Growth Maximizing Government Size, Social Capital, and Corruption

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1779614 since 2021-05-18T19:40:11Z

Published version:
DOI:10.1111/jpet.12508

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Growth Maximizing Government Size and Social Capital

Gaetano Carmeci† Luciano Mauro‡ Fabio Privileggi§

September 29, 2019

Abstract

Our paper intersects two topics in growth theory: the growth maximizing government size and the role of Social Capital in development. We modify a simple OLG framework by introducing two key features: a production function à la Barro (1990) together with the possibility that public officials stole a fraction of public resources under their own control. As underlined by the literature on corruption, Social Capital affects positively public officials’ probability of getting caught stealing. Therefore, in our endogenous growth model such probability is taken as a proxy of Social Capital. We find that maximum growth rates are compatible with Big Government size, measured both in terms of expenditures and public officials, when associated with high levels of Social Capital.

Keywords: Social Capital, Endogenous Growth, Government size, Stochastic OLG model

JEL classification: C61, O41, N9, R5

1 Introduction

The present paper intersects theoretically two topics in growth theory: the growth maximizing government size and the role of Social Capital in development. Decreasing marginal benefits of government expenditures and increasing distortions due to taxation typically leads to an inverted U relationship between growth and government size (Facchini and Melki 2013), known in the literature as B.A.R.S. curve (Barro 1989, 1990; Armey and Arney 1995; Rahn and Fox 1996; Scully 1998, 2003). Although the theoretical approach appears sound and generally accepted the optimal point from a quantitative perspective is very debated. Several empirical works did not clear cut the point over the optimal government size, typically measured as government expenditure relative to GDP. Often in this context the European Nordic Countries (ENC) with large Governments and significant growth rates are taken as outliers or as counter examples to dismiss the entire approach.

†We wish to thank C. Marchese and the participants of the 14th Viennese Conference on Optimal Control and Dynamic Games (Vienna, Austria, July 2018) for insightful and constructive discussion. All remaining errors and omissions are our own sole responsibility.

‡Dept. of Economics, Business, Mathematics and Statistics “Bruno de Finetti”, University of Trieste, Piazzale Europa 1, 34127 Trieste (Italy); gaetano.carmeci@deams.units.it

§Dept. of Political and Social Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste (Italy); luciano.mauro.ts@gmail.com

§Dept. of Economics and Statistics “Cognetti de Martiis”, University of Turin, Lungo Dora Siena 100 A, 10153 Torino (Italy); fabio.privileggi@unito.it

1Sweden, Norway and Denmark.
We believe that another stream of literature that goes under the vast and debated title of Social Capital could contain important contributions to this debate. Among the many definitions of Social Capital one could find, we adhere to the one of Guiso et al. (2011), namely “those persistent and shared beliefs and values that help a group overcome the free rider problem in the pursuit of socially valuable activities”. This definition of Social Capital as civicness is particularly attractive and in line with the empirical literature where several proxy of civicness appear to be related with development and government efficiency. The literature shows that greater participation to civic life and high levels of moral stigma for uncivic behavior are important factors to explain corruption and Government efficiency (Bjørnskov, 2003, 2009, 2011; La Porta et al., 1997; Uslaner, 2004; Zak and Knack, 2001; Hauk and Saez-Martí, 2002; Nannicini et al., 2013).

In particular, we believe that those unwritten social norms might affect the behavior of public officials. However, we depart from the modeling approach which include some utility costs in the utility function due to social stigma, as for example in Guiso et al. (2004). Our idea, instead, is that a society with high levels of civicness is one where corruption and rent seeking behaviors are not tolerate easily. High Social Capital as understood as high trust in people and institutions as well as great level of participation in civic life are thought to foster reporting of public officials’ wrongdoings to public authorities by whistle blowers. Therefore, a positive relationship between the probability of being detected of dishonest public officials and the degree of civicness is expected. We consider this approach as complementary to the utility one and somehow less exposed to criticism implied by an ad-hoc form of utility function.

In more detail, we modify a simple OLG framework (Chapt. 3 in Barro and Sala-i-Martin, 2004) by introducing two key features: a production function à la Barro (1990) and a role for public officials in monitoring the public expenditures for intermediate goods and services supplied to private firms. Specifically, there are two types of workers, private workers employed in a competitive production sector behaving in a standard fashion, and public officials who have the opportunity to steal a fraction of public resources under their own control, subject to a positive probability of being caught and pay a fine. As a consequence, not all the stock of tax revenues raised by the Government reaches private firms as intermediate goods and services, since a fraction of it is being diverted by public officials, thus hampering growth.

As expected, we find that the endogenous growth rate of the economy is affected by the probability of detection and the fine paid by those public officials who have been caught. Moreover, as in Barro (1990), along the BGP the output growth rate turns out to be an Inverted U-Shaped function of the tax rate, thus establishing uniqueness of the optimal tax rate with respect to growth. By performing comparative dynamics on the optimal tax rate, our main result shows that, under certain conditions, if the probability of detection or the fine charged on public officials who are caught stealing, or both, increase, then an increase of the optimal tax rate is required in order to keep the growth rate at its maximum level, provided that also the share of public workers on the total workforce is adjusted (increased) as well. As the probability of detection positively depends on the Social Capital level, we conclude that maximum growth rates are compatible with Big Government size (both in terms of expenditures and public officials) when associated with high levels of Social Capital. When Social capital is low the growth maximizing government size shrinks and vice versa. Social Capital therefore could be the missing dimension accounting for the controversial empirical results on this issue as well as for the ENC case. According to the present model, the highest growth rates experienced by the ENC, despite their well above-the-average OECD countries’ Government size, could be

\[A\] survey on this large literature is beyond the scope of this paper (for a survey see, e.g., Alesina and Giuliano, 2013).
explained by their highest level of Social Capital, which in turn affects the behavior of public officials and thus the efficiency of Government as a whole.

This paper proceeds as follows. In Section 2 we formally introduce the OLG framework by describing in detail the competitive firms’ optimal strategies, the optimal behavior of both private and public workers and the static general equilibrium with Government transfers to the firms. In Section 3 we define the optimal dynamics of capital that take into account the cheating behavior of public officials, characterize the BGP, and establish the main result that determines the positive monotonicity relationship between the probability of detection, viewed as a proxy of Social Capital, and Government size, expressed both in terms of taxation level and share of public workers, necessary to keep growth at its maximum rate. In Section 4 we discuss a numerical example that illustrates our main result. Section 5 as usual concludes, while all mathematical proofs are gathered in the Appendix.

