
11 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Noise adaptive tensor train decomposition for low-rank embedding of noisy data

Publisher:

Published version:

DOI:10.1007/978-3-030-60936-8_16

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Science and Business Media Deutschland GmbH

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1782488 since 2021-03-24T18:31:29Z

Noise Noise Adaptive Tensor Train
Decomposition for Low-Rank Embedding of

Noisy Data

Xinsheng Li1, K. Selçuk Candan1, and Maria Luisa Sapino2

1 Arizona State University, Tempa AZ 85281, USA
{lxinshen,candan}@asu.edu

2 University of Torino, I-10149 Torino, Italy
marialuisa.sapino@unito.it

Abstract. Tensor train decomposition, one of the widely used tensor
decomposition techniques, is designed to avoid the curse of dimensional-
ity, in the form of the exposition of intermediary results, which plagues
other tensor decomposition techniques. However, many tensor decompo-
sition schemes, including tensor train decomposition is sensitive to noise
in the input data streams: Recent research has shown that it is possible
to improve the resilience of the tensor decomposition process to noise and
other forms of imperfections in the data by relying on probabilistic tech-
niques. However, these techniques have a major deficiency: they treat the
entire tensor uniformly, ignoring potential non-uniformities in the noise
distribution. In this paper, we note that noise is rarely uniformly dis-
tributed in the data and propose a Noise-Profile Adaptive Tensor Train
Decomposition (NTTD) method, which aims to tackle this challenge. In
particular, NTTD leverages a model-based noise adaptive tensor train de-
composition strategy: any rough priori knowledge about the noise profiles
of the tensor enable us to develop a sample assignment strategy that best
suits the noise distribution of the given tensor.

1 Introduction

Tensors and tensor decomposition (such as CP [14] and Tucker [32]) are increas-
ingly being used for AI and machine learning tasks, from anomaly detection,
correlation analysis [30], to pattern discovery [19, 20].

Tensor Train Decomposition A common problem faced by tensor decom-
position techniques, such as Tucker, which generates dense core tensors, is that,
even when the input is sparse, the intermediary and final steps in the decompo-
sition may lead to very large datasets. Recent research has shown that several
generalizations of higher order tensors’ low-rank decompositions, such as hier-
archical Tucker (HT) [18] and the Tensor Train (TT) [28] format, are effective
solutions to this problem. Both HT and TT are designed to avoid the curse of
dimensionality. Intuitively, the TT decomposition (which can be interpreted as
a special case of HT, without a recursive formulation) avoids the creation of a
high-modal dense core, by splitting the core into a sequence of low (3) modal

! " #
$%&$'&(&$)

*$% *$'
*$+ *$),%

*$)-.

/.

-.

-0

/0 /1

-0

-1

/23.

-230

-23.

/2

-.
!

Fig. 1: Illustration of Tensor Train (TT) decomposition

cores (Figure 1). Since, computation and storage are exponential in the number
of modes, TT is widely used for decomposition in various applications [31, 34].

Challenge: Noisy Data The problem the tensor train decomposition faces
is that the overall decomposition process can be negatively affected by the noise
and low quality in the data, which is especially a concern for web and web-based
user data [6, 35]. Especially for sparse data, avoiding over-fitting to noisy data
can be a significant challenge. Recent research has shown that it may be possible
to avoid such over-fitting by relying on probabilistic techniques [33]. Unfortu-
nately, existing probabilistic approaches have one major deficiency: they treat
the entire tensor uniformly, ignoring possible non-uniformities in the distribution
of noise in the given tensor. [27] has shown that if available, even rough a priori
knowledge about the noise profiles of the tensor may enable CP-based decom-
position strategies that are robust against noise, but these uni-core techniques
are not applicable to the multi-core tensor train decomposition process, which
results in a sequence of low-modal cores.

Contribution: Noise-Profile Adaptive Tensor Train Decomposition
(NTTD) In this paper, we propose a Noise-Profile Adaptive Tensor Train Decom-
position (NTTD) method, which leverages rough a prior information about noise
in the data (which may be user provided or obtained through automated tech-
niques) to improve decomposition accuracy. NTTD decomposes each mode matri-
cization probabilistically through Bayesian factorization – the resulting factor
matrix are then reconstructed to obtain the tensor approximations. Most im-
portantly,

NTTD provides a resource allocation strategy, which accounts for the im-
pacts of (a) the noise density of each mode and (b) inherent approxi-
mation error of the Tensor Train decomposition process, on the overall
decomposition accuracy of the input tensor.

In other words, a priori knowledge about noise distribution on the tensor and
the inherently approximate nature of the tensor train decomposition process are
both considered to obtain a decomposition strategy, which involves (a) the order
of the modes and (b) the number of Gibbs samples allocated to each step of the
decomposition process, that best suits the noise distribution of the given tensor.

Algorithm 1 PTTD
Input: d dimensional tensor X , Rank R = {r1, ..., rd−1}
Output: Decomposed factors U(1), . . ., U(d) of
TT-approximation X̃
1. generate the appropriate sampling number for each mode ,S = {s1,, sd1} with intelligent

sampling assignment strategy
2. Temporary Tensor: M = X
3. for k = 1 to d-1 do

(a) M := reshape(M, [rk−1nk,
numel(M)
rk−1nk

])

(b) apply the Probabilistic Matrix Factorization (PMF) on the matrix M with pre-given rank

rk and sampling number sk to get the U(k)andV (k)

(c) New core: U(k) = reshape(U, [rk−1, nk, rk])

(d) M := SV (k)T

4. Ud = M
5. Return tensor X̃ in TT-format with scores U(1), . . ., U(d)

2 Background and Notations

The tensor model maps a schema with N attributes to an N-modal array and the
decomposition process generalizes the matrix decomposition process to tensors.
The two most popular tensor decomposition algorithms are the Tucker [32] and
the CANDECOMP/PARAFAC (CP) [14] decompositions.

2.1 Tensor Train Decomposition

A major difficulty with the Tucker decomposition is that the dense core can be
prohibitively large and expensive for high-modal tensors. While several tensor
network approaches [28, 7, 8, 17] (where network have been proposed to avoid
large, dense core tensors, the tensor train (TT) format [28, 31], which creates a
linear tensor network (or a matrix product state, MPS [26]) avoids the deficien-
cies of many other complex decomposition structures:

Definition 1 (Tensor Train (TT) Format). Let X ∈ Rn1×n2×···×nd be a
tensor of order d. As we see in Figure 1 (in Introduction) shown, the tensor train
decomposition decomposes X into d matrices Un1

,Un2
, . . . ,Und

such that,

X ≈ X̃ = Un1
◦Un2

◦ · · · ◦Und
, (1)

where Un1 ∈ Rn1×r1 , Uni ∈ Rri−1×ni×ri(i = 2, . . . , d−1), and Und
∈ Rrd−1×nd .

♦

Tensor train decomposition proceeds with matricizations along one mode at
a time: at each step, a low-dimensional core corresponding to the current mode
is obtained and the remainder of the data (which now has one less mode) is
passed to the next step in the process [28].

3 Probabilistic TT Decomposition (PTTD)

Given the limitations of SVD on sparse and noisy tensors, the first step is to intro-
duce a probabilistic TT decomposition scheme (PTTD), which extends TT tensor
train decomposition framework with probabilistic matrix factorization [29].

PTTD replaces the SVD decomposition step in tensor train decomposition
with probabilistic matrix factorization, in order to avoid over-fitting due to data
sparsity and noise. More specifically,, the tensor X is matricized as a matrix,
M , and then we apply probabilistic matrix factorization on this matrix. Under
a Bayesian formulation, the prior distributions over U and V are assumed to be
Gaussian:

p(U |µU , ΛU) =

n1∏
i=1

N (Ui|µU , Λ
−1
U) (2)

A similar formulation holds for V . The resulting factor matrix, U , is assigned
as the first TT factor matrix. The matrix V is reshaped into the matrix Mnext

to be factorized in the next step. This probabilistic factorization and reshape
processes are repeated until the decomposition is completed. The pseudo code
of the algorithm is presented in Algorithm 1.

