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Abstract—Data- and model-driven computer simulations are
increasingly critical in many application domains. These simula-
tions may track 10s or 100s of parameters, affected by complex
inter-dependent dynamic processes. Moreover, decision makers
usually need to run large simulation ensembles, containing 1000s
of simulations. In this paper, we rely on a tensor-based framework
to represent and analyze patterns in large simulation ensemble
data sets to obtain a high-level understanding of the dynamic
processes implied by a given ensemble of simulations. We, further,
note that the inherent sparsity of the simulation ensembles
(relative to the space of potential simulations one can run)
constitutes a significant problem in discovering these underlying
patterns. To address this challenge, we propose a partition-stitch
sampling scheme, which divides the parameter space into sub-
spaces to collect several lower modal ensembles, and complement
this with a novel Multi-Task Tensor Decomposition (M2TD),
technique which helps effectively and efficiently stitch these sub-
ensembles back. Experiments showed that, for a given budget
of simulations, the proposed structured sampling scheme leads
to significantly better overall accuracy relative to traditional
sampling approaches, even when the user does not have perfect
information to help guide the structured partitioning process.

I. INTRODUCTION

Data- and model-driven computer simulations are increas-

ingly critical in many application domains. For example, for

predicting geo-temporal evolution of epidemics and assessing

the impact of interventions, experts often rely on epidemic

spread simulation software, such as STEM [6]. Simulation-

based decision making, however, introduces several fundamen-

tal data challenges [23], [28]:

• Many complex processes (such as disasters [4]) in-

volve various distinct, yet inter-dependent, sub-processes.

Consequently, in order to be useful, these simulations

may track 100s of parameters, spanning multiple layers

and spatial-temporal frames, affected by complex inter-

dependent dynamic processes (Figure 1).

• Moreover, due to large number of unknowns, decision

makers usually need to generate an ensemble of stochastic

realizations, requiring 1000s of individual simulation
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Fig. 1: Coupled simulation of a hurricane and human mobility

instances, each with different parameter settings corre-

sponding to different, but plausible, scenarios.

Consequently, obtaining and interpreting simulation ensembles

to generate actionable results present difficulties:

• Limited ensemble simulation budgets: Since complex,

inter-dependent parameters affected by complex dynamic

processes have to be taken into account, execution of

simulation ensembles can be very costly. This leads to

simulation budget constraints that limit the number of

simulations one can include in an ensemble.

• Need for post-simulation data processing: Because of

the complexities of key processes and the varying scales

at which they operate, experts often lack the means to

drive conclusions from these ensembles. This leads to

the need for data analytics on simulation ensembles to

discover broad, actionable patterns.

• Inherent data sparsity of simulation ensembles: While

the size and complexity of a simulation ensemble can

indeed tax decision makers, we note that a simulation

ensemble is inherently sparse (relative to the space of

potential simulations one could run), which constitutes a

significant problem in simulation-based decision making.

This leads to the following critical question: “Given a

parameter space and a fixed simulation budget, which

simulation instances we should include in the ensemble?”

A. Tensor Representation of Simulation Ensembles

In this paper, we propose a tensor-based framework to

represent and analyze large simulation ensembles. Intuitively,

the tensor model maps a multi-attribute schema to a multi-

modal array (where each potential tuple is a tensor cell).

Consequently, we can map a given simulation ensemble onto
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Fig. 2: States of a multi-pendulum system

a tensor such that each simulation parameter corresponds to

a mode of a tensor and the non-null entries in the tensor

represent results of the simulations we have executed.

Tensor decomposition [11], [32], [19] (which generalizes

matrix decomposition to tensors) has been successfully used in

various applications, such as social networks, sensor streams,

and others [20]. Intuitively, the tensor decomposition process

rewrites the given tensor in the form of a set of factor matrices

(one for each mode of the input tensor) and a core matrix

(which, intuitively, describes the spectral structure of the given

tensor). As such, tensor decomposition has also been used for

the analysis of dynamical systems: [29] proposed a tensor-

based model for time series and [18] proposed a dynamic mode

decomposition (DMD) scheme for the analysis of the behavior

of complex dynamical systems.

B. Inherent Sparsity of Ensembles

While, as discussed above, tensors have been successfully

used for understanding dynamic systems, we note that when

the data is sparse, tensor decomposition is less effective in

extracting meaningful information – which is a significant

challenge when we are attempting to learn about dynamic pro-

cesses through an inherently sparse ensemble of simulations.

To see why, note that as the number of input parameters of

a simulation increases, the number of potential situations one

can simulate increases exponentially. Consider for example,

the simple dynamical system, double equal-length pendulum,

depicted in Figure 2: in this system there are five parameters

that one can control: (a) the initial angle of the first pendulum

φ1, (b) the initial angle of the second pendulum φ2, (c) the

weight of the first bob m1, (d) the weight of the second bob

m2, and (b) the gravity, g. For each combination of parameter

values, the system can be viewed as a two-variate time series

consisting of the angles of the pendulums at each time step.

It is easy to see that the number of potential simulations of

this double equal-length pendulum system is a function of the

resolution of each of these four parameters – if we simply

assume that for each parameter we consider, say, 20 distinct

values, this would lead to 205 = 3200000 possible simulations

to potentially consider. Assuming that we have a simulation

budget, B = 1000, this would lead to a simulation density

of only 1000/3200000 ∼ 0.0003125. Therefore, even for a

relatively small number of parameters, any realistic simulation

budget is likely to be much smaller than the possible space of

all simulations – consequently, the naive approach of randomly

sampling the simulation space is likely to lead to sparse tensors

that are difficult to accurately analyze.
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Fig. 3: Partition-Stitch sampling

C. Contribution 1: Density Boosting Partition-Stitch Sampling

In this paper, we propose an alternative ensemble creation

strategy, which we refer to as the partition-stitch sampling

(Figure 3): given an N -parameter simulation and an en-

semble budget of B, instead of randomly allocating the B
samples in the N -dimensional parameter space, we partition

the simulation space into ∼ N/2 dimensional sub-spaces

and allocate B/2 simulations for each sub-space: note that,

since the number of possible simulations for each sub-space

reduced exponentially (in the number of excluded parameters),

this corresponds to an exponential increase in the density

of the samples for each sub-space: let us re-consider the

double equal-length pendulum system in Figure 2: instead of

considering the original 5-parameter system, we can divide the

simulation space into simulations for two 3-parameter systems:

• System 1: In this system, we are allowed to vary the

initial angle, φ1, and weight, m1, of the first pendulum

as well as the gravity, g; but the initial angle, φ2, and

weight, m2, of the second pendulum are fixed.

• System 2: In the second system, we can vary the initial

angle, φ2, and weight, m2, of the second pendulum as

well as the gravity, g; in this case, the initial angle, φ1,

and weight, m1, of the first pendulum are fixed.

Note that neither of the two systems are perfect repre-

sentations of the overall behavior of the whole system as,

in both cases, two out of the five parameters are fixed to

some default values. However, the simulation densities of both

systems are now much higher than the simulation density of

the original system: using the numbers considered earlier, each

sub-system has 3 parameters with 20 distinct values, leading to

a parameter space of 203 = 8000 simulations. If we allocate

500 (=1000/2) simulations to each sub-space, this leads to

a simulation density of 500/8000 = 0.0625, which is 200
time denser than the original simulation space. There, however,

remain several important questions:

• The first important question is “How do we stitch back

the results obtained from the individual sub-spaces?”

Here we may have several alternatives: In the simplest alterna-

tive, all the simulations from the two systems can be unioned

into a single 5-mode tensor and this 5-mode tensor can be

decomposed for analysis. This is potentially very expensive as



the decomposition cost often increases exponentially with the

number of modes of the input tensor [17], [22]. We will also

see that, once unioned into a single tensor, the overall density

is still low and the accuracy gains will be very limited.

Instead, we will present a join-based scheme to increase

the effective density of the ensemble. In particular, we will

present two approaches (join stitching and zero-join stitching)

to combine simulation results form the sub-systems and exper-

imentally validate the effectiveness of these schemes. Several

questions, however, remain:

• How do we select the parameter to be shared across

the two sub-spaces?: We experimentally verify that the

significant gains in accuracy due to the increase in sim-

ulation densities of the sub-systems reduces the need to

be particularly careful in selecting the shared parameter.

• What about the fact that both partial systems use some

default values to fix some of the parameters? Doesn’t

this negatively affect accuracy? We will see that the

gains obtained in accuracy due to the significant jump

in simulation densities will overcome any disadvantages

associated with fixing some of the parameters.

• If we are joining the sub-ensembles back to the original

N -parameter space, wouldn’t this negatively effect the

tensor decomposition cost? If done naively, yes; and we

discuss this in the next sub-section.

D. Contribution 2: Multi-Task Tensor Decomposition (M2TD)

Naively joining the sub-ensembles would map the simula-

tions back to an N -modal tensor and this would exponentially

increase the tensor decomposition time. Instead, in this pa-

per, we propose a novel Multi-Task Tensor Decomposition

(M2TD) scheme, which reduces the computational complexity

of high-order tensor decomposition by (a) first cheaply decom-

posing the low-order partial tensors and (b) intelligently stitch-

ing back the decompositions of these partial tensors to obtain

the decomposition for the whole system. Intuitively, M2TD

leverages partial and imperfect simulation-based knowledge

from the resulting partial dynamical systems to obtain a global

view of the complex process being simulated. In this paper, we

study alternative ways one can stitch the tensor decompositions

and propose an M2TD− SELECT that provides better accuracy

than the alternatives.

E. Organization of the Paper

This paper is organized as follows: In the next section,

we present the related work. Section III presents the rel-

evant notations and the background. Section IV presents

several conventional solutions to the problem and outlines

their weaknesses. Section V describes the proposed partition-

stitch sampling technique supported with a novel multi-task

tensor decomposition approach (Section VI). Section VII

experimentally evaluates the effectiveness of the M2TD and

its alternative implementations. Experiments show that M2TD

indeed improves the decomposition accuracy of high order

tensors and handles much larger datasets than the current state

of the art. We conclude the paper in Section VIII.

II. RELATED WORK

A. Simulation Design

Ensemble simulations are increasingly critical in many

application domains [28], [30]. Yet, (a) designing an ensemble

that appropriately covers the input parameter space [9] and

(b) interpreting the simulations in the ensemble [23], [28] are

not trivial.

Work in this area, primarily focused on the first problem,

which is often handled through single- or multiple-run repli-

cations [26]: in single-run replication, simulation instances are

allocated incrementally, at each step evaluating the perfor-

mance and deciding the next simulation to run; in multiple-run

replication, the parameter space is sampled simultaneously,

resulting in multiple-shorter runs. A long line of work in

the area is, then, focused on the development of performance

estimators and experiment design strategies [10], [15]. More

recently, budget constraints and costs of simulations are being

taken into account in simulation instance selection [25]. In

this paper, however, we note that the second problem is as

important as the first one, and therefore one has to consider

the two problems of designing ensemble simulations under

budget constraints and interpreting the results – we therefore,

propose, a tensor-based framework for ensemble simulations

and present a partition-stitch strategy to effectively increase

the ensemble density to provide more accurate tensor-based

analysis of a given ensemble.

B. Tensors and Scalable Tensor Decomposition

As discussed earlier, tensor decomposition (such as CP [11]

and Tucker [32]) is commonly used for analyzing multi-

dimensional data [20]. Yet, the tensor decomposition process is

subject to several major challenges: decomposition algorithms

have high computational costs and, in particular, incur large

memory overheads (also known as the intermediary data blow-

up problem) and, thus, basic algorithms and naive implemen-

tations are not suitable for large problems.

There are two widely used toolboxes for tensor manipula-

tion: the Tensor Toolbox for Matlab [8] (for sparse tensors)

and N-way Toolbox for Matlab[7] (for dense tensors). Parallel

implementations, such as GridParafac [27], GigaTensor [16],

HaTen2 [14], TensorDB [17], [22], [21], were proposed to deal

with the high computational cost of the task. [31] proposes

MACH, a randomized algorithm that speeds up the Tucker

decomposition while providing accuracy guarantees. In [24],

authors propose PARCUBE, a sampling based, parallel and

sparsity promoting, approximate PARAFAC decomposition

scheme. Scalability is achieved through sketching of the tensor

(using biased sampling) and parallelization of the decompo-

sition operations onto the resulting sketches. TensorDB [17],

[22], [12] leverages a block-based framework to store and

retrieve data, extends array operations to tensor operation,

and introduces optimization schemes for in-database tensor

decomposition. HaTen2 [14] focuses on sparse tensors and

presents a scalable tensor decomposition suite on a MapRe-

duce framework. SCOUT [13] is a recent coupled matrix-

tensor factorization framework, also built on MapReduce.
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Fig. 4: Tucker decomposition of a three-mode tensor

III. BACKGROUND AND NOTATIONS

A. Tensors

The tensor model maps a multi-attribute schema into an

N -modal array. More formally, let Ij denote the number

of distinct values that the jth attribute (or jth mode) can

take. The tensor X is then an N mode array such that

X ∈ R
I1×I2×...×IN . Intuitively, the modes of the tensor

represent different factors that impact an observation and the

value that the tensor records for a given cell corresponds to

an observation for a specific combination of factor instances.

B. Tensor Decomposition

The two most popular tensor decomposition algorithms

are the Tucker [32] and the CANDECOMP/PARAFAC (CP)

[11] decompositions. In this paper, we focus on the Tucker

decomposition of simulation ensemble tensors. Intuitively,

the Tucker decomposition generalizes singular value matrix

decomposition (SVD) to higher-dimensional data (Figure 4).

Given a tensor X , Tucker decomposition factorizes the tensor

into factor matrices with different number of rows, which are

referred to as the rank of the decomposition. For the simplicity

of the discussion, let us consider a 3-mode tensor X ∈ R
I×J×K.

Tucker decomposition would decompose X into three matrices

A,B,C and one core dense tensor g, such that

X ≈ X̃ = g×1 A×2 B×3 C ≡

P
∑

p=1

Q
∑

q=1

R
∑

r=1

gpqrap ◦ bq ◦ cr,

where A ∈ R
I×P, B ∈ R

J×Q, C ∈ R
K×R, are the factor

matrices and can be treated as the principal components in

each mode. The (dense) core tensor, g ∈ R
P×Q×R, indicates

the strength of interactions among different components of the

factor matrices.

It is important to note that tensors very rarely have exact

Tucker decompositions. In almost all cases, the new tensor

X̃ obtained by recomposing the factor matrices A, B, C

and core tensor g is often different from the input tensor,

X . The accuracy of the decomposition is often measured by

considering the Frobenius norm of the difference tensor.

More generally, given an N -mode tensor,

X ∈ R
I1×I2×...×IN , and N target rank values, r1

through rN , the corresponding Tucker decomposition is

[G,U(1),U(2),U(3), . . . ,U(N)], such that

X̃ = G ×1 U
(1) ×2 U

(2) ×3 U
(3) . . .×N U(N) ≈ X .

Here, U(i) are the N factor matrices and G is an r1× . . .×rN
dimensional core tensor.

Algorithm 1 HOSVD

Input: Tensor X , Rank for each mode r1, r2, ..., rN
Output: Decomposed factors U (1), U (2), . . ., U (N) and core

tensor G

for n = 1, ..., N do
matricize X into matrix X(n)

U (n) ← rn leading left singular vectors of X(n)

end

G = X ×1 U
(1)T ×2 U

(2)T , ...,×NU (N)T

return G, U (1), U (2),..., U (N)

1) HOSVD Decomposition [20] : Algorithm 1 illustrates

the HOSVD algorithm for Tucker decomposition of a given

N -mode tensor, X for target rank values, r1 through rN .

For each mode of the tensor, HOSVD matricizes (flattens)

the high-order tensor X into a matrix. Then this matrix is

decomposed (using SVD) to obtain the left eigenvectors and

these are packed into a factor matrix for the corresponding

mode. Finally, the core tensor is recovered from the original

tensor and the N factor matrices obtained as described.

C. Tensor Representation of a Complex System

Let us be given a complex dynamic system, S, with N
input parameters, such that the ith input parameter can take Ii
distinct values. For simplicity of the discussion, let us further

assume that for each input parameter combination 〈v1, . . . vN 〉,
the complex dynamic system S generates a single value

S(v1, . . . , vn). Let, further, Y be the set of all simulations of

the system S one can execute and the corresponding results;

i.e., Y = {yi = 〈〈vi,1, . . . , vi,N 〉, S(vi,1, . . . , vi,N )〉 ‖ 1 ≤ i ≤
I1× I2× . . .× IN}. It is easy to see that Y can be encoded as

a tensor Y ∈ R
I1×I2×...×IN , where for all yi ∈ Y , the tensor

cell Y(vi,1, . . . , vi,N ) has the value S(vi,1, . . . , vi,n).

D. Tensor Representation of a Simulation Ensemble

The number, I1 × . . . × IN , of simulations of the system,

S, one can run can be very large. Instead, as discussed in

the introduction, we often run a much smaller subset (or

ensemble) of the simulations to get an idea about S. Given

an ensemble of B ≪ I2 × . . .× IN simulations, let X be the

set of simulations that have been selected to be executed as

well as the corresponding system outputs; i.e., X = {xi =
〈〈vi,1, . . . , vi,N 〉, S(vi,1, . . . , vi,N )〉 ‖ 1 ≤ i ≤ B}. It is easy

to see that X can be encoded as a tensor X ∈ R
I1×I2×...×IN ,

where for all xi ∈ X , the tensor cell X (vi,1, . . . , vi,N )
has the value S(vi,1, . . . , vi,N ) and all other cells have null

values (indicating simulations that could potentially have been

run, but have not been included in the ensemble). Since

B ≪ I1× I2× . . .× IN , the tensor X is very sparse, meaning

that there will be many more null-valued cells than the cells

recording real-valued simulation results.

E. Problem Definition

Ideally, to study the system, S, we would construct a com-

plete tensor Y ∈ R
I1×I2×...×IN , and given target rank values,
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Fig. 5: Conventional solutions for ensemble generation

r1 through rN , we would obtain its corresponding Tucker

decomposition [H,V(1),V(2),V(3), . . . ,V(N)], where

Ỹ = H×1 V
(1) ×2 V

(2) ×3 V
(3) . . .×N V(N) ≈ Y .

However, this would be prohibitively costly:

• Firstly, this would require I1×. . .×IN simulations, which

can be computationally overwhelming.

• Even if this many simulations can be obtained, the analy-

sis of the resulting tensor may be prohibitively expensive.

Instead, given a budget B ≪ I1 × . . . × IN of simu-

lations, the problem is to identify a set, X = {xi =
〈〈vi,1, . . . , vi,N 〉, S(vi,1, . . . , vi,N )〉 ‖ 1 ≤ i ≤ B} of B
simulations to execute, such that the Tucker decomposition

[G,U(1),U(2),U(3), . . .U(N)] of the corresponding tensor X

has the following property:

X̃ = G ×1 U
(1) ×2 U

(2) ×3 U
(3)...×N U(N) ≈ X ,

and the Frobenius norm, ‖Y − X̃‖F , of the difference (from

the full simulation ensemble, Y) is small.

IV. CONVENTIONAL ENSEMBLE SAMPLING STRATEGIES

A. Strategy #1: Random Sampling

The first approach for creating a budget constrained ensem-

ble of simulations for the system S is to uniformly randomly

sample B ≪ I1 × . . .× IN parameter value configurations in

the parameter space and execute those B randomly sampled

simulations to obtain the ensemble, Xrs (Figure 5(a)).

B. Strategy #2: Grid Sampling

The second approach for creating a budgeted ensemble of

simulations for S is to sample B parameter value configu-

rations at positions defined by a regularly spaced grid and

execute those B sampled simulations to obtain the ensemble,

Xgs (Figure 5(b)).

C. Strategy #3: Slice Sampling

As we can see from Figures 5(a) and (b), the major

difference between random sampling and grid sampling is that

in grid-based ensemble construction, the subsets of the selected

simulation samples are aligned on vertical and horizontal

directions (or slices) of the underlying tensor and these vertical

and horizontal slices cover the tensor regularly. Alternatively,

these slices and the samples within each slice can be randomly

selected. Intuitively, each slice fixes one of the parameters,

therefore, the samples within each slice are denser (whereas

the density of the overall tensor remains the same). We refer

to the resulting ensemble as Xss.

V. PARTITION-STITCH SAMPLING

The three alternatives presented in the previous section

cover the underlying parameter space in different ways using

the same number of simulation instances. Consequently, while

the local sub-space densities may differ, the overall simulation

density is identically low for all three cases.

In this section, we show that, while executing the same

number (B) of simulation instances as before, we can increase

the effective simulation density of the ensemble by carefully

partitioning the simulations to run into two groups and, then,

by carefully stitching them, relying on shared information

among these groups to transfer knowledge among them.

A. Key Observation

The key observation is that most complex processes can be

partitioned such that, while each partition captures different

sub-processes, these nevertheless relate to each other and,

hence, reflect the footprints of the same underlying global

pattern. Therefore, at least in theory, it should be possible

to partition the given system S into two sub-systems S1 and

S2, and analyze them independently. Transferring what we

independently learned from the analysis of S1 and S2 back-

and-forth, we should be able to gather information regarding

the original global system, S. To leverage this observation,

however, we need to answer two major questions: (a) “How

do we partition the system, S, into two sub-systems?” and (b)

“How do we stitch the outcomes of these two sub-systems, S1

and S2, back to learn about S?”

B. PF-Partitioning of a Parameter Space

It turns out that the answer to the first question is relatively

straightforward: Given a system S with N input parameters,

we will partition the system into two sub-systems S1 and S2,

each with N−k
2 + k input parameters, such that

• the two systems share k of their input parameters as pivot

parameters, and

• for each system, the remaining N−k
2 parameters will be

set to a default value, referred to as fixing constants.

We will refer to this as the Pivoted/Fixed (PF)-partitioning of

a parameter space. Intuitively, S1 and S2 correspond to two

constrained sub-spaces: they have lesser free parameters than

the original system S as each one is generated by fixing N−k
2

of the input parameters. Once the two sub-systems are obtained

through PF-partitioning, we can then create two sets, X1 and

X2, of ensembles (through random, grid, or slice sampling),

each with B/2 simulations – these simulations are created with

common values for shared pivot parameters. Consequently, the

pivot parameters can be used for stitching the two ensembles

together. More formally, let ρ1, . . . , ρi, . . . ρN denote the N
input parameters of S, each with a domain with Ii distinct

values. Without loss of generality, we refer to

• ρ1 through ρk as the pivot parameters,

– we select P ≤ I1 × . . .× Ik possible configurations

for the pivot parameters for ensemble generation,
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Fig. 6: Ensemble creation through PF-partitioning, followed

by JE-stitching provides a higher effective density than the

convention sampling of the original parameter space

• ρk+1 through ρk+(N−k)/2 will serve as the free input

parameters of system S1 and fixed parameters of S2,

– we select E ≤ Ik+1 × . . . × Ik+(N−k)/2 possible

configurations for the free parameters for ensemble

generation for system S1,

• ρk+(N−k)/2+1 through ρN will serve as the free input

parameters of system S2 and fixed parameters of S1.

– we select E ≤ Ik+(N−k)/2+1 × . . . × IN possible

configurations for the free parameters for ensemble

generation for system S2.

Note that, given the input budget B, we have P ×E = B/2.

In the next sub-section, we discuss how to stitch these sub-

ensembles to increase the overall effective density.

C. JE-Stitching

As we mentioned above, the goal of the stitching process

is to increase the effective density of the ensemble. Join-

Ensemble (JE)-Stitching achieves this by joining or zero-

joining the two sub-systems along the shared modes:

1) Join-based Stitching: Let X 1 and X 2 denote the

two tensors representing the simulation ensembles, X1 and

X2, for the two sub-systems S1(ρ1,1, . . . , ρ1,k+(N−k)/2) and

S2(ρ2,1, . . . , ρ2,k+(N−k)/2), respectively. For simplicity, let

the first k parameters of both sub-systems denote the set of

parameters shared between the two sub-systems. We construct

a new join ensemble, J , as follows: for all pairs of simulations

in the two ensembles that agree on the parameter values for the

k shared parameters (i.e., (ρ1,1 = ρ2,1)∧ . . .∧ (ρ1,k = ρ2,k)),
we compute the average of the terms

x1 = X1(ρ1,1, . . . , ρ1,k, ρ1,k+1, . . . , ρ1,k+(N−k)/2)

x2 = X2(ρ2,1, . . . , ρ2,k, ρ2,k+1, . . . , ρ2,k+(N−k)/2)

and the resulting average, x1+x2

2 , as the value

for the corresponding join ensemble entry

J(ρ1,1, . . . , ρ1,k+(N−k)/2, ρ2,k+1, . . . , ρ2,k+(N−k)/2).

Note that, since for each one of the P unique combinations

selected for the shared pivot parameters, there are E ensemble

simulations in both sub-systems, the resulting join ensemble

tensor, J , represents P × E2 joined simulations – since, as

we saw in the previous subsection, we have P × E = B/2,

this gives us B2/(4P ) simulation entries, (and assuming

that B ≫ (4P )) effectively squaring the simulation density

(Figure 6). As we experimentally verify in Section VII, (due

to this increased effective density) the decomposition of J

will be a far better approximation for the original system S
then the decomposition of the tensor X which represents the

original set of simulations, X = X1∪X2. In fact, the accuracy

gains associated with this density increase

• prevents any disadvantages associated with eliminating

some of the free parameters, and

• leads to significant overall accuracy gains, even without

precise a priori knowledge about parameters to use as

pivot and/or values for fixing constants.

2) Zero-Join based Stitching: Note, however, that when E
(i.e., sub-system densities) is small, the overall join ensemble

density may still be too low to provide accurate analysis. In

such a case, we can further boost the overall ensemble density

by using zero-join (as opposed to simple join) to stitch the sub-

ensembles: when constructing the join ensemble, J , for all

pairs of simulations in the two sub-ensembles that agree on

the parameter values for the k shared parameters (i.e., (ρ1,1 =
ρ2,1) ∧ . . . ∧ (ρ1,k = ρ2,k)), we still compute the average of

the terms as described above. But, in this case, if there is a

simulation instance,

x1 = X1(ρ1,1, . . . , ρ1,k, ρ1,k+1, . . . , ρ1,k+(N−k)/2)

but the simulation instance

X2(ρ1,1, . . . , ρ1,k, ρ2,k+1, . . . , ρ2,k+(N−k)/2)

does not exist; then we treat the missing simulation

instance as if it exists with 0 value, and we

construct the corresponding join ensemble entry

J(ρ1,1, . . . , ρ1,k+(N−k)/2, ρ2,k+1, . . . , ρ2,k+(N−k)/2) with

value x1+0
2 . We similarly handle simulation instances in X2.

Note that zero-joining increases the effective density of

the simulation ensemble to 2 × (P × E2) × E2, and as we

experimentally verify in Section VII, it significantly boosts

accuracy in cases where sub-ensemble simulation densities are

too low for basic join-based stitching be effective.

VI. MULTI-TASK TENSOR DECOMPOSITION (M2TD)

The difficulty with JE-stitching, of course, is that tensor

J has almost double the number of modes as the tensors

X 1 and X 2. Consequently, its decomposition is likely to be

significantly more expensive than the decomposition of these

two pre-join tensors. What remains to be shown is that we

can, in fact, obtain the decomposition of J directly from the

decompositions of X 1 and X 2. We discuss this in this section.

Let X 1 and X 2 be two sub-ensemble tensors corresponding

to sub-systems constructed through PF-partitioning of an N -

parameter system, S. Let J be the join ensemble and J



Algorithm 2 M2TD-AVG

Input: Tensors X 1 and X 2, Rank for each mode r1, r2, ..., rN
Output: Decomposed factors U (1), U (2), . . ., U (N) and core

tensor G for the join tensor J

for m = 1, ...,M do
matricize X 1 into matrix X1(m)

matricize X 2 into matrix X2(m)

end

for n = 1, ..., k do

U1(n) ← rn leading left singular vectors of X1(n)

U2(n) ← rn leading left singular vectors of X2(n)

U (n) ← average(U1(n), U2(n))
end

for n = k + 1, ...,M do

U (n) ← rn leading left singular vectors of X1(n)

end

for n = M + 1, ..., 2M − k do

U (n) ← rn leading left singular vectors of X2(n−M+k)

end

J = join tensor(X 1,X 2)

G = J ×1 U
(1)T ×2 U

(2)T , ...,×NU (N)T

return G, U (1), U (2),..., U (N)

!" !#
$%&'( )'*+

!","- !",#- !",.-

)/(0%1%2/(%'3

!#,"- !#,#- !#,.-

)/(0%1%2/(%'3

4+1'56'7%(%'3 4+1'56'7%(%'3

8",#- 8",.- 8","-
8#,"- 8#,#- 8#,.-

8,#- 8,.- 8,9- 8,:-8,"-

;&+0/<+

=>?@(%(1A%3<

='%3 B+37'0C,!-

!"#D'0+

@EF?+37+5FG+C " @EF?+37+5FG+C #

Fig. 7: Overview of M2TD-AVG

be the corresponding join tensor one could obtain through

JE-stitching. In this section, we introduce three alternative

multi-task tensor decomposition (M2TD) schemes to obtain

the decomposition of J from the decompositions of X 1 and

X 2.

A. M2TD-Average (M2TD-AVG)

Remember from the earlier sections that both X 1 and X 2

are M -modal tensors, where M = k+(N−k)/2, and that the

first k modes are shared. We modify the HOSVD algorithm,

presented in Section III-B1, to obtain the proposed M2TD-

AVG algorithm (Algorithm 2). Intuitively, M2TD-AVG takes

the first k factor matrix pairs, (U1(n), U2(n)), corresponding

to the shared pivot tensors of the independently decomposed

tensors, X 1 and X 2, and averages each pair to obtain a

common factor matrix representing both tensors: since factor

matrices, U1(n) and U2(n), both map the domain of the

corresponding factor to a vector space represented by rn
singular factors (sorted in decreasing order of significance),

Algorithm 3 M2TD-CONCAT

Input: Tensors X 1 and X 2, Rank for each mode r1, r2, ..., rN
Output: Decomposed factors U (1), U (2), . . ., U (N) and core

tensor G for the join tensor J

for n = 1, ..., k do
matricize X 1 into matrix X1(n)

matricize X 2 into matrix X2(n)

X(n) ← concatenate(X1(n), X2(n))
U (n) ← rn leading left singular vectors of X(n)

end

for m = k + 1, ...,M do
matricize X 1 into matrix X1(m)

matricize X 2 into matrix X2(m)

end

for n = k + 1, ...,M do

U (n) ← rn leading left singular vectors of X1(n)

end

for n = M + 1, ..., 2M − k do

U (n) ← rn leading left singular vectors of X2(n−M+k)

end

J = join tensor(X 1,X 2)

G = J ×1 U
(1)T ×2 U

(2)T , ...,×NU (N)T

return G, U (1), U (2),..., U (N)
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Fig. 8: Overview of M2TD-CONCAT

the operation average(U1(n), U2(n)) essentially constructs a

new vector space, where each element of the domain is

represented by the average vector from the two input vector

spaces (Figure 10(a)). Remaining factor matrices are then

combined to obtain the core tensor, G (see Figure 7). As we

experimentally verify in Section VII, this leads to a better

approximation of the original system than any of the naive

ensemble sampling schemes.

B. M2TD-Concatenate (M2TD-CONCAT)

M2TD-AVG, presented in the previous subsection, recovers

the factor matrices for pivot parameters (modes) by averaging

the corresponding factor matrices; i.e., by first obtaining the

singular vectors of the matricizations and then averaging these

singular vectors. However, there is nothing that guarantees that

these averages will act as singular vectors themselves.

Instead, the alternative M2TD-CONCAT algorithm (detailed

in Algorithm 3 and visualized in Figure 8) avoids this potential



Algorithm 4 M2TD-SELECT

Input: Tensors X 1 and X 2, Rank for each mode r1, r2, ..., rN
Output: Decomposed factors U (1), U (2), . . ., U (N) and core

tensor G for the join tensor J

for m = 1, ...,M do
matricize X 1 into matrix X1(m)

matricize X 2 into matrix X2(m)

end

for n = 1, ..., k do

U1(n) ← rn leading left singular vectors of X1(n)

U2(n) ← rn leading left singular vectors of X2(n)

U (n) ← row select(U1(n), U2(n))
end

for n = k + 1, ...,M do

U (n) ← rn leading left singular vectors of X1(n)

end

for n = M + 1, ..., 2M − k do

U (n) ← rn leading left singular vectors of X2(n−M+k)

end

J = join tensor(X 1,X 2)

G = J ×1 U
(1)T ×2 U

(2)T , ...,×NU (N)T

return G, U (1), U (2),..., U (N)
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Fig. 9: Overview of M2TD-SELECT

issue by first constructing a concatenated matricization for

each pivot mode pair and then seeking the left singular vectors

of this combined matricization. Intuitively, M2TD-CONCAT

maps the matricizations along the shared/pivot modes back

into the higher-modal space and seeks the singular vectors

that best represent this higher modal space.

C. M2TD-Selection (M2TD-SELECT)

The M2TD-CONCAT algorithm presented above tries to

improve the vector averaging scheme of M2TD-AVG through

row-by-row concatenation of the pivot matricizations before

the corresponding factor matrices are computed. In this subsec-

tion, we note that there is an alternative, and potentially more

effective, way to improve the M2TD-AVG scheme: once the

factor matrices for the pivots are obtained, instead of averaging

them, we can carefully select between the individual rows of

the corresponding factor matrices and use these selected rows

to construct more effective combined factor matrices.

Algorithm 5 ROW SELECT

Input: Factor matrices U1 and U2

Output: Row-selected Factor Matrix U

I ← num rows(U1)
for 1 ≤ i ≤ I do

if ‖row(U1, i)‖2 ≥ ‖row(U2, i)‖2 then
row(U, i)← row(U1, i)

else
row(U, i)← row(U2, i)

end
end
return U
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Fig. 10: Comparison of the row construction processes be-

tween M2TD-AVG and M2TD-SELECT

The pseudocode for the process is shown in Algorithm 4 and

visualized in Figure 9. Note that the major difference between

this algorithm and M2TD-AVG is the line

U (n) ← row select(U1(n), U2(n)),

where the factor matrix U (n) is constructed by selecting the

appropriate rows from U1(n) or U2(n), instead of simply

averaging them. This row selection process is further detailed

in Algorithm 5 and visualized in Figure 10(b). As we see

here, the key idea is to consider the energies (captured by the

2-norm function) of each row, i, in U1 and U2, and identify

which of the two factor matrices provides a higher energy

for that particular row. Intuitively, this enables us to identify

which of the two factor matrices better represents the entity

corresponding to row, i, and, given this information, we can

construct the row i of the output factor matrix, U , by selecting

the corresponding row from the factor matrix, U1 or U2, with

a higher representation power for that entity.

As we experimentally verify in Section VII, this selection

strategy prevents the row with the lesser energy to act as noise

on the description of the corresponding entity and, thus, leads

to significantly higher decomposition accuracies. Moreover,

as the experiments show, the accuracy gains get higher as

we target higher ranking decompositions that maintain more

details by seeking a larger number of patterns in the data.

D. Distributed M2TD (D-M2TD)

As discussed in Section II, a major challenge with tensor

decomposition is its computational and space complexity. This

is especially true for the Tucker decomposition with a dense

core. In this section, relying on several key properties of the

M2TD algorithm, we propose a 3-phase distributed version



Algorithm 6 The outline of the Distributed Multi-Task Tensor

Decomposition, D− M2TD, process

Input: Tensor X 1, X 2, Rank for each mode r1, r2, . . . , rN
Output: Factor Matrices U

(1), U(2), ..., U(N) and core tensor G

for the join tensor J

1) Phase 1: Parallel decomposition of X 1 and X 2 to generate

U1(n), U2(n), n ∈ {1, . . . , N}
2) Phase 2: Parallel JE-Stitching X 1, X 2 to obtain the decom-

position of the joined tensor J

3) Phase 3: for 1 ≤ n ≤ N

a) Parallel tensor matrix mutiplication- Gn = J ×n U
(n)

4) Return Factor Matrices U
(1), U(2), ..., U(N) and core G

of M2TD that can be efficiently and scalably executed on

MapReduce or Spark based platforms (see Algorithm 6):

• Phase 1: Parallel Sub-Tensor Decomposition: Consider

the M2TD-SELECT pseudocode in Algorithm 4. Here, X 1

and X 2 are two sub-tensors corresponding to two sub-systems

constructed through PF-partitioning. These low-order sub-

tensors can be decomposed (in parallel) independently from

each other. Therefore, this phase can be parallelized using,

for example, the popular distributed computing framework,

MapReduce, using the following map and reduce operators:

• map: 〈κ, ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM )〉 on κ.

Here, κ is the low-order tensor id; i.e., κ ∈ {1, 2}.
ρ1, ρ2, . . . , ρM together give the coordinate of a cell

in the low-order tensor Xκ. Key-value pairs with the

same κ are shuffled to the same reducer in the form of

〈key : κ, val : ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM )〉.
• reduce: 〈key:κ, val:ρ1, ρ2, . . . , ρM ,

Xκ(ρ1, ρ2, . . . , ρM )〉. The reducer processing the

key, κ, receives the non-zero elements of sub-tensor

Xκ and decomposes it into sub-factor U
κ(n), where

n is the mode id, by using SVD. Finally, reducer

appropriately relabels each U
κ(n) as U

(n) and emits

each sub-factor as an independent file, with content

〈 key : n, value : i, j,U(n)(i, j)〉. Here, i, j are the

coordinates of sub-factor U(n).

Note that this step can be further parallelized by leveraging

parallel Tucker decomposition techniques, such as [24], [14].

• Phase 2: Parallel JE-Stitching to Obtain Join Tensor, J :

The goal of the stitching process is to increase the effective

density of the ensemble. JE-stitching achieves this by joining

the two sub-systems along their shared pivot modes to obtain

the J tensor. This process can be parallelized as follows:

• map: 〈κ, ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM )〉.
Key-value pairs with the same pivot mode

index (ρ1, ρ2, . . . , ρk) are shuffled to the same

reducer in the form of 〈key:(ρ1, ρ2, . . . , ρk),
val:ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM )〉.

• reduce: 〈key:(ρ1, ρ2, . . . , ρk),
val:ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM )〉. The join

ensemble J (ρ1, ρ2, . . . , ρk, . . . ) is constructed for all

pairs of Xκ, that agree on the parameter values for the

k pivot parameters.

Alternative values

Dynamic systems Double Pend.; Triple Pend. Lorenz System

Parameter resolution 60 ; 70; 80

Size of the corresponding

simulation space (S)

605(8 × 108); 705(2 × 109); 805(3 × 109)

Pivot density (P ) 10%; 100%
Sub-system density (E) 10%; 100%

Ensemble budget 4 × 104, 7 × 104 , 1 × 105 ,

(B = 2 × P ×E × S) 4 × 105, 7 × 105 , 1 × 106

Target decomposition

rank (r)

5; 10; 20

Stitching technique Join; Zero-Join

Number of servers 2, 6, 10, 14, 18

TABLE I: Experiment setup – default values, used unless

otherwise specified, are highlighted

.

• Phase 3: Parallel Tensor-Matrix Multiplication to Re-

cover the Core Tensor: As we see in Section VII, the costliest

part of the M2TD algorithm is the final step where the join

tensor J is multiplied by the transposes of the factor matrices

to recover the dense core tensor. We parallelize this as follows:

• map: 〈ρ1, ρ2, . . . , ρN ,J (ρ1, ρ2, . . . , ρN )〉,
〈n, i, j,U (n)(i, j)〉. Cells of J (from Phase

2) with index (ρ1, ρ2, . . . , ρn−1, ρn+1, . . . , ρN )
are shuffled to the same reducer in the

form of 〈key:(ρ1, ρ2, . . . , ρn−1, ρn+1, . . . , ρN ),
val:J (ρ1, ρ2, . . . , ρN)〉

• map: 〈n, i, j,U (n)(i, j)〉. Outputs of Phase

1 〈n, i, j,U (n)(i, j)〉 are shuffled to the

same reducer based on mode id n in the

form of 〈key:(ρ1, ρ2, . . . , ρn−1, ρn+1, . . . , ρN ),
val:n, i, j,U (n)(i, j)〉

• reduce: The reducer takes

〈key : (ρ1, .., ρn−1, ρn+1, .., ρN ), val : J (ρ1, , . . . , ρN )〉

and

〈key : (ρ1, .., ρn−1, ρn+1, .., ρN ), val : n, i, j,U (n)(i, j)〉

and performs vector-matrix multiplication

to emit 〈(ρ1, ρ2, . . . , ρn−1, j, ρn+1, . . . , ρN ),
∑In

ρn=1 J (ρ1, , . . . , ρn, . . . , ρN ) ∗U (n)(ρn, j)〉.

In the next section, we investigate the impact of this par-

allelization approach to the performance of the proposed

partition-stitch sampling through M2TD decomposition.

VII. EXPERIMENTS

In this section, we report results of the experiments that

aim to assess the effectiveness and efficiency of the proposed

partition-stitch ensemble sampling strategy and the novel

multi-task tensor decomposition (M2TD) scheme. For these

experiments, we used the Chameleon cloud platform [1]: we

deployed all algorithms on 18 xxlarge instances, with 8-core

vCPU, 32GB memory, 160GB disk space. Distributed versions

were implemented in Java 8, over Hadoop 2.7.3. The key

system parameters and their value ranges are reported in Table

I and explained below.



A. Dynamic Systems

In these experiments, we consider three dynamic processes:

double pendulum, triple pendulum, lorenz system [5]. The

code for these systems was obtained from [2] and [3]. These

dynamic processes are selected for their varying complexities:

The double pendulum system has four parameters: initial

angle, φ1, and weight, m1, of the first pendulum as well as

the initial angle, φ2, and weight, m2, of the second pendulum.

The triple pendulum (with variable friction) system is

similar, but more complex due to the addition of a third

pendulum. Moreover, the system has a different set of initial

parameters: the angle φ1 of the first pendulum, the initial angle

φ2 of the second pendulum, the initial angle φ3 of the third

pendulum, and the friction f of whole system. Intuitively,

unlike the double pendulum system, in the triple pendulum

system the friction is considered as a simulation parameter.

The Lorenz system is notable for having chaotic solutions

for certain initial conditions [5]. The system has four variable

parameters: the coordinate of the initial position, z, and three

other system parameters, σ, β, ρ.

B. Simulation Ensembles

For the above systems, we construct 5-mode simulation

ensembles. Each cell of the 5-mode ensemble simulation

tensor encodes the Euclidean distance between the states

of the resulting simulated system and the observed system

parameters at a given time stamp, for a given quadruple of

simulation parameters. Intuitively, each cell encodes the rela-

tionship between a given simulation instance to a configuration

observed in the real-world.

As we see in Table I, in the experiments, the size of

the simulation space varied between 605 ∼ 8 × 108 to

805 ∼ 3×109 simulation instances. In contrast, the simulation

instance budgets were on the order of 104 to 105, indicating

that, despite the large number of simulations included in the

ensembles, the resulting ensemble tensors were very sparse

(densities on the order of ∼ 10−4). Despite this sparsity, for the

different configurations considered in Table I, the simulation

ensemble required from 25GB to 105GB data storage.

C. Alternative Ensemble Construction Schemes

In this section, we evaluated the M2TD-AVG, -CONCAT,

and -SELECT strategies and compared them against the con-

ventional (RANDOM, GRID, and SLICE) ensemble sampling

approaches (Section IV). For M2TD-based schemes, we con-

sidered the case with a single pivot parameter and, to analyze

worst case behavior, we sampled the sub-systems randomly.

D. Evaluation Criteria

We compared accuracy and efficiency of alternative

schemes, for different target decomposition ranks, different

parameter space resolutions, and simulation budgets (see Ta-

ble I). To measure accuracy, we use the Frobenius norm of

the difference tensor (see Section III):

accuracy(X̃ ,Y) = 1−

(

‖X̃ −Y‖

‖Y‖F

)

,

Accuracy for Double Pendulum System

Res. Rank M2TD Random Grid Slice

AVG CONCAT SELECT

60 5 0.49 0.49 0.54 1E-8 3E-4 2E-4

10 0.50 0.50 0.62 2E-7 3E-4 2E-4

20 0.52 0.53 0.56 5E-6 3E-4 2E-4

70 5 0.46 0.46 0.51 7E-9 2E-4 2E-4

10 0.47 0.48 0.57 9E-8 2E-4 2E-4

20 0.49 0.50 0.73 2E-6 2E-4 2E-4

80 50 0.46 0.46 0.50 4E-9 1E-4 1E-4

10 0.47 0.47 0.49 4E-8 1E-4 1E-4

20 0.48 0.49 0.59 1E-6 2E-4 1E-4

(a) Accuracy
Decomposition Time for Double Pendulum System (sec.)

Res. Rank M2TD Random Grid Slice

AVG CONCAT SELECT

60 5 808 797 785 203 144 167

10 808 819 849 234 148 186

20 1034 929 935 348 456 258

70 5 1508 1581 1594 312 209 193

10 1696 1645 1576 379 201 244

20 1866 1914 1995 575 744 381

80 5 3990 3591 4907 414 227 336

10 5232 5979 6068 514 239 410

20 5341 5707 5439 860 883 606

(b) Time (sec.)

TABLE II: Results for double pendulum system (pivot=t, P =
100%, E = 100%)

Decomposition Time using Different Numbers of Servers (sec.)

Num. Servers M2TD-SELECT Random Grid Slice

Phase 1 Phase 2 Phase 3

2 52 817 4167 670 420 488

6 62 383 1802 464 275 318

10 61 371 1318 415 237 280

14 65 354 1279 381 214 253

18 67 363 1118 379 201 244

TABLE III: Different number of servers (Double pendulum,

resolution=70, rank = 10, pivot=t, P = 100%, E = 100%)

where X̃ is the reconstructed tensor (after sampling and

decomposition), while Y is the tensor corresponding to the

full simulation space. We also report the decomposition times.

E. Discussions of the Results

1) General Overview: Table II focuses on the double

pendulum system and compares accuracies and decomposition

times for various approaches considered in this paper for

the different target ranks and for different parameter resolu-

tions. As we see in the table, the M2TD-based algorithms

provide several orders better accuracy than the conventional

approaches, with the same number of simulation instances.

As expected, among the conventional schemes, the Random

strategy provides the worst and the Grid strategy provides the

best accuracy; however, even Grid is ∼ 1000× worse than

the proposed M2TD-SELECT algorithm. As also expected,

among the M2TD-based algorithms, M2TD-SELECT provides

the best overall accuracy: moreover, the relative performance

gains of M2TD-SELECT algorithm further increases for larger

decomposition ranks, indicating that as we seek more detailed

patterns in the ensemble, M2TD-SELECT better captures these

underlying patterns in the data.

In the Table, we also see that M2TD-based algorithms

are somewhat more expensive than the conventional sampling

strategies; but the gains in accuracy are several orders higher



Accuracy for Different Systems

Dyn.System M2TD Random Grid Slice

AVG CONCAT SELECT

D.P. 0.47 0.48 0.57 9E-8 2E-4 2E-4

T.P. 0.25 0.25 0.31 6E-8 2E-4 1E-4

L.S. 0.31 0.32 0.36 4E-8 2E-4 1E-4

(a) Accuracy
Decomposition Time for Different Systems (sec.)

Dyn.System M2TD Random Grid Slice

AVG CONCAT SELECT

D.P. 1696 1645 1576 379 201 244

T.P. 992 1422 1106 221 180 166

L.S. 1728 1850 1705 444 230 211

(b) Time (sec.)

TABLE IV: Results for different dynamical systems (resolu-

tion=70, rank = 10, pivot=t, P = 100%, E = 100%)

Accuracy for Different Ensemble Budgets (B)

Budget M2TD Random Grid Slice

AVG CONCAT SEL.

4 × 104 (join) 3.5E-5 3.4E-5 4.1E-5 9E-9 2E-5 2E-6

4 × 104 (zero-join) 3.3E-3 3.2E-3 3.9E-3 9E-9 2E-5 2E-6

4 × 105 0.47 0.48 0.57 9E-8 2E-4 2E-4

(a) Accuracy
Decomposition Time for Different Ensemble Budgets (B) (sec.)

Budget M2TD Random Grid Slice

AVG CONCAT SEL.

4 × 104 (join) 200 201 200 190 175 183

4 × 104 (zero-join) 596 598 592 190 175 183

4 × 105 1696 1645 1576 379 201 244

(b) Time (sec.)

TABLE V: Results for different ensemble budgets (Double

pendulum, resolution=70, rank = 10, pivot=t; note that B =
4 × 105 corresponds to the case where both pivot, P , and

sub-systems, E, have 100% densities)

than the decomposition time overheads of M2TD-based tech-

niques. This is because, as highlighted in Section V-C, the pro-

posed partition-stitch technique increases the effective density

of the join ensemble. Consequently, the increase in the de-

composition is well amortized by the increase in the effective

simulation density. In these experiments, each double pendu-

lum simulation took roughly 0.66ms. Given this, obtaining

an ensemble simulation with density 704(= 702× 702) would

require roughly 16000 seconds (ignoring the additional time to

decompose). In contrast, the proposed M2TD based techniques

are able to achieve the same effective density by running only

2×702 simulations in just 46 seconds and obtain the ensemble

decomposition in an additional ∼ 1600 seconds. This points

to the impressive performance gains provided by the proposed

multi-task tensor decomposition (M2TD) technique.

One question that remains is whether we could have joined

the sub-ensembles directly into tensor J to decompose instead

of relying on the M2TD techniques: the answer to this question

is a strong no: for the experiments reported in Table II, with

the configuration of 18 xxlarge servers, direct decomposition

of the resulting dense tensor was not feasible due to memory

limitations.

2) Decomposition Time Distribution: Table III presents

how the decomposition time is split among the three phases of

the map-reduce process described in Section VI-D. The table

also shows how the execution time varies as we change the

Accuracy for Different Pivot Densities (P )

P. Density M2TD Random Grid Slice

AVG CONCAT SELECT

10% 3.5E-2 7.6E-3 3.6E-2 9E-9 2E-5 2E-6

100% 0.47 0.48 0.57 9E-8 2E-4 2E-4

(a) Accuracy
Decomposition Time for Different Pivot Densities (P ) (sec.)

P.Density M2TD Random Grid Slice

AVG CONCAT SELECT

10% 606 597 607 190 175 183

100% 1696 1645 1576 379 201 244

(b) Time (sec.)

TABLE VI: Results for different pivot densities (Double

pendulum, resolution=70, rank = 10, pivot=t, E = 100%)

Accuracy for Different Sub-system Densities (E)

E. Density M2TD Random Grid Slice

AVG CONCAT SELECT

10%(join) 4E-5 4E-5 4.5E-5 9E-9 2E-5 2E-6

10% (zero-join) 3.4E-3 3.3E-3 3.8E-3 9E-9 2E-5 2E-6

100% 0.47 0.48 0.57 9E-8 2E-4 2E-4

(a) Accuracy
Decomposition Time for Different Sub-system Densities (E) (sec.)

E. Density M2TD Random Grid Slice

AVG CONCAT SELECT

10%(join) 207 202 201 190 175 183

10% (zero-join) 602 640 617 190 175 183

100% 1696 1645 1576 379 201 244

(b) Time (sec.)

TABLE VII: Results for different sub-system densities (Dou-

ble pendulum, resolution=70, rank = 10, pivot=t, P = 100%)

number of servers allocated for the decomposition process.

As we see in this table, as expected, the third phase where we

recover the core tensor of the decomposition is the costliest

step of the process. We also see that allocating more servers

indeed helps bring the cost of this phase down; however, there

are diminishing returns due to data communication overheads.

3) Varying Data Sets: In Table IV, we study the accuracy

and decomposition time results for different dynamic systems.

As we see here, also for the triple pendulum and Lorenz

systems, we observe the very same pattern: M2TD-SELECT

provides the best accuracy among all alternatives, providing

several orders of magnitude gain in accuracy relative to the

conventional schemes.

4) Varying Budgets and Zero-Joins: In the default experi-

ments considered above, the budget was selected such that the

sub-ensembles would have a perfect density of 1.0. In the first

row of Table V, we reduced the ensemble budget by taking

1/10th of the samples we considered in the previous examples.

Naturally, this results in a drop in accuracy for all approaches.

However, M2TD-based schemes remain several orders better

than the conventional approaches.

The table also shows that when the budgets (thus sub-

ensemble densities) are low, we can boost the overall accuracy

by leveraging zero-joins (introduced in Section V-C), rather

than using simple joins when implementing JE-stitching.

5) Varying Pivot/Sub-Ensemble Densities: Tables VI

and VII show the impact of reduced pivot and sub-ensemble

densities (i.e., P and E) respectively. As we see here, the

overall pattern is as before: reduction in the simulation budget



Accuracy for Different Pivot Parameters

Pivot M2TD Random Grid Slice

AVG CONCAT SELECT

t 0.47 0.48 0.57 9E-8 2E-4 2E-4

φ1 0.35 0.36 0.40

φ2 0.40 0.41 0.56

m1 0.58 0.59 0.71

m2 0.41 0.40 0.42

(a) Accuracy
Decomposition Time for Different Pivot Parameters (sec.)

Pivot M2TD Random Grid Slice

AVG CONCAT SELECT

t 1696 1645 1576 379 201 244

φ1 1607 1673 1673

φ2 1694 1677 1571

m1 1661 1512 1697

m2 1556 1602 1538

(b) Time (sec.)

TABLE VIII: Results for different pivots (Double pendulum,

resolution=70, rank = 10, P = 100%, E = 100%; 3-mode

sub-systems are created in such a way that free parameters of

the same pendulum are kept in the same sub-system)

reduces the overall accuracy; however, M2TD-based schemes

provide significantly higher accuracy overall.

An interesting observation, however, is that (while the total

number of simulations is the same) reduction in the pivot sub-

ensemble density has a significantly higher impact than the

reduction in the pivot density: this is because, as discussed

in Section V-C, the effective density of a stitched simulation

ensemble is proportional to P × E2, and thus reductions in

E have a more significant impact than reductions in P : this

further confirms our initial hypothesis that maintaining sub-

ensemble densities high is important for accurate characteri-

zation of the system being studied.

6) Selection of the Pivot Parameter: In Table VIII, we

vary the pivot parameter1: as we expected, which parameter is

selected as the pivot has some impact on the accuracy of the

proposed partition-stitch scheme. However, whichever pivot is

selected, the overall accuracy is several orders of magnitude

better than that of conventional schemes, indicating that we

do not need very precise information about the system being

studied to decide how to partition the system.

VIII. CONCLUSIONS

In this paper, we presented a tensor-based framework to

represent and analyze large simulation ensembles to support

decision making in the presence of complex, dynamic systems.

Noting that simulation ensembles and the corresponding ten-

sors are often extremely sparse due to the size of the potential

simulation parameter space, we proposed a partition-stitch

sampling scheme to help increase the effective density of the

simulation samples to boost accuracy. We have complemented

this sampling scheme with a novel Multi-Task Tensor De-

composition (M2TD) to efficiently stitch these sub-ensembles

in a way that leverages partial and imperfect knowledge

from partial dynamical systems to effectively obtain a global

1Due to space constraints, we omit experiments where we keep the same
pivot parameter, but vary the groupings of free parameters. The results are
similar to the results of pivot parameter selection.

view of the complex process being simulated. Experiment

results showed the efficiency and the effectiveness of the

proposed approach relative to more conventional techniques

for constructing simulation ensembles.
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