2 The Model

For the sake of simplicity we consider a OLG model. Each individual belonging to the t^th cohort lives for two periods: in the first period, when she is young, she works, consumes and saves part of her wage, net of taxes. In the second period, when she is old, she does not work but consumes what she saved in the first period plus interests net of taxes. We assume that in the economy the population is constant over time. In each period we have L young workers, with L a large number. Moreover, in each period the economy is populated by L old individuals belonging to the previous $t-1$ cohort, so that, at each time t, the total population is $2L$. Following Barro (1990) we assume that in this growth model the Government supplies intermediate goods and productive services G to private firms without user charges, as it is financed through a distortionary tax, with rate $0 < \tau < 1$, on the total national income. More specifically as in Barro (1990), we assume that G is homogeneous to the output and that the Government owns no capital and performs no production activities, it just buys a flow of output from the private sector which is being used as input by the firms (pp. S106 and S107 in Barro, 1990). G is non excludable but rival, and subject to congestion caused by its use by workers; hence only the share $g = G/L$ of G turns out to be available to each single firm. For simplicity Barro (1990) assumed that Government sustains zero transaction costs for supplying public services, but such a shortcut prevents any study on the role of corruption, as it omits the public officials’ activity: namely the management and control of public procurement for the purchase of goods and services that forms the productive public expenditures. Instead, bureaucracy is a necessary evil, without it one can hardly think of any transfer of resources, raised by tax, to private firms in the form of productive factor. Therefore, we depart from Barro (1990) and assume that in the economy a share of young workers are employed in the public sector as public officials in order to monitor public expenditures. As a consequence, public officials have the opportunity to steal a fraction of public resources under their own control, subject to a positive probability of being caught and pay a fine. Thus, there exists the possibility that not all the whole amount of tax revenues raised by the Government reaches private firms. In the following we will show what remarkable consequences the necessity of bureaucracy has for the growth of the economy. We assume that all young individuals inelastically supply one unit of labor either to private firms or to the Government. The share of workers employed in the public sector is constant and equal to $\lambda = L_1/L$, where L_1 denotes the number of public officials; whereas the share employed in the private sector is again constant and equal to $1 - \lambda = L_2/L$, with $0 < \lambda < 1$, where L_2 denotes the number of private workers, with $L = L_1 + L_2$.

3
2.1 Firms

The representative private firm behaves competitively and produces a composite consumption good according to a Cobb-Douglas technology, so that firm-i output is given by

\[Y_i = \theta K_i^\alpha (gL_i)^{1-\alpha}, \]

where \(\theta \) is some positive constant indicating the (exogenous) technological level, \(K_i \) is capital, \(L_i \) is the number of workers employed, \(g \) is the share of intermediate goods and productive services provided by the Government available to firm-i, and \(0 < \alpha < 1 \) is the capital factor share.

Assuming, for simplicity, that capital does not depreciate, for given \(K_i, L_i \) and \(g \) firms maximize profit when

\[
\frac{\partial Y_i}{\partial K_i} = \alpha \theta \left(\frac{g}{k_i} \right)^{1-\alpha} = r \tag{1}
\]

\[
\frac{\partial Y_i}{\partial L_i} = (1-\alpha) \theta k_i^\alpha g^{1-\alpha} = w, \tag{2}
\]

where \(k_i = K_i/L_i \) is the firm-i capital-labor ratio, \(r \) is the market (gross) return to capital, and \(w \) is the market (gross) wage. As all firms are equal, they choose the same capital-labor ratio, \(k_i \equiv K/L_2 \), where \(K \) denotes aggregate capital; the production function can thus be aggregated:

\[Y = \theta L_2 \left(\frac{K}{L_2} \right)^\alpha g^{1-\alpha}, \tag{3} \]

which, in per worker terms (private plus public workers), becomes

\[y = \theta \frac{L_2}{L} \left(\frac{K}{L_2} \right)^\alpha g^{1-\alpha} = \theta (1-\lambda) \left(\frac{L K}{L_2} \right)^\alpha g^{1-\alpha} = \theta (1-\lambda)^{1-\alpha} k^\alpha g^{1-\alpha} \tag{4} \]

where \(y = Y/L, k = K/L, \) and \((1-\lambda) = L_2/L. \)

It’s worth noticing that in our setting as well as in Barro (1990) capital is viewed as a broad concept encompassing human and nonhuman capital.

In equilibrium, the net return on capital, \(\bar{r} \), is equal to \(\bar{r} = (1-\tau)r \), where \(r \) is given by (1) and, in view of (4), can be rewritten in per worker terms as

\[r = \frac{\partial y}{\partial k} = \alpha \theta (1-\lambda)^{1-\alpha} k^{\alpha-1} g^{1-\alpha} = \alpha \frac{y}{k}, \tag{5} \]

while the net wage of a private employee (and public official\(^3\)) is equal to \(\bar{w} = (1-\tau)w \), where \(w \) is given by (2) and, in view of (4), can be rewritten in per worker terms as

\[w = \frac{\partial y}{\partial (1-\lambda)} = (1-\alpha) \theta (1-\lambda)^{-\alpha} k^\alpha g^{1-\alpha} = (1-\alpha) \frac{y}{1-\lambda}, \tag{6} \]

so that the per worker gross private output is given by \(rk + w (1-\lambda) = y. \)

It’s worth noticing that, given the share of private workers, the wage \(w \) is a linear function of the per worker gross private output \(y \). Then the wage will grow at the output rate. Moreover, if \(y \) and \(k \) grow at the same rate, then \(r \) is constant over time.

\(^3\)In the next subsection on public officials we will give a justification to this assumption.
2.2 Private Employees

We assume that each private and public employee has the same logarithmic instantaneous utility function, \(u(c) = \ln c \), and the same (constant) pure rate of time preference, \(0 < \beta < 1 \).

At each given time \(t \) all young private employees in the \(t \)-cohort solve the same deterministic two-period maximization problem:\(^4\)

\[
\max_{\{x_t\}} (\ln c_{1,t} + \beta \ln c_{2,t+1}) \tag{7}
\]

s.t. \[
\begin{cases}
 c_{1,t} = \bar{w}_t - x_t \\
 c_{2,t+1} = (1 + \bar{r}_{t+1}) x_t,
\end{cases} \tag{8}
\]

where \(c_{1,t} \) and \(c_{2,t+1} \) denote consumption in the first and second period respectively, \(x_t \) denotes the asset amount (saving) to be chosen, while \(\bar{r}_{t+1} > 0 \) is the net of taxes interest rate, and \(\bar{w}_t > 0 \) is the net of taxes wage earned. They are defined as \(\bar{r} = (1 - \tau) r \) and \(\bar{w} = (1 - \tau) w \), where the tax rate \(0 < \tau < 1 \), as well as the gross interest rate \(r \) and gross wage \(w \) are taken as exogenously given.

After replacing \(c_{1,t} \) and \(c_{2,t+1} \) according to the constraints (8) into the objective function (7), the FOC with respect to the asset \(x_t \) yields the optimal individual saving as a fraction of the wage \(\bar{w}_t \):

\[
x_t = \frac{\beta}{1 + \beta} \bar{w}_t = \frac{\beta (1 - \tau)}{1 + \beta} w_t. \tag{9}
\]

It is well known that the “canonical” OLG model with logarithmic utility yields an optimal saving amount which is independent of the (net) interest rate \(\bar{r}_{t+1} \) (see Section 9.3 in Acemoglu, 2009).

2.3 Public Officials

Unlike private workers, each public official has the opportunity to divert a fraction \(0 \leq s \leq 1 \) of the amount \(q_t \) of given public resources under her own control, and add such amount to her individual asset when she is young at time \(t \). During the same initial period in her life, but after she took her optimal decision on how much to steal, she may get caught by the authorities, in which case she must give back the whole amount stolen and pay a fine \(\varphi > 0 \) per unit of resource stolen. The probability of being caught is \(0 < p < 1 \), constant through time.