Since exact evaluation is analytically intractable, we need to resort to ap-
proximate inference. While variational methods [16, 21] are possible, they can
produce inaccurate results because they tend to involve overly simple approxi-
mations to the posterior. MCMC-based methods [36], however, where the factor

matrix {U (k)
i , V

(k)
j } are sampled by running a Markov chain, have been shown

to asymptotically approach the exact results.

Note that, in and of itself, PTTD does not leverage a priori knowledge about
noise distribution and internal decomposition interaction, but it provides the
framework in which noise-profile based adaptation can be implemented. More
specifically, each row of factor matrices U and V follows a Gaussian distribution
and this Gaussian is related to the uncertainty in the corresponding element and,
thus, provides an opportunity to discover the distribution of data noise across
the tensor, as we discuss in the next Section (Section 4).

4 Noise Adaptive Probabilistic Tensor Train
Decomposition (NTTD)

One key advantage of the probabilistic decomposition framework presented above
is that it can simultaneously uncover (Gaussian) noise while obtaining the de-
composition[28]. Yet, it fails to account for the potentially available (user-provided
or automatically discovered) knowledge about (a) the distribution of the external
data noise across the tensor and (b) the noise generated internally due to the
inherent imperfections in the decomposition process at the different steps of the
tensor train network.

!"

!# $%!& $%!'

!"

("

("

!# $%!& $%!'

!"

("

!"#$%$&'&()&* +, -

)"

)"

*"

+"

,-./0%12!30

!"##$%%&'

($#&)*&%+,+&-

4.!50(!267 288(-9.:25.-! ;2<5-(.=25.-! 0((-(

40950(!267 >252 !-./0 0((-(

Fig. 2: Two types of errors propagate to downstream matricizations in tensor train
decomposition: (internal) approximate factorization error and (external) data noise
error

4.1 External and Internal Noise

External (Data) Noise. In this paper, we define, (external data) noise density
as the ratio of the cells that are subject to noise. Without loss of generality, we
assume noise exists only on cells that have values (i.e., the observed values can
be faulty, but there are no spurious observations) and, thus, we formalize noise
density as the ratio of the non-null cells that are subject to noise. Note that
noise may impact the observed values in the tensor in different ways: in value-
independent noise [27], the correct data may be overwritten by a completely
random new value, whereas in value-correlated noise, existing values may be
perturbed (often with a Gaussian noise, defined by a standard deviation, σ). We
refer to the amount of perturbation as the noise intensity.

Internal (Decomposition) Noise. As we discussed in Section 2.1, in the
tensor train format, the network structure acts as a ”train” or ”chain” of ten-
sors: the core tensors only interact with their neighboring cores as illustrated
in Figure 1. The corresponding tensor train decomposition relies on sequential
projections (formulated as sequential matrix factorizations) and the decomposi-
tion accuracy of the intermediate matrix, Mk, depends on the accuracy of the
previous matrix Mk−1’s (approximate) decomposition; similarly, the factoriza-
tion error of Mk propagates to the following sequence of (intermediate) matri-
ces, Mk+1, ...,MN , of the chain. This implies that a predecessor matrix which
is poorly decomposed due to data noise or approximation error may negatively
impact decomposition accuracies also for the successor matrices.

4.2 Noise Adaptation through Sample Assignment

Consequently, the inaccuracies resulting from each intermediate decomposition
along the chain (whether due to data noise or factorization approximation error,
Figure 2) need to be carefully considered during planning and resource alloca-
tion. The proposed noise-profile adaptive tensor decomposition (NTTD) algorithm
adapts to (user provided or automatically discovered) a priori knowledge about
noise by selecting a resource assignment strategy that best suits to the internal

and external noise profiles. More specifically, NTTD assigns Gibbs samples to the
decompositions of the various individual matricizations in a way that maximizes
the overall decomposition accuracy of the whole tensor.

4.3 Gibbs Sampling and (Internal) Decomposition Error

As we discussed in Section 3, the probabilistic tensor train decomposition process
consists of several sequential probabilistic matrix decompositions. Consequently,
any inaccuracies generated in any of the upstream decompositions will propagate
to the downstream matrix decompositions along the ”train” structure. In this
section, we ignore the external data noise and focus on the impact of this internal
noise generated due to decomposition inaccuracies. More specifically, we aim
to investigate how to allocate Gibbs samples in a way that is sensitive to (a)
the internal noise generated by the individual matrix factorizations, (b) the
downstream (internal) noise propagation, and (c) their impacts to the accuracy
of the overall tensor train decomposition.

As discussed in Section 3, Gibbs sampling is used for tackling the challenge
of evaluating the predictive distribution of the posterior by approximating the
expectation by an average of samples drawn from the posterior distribution
through a Markov Chain Monte Carlo (MCMC) technique. As we see in Figure 2,
for each intermediate matrix decomposition in PTTD, two factor matrices are
generated: The U factor matrix is used to construct the core tensor corresponding
to the current mode, whereas the V factor matrix is re-shaped as an input matrix
for the successor decomposition step. Therefore,

– the accuracy of the Uk matrix has direct impact on the accuracy of one of
the cores, whereas

– the accuracy of the Vk matrix indirectly influences accuracies of all down-
stream cores,

This observation, along with the observation that more samples can help
provide better accuracy (to certain degree) in matrix factorization, can be used
to improve the overall decomposition accuracy, to help allocate Gibbs samples
to the different steps in tensor decomposition. More specifically, we argue that
the number of samples for an intermediate matrix, Mk, should be allocated
proportional to the size of the factor matrix, size(Uk) + size(Vk), which reflects
the number of unknowns to be discovered during the factorization of matrix
Mk. In other words, the internal decomposition error sensitive sampling number,
Li err(Mk), for matrix Mk can be computed as

Li err(Mk) = Lmin(Mk) + dγi err × (size(Uk) + size(Vk))e,

where γi err is a scaling parameter such that the sum of all the sample counts
is equal to the total number, Li err(total), of samples allocated for dealing with
internal decomposition errors for the whole tensor decomposition:

Li err(total) =

d−1∑
k=1

Li err(Mk) (3)

!"

!# $%!& $%!'

!"

("

("

!# $%!& $%!'

!"

("

!"#$%$&'&()&* +, -

)" *"

+,-./%01!2/

!,-./ /((,(3(,31214-,!

(/5,!.4(654-,! !,-./ /((,(

7"

)"

Fig. 3: Illustration of decomposition noise error propagation and reconstruction noise
error for the first decomposition step

4.4 Gibbs Sampling and (External) Noise

Equation 7, above, helps allocate samples across intermediate decomposition
phases. However, it ignores one crucial piece of information that may be available:
distribution of the noise across the input tensor.

The basic probabilistic tensor train decomposition (Section 3) assumes the
noise is uniformly distributed across the tensor. In the real world, however, noise
is rarely uniformly distributed along the entire tensor. More often, we would
expect that noise would be clustered across slices of the tensor (corresponding, for
example, to unreliable information sources or difficult to obtain data). In many
cases, even if we do not have precise knowledge about the cells that are subject to
such noise or the amount of noise they contain, we may have a rough idea about
the distribution of noise across the different modes [27]. As we experimentally
show in Section 5, there is a direct relationship between the noise distribution
across the tensor and the number of Gibbs samples it requires for accurate
decomposition. Consequently, given a tensor with non-uniform noise distribution
across different modes, uniform assignment of the number samples, Ln err(Mk) =
Ln err(total)

d−1 (where Ln err(total) is the total number of Gibbs samples for tackling
the impact of noise) becomes ineffective. Therefore, in this section, we aim to
answer the question

can we leverage rough information that may be available about noise
distribution in improving the accuracy of the overall tensor train decom-
position?

Noise taints accuracy through two distinct mechanisms: (a) impact of noise
during decomposition and, for applications (such as recommendation and pre-
diction) that involve the recovery of missing entries in the tensor, (b) impact of
noise during reconstruction . As we see in Figure 3, the noise in the input matrix
partitions itself into the resulting factor matrices U and V . The factor matrix Vi
is reshaped as input matrix for the following tensor train decomposition steps,
therefore is involved in the propagation of the noise to downstream steps during

the tensor train decomposition process (Figure 4). The matrix, Ui, however, is
separated into a factor matrix (for U1) or more generally to a core tensor for
factor i > 1, and thus impacts accuracy during reconstruction. We discuss these
next.

Impact of Noise During Reconstruction. The noise reconstruction error
taints the overall accuracy in the reconstruction process due to the matrix tensor
multiplication operations involved in the recomposition of the (approximate)
tensor. For example, if the ith object of Uk is polluted by the noise, after the
reconstruction process, the complete slice X̃ ∗,...,∗,k(i),∗,...,∗ will be tainted by the
noise pollution from column Uk(i) due to the matrix and tensor multiplication.
Consequently, to account for the noise reconstruction error, the number of Gibbs
samples should be proportional to the mode noise density, ndk.

Impact of Noise During Decomposition. A naive approach to allocate
the number of samples for a noisy matrix, Mk, is to allocate it proportional to its
noise density, ndk. However, since the probabilistic tensor train decomposition
process follows a ”train” structure, errors propagate downstream as shown in
Figure 4. Consequently, allocating sampling number proportional to the noise
density maybe not the best strategy.

As mentioned earlier, the Gibbs sampling algorithm cycles through the latent
variables, sampling each one from its distribution conditional on the current
values of all other variables. Due to the use of conjugate priors for the parameters
and hyperparameters in the Bayesian PMF model, the conditional distributions
derived from the posterior distribution are easy to sample from. In particular,
the conditional distribution over the feature vector Ui, conditioned on the other
features Vi, observed matrix cell value Mi, and the values of the hyperparameters
are Gaussian:

p(Ui|M,V,ΘU , α) = N (Ui|µi, Λ
−1
i)

≈
n1∏
i=1

(
[N (M̃i,j |UT

i , Vi, α
(−1))]ni,j

× p(Ui|µU , Λ
−1
U)
)
.

(4)

Note that the conditional distribution over the latent feature matrix U factorizes
into the product of conditional distributions over the individual feature vector:

p(U |M,V,ΘU) =

n1∏
i=1

p(Ui|M,V,ΘU) (5)

We see that the conditional distributions over the V feature vectors and the
V mode hyperparameters have exactly the same form.

Equations 4 and 5, along with figure 4, indicate how errors propagate down-
stream. In particular, in Figure 4, red columns of the first matricization, M1,
show the columns that are noise polluted. During the decomposition, the cor-
responding columns of resulting factor matrix V1 (highlighted also in red) are
also tainted with stronger noise than other columns of V1. This tainting process

!"

!# $%!& $%!'

!"

("

("

!# $%!& $%!'

("$!#

!& $%!'

(#

(#

!& $%!'("
$!
#

(#$!&

!'

(&

(&

!'(#
$!
&

!"

("
("

!#
(#

(&

(#

!&

(&

!'

!"#$%$&'&()&* +, - !"#$%$&'&()&* +, . !"#$%$&'&()&* +, /()*+,-) ()*+,-)

()*+,-) ()*+,-)

." .# .&

." .# .&
.'

/"

0" 0#

/&

0&

123*)%4,!5) 123*)%4,!5) 123*)%4,!5)

/#

Fig. 4: Illustration of noise error propagation

flows downstream (subject to matrix re-shape operations) as shown in the figure
4. Consequently, for decomposition phase k, the number of samples should be
proportional to

d−1∑
j=k

d∏
i=j+1

ndi, (6)

where,
∏d

i=j+1 ndi is the noise density of matricization of Vk on mode k . The∑d−1
j=k operation, above, takes into account the accumulation process of the noise

on all downstream decomposition steps.
Combining Decomposition and Reconstruction Impacts of Noise.

Assuming that the decomposed tensor will be utilized for an application (such
as recommendation) which necessitates reconstruction of the approximate ten-
sor, we need to consider reconstruction and decomposition errors together when
assigning the number of Gibbs samples. In other words, for an intermediate ma-
trix, Mk, the number of samples must be allocated proportional to the sum of
reconstruction and decomposition errors, i.e, ndk +

∑d−1
j=k

∏d
i=j+1 ndi. This leads

to the following formula for the number Ln err(Mk) of samples:

Lmin(Mk) + dγn err × (

d−1∑
j=k

d∏
i=j+1

ndi + ndk)e × Ln err(total),

where γn err is a scaling parameter such that the sum of all the sample counts
is equal to the total number, Ln err(total), of samples allocated for dealing with
noise errors:

Ln err(total) =

d−1∑
k=1

Ln err(Mk). (7)

4.5 Overall Sample Assignment

While considering the error propagation, both internal decomposition error (Sec-
tion 4.3) and external noise error (Section 4.4) need to be accounted for. There-

Parameters Alternative values

Dataset Ciao; BxCrossing; Movie-
Lens

Noise Density 10%; 20%; 30%;

Noise Intensity (σ) 1,3,5

Total Samples (Ltotal) 90; 135; 180;

Min. Samples (Lmin(Mk)) Ltotal/(3×(d−1)) = Ltotal/9

Table 1: Parameters – default values, used unless otherwise specified, are highlighted

fore, the combined sample assignment equation, for matricization, Mk, in the
tensor train decomposition process, can be written as

L(Mk) = dγn err × (

d−1∑
j=k

d∏
i=j+1

ndi + ndk)e × Ln err(total)

+ dγi err × (size(Uk) + size(Vk))e × Li err(total)

+ Lmin(Mk)

(8)

where Lmin(Mk) is the minimum number of samples a (non-noisy) tensor of the
given size would need for accurate decomposition and γn err and γi err are two
scaling parameters, selected such that the total number of samples is equal to
the number, Ltotal, of samples allocated for the whole tensor:

Ltotal =

d−1∑
k=1

L(Mk).

The parameters, γn err and γi err, also control the relative impacts of the internal
and external noise. In the experiments, they are set such that the number of
samples allocated to handle internal and external noise are the same.

5 Experimental Evaluation

In this section, we report experiments that aim to assess the effectiveness of the
proposed noise adaptive tensor train decomposition approach.

5.1 Experiment Setup

Key parameters and their values are reported in Table 1
Data Sets. In these experiments, we used three user-centered datasets: Ciao

[39], MovieLens [15, 37] and BxCrossing [38]. Ciao dataset is represented in the
form of 143 × 200 × 12 × 4 (density 5.68E-04) with the schema ¡user, product,
category, helpfullness¿. BxCrossing dataset is represented in the form of 2599×
34×16×76 (density 2.48E-0.5) with the schema ¡user, book, published year, user
age¿. The MovieLens dataset is represented in the form of 247 × 112 × 48 × 21

!"#

!"$

!"%

&"&

&"'

&"#

&"$

&"%

&!()!('!(

*
+
,
-

./012 3241056

708/ *+,- 905: ./012 ;<8=5850/4

>.?

.@-**

?@-**

.AA3

!

!"#

!"!

!"$

!"%

!"&

!"'

!"(

!")

#*+ !*+ $*+

,
-
.
/

01234 5463278

9:;<13326=,-./ >27? 01234 @ABC7B7216

D0E

0F/,,

EF/,,

0GG5

!"#

!"$

!"%

!"&

!"'

(

("(

(")

(!*)!* +!*

,
-
.
/

01234 5463278

-1924:463 ,-./ ;27< 01234 =>?@7?7216

A0B

0C/,,

BC/,,

0DD5

(a) RMSE for Ciao Dataset (b) RMSE for BxCrossing Dataset (c) RMSE for MovieLens Dataset
Fig. 5: RMSE with Different Data Sets and Noise Densities (Ltotal = 90)

(density 8.86E-06) with the schema ¡user, movie, age, location¿. In Ciao and
MovieLens data sets, the tensor cells contain rating values between 1 and 5 or
(if the rating does not exist) a special ”null” symbol. And for the BxCrossing
dataset, the tensor cells contain rating values between 1 and 10.

Noise. To observe the different degrees of noise, we selected a random por-
tion of the non-null cells and randomly perturbed the value. It is a worst-case
scenario for NTTD, where the noise is distributed uniformly on the tensor; but
the experiments show that even in this case, NTTD can take into account the
noise density difference across the data modes, implied by the difference in cor-
responding data densities. Therefore, in the experiments, the noise density for
different modes is approximated by the corresponding data density.

Alternative Strategies. We compare the proposed approach against other
sampling strategies: uniform, internal-noise only, and external-noise only sample
assignment:

– In uniform strategy (UNI), Ltotal is uniformly divided among the three ma-
tricizations in the tensor train decomposition and default PTTD is used for
decomposition.

– In internal-noise only strategy (I ERR), γn err is set to zero in Equation 8,
focusing the assignment to only internal decomposition error.

– In external-noise only strategy (N ERR), γi err is set to zero in Equation 8,
focusing sample assignment to the impact of noise and its propagation.

Evaluation Criterion. We use the root mean squares error (RMSE) inac-
curacy measure to assess the decomposition effectiveness. Each experiment was
run 10 times with different random noise distributions and averages are reported.

Hardware and Software. We ran experiments on an eight-core CPU Ne-
halem Node with 16.00GB RAM. All codes were implemented in Matlab and
run using Matlab R2016b. For tensor decomposition, we used MATLAB Tensor
Toolbox Version 2.6

5.2 Discussion of the Results

Overview In Figure 5, we compare the performance of NTTD with noise-adaptive
sample assignments against other strategies for different noise densities. As we

!"#

!"##

!"$

!"$#

!"%

!"%#

!"&

!"&#

!"'

!"'#

(

'! ()# (&!

*
+
,
-

./0123,145267839:4;<=

*+,->60?39/6@<3AB150106/7C+/D6<E<7@

F9G

9H-**

GH-**

9..I

Fig. 6: RMSE with different num. of samples; i.e. Ltotal is 90, 135, or 180 (noise density
10%, noise intensity 1)

!

!"#

!"$

!"%

!"&

'

'"#

'"$

()*+,' ()*+,- ()*+,.

/
0
1
2

34567 89:7965:;

/012 < 045=7>796

?38

3@2//

8@2//

3AAB

Fig. 7: RMSE with different noise intensities; i.e., σ is 1, 3, or 5 (noise density 10%)

see in this figure, the proposed NTTD strategy is able to allocate Gibbs samples
effectively to significantly reduce RMSE relative to PTTD with uniform sample
assignment. Moreover, we also see that internal- and external-only strategies
that ignore part of the error can actually hurt the accuracy and perform worse
than the uniform strategy. These show that the proposed noise-adaptive strategy
is effective in leveraging rough knowledge about external noise distributions and
internal decomposition errors to better allocate the Gibbs samples across the
tensor.

Impact of the total number of samples. A key parameter of the NTTD

algorithm is the number of total Gibbs samples. As we see in Figure 6, as we
would expect, increasing the number of Gibbs samples helps reduce the overall
decomposition error. Note that, among the four strategies, NTTD strategy is the
one that provides most consistent and quickest drop in error. The figure shows
the result for the MovieLens data; the results are similar also for the other data
sets.

Impact of the noise intensity. In Figure 7, we consider the MovieLens
data set with different noise intensities. As we expect, in this data set, increased
noise corresponds to increased RMSE. However, NTTD provides the best results
for all noise intensities considered. NTTD is also the best strategy for the other
two data sets.

6 Conclusion

Recent research has shown that probabilistic techniques can ease the problem
of overfitting caused by noise, