate liver damage in patients with NAFLD; some of 

these are synthesized by the liver, while others are released by the adipose tissue and 

exert their effects in a paracrine way [52]. The liver is the main source of selenoprotein P 

(SeP), a selenium carrier protein with antioxidant properties. SeP is regulated by hyper-

glycemia and is able to induce IR, disrupting glucose homeostasis, thus favoring the de-

velopment of T2DM [52]. Recently, we found that circulating SeP increases according to 

the degree of hepatic steatosis and to the stage of fibrosis in nondiabetic patients with 

NAFLD, suggesting its potential role in the onset of NASH and progression to fibrosis 

[53]. 

Leptin is a peptide hormone that is released by adipocytes and plays a role in the 

regulation of food intake and bodyweight. In the setting of NAFLD, leptin may be ex-

pressed by activated hepatic stellate cells (HSCs) and by Kupffer cells (KCs), contributing 

to hepatic fibrogenesis, thus enhancing HSC signal transduction [49,54]. Specifically, 

leptin stimulates the transcriptional activation of both the α1(I) and α2(I) fibrils, which 

are major components of dense extracellular matrix (ECM). Furthermore, leptin promotes 

the synthesis of the matrix metalloproteinase-2 (MMP-2), tissue inhibitor matrix metal-

loproteinase 1 (TIMP-1), TIMP-2, and alpha-smooth muscle actin (α-SMA) transcripts, all 

involved in the pathogenesis of liver fibrosis [55,56]. Finally, leptin protects HSCs against 

apoptosis [55]. Although higher leptin levels were found in patients with NAFLD com-

pared to healthy controls, its role in the pathogenesis of NASH has not been fully eluci-

dated. 

Insulin-like growth factor 1 (IGF-1) is a hormone very similar to insulin in its mo-

lecular structure. IGF-1 is expressed primarily by the liver under the control of growth 

hormone, and it circulates linked to IGF-binding protein 3 (IGFBP-3). IGF-1 is involved in 

hepatocyte differentiation, proliferation and apoptosis [57]. A recent meta-analysis 

showed that IGF-1 levels are reduced in NAFLD patients compared to healthy controls, 

suggesting a potential role as a therapeutic target [58]. Moreover, Hagstrom et al. found 

low IGF-1 levels in patients with severe fibrosis (F ≥ 3) compared to those with ab-

sent/mild fibrosis [59]. Even though the molecular mechanisms linking IGF-1 and the 

progression of liver damage in the setting of NAFLD have not been elucidated yet, recent 

data describe a novel role of IGF-1 in regulating stress-induced hepatocyte premature 

senescence in liver fibrosis. Specifically, IGF-1 is able to attenuate the oxidative 

stress-induced premature senescence of hepatocytes in mice through the inhibition of the 

interaction between nuclear p53 and progerin, a truncated version of the lamin A protein, 

improving hepatic steatosis and fibrogenesis [60]. 
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The liver is the main target for adiponectin, the most abundant adipocytokine syn-

thesized by the adipose tissue [61]. Low adiponectin levels are associated with steatosis, 

inflammation and fibrosis in the liver [61]. Specifically, circulating adiponectin decreases 

in obese subjects as well as in fibrotic patients with NAFLD. Adiponectin exerts an anti-

fibrotic action by reducing HSC activation and proliferation; in addition, it favors matrix 

degradation, reducing the molecular ratio of MMP-1 to TIMP-1, antagonizing lep-

tin-mediated signaling in hepatic fibrogenesis [62]. This potent profibrogenic effect of 

leptin may contribute to the endothelial alteration of hepatic sinusoids, whose fenestra-

tions are progressively replaced by an organized basement membrane. This process, 

known as the “capillarization” of hepatic sinusoids, is one of the major parenchymal al-

terations that drive the liver to an architecture causing portal hypertension [63,64]. 

In the past few years, genome-wide association studies have led to the identification 

of several genes related to NAFLD, NASH, and their complications including hepato-

cellular carcinoma (HCC). In 2008, Romeo et al. [65] described a single-nucleotide poly-

morphism (SNP) in the patatin-like phospholipase domain-containing 3 (PNPLA3) gene, 

which encodes the triglyceride lipase adiponutrin and strongly affects fat accumulation 

in the liver through mechanisms independent of IR. The PNPLA3 rs738409 (G) risk allele, 

found in ~40% of the European population, can also increase, threefold, the risk of pro-

gression to NASH and, most importantly, twelve-fold, the risk of developing HCC [66]. 

In subsequent years, other SNPs have been associated with increased hepatic fat 

accumulation and, thus, the progression of liver disease. The most important genetic 

variants are the rs58542926 C > T located in the transmembrane 6 superfamily member 2 

(TM6SF2) gene and the rs641738 C > T located in the membrane-bound 

O-acyl-transferase domain-containing 7 (MBOAT7) gene, which favor hepatic fat accu-

mulation in intracellular lipid droplets via different mechanisms, increasing the suscep-

tibility to inflammation, NASH and fibrosis [67]. 

4. Insulin Resistance in Advanced Liver Disease 

4.1. Insulin Resistance and Cirrhosis 

Liver cirrhosis represents the final stage of the natural history of any chronic liver 

disease. The parenchymal structure becomes progressively subverted by regenerative 

nodules and fibrosis septa. Its course is indolent, until portal hypertension develops from 

persistent splanchnic hemodynamic changes and the disruption of intrahepatic sinus-

oids. Portal hypertension paves the way to systemic damage and the onset of clinical 

manifestations of liver disease. In addition, the presence of cirrhosis itself constitutes the 

proinflammatory ground where hepatocellular carcinoma (HCC) can develop, along 

with etiology-driven additional damage. 

In patients with NAFLD-related cirrhosis, IR represents the primum movens of the 

chronic liver disease. On the other hand, it is known that all cirrhotic patients are prone to 

being insulin resistant, irrespective of the etiology, because cirrhosis itself may lead to 

alterations in glucose metabolism [68–70]. Nevertheless, IR as assessed by the homeosta-

sis model of assessment of insulin resistance (HOMA-IR) index may differ according to 

the cause of cirrhosis, being higher in NAFLD- and HCV-related chronic hepatitis, com-

pared to alcohol- and HBV-related disease [71]. Specific hepatokines can contribute to IR, 

such as selenoprotein-P, which has a direct influence on insulin action in skeletal muscle 

in NAFLD subjects [72]. Furthermore, cytokines secreted by the liver, as a consequence of 

the persistent necroinflammatory activity, such as TNF-α and IL-6, can also induce IR 

[73]. In cirrhotic patients, multiple distortions are involved in the onset of IR (Figure 2). 
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Figure 2. Crosstalk between the cirrhotic liver and peripheral tissues in determining insulin resistance. Abbreviations. 

Advanced glycation end product (AGE); hypoxia-inducible factor 1-alpha (HIF-1α); interleukin-6 (IL-6); lipopolysaccha-

ride (LPS); tumor necrosis factor-alpha (TNF-α). 

In cirrhosis, impaired hepatocyte functionality and portal hypertension cause re-

duced insulin extraction, with subsequent hyperinsulinemia. In addition, glucagon is not 

properly metabolized, with persistent hyperglycemia. The cirrhosis-related chronic in-

flammatory state worsens insulin resistance by the secretion of cytokines (TNF-α and 

IL-6) and by enhancing a persistent hypoxic state, with the activation of HIF-1α. In re-

turn, the increased insulinemia contributes to sinusoid capillarization, favoring portal 

hypertension. The cirrhosis-induced hypercatabolic condition and congestive enteropa-

thy cause hyperammonemia and impaired gut permeability, with subsequent endotox-

emia and the activation of Toll-like receptors. These factors directly impact insulin sensi-

tivity, but also skeletal muscle activity, leading to sarcopenia and fat infiltration (my-

osteatosis), with reduced glycogen synthesis. Advanced glycation end products (AGEs) 

are not properly metabolized by the liver, with increased toxic damage to the pancreas. 

Finally, all the derangements impact the pancreas, where oxidative stress and glucose 

toxicity cause progressive damage to beta cells, whose impairment is crucial for devel-

oping overt diabetes. 

The augmented blood levels of insulin in end-stage liver disease are an effect of liver 

function impairment. Moreover, portal hypertension is thought to be another crucial 

driver of hyperinsulinemia. Due to the parenchymal alterations in advanced cirrhosis, 

the splanchnic blood flow cannot be properly conveyed throughout the liver. Hence, the 

blood is pumped in secondary small vessels that drive the flow from the portal vein to 

the systemic circulation. These vessels constitute the so-called “portosystemic shunts” 

that are responsible for conveying metabolites inside the systemic circulation, bypassing 

hepatocyte extraction. Likewise, high levels of insulin, coming from the splanchnic cir-

culation, are not properly metabolized inside the liver and directly cause systemic hy-

perinsulinemia. 

The two counterparts work in parallel and with a synergic effect. In mouse models 

undergoing partial hepatectomy, insulin levels dramatically increase [74], even in the 

absence of significant portal hypertension; when portosystemic shunts are suppressed in 
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advanced liver disease, insulin clearance is ameliorated, suggesting a role of portal hy-

pertension in determining IR [75]. Similarly, contra-insulin hormones, such as glucagon, 

are not adequately metabolized by damaged hepatocytes and persistently stimulate 

glucose production. 

One of the most typical features of cirrhotic patients is malnutrition, due to both 

decreased nutrient intake and diminished protein synthesis in a persistent catabolic state. 

The reduction of liver glycogen leads to an accelerated fasting condition and a parallel 

increase in gluconeogenesis, mainly driven by amino acids from muscle proteins. All 

these factors inevitably lead to skeletal muscle wasting and sarcopenia, a well-known 

hallmark of cirrhosis associated with poor prognosis [76]. 

Increased levels of ammonia are a common finding in advanced liver disease, de-

pending on both impaired hepatocyte metabolism and portosystemic shunts. Hyper-

ammonemia directly affects skeletal muscle, stimulating the synthesis of myostatin. 

Myostatin seems to be crucial in cirrhosis-induced peripheral IR, as it depletes protein 

mass and induces fat accumulation inside the muscle. This phenomenon, known as 

“myosteatosis”, can downregulate muscle insulin receptor, leading to impaired glucose 

transport and glycogen synthesis [77,78]. 

The transient bacteremia in cirrhosis is due to the congestion of the small and large 

intestine in portal hypertension with altered permeability. A impaired immune response 

facilitates pathogenic strain proliferation [79] and the translocation of gut-derived endo-

toxins (mainly lipopolysaccharide), leading to the activation of Toll-like receptors, in-

volved in the pathogenesis of IR [80]. 

The deterioration of beta-cell function is mainly driven by chronic hyperglycemia, 

which causes toxic damage to the pancreatic islets of Langerhans [81–83]. This process is 

enhanced by the accumulation of advanced glycation end products (AGEs), by inducing 

oxidative stress. The liver is involved in the clearance of AGEs; in cirrhosis, these prod-

ucts may not be properly metabolized, thus boosting oxidative stress in beta cells [84]. 

One further worsening factor is constituted by the systemic low-grade hypoxia induced 

by cirrhosis and related to the severity of the disease [85]. Chronic liver tissue injury and 

the persistence of alterations in normal intrahepatic vascular perfusion are responsible 

for the hypoxic parenchymal microenvironment. Moreover, the ineffective liver clearance 

of vasodilating agents (e.g., nitric oxide), coming from the splanchnic circulation, may 

affect pulmonary regulatory function, resulting in diffusion–perfusion defects and per-

sistent capillary dilation, contributing to systemic hypoxemia. 

The subsequent activation of hypoxia-inducible factors (mainly HIF-1α) can trigger 

an inflammatory response in beta cells, as well as directly altering glucose metabolism 

[86], contributing to the development of overt diabetes. 

4.2. Hepatogenous Diabetes 

About 80% of cirrhotic patients become glucose intolerant, and nearly 20% of them 

develop frank diabetes [87]. In 1906, diabetes arising in cirrhosis was renamed “hepato-

genous diabetes” to distinguish this entity from type 2 diabetes [88]. Hepatogenous dia-

betes shares neither the same risk factors of type 2 diabetes (family history, obesity and 

older age) nor the same complications (mainly micro- and macrovascular damage) [89]. 

The onset of hepatogenous diabetes is relatively more rapid compared to that of type 2 

diabetes, as up to 20% of cirrhotic patients develop hyperglycemia within 5 years [90,91]. 

This form of diabetes often presents with normal glucose levels (due to impaired glucose 

metabolism) and normal glycated hemoglobin (due to the reduced lifespan of erythro-

cytes) [92,93]. As a result, the presence of diabetes can only be suspected based on high 

glycated hemoglobin levels in a small proportion of patients. Interestingly, fructosamine 

measurement, which reflects the glycemic status over 2–4 weeks, seems to be more ac-

curate for the evaluation of glycemic control in this population [94]. 
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In hepatogenous diabetes, the specific pathophysiological pathways include im-

paired insulin sensitivity, which represents an early event, and subsequently beta-cell 

dysfunction, essential for the transition to frank diabetes [88]. 

The interplay between peripheral tissues and the liver is crucial in determining the 

phenotype. One seminal Australian study conducted in 1980 found that the liver pro-

duction of endogenous glucose was markedly reduced in cirrhotic patients, even in those 

without diabetes, as a consequence of glucose intolerance driven by peripheral (muscle) 

IR, while the liver was hypersensitive to insulin action [95]. One subsequent study from 

Petrides et al. demonstrated a reduction of glycogen synthesis in the muscle [96]. As cir-

rhosis progresses, there is no further worsening of IR: in one study conducted in 2016 on 

300 pretransplant patients, the proportions of individuals with diabetes, with respect to 

those without diabetes or with prediabetes, did not differ among the different grades of 

cirrhosis severity [97]. 

Hepatogenous diabetes does not affect short-term survival but seems to be associ-

ated with higher mortality in long-term periods [98–100], mainly driven by portal hy-

pertension rather than the micro-/macrovascular complications of diabetes. Indeed, few 

patients develop retinopathy, as well as cardiovascular events [89]. 

Different longitudinal studies conducted on cirrhotic patients have assessed the role 

of diabetes in reducing transplantation-free survival (Table 1), with discordant results. 

Table 1. Longitudinal studies conducted on cirrhotic patients evaluating the impact of diabetes on 

liver-related events and mortality. *Decompensated cirrhosis; **not significant according to mul-

tivariate analysis. 

Study 
Year of 

Publication 

Number of 

Patients 

Follow-Up 

(Months) 
Outcome 

Bianchi et al. [98] 1984 382 * 37 death (HR = 2.30, p = 0.019) 

Moreau et al. [99] 2004 75 * 18 death (HR = 2.20, p = 0.03) 

Sangiovanni et al. [101] 2006 214 204 not significant 

Berman et al. [102] 2011 447 * 3 not significant 

Quintana et al. [100] 2011 110 30 death (OR = 3.30, p = 0.007) ** 

Elkrief et al. [103] 2014 348 * 60 ascites (OR = 1.70, p = 0.05) 
    bacterial infections (OR = 3.02, p = 0.001) 
    HE (OR = 6.55, p < 0.001) 
    HCC (OR = 1.93, p = 0.016) 
    death (HR = 1.33, p = 0.027) 

Abbreviations. Hepatocellular carcinoma (HCC); hepatic encephalopathy (HE); hazard ratio (HR); 

odds ratio (OR). 

In one French study including 348 decompensated patients, diabetes was inde-

pendently correlated with worse survival in patients with better liver functionality, as 

expressed by a Model for End-stage Liver Disease (MELD) score lower than 10 [103]. 

However, another large study conducted for a median time of 17 years challenged the 

independent impact of diabetes on survival [101]. 

Nonetheless, diabetes can impact the onset and severity of specific liver-related 

complications. Ascites seems to occur more frequently when diabetes is present, irre-

spectively of residual liver functionality [104]. This may be related to the microvascular 

alterations caused by diabetes that occur in the kidney and in the liver, facilitating the 

onset of portal hypertension [75,105]. Similarly, diabetes has been associated with hepatic 

encephalopathy, independently of MELD score [106]. Autonomic neuropathy and im-

paired intestinal motility may accelerate the onset of small intestinal bacterial over-

growth and bacterial translocation, a major causal factor of encephalopathy. Interesting-

ly, the administration of acarbose in patients with cirrhosis and diabetes significantly 

reduced blood ammonia levels, improving psychometric tests for minimal encephalo-

pathy [107]. Diabetes acts in synergy with cirrhosis in conferring a higher risk of bacterial 

infections, as emerged from studies conducted on patients undergoing liver transplanta-

tion [108]. 
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The impact of diabetes on HCC is complex. In one large meta-analysis of 28 pro-

spective studies including cirrhotic patients, diabetes was associated with an increased 

incidence of HCC and HCC-related mortality. Pre-existent diabetes, rather than hepato-

genous diabetes, appeared to have a well-defined impact on the onset of HCC [109]. This 

is crucial when considering HCC in NAFLD-related cirrhosis, where metabolic de-

rangements are the main drivers of both liver damage and carcinogenesis, even in 

noncirrhotic NAFLD patients [110]. 

Liver transplantation may improve or reverse diabetes, but this positive effect is 

counterbalanced by the susceptibility to developing diabetes due to immunosuppressive 

therapy and changes in nutritional habits [111–113]. Some studies have reported a suc-

cessful regression of pre-existent diabetes in up to two thirds of cases [114], whereas 

other authors have found a substantial lack of improvement at one-year follow-ups, as 

shown by a markedly low insulin response during the oral glucose tolerance test (OGTT) 

[113]. Abnormalities in glucose tolerance seem to persist after liver transplantation even 

in patients with apparently normal glucose profiles [115]. Grancini et al. proved the cen-

tral role of beta-cell functionality in explaining such discrepancies. In fact, rescued be-

ta-cell functionality after transplantation allowed an increase in insulin bioavailability, 

playing a central role in favoring diabetes regression [116]. On the other hand, beta cells’ 

irreversible secretory defects are mainly responsible for the inefficacy of liver transplan-

tation regarding the improvement of diabetes [116]. 

5. Conclusions 

Insulin resistance is a common feature in NAFLD subjects, and it is considered one 

of the most important “hits” driving the progression from simple steatosis to NASH 

along with lifestyle, genetic predisposition and gut microbiota changes. In the liver, lipid 

overload enhances oxidative stress, leading to mitochondrial dysfunction, which in turn 

exacerbates inflammation and activates inflammatory pathways. 

Insulin resistance is also a common finding in cirrhotic patients, irrespective of eti-

ology. Glucose metabolism disturbances are not easily detected, due to multiple systemic 

perturbations. Careful monitoring is required, particularly of beta-cell residual function-

ality, which is crucial for the transition to overt diabetes and potential reversal after liver 

transplantation. Frank diabetes should be actively managed, as it may impact long-term 

survival and the severity of liver-related events. 
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