At each given time \(t \) all young public officials solve the same stochastic two-period maximization problem:\(^5\)

\[
\max_{\{x_t, s_t\}} \mathbb{E} (\ln c_{1,t} + \beta \ln c_{2,t+1}) \tag{10}
\]

s.t. \[
\begin{cases}
 c_{1,t} = \bar{w}_t - x_t + (1 - z_t) q_t s_t - z_t f q_t s_t \\
 c_{2,t+1} = (1 + \bar{r}_{t+1}) x_t \\
 0 \leq s_t < 1,
\end{cases} \tag{11}
\]

where \(\mathbb{E} \) denotes time \(t \) expectation, \(c_{1,t} \) and \(c_{2,t+1} \) denote consumption in the first and second period respectively, \(x_t \) denotes the asset amount (saving) to be chosen, \(s_t \) the share of public resources under control, \(q_t \) that will be stolen at time \(t \), \(f = 1 + \varphi > 1 \) is the amount that must be returned to the Government in the event of being caught, while again \(\bar{r}_{t+1} > 0 \) is the net of taxes interest rate, and \(\bar{w}_t > 0 \) is the net of taxes wage earned. The latter are

\(^4\)As all individuals are the same, we drop the index indicating each of them.

\(^5\)As all individuals are the same, we drop the index indicating each of them.
the same as those of private employees and are taken as exogenously given. Although public
officials have the opportunity to steal some fraction of the tax revenues that private workers do
not have, and thus they should be ready to apply for this job at a lower wage, we can justify
the assumption of equality of wages in both sectors by arguing that the Government pursues
payment parity according to a legal principle of equality, as it cannot admit the possibility of
stealing. We assume that, in order to keep the labour market in equilibrium, the Government
adopts a lottery mechanism that allows the selection of exactly the number of public officials it
needs out of the whole working population eager to apply for employment in the public sector,
which offers higher expected illicit earnings than the private sector.

The indicator function z_t, associated to probability p of being caught at time t, is defined
as
\[
 z_t = \begin{cases}
 1 & \text{with probability } p \\
 0 & \text{with probability } 1 - p,
 \end{cases}
\]
and it is unknown (i.e., it is a random variable) at the time in which the (optimal) decision
is taken upon x_t and s_t, but it is revealed before the instant in which the amount $c_{1,t}$ is
being consumed; therefore, the first constraint in (11) is truly random but affects only the
consumption $c_{1,t}$ of young public officials, as the consumption $c_{2,t+1}$ in the old age is fully
determined by the interest rate \bar{r}_{t+1}, which is deterministic and exogenously given, and by the
choice on savings x_t, which has already been taken. \{z_t\}$_{t=0}^\infty$ is a process of i.i.d. Bernoulli
random variables such that $\Pr(z_t = 1) = p$, where $0 < p < 1$ corresponds to the probability
that each public official will be caught to steal in the period between her optimal decisions and
her consumption. In other words, the amount of consumption in the old age, $c_{2,t+1}$, is not being
affected by the realization of the random variable z_t one period before (in the young age), as
the decision on the optimal saving x_t has been taken before the administration controls take
place, and cannot be modified. We admit that this is a quite strong assumption, but, if on one
hand it is useful to simplify the analysis, on the other hand we consider unrealistic that each
public official must wait until retirement to know whether she has been caught or she can get
it free.

We assume that q_t is exogenously given and that public officials maximize their total ex-
pected utility independently from each other. Moreover, the Bernoulli process is assumed to be
i.i.d. both over time and across public officials.

After replacing $c_{1,t}$ and $c_{2,t+1}$ according to the constraints (11) into the objective func-
tion (10), the problem can be rewritten as
\[
 \max_{\{x_t, s_t\}} \{(1 - p) \ln (\bar{w}_t - x_t + q_t s_t) + p \ln (\bar{w}_t - x_t - f q_t s_t) \\
 + \beta \ln [(1 + \bar{r}_{t+1}) x_t] \} \\
 \text{s.t. } 0 \leq s_t \leq 1. \tag{13}
\]
Assuming an interior solution, $x_t > 0$, $0 < s_t < 1$, FOC on (13) yield the following optimal
individual saving, which turns out to be the same as that in (9) for private workers:
\[
 x_t = \frac{\beta}{1 + \beta} \bar{w}_t = \frac{\beta (1 - \tau)}{1 + \beta} w_t, \tag{14}
\]
while the optimal individual stealing choice s_t turns out to be a fraction of the ratio \bar{w}_t/q_t:
\[
 s_t = \frac{1 - p (f + 1)}{(1 + \beta) f} \frac{\bar{w}_t}{q_t} = \frac{[1 - p (f + 1)] (1 - \tau)}{(1 + \beta) f} \frac{w_t}{q_t}, \tag{15}
\]
\footnote{In the Appendix, proof of Proposition 1 shows that this is actually the case under straightforward conditions.}
For \(s_t > 0 \), the results obtained imply that those public officials who are not caught stealing will consume all the illicit earnings \(s_t q_t \) during their working age and will save exactly the same amount of wage as the private workers for the old age.

2.4 Government and the Static General Equilibrium

As discussed above, the Government employs \(L_1 = L - L_2 \) public officials to monitor the public expenditures for intermediate goods and services used by the private firms as input of their production process. Moreover, public official’s wage is the same of the private worker’s one and it is paid by the Government using taxes. We assume Government has a balanced budget. Total tax revenues are equal to \(T = \tau \tilde{Y} \) where \(\tilde{Y} = Y + L_1 w \) is the total taxable national income.\(^7\) The public administration spends such amount in intermediate goods and services to private firms and in public officials’ wages, that is,

\[
T = \tau \tilde{Y} = \tau (Y + L_1 w) = \tilde{G} + L_1 w,
\]

where \(\tilde{G} \) denotes the \textit{potential} amount of resources to be devoted to the firms as intermediate goods and services, which is given by

\[
\tilde{G} = \tau Y + \tau L_1 w - L_1 w = \tau Y - (1 - \tau) L_1 w. \tag{16}
\]

However, intermediate goods and services that actually reach firms are not \(\tilde{G} \) but \(G = [1 - \mathbb{E}(s)] \tilde{G} \), as public officials will steal on average the share \(\mathbb{E}(s) \) of public resources committed to that scope. Moreover, taking into account the effect of congestion, only the share

\[
g = \frac{G}{L} = \frac{[1 - \mathbb{E}(s)] \tilde{G}}{L} = \frac{[1 - \mathbb{E}(s)] \left[\tau y - (1 - \tau) \lambda w \right]}{(1 - \lambda)} \tag{17}
\]

will eventually enter the production function of each firm as input.

Substituting \(g \) as in (17) into (4) and using (6) yields

\[
y = \theta (1 - \lambda)^{1 - \alpha} k^\alpha y^{1 - \alpha} = \theta (1 - \lambda)^{1 - \alpha} k^\alpha \left[1 - \mathbb{E}(s) \right]^{1 - \alpha} \left[\tau y - (1 - \tau) \lambda w \right]^{1 - \alpha}
\]

\[
= \theta (1 - \lambda)^{1 - \alpha} k^\alpha \left[1 - \mathbb{E}(s) \right]^{1 - \alpha} \left[\tau y - (1 - \tau) \lambda (1 - \alpha \frac{y}{1 - \lambda}) \right]^{1 - \alpha}
\]

\[
= \theta (1 - \lambda)^{1 - \alpha} k^\alpha \left[1 - \mathbb{E}(s) \right]^{1 - \alpha} \left[\frac{\tau (1 - \lambda) - (1 - \tau) (1 - \alpha \lambda)}{1 - \lambda} \right]^{1 - \alpha}
\]

\[
= \theta k^\alpha y^{1 - \alpha} \left[1 - \mathbb{E}(s) \right]^{1 - \alpha} \left[\tau (1 - \lambda) - (1 - \tau) (1 - \alpha \lambda) \right]^{1 - \alpha},
\]

from which it turns out that per worker private output is a linear function of per worker capital:\(^8\)

\[
y = \theta \frac{1}{\lambda} \left[1 - \mathbb{E}(s) \right]^{1 - \alpha} \left[\tau (1 - \lambda) - (1 - \tau) (1 - \alpha \lambda) \right]^{1 - \alpha} k, \tag{18}
\]

that is, our economy resembles the features of a typical ‘AK’ model. In order to be defined, the RHS of (18) requires the following assumption.

\(^7\)The tax revenues stolen by the public officials who are caught and the fines they pay should be added to the budget of the Government. For the sake of simplicity, we assume that such revenues are entirely devoted to cover the costs of investigative activity in pursuing corrupt public officials and thus we have omitted the two budget items.

\(^8\)Notice that in turn this result is due to the linear relationship existing between wage and output.
A. 1 **Parameters** \(\alpha, \lambda \) and \(\tau \) **must satisfy** \(\tau (1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda > 0 \), **which may be conveniently rewritten as** \((1 - \alpha \lambda) \tau - (1 - \alpha) \lambda > 0 \), **that is**, the following condition must hold:

\[
\tau > \frac{(1 - \alpha) \lambda}{1 - \alpha \lambda}.
\]

Substituting \(y \) as in (18) into (17) and using again (6) shows that \(g \) turns out to be linear in \(k \) as well:

\[
g = [1 - \mathbb{E}(s)] \tau y - (1 - \tau) \lambda (1 - \alpha) \frac{y}{1 - \lambda}
= [1 - \mathbb{E}(s)] \frac{\tau (1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda}{1 - \lambda} y
= \theta^{\frac{1}{\alpha}} [1 - \mathbb{E}(s)]^{\frac{1}{\alpha}} \left[(1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda \right]^{\frac{1}{\alpha}} (1 - \lambda)^{-1} k.
\]

Similarly, from (5) and (18) it is immediately seen that the interest rate is given by

\[
r = \alpha \frac{y}{k} = \alpha \theta^{\frac{1}{\alpha}} [1 - \mathbb{E}(s)]^{\frac{1}{\alpha}} \left[(1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda \right]^{\frac{1}{\alpha}},
\]

while, from (6) and (18) it is easily seen that the gross market wage is given by

\[
w = \frac{(1 - \alpha) y}{1 - \lambda} = (1 - \alpha) \theta^{\frac{1}{\alpha}} [1 - \mathbb{E}(s)]^{\frac{1}{\alpha}} \left[(1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda \right]^{\frac{1}{\alpha}} k.
\]

Note that, if the average share of public resources stolen by public officials, \(\mathbb{E}(s) \), is constant, then the interest rate \(r \) in (20) and the gross wage in (21) turn out to be constant and a linear function of per worker capital respectively. We shall see in Proposition 1 that this is actually the case.

Let us denote by \(\hat{g} = \hat{G}/L \) the per worker supply of intermediate goods and services potentially available to firms, and by \(q \) the amount of public resources under the control of each public official that enter her intertemporal budget constraint, i.e., before the public official takes a decision on what portion of it she is ready to steal. Then, by (16), (6), and (18),

\[
q = \frac{\hat{G}}{L_1} = \frac{\hat{g}}{\lambda} = \frac{\tau y}{\lambda} - (1 - \tau) w = \left[\frac{\tau}{\lambda} - \frac{(1 - \tau)(1 - \alpha)}{1 - \lambda} \right] y
= \theta^{\frac{1}{\alpha}} [1 - \mathbb{E}(s)]^{\frac{1}{\alpha}} \left[(1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda \right]^{\frac{1}{\alpha}} \lambda^{-1} k.
\]

Clearly, as \(y, g, w \) and \(q \) are all linear functions of per worker capital, \(k \), if \(\mathbb{E}(s) \) is constant through time they all will grow at the same rate. Moreover, note that the ratio \(w/q \) is always a constant:

\[
\frac{w}{q} = \frac{(1 - \alpha) \lambda}{\tau (1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda}
\]

Hence, as public officials are all equal and \(s_t \) in (15) depends only on parameters \(\beta, \tau, p, f \) plus the exogenous variables \(w_t \) and \(q_t \), we have just established the next result, that will be crucial in the following analysis

Proposition 1 **Under Assumption** \(A.1 \), **if**

\[
p < \frac{1}{1 + f} \quad \text{and} \quad \tau > \frac{[1 - p(f + 1) + (1 + \beta) f] (1 - \alpha) \lambda}{[1 - p(f + 1)] (1 - \alpha) \lambda + (1 + \beta) f (1 - \alpha \lambda)},
\]

then the following hold.
i) At each time \(t \), all public officials steal the same amount \(s_t \equiv s \) constant through time, which, according to (15) and (23) is given by

\[
s = \frac{[1 - p(f + 1)](1 - \tau)(1 - \alpha)\lambda}{(1 + \beta)f[\tau(1 - \lambda) - (1 - \tau)(1 - \alpha)\lambda]}.
\] (25)

ii) Therefore, also the average theft is constant through time, \(E(s_t) \equiv s \), and \(y_t, g_t, w_t, q_t \), being all linear functions of per worker capital, \(k_t \), grow at the same constant rate whenever the economy features sustained growth.

iii) The optimal theft \(s \) defined in (25) is decreasing in \(p \), \(f \) and \(\tau \).

3 Aggregate Equilibrium and Growth

Under the assumption that all agents have logarithmic utility, the optimal savings \(x_t \) of everybody, either private worker or public official, are the same and are given by (14). Assuming that savings of young agents at time \(t \) are employed as capital in time \(t + 1 \) by private firms [see eqn. (3.105) in Barro and Sala-i-Martin, 2004], we can exploit the linear, ‘AK’, structure of the production process in our economy discussed at the end of Section 2.4 to immediately compute the BGP growth rate:

\[
k_{t+1} = x_t = \frac{\beta(1 - \tau)}{1 + \beta} w_t
\]

\[
= \frac{\beta(1 - \tau)(1 - \alpha)}{1 + \beta} \theta^{\frac{1}{\alpha}} \left[1 - E(s) \right]^{\frac{1}{1 - \alpha}} \left[\tau(1 - \lambda) - (1 - \tau)(1 - \alpha)\lambda \right]^{\frac{1}{1 - \alpha}} (1 - \lambda)^{-1} k_t
\]

\[
= \frac{\beta(1 - \tau)(1 - \alpha)}{1 + \beta} \theta^{\frac{1}{\alpha}} (1 - s) \left[\tau(1 - \lambda) - (1 - \tau)(1 - \alpha)\lambda \right]^{\frac{1}{1 - \alpha}} (1 - \lambda)^{-1} k_t
\]

\[
= \Psi(\tau, \lambda) k_t,
\] (26)

where in the second equality we used (14), in the third (21), in the fourth condition (25) of Proposition 1 establishing that \(E(s) \) is constant, \(E(s) \equiv s \), while in the last equality we emphasize the dependence on parameters \(\tau \) and \(\lambda \) of the constant \(\Psi \), defined as

\[
\Psi(\tau, \lambda) = \frac{\beta(1 - \alpha)\theta^{\frac{1}{\alpha}}(1 - \tau)}{(1 + \beta)(1 - \lambda)} \times \left\{ \tau(1 - \lambda) - \left[1 + \frac{1 - p(f + 1)}{(1 + \beta)f}\right](1 - \tau)(1 - \alpha)\lambda \right\}^{\frac{1}{1 - \alpha}},
\] (27)

because in the sequel we will focus on comparative dynamics based on the tax rate \(\tau \) and the share of workers employed in the public sector, \(\lambda = L_t/L \), parameters that can be both interpreted as proxies of “Government size”. Note that the term in curly brackets is certainly positive because it is the result of the product \((1 - s) \left[\tau(1 - \lambda) - (1 - \tau)(1 - \alpha)\lambda \right] \) under the same exponent, \((1 - \alpha)/\alpha \), where \(\left[\tau(1 - \lambda) - (1 - \tau)(1 - \alpha)\lambda \right] > 0 \) under Assumption A.1 and \((1 - s) > 0 \) under condition (24) of Proposition 1.

The linear difference equation of per worker physical capital defined in (26) immediately yields the positive growth rate of the economy,

\[
\gamma(\tau, \lambda) = \Psi(\tau, \lambda) - 1,
\] (28)

provided that parameters \(\alpha, \beta, \theta, \lambda, \tau, f \) and \(p \) are such that \(\Psi(\tau, \lambda) > 1 \). The growth rate \(\gamma(\tau, \lambda) \) in (28) is constant an thus characterizes the only possible BGP on which the economy jumps immediately starting from \(t = 0 \).
Proposition 2 Under Assumption A.1 and the assumptions of Proposition 1 the following hold.

i) For any fixed admissible pair \((\tau, \lambda)\) the economy growth rate \(\gamma(\tau, \lambda)\) defined in (28) is an increasing function of both the probability of detection \(p\) and the fine \(f\).

ii) For any fixed \(0 < \lambda < 1\), the economy growth rate \(\gamma(\cdot, \lambda)\) defined in (28) is an inverted U-shaped function of the tax rate \(\tau\) and admits one unique interior maximum point, \(0 < \tau^* (\lambda) < 1\), which is itself function of all parameters according to

\[
\tau^* (\lambda) = \frac{[1 - p(f + 1)](1 - \alpha)\lambda + (1 + \beta)f(1 - \alpha)}{[1 - p(f + 1)](1 - \alpha)\lambda + (1 + \beta)f(1 - \alpha\lambda)}.
\]

(iii) Under the following further restrictions:

\[
\alpha > \left(\sqrt{5} - 1\right)/2 \simeq 0.618 \quad \text{and} \quad \frac{1 - p(f + 1)}{(1 + \beta)f} < \frac{\alpha^2 + \alpha - 1}{\alpha(1 - \alpha)}
\]

the growth rate \(\gamma(\tau, \lambda)\) defined in (28), considered as a function of both parameters \(\tau\) and \(\lambda\), admits one unique (interior) stationary point \((\tau^*, \lambda^*)\) with coordinates

\[
\tau^* = \frac{(2\alpha - 1)(1 + \beta)f - [1 - p(f + 1)](1 - \alpha)}{\alpha(1 + \beta)f - [1 - p(f + 1)](1 - \alpha)}
\]

\[
\lambda^* = \frac{(\alpha^2 + \alpha - 1)(1 + \beta)f - [1 - p(f + 1)]\alpha(1 - \alpha)}{(2\alpha - 1)\{\alpha(1 + \beta)f - [1 - p(f + 1)](1 - \alpha)\}}.
\]

iv) Both stationary values \(\tau^*\) and \(\lambda^*\) in (31) and (32) are increasing functions of both the probability of detection \(p\) and the fine \(f\).

Clearly, assumptions (30) are necessary to have a positive numerator in the expression for \(\lambda^*\) in (32); in the proof it is shown that the same conditions imply that the denominator is positive as well. Note that the second condition in (30) holds if \(f\) and \(p\) are large enough, provided that they satisfy the first condition in (24) of Proposition 1.

Unfortunately, it is not possible to establish concavity of \(\Psi(\tau, \lambda)\), and thus of \(\gamma(\tau, \lambda) = \Psi(\tau, \lambda) - 1\), directly; however, graphic inspection shows that, for reasonable values of parameters in their admissible ranges, it should be [see, e.g., Figure 1(a) in the next Section]. Nonetheless, we do not really need to know that the unique stationary point \((\tau^*, \lambda^*)\) with coordinates given by (31) and (32) is a global maximum point: assuming that the economy adopts the (optimal) tax rate \(\tau^*\) as in (31) and the Government employs a share \(\lambda^*\) as in (32) of total labour, part (iv) of Proposition 2 establishes that, if parameter \(p\) or \(f\), or both, increase, then there exist a direction originating from \((\tau^*, \lambda^*)\) along which, in order to keep the growth rate \(\gamma(\tau, \lambda)\) in (28) at its maximum level, an increase of the optimal tax rate \(\tau^*\) is required, provided that also the share \(\lambda^*\) is adjusted (increased) as well according to (32). In other words, although we are not able to prove that for different values of \(p\) and \(f\) conditions (31) and (32) describe the upper envelope of the function \(\gamma(\tau, \lambda)\) (but we conjecture they do, as it will be illustrated through an example in the next section), part (iv) of Proposition 2 provides a criterion to follow (by adjusting the share of public employees, \(\lambda^*\)) in order to keep the (positive) monotonicity that links the optimal tax rate \(\tau^*\) to increases in the Social Capital—represented by increases in \(p\)—that is found in empirical data. As \(p\) can be considered as a proxy of the level of Social Capital, we have thus shown that an increase of Social Capital requires larger levels of both the tax rate \(\tau^*\) and the share of public employees \(\lambda^*\) in order to keep the growth rate \(\gamma(\tau^*, \lambda^*)\) at its maximum.
4 A Numerical Example

To carry out a numerical example we set the following parameters’ values:

\[\beta = 0.3, \quad \alpha = 0.67, \quad \theta = 10.6. \]

The individual discount rate value is compatible with some 30 years time-horizon for a generation to be employed either in the private or in the public sector, the capital factor share value,\(^9\) clearly satisfies the first condition in (30), and the technology parameter value guarantees reasonable values of the growth rate defined in (28) around its maximum points, as it will be shown below.

Note that the second condition in (30) of Proposition 2 can be reformulated as a lower bound for the probability of detection \(p \) given the fine \(f \) according to:

\[p > \frac{1}{1 + f} \left[1 - \frac{(\alpha^2 + \alpha - 1)(1 + \beta)}{\alpha (1 - \alpha)} \right]. \]

Joining this condition with the first condition in (24) of Proposition 1 yields the following open interval as feasible range for the probability of detection \(p \) for any given value of the fine \(f \):

\[p \in \left(\frac{1}{1 + f} \left[1 - \frac{(\alpha^2 + \alpha - 1)(1 + \beta)}{\alpha (1 - \alpha)} \right], \frac{1}{1 + f} \right), \]

whose endpoints, when considered as functions of the fine \(f \) for given \(\alpha \) and \(\beta \) values, are two hyperbolas, the former laying strictly below the latter whenever \(f > 0 \), while they collapse into the same point \(p = 1 \) when \(f = 0 \). The right endpoint is strictly positive for any \(f > 0 \), while the left endpoint intersects the horizontal axis on the point

\[f_0 = \frac{\alpha (1 - \alpha)}{(\alpha^2 + \alpha - 1)(1 + \beta)}, \]

that is, on the value \(f_0 = 1.43 \) when \(\alpha = 0.67 \) and \(\beta = 0.3 \).

We focus on how changes in the probability of detection \(p \) affect the growth rate function \(\gamma(\tau, \lambda) = \Psi(\tau, \lambda) - 1 \) defined in (28), paying special attention to its maximum point \(\gamma(\tau^*, \lambda^*) \) with coordinates \(\tau^* \) and \(\lambda^* \) given by (31) and (32). To this purpose, we fix the value of the fine at \(f = f_0 = 1.43 \), so to have the largest possible range for the \(p \) values, given by the interval \(p \in (0, 0.41) \).\(^10\) Similar results are obtained for increasing values of the fine \(f \) for a fixed probability \(p \), or for increasing values of both \(f \) and \(p \); we omit these types of illustration. Under these assumptions—i.e., for \(\beta = 0.3, \alpha = 0.67, \theta = 10.6 \) and \(f_0 = 1.43 \) fixed—we consider seven values for the probability of detection \(p \) in the range \((0, 0.41) \) and compute the coordinates \(\tau^* \) and \(\lambda^* \) according to (31) and (32), plus the corresponding maximum growth rate value \(\gamma(\tau^*, \lambda^*) \), for each probability value considered. The results are reported in Table 1, where the monotonic increasing pattern of both the optimal tax rate \(\tau^* \) and optimal share of public employees \(\lambda^* \), as well as the corresponding maximum value of the growth rate \(\gamma(\tau^*, \lambda^*) \), predicted by Proposition 2 is clearly evident as the probability of detection \(p \) increases.

\(^9\) As previously discussed, the capital factor is to be understood in a broad sense as in Barro (1990) who, using the Cobb-Douglas production function in his eqn. (10), sets a value for the elasticity of capital which would be equivalent to \(\alpha = 0.75 \) in our specification (see caption of Figure 1 on p. S110).

\(^10\) Although we are not aware of empirical data on the public officials’ probability of getting caught stealing, by considering the literature on tax evasion, it is well known that the latter can be estimated to be no larger than 0.01 (see, e.g., p. 355 in Alm, 2019). Clearly tax evasion, which is considered over the whole population of taxpayers, is a quite different phenomenon than corruption among public officials, which involves only a fraction of taxpayers; however, it seems to us not unreasonable to believe that such probability be sufficiently below 0.5.
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
p & τ^* & λ^* & $\gamma(\tau^*, \lambda^*)$ \\
\hline
0.05 & 0.3581 & 0.0827 & 0.0031 \\
0.10 & 0.3839 & 0.1587 & 0.0059 \\
0.15 & 0.4078 & 0.2288 & 0.0106 \\
0.20 & 0.4299 & 0.2937 & 0.0173 \\
0.25 & 0.4503 & 0.3539 & 0.0262 \\
0.30 & 0.4694 & 0.4100 & 0.0373 \\
0.35 & 0.4872 & 0.4623 & 0.0509 \\
\hline
\end{tabular}
\end{center}

Table 1: optimal values for the tax rate τ^* and the public employees share λ^* according to (31) and (32), and the corresponding maximum growth rate $\gamma(\tau^*, \lambda^*)$ according to (28), for seven feasible values of the probability of detection p; $\beta = 0.3$, $\alpha = 0.67$, $\theta = 10.6$ and $f = f_0 = 1.43$.

Figure 1(a) shows the three-dimensional graph of the growth rate $\gamma(\tau, \lambda)$ defined in (28) as a function of τ and λ for $f_0 = 1.43$ and $p = 0.20$: it clearly exhibits ‘concavity’ traits, with, according to the fourth row of Table 1, a unique global interior maximum point reached on the pair $(\tau^*, \lambda^*) = (0.4299, 0.2937)$ with value $\gamma(\tau^*, \lambda^*) = 0.0173$, corresponding to an optimal growth rate of around 1.7%. Figure 1(b) presents an attempt to draw an imaginary upper envelope curve in the three-dimensional space (τ, λ, γ) of the seven maximum points defined by the three values listed in the last three columns of Table 1 by ideally joining the seven white dots in the figure, each corresponding to the maximum growth rate value for the graph of $\gamma(\tau, \lambda)$ determined by the seven values of the probability of detection p in the first column of Table 1. Note that, consistently with part (i) of Proposition 2, each graph of the growth rate function $\gamma(\tau, \lambda)$ plotted in Figure 1(b) is a surface (only partially reported for $p \geq 0.10$ so to emphasize their area close to their maximum points) that lays uniformly above the other surfaces corresponding to lower values of p and uniformly below the other surfaces corresponding to higher values of p. This feature renders difficult a three-dimensional graphical representation of the upper envelope of all the functions $\gamma(\tau, \lambda)$ as p increases and justifies the choice of plotting only partial sections of the surfaces [the graphs of the function $\gamma(\tau, \lambda)$] corresponding to probability values larger than 0.10.

While the increasing pattern of the single three-dimensional graphs of $\gamma(\tau, \lambda)$—further emphasized by their maximum points denoted by white dots, which provide a skeleton for drawing their upper envelope—clearly confirms part (i) of Proposition 2, the monotonic increasing pattern of both coordinates τ^* and λ^* established in part (iv) of Proposition 2 as p increases (our main result) can only be inferred from Figure 1(b). Figure 2 provides an even better flavour of part (iv) of Proposition 2 by plotting separately the λ^* and τ^*-sections respectively of the growth rate function $\gamma(\tau, \lambda)$ for the seven p values in the first column of Table 1: specifically, Figure 2(a) plots the two-dimensional graphs of $\gamma(\tau, \lambda^*)$ as a function of the only variable τ for each optimal value λ^* reported in the third column of Table 1, while Figure 2(b) reports the two-dimensional graphs of $\gamma(\tau^*, \lambda)$ as a function of the only variable λ for each optimal value τ^* reported in the second column of Table 1. The increasing pattern of the maximum points, as well as the maximum values, of each curve as p increases is apparent in both figures. However, from Figure 1(b) we learn that each curve should be projected deeper and deeper in the third dimension orthogonal to the (τ, γ) and (λ, γ) spaces respectively as λ^* and τ^* increase for larger values of p; that is, each curve in Figure 2(a) corresponds to larger values of λ^*, while each curve in Figure 2(b) corresponds to larger values of τ^*, so that the upper envelope Figure 1(b) develops (increases) toward north-east in the (τ, λ) space.
Figure 1: (a) three-dimensional plot of the growth rate function $\gamma(\tau, \lambda)$ defined in (28) for $f = f_0 = 1.43$ and $p = 0.20$; (b) several three-dimensional plots of the same growth rate function—each uniformly higher than the other—for $f = f_0 = 1.43$ and the seven values of p listed in the first column of Table 1, the white dots denote the maximum value for each function.

5 Conclusions

Using the OLG framework, we have shown that a simple modification of the Barro (1990)'s endogenous growth model, introduced to take into account the possibility that public officials will steal a fraction of public resources under their own control, is capable of theoretically explain the existence of high growth rates in the presence of Big Government size. Specifically, we have shown that, under realistic conditions on parameters’ values, a monotonic increasing relationship exists among the level of Social Capital (expressed in terms of the probability to detect cheating public officials), the Government size (expressed both in terms of the tax rate and the number of public employees) and the maximum achievable economic growth rate. Social Capital could thus be the missing dimension accounting for the controversial empirical results on this issue as well as for the ENC case. High levels of Social Capital affect the behavior of public officials monitoring the public expenditures for intermediate goods and services supplied to private firms, and thus the efficiency of Government as a whole.

Appendix

Proof of Proposition 1. To prove i) we only must show that the optimal theft s in (25) is interior, that is it satisfies $0 < s < 1$, and that the argument of the utility in the second term in (13) is strictly positive, $\bar{w}_t - x_t - f q_t s_t > 0$, when x_t and s_t are defined according to (14) and (15) respectively, that is, the optimal choice on x_t and s_t must yield positive consumption in the unlucky event of being caught.

The former property is a consequence of Assumption A.1 together with condition (24). First note that Assumption A.1 requires the term $\tau (1 - \lambda) - (1 - \tau)(1 - \alpha) \lambda$ in the denominator of (25) to be positive, so that, in order to have $s > 0$ in (25), as the term $(1 - \tau)(1 - \alpha) \lambda$ is positive by construction, the term $1 - p (f + 1)$ in the numerator must be positive as well, that
is, the first condition in (24) must hold. To have $s < 1$ as well we solve

$$\frac{[1 - p(f + 1)] (1 - \tau) (1 - \alpha) \lambda}{(1 + \beta) f [\tau (1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda]} < 1,$$

which, under Assumption A.1, is equivalent to

$$\frac{[1 - p(f + 1)] (1 - \alpha) \lambda + (1 + \beta) f (1 - \alpha \lambda)}{1 - p(f + 1) + (1 + \beta) f (1 - \alpha \lambda)} \tau > [1 - p(f + 1) + (1 + \beta) f (1 - \alpha \lambda)] (1 - \alpha) \lambda,$$

which immediately yields the second condition in (24). It is easily shown that the second condition in (24) is stronger than Assumption A.1 on τ as, using the fact that the first condition in (24) is equivalent to $1 - p(f + 1) > 0$, the inequality

$$\frac{[1 - p(f + 1) + (1 + \beta) f (1 - \alpha \lambda)}{[1 - p(f + 1)] (1 - \alpha) \lambda + (1 + \beta) f (1 - \alpha \lambda)} > \frac{1 - \alpha \lambda}{1 - \alpha \lambda}$$

boils down to $\lambda < 1$, which holds by construction.

The latter property follows directly from (14) and (15):

$$\bar{w}_t - s_t - f q_t s_t = \bar{w}_t - \frac{\beta}{1 + \beta} \bar{w}_t - f q_t \frac{1 - p(f + 1) \bar{w}_t}{(1 + \beta) f} = \frac{p(f + 1)}{1 + \beta} \bar{w}_t,$$

where the last term is positive whenever $\bar{w}_t = (1 - \tau) w_t > 0$.

Property ii) is an immediate consequence of s in (25) being constant and all the discussion in Subsection 2.4.

Finally, to prove iii), direct computation of $\partial s/\partial p$, $\partial s/\partial f$ and $\partial s/\partial \tau$ in (25) show that they are all negative under our assumptions on all parameters. ■

Proof of Proposition 2. Property i) is established by direct computation of the partial derivatives with respect to p and f of the function $\gamma(\tau, \lambda) = \Psi(\tau, \lambda) - 1$ defined in (28), which turn out to be both positive.
To prove ii) let

\[A = \frac{\beta (1 - \alpha) \theta^\frac{1}{n}}{(1 + \beta)} \quad \text{and} \quad B = \left[1 + \frac{1 - p(f + 1)}{(1 + \beta) f} \right] (1 - \alpha) \]

so that we can rewrite \(\Psi (\tau, \lambda) \) in (27) as

\[\Psi (\tau, \lambda) = A \left(\frac{1 - \tau}{1 - \lambda} \right) [\tau (1 - \lambda) - (1 - \tau) B\lambda]^{\frac{1 - \alpha}{\alpha}}. \] (34)

Note that under all our assumptions, including the first condition in (24) which implies that \(1 - p(f + 1) > 0 \), the constants in (33) are positive: \(A, B > 0 \). The term in square brackets on the RHS of (34) is positive because it is the result of the product \((1 - s) [\tau (1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda] \) with \(\tau (1 - \lambda) - (1 - \tau) (1 - \alpha) \lambda > 0 \) under Assumption A.1 and \((1 - s) > 0 \) under condition (24) of Proposition 1. Specifically, we have:

\[\tau (1 - \lambda) - (1 - \tau) B\lambda > 0 \quad \text{for all } 0 < \lambda < 1 \quad \text{and} \quad \tau_L (\lambda) < \tau < 1, \]

where \(\tau_L (\lambda) \) is the lower bound in the admissible range for \(\tau \) defined by the second condition in (24),

\[\tau_L (\lambda) = \frac{[1 - p(f + 1) + (1 + \beta) f] (1 - \alpha) \lambda}{[1 - p(f + 1)] (1 - \alpha) \lambda + (1 + \beta) f (1 - \alpha) \lambda}, \] (35)

where we stress its dependency on \(\lambda \). For a given \(0 < \lambda < 1 \), the problem \(\max \{ \gamma (\tau) = \Psi (\tau) - 1 : \tau_L (\lambda) < \tau < 1 \} = \max \{ \ln [\Psi (\tau)] : \tau_L (\lambda) < \tau < 1 \} \) can be written as

\[\max_{\tau_L (\lambda) < \tau < 1} \left\{ \ln A + \ln (1 - \tau) - \ln (1 - \lambda) + \frac{1 - \alpha}{\alpha} \ln [\tau (1 - \lambda) - (1 - \tau) B\lambda] \right\}, \] (36)

where we used (34). FOC on the RHS easily yields the optimal value

\[\tau^* (\lambda) = \frac{B\lambda + (1 - \alpha) (1 - \lambda)}{B\lambda + 1 - \lambda}. \] (37)

Using the definition of \(B \) in (33), note that \([1 - p(f + 1) + (1 + \beta) f] (1 - \alpha) = (1 + \beta) f B \) and \([1 - p(f + 1)] (1 - \alpha) = (B + \alpha - 1) (1 + \beta) f \), so that, substituting into (35), we get the lower bound \(\tau_L (\lambda) \) as a function of \(B \) and \(B \) as a function of \(\tau_L (\lambda) \):

\[\tau_L (\lambda) = \frac{B\lambda}{B\lambda + 1 - \lambda}, \quad \text{and} \quad B = \frac{(1 - \lambda) \tau_L (\lambda)}{\lambda [1 - \tau_L (\lambda)]}. \] (38)

Using the latter expression for \(B \) in in the expression (37) we can write the optimal tax rate as a function of the lower bound \(\tau_L (\lambda) \) recalled in (35):

\[\tau^* (\lambda) = 1 - \alpha + \alpha \tau_L (\lambda), \] (39)

from which, as \(\tau_L (\lambda) < 1 \), it is apparent that \(\tau^* (\lambda) > \tau_L (\lambda) \); while, as \(\alpha < 1 \), from (37) it follows that \(\tau^* (\lambda) < 1 \) as well, establishing that the unique stationary point \(\tau^* (\lambda) \) is interior. Substituting \(\tau_L (\lambda) \) as in (35) into (39),

\[\tau^* (\lambda) = 1 - \alpha + \frac{\alpha [1 - p(f + 1) + (1 + \beta) f] (1 - \alpha) \lambda}{[1 - p(f + 1)] (1 - \alpha) \lambda + (1 + \beta) f (1 - \alpha) \lambda}. \]
the expression in (29) is immediately obtained.

To confirm that \(\tau^* (\lambda) \) is the unique solution of (36) for fixed \(\lambda \), first note that, substituting \(B \) according to the second equation in (38) in the term \(\tau (1 - \lambda) - (1 - \tau) B \lambda \), for \(\tau > \tau_L (\lambda) \) it holds

\[
\tau (1 - \lambda) - (1 - \tau) B \lambda = \frac{1 - \lambda}{1 - \tau_L (\lambda)} [\tau - \tau_L (\lambda)] > 0,
\]

moreover, using the first equation in (38) for \(\tau_L (\lambda) \) in the term \(\tau (1 - \lambda) - (1 - \tau) B \lambda \), for \(\tau \to \tau_L^+ (\lambda) \) one has

\[
\tau (1 - \lambda) - (1 - \tau) B \lambda \to \frac{B \lambda(1 - \lambda) - (1 - \lambda) B \lambda}{B \lambda + 1 - \lambda} = 0^+,
\]

so that,

\[
\lim_{\tau \to \tau_L^+(\lambda)} \frac{\partial}{\partial \tau} \ln [\Psi (\tau)] = \lim_{\tau \to \tau_L^+(\lambda)} \left\{ -\frac{1}{1 - \tau} + \frac{1 - \alpha}{\alpha} \left[\frac{B \lambda + 1 - \lambda}{\tau (1 - \lambda) - (1 - \tau) B \lambda} \right] \right\}
\]

\[= +\infty,
\]

implying that \((\partial / \partial \tau) \ln [\Psi (\tau)] > 0 \) for all \(\tau_L (\lambda) < \tau < \tau^* (\lambda) \). Next, it holds

\[
\lim_{\tau \to 1^-} \frac{\partial}{\partial \tau} \ln [\Psi (\tau)] = \frac{1 - \alpha}{\alpha} \left(\frac{B \lambda + 1 - \lambda}{1 - \lambda} \right) + \lim_{\tau \to 1^-} \left(-\frac{1}{1 - \tau} \right) = -\infty,
\]

implying that \((\partial / \partial \tau) \ln [\Psi (\tau)] < 0 \) for all \(\tau^* (\lambda) < \tau < 1 \). This establishes that \(\ln [\Psi (\tau)] \) is inverted U-shaped functions and that \(\tau^* (\lambda) \) in (29) is the unique solution of (36); as \(\ln [\Psi (\tau)] \) is a monotone transformation of \(\Psi (\tau) \), the same holds true for \(\Psi (\tau) \), and in turn, for the growth rate \(\gamma (\tau) = \Psi (\tau) - 1 \) defined in (28), for each fixed \(0 < \lambda < 1 \).

To establish iii) we consider the objective function in (36),

\[
\ln \Psi (\tau, \lambda) = \ln A + \ln (1 - \tau) - \ln (1 - \lambda)
\]

\[+ \frac{1 - \alpha}{\alpha} \ln [\tau (1 - \lambda) - (1 - \tau) B \lambda], \quad (40)
\]

as a function of both variables \(\tau \) and \(\lambda \) and study it over the open set \((\tau, \lambda) : (0 < \lambda < 1) \land [\tau_L (\lambda) < \tau < 1]\). As, according to (33), \(A \) and \(B \) do not depend on \(\tau \) or \(\lambda \), FOC with respect to \(\lambda \) on the RHS of (40) easily yields the critical value

\[
\lambda^* = \frac{(1 - 2\alpha) \tau + (1 - \alpha) (1 - \tau) B}{(1 - 2\alpha) [\tau + (1 - \tau) B]},
\]

and pairing it with equation (37) leads to the unique stationary point with coordinates

\[
\tau^* = \frac{\alpha - B}{1 - B}, \quad \text{and} \quad \lambda^* = \frac{2\alpha - 1 - \alpha B}{(2\alpha - 1) (1 - B)}, \quad (41)
\]

which, after replacing \(B \) according to (33) and through some algebra, establish (31) and (32). The two conditions in (30) clearly guarantee that \(2\alpha - 1 - \alpha B > 0 \iff B < 2 - 1/\alpha \), which, as \(0 < (1 - \alpha)^2 = \alpha^2 - 2\alpha + 1 \iff 2 - 1/\alpha < \alpha \), in turn, implies \(B < \alpha < 1 \); as \(\alpha > (\sqrt{5} - 1)/2 > 1/2 \iff (2\alpha - 1) > 0 \), all these conditions together establish that both \(\tau^* \) and \(\lambda^* \) are positive. Moreover, \(\tau^* < 1 \) because \(0 < \alpha - B < 1 - B \), while \(\lambda^* < 1 \) because \(2\alpha - 1 - \alpha B < (2\alpha - 1) (1 - B) \iff (1 - \alpha) B > 0 \). To check that \(\tau^* > \tau_L (\lambda^*) \), with \(\tau_L (\lambda^*) \)
defined in (35) for \(\lambda = \lambda^* \), we first use the expression of \(\lambda^* \) in (41) in the expression for \(B \) as in (38) to get

\[
B = \frac{(1 - \lambda^*) \tau_L (\lambda)}{\lambda^* [1 - \tau_L (\lambda)]} = \frac{(1 - \alpha) B \tau_L (\lambda)}{(2\alpha - 1 - \alpha B) [1 - \tau_L (\lambda)]} \iff B = \frac{\alpha [2 - \tau_L (\lambda)] - 1}{\alpha [1 - \tau_L (\lambda)]}.
\]

Next, we replace the last expression for \(B \) in the first equation in (41) to get, after some algebra,

\[
\tau^* = \frac{\alpha - B}{1 - B} = \frac{1 - \alpha (2 - \alpha)}{1 - \alpha} + \alpha \tau_L (\lambda);
\]

as \([1 - \alpha (2 - \alpha)] / (1 - \alpha) + \alpha \tau_L (\lambda) > \tau_L (\lambda) \) is equivalent to \(1 > \tau_L (\lambda) \), which is definitely true, we have shown that \(\tau^* > \tau_L (\lambda) \). Therefore, we conclude that the stationary point \((\tau^*, \lambda^*)\) with coordinates given by (31) and (32) is an interior point of the open set \(\{ (\tau, \lambda) : (0 < \lambda < 1) \land [\tau_L (\lambda) < \tau < 1] \} \).

To prove iv) we first verify that both \(\frac{\partial}{\partial p} B (p, f) \) and \(\frac{\partial}{\partial f} B (p, f) \) are strictly negative through direct differentiation of \(B \) as in (33) with respect to \(p \) and \(f \). Finally, using the fact that \(\frac{\partial}{\partial p} B (p, f) < 0 \) and \(\frac{\partial}{\partial f} B (p, f) < 0 \), by differentiating the expressions of both \(\tau^* \) and \(\lambda^* \) as in (41) with respect to \(p \) and \(f \) it is easily established that that they are all strictly positive, and the proof is complete.

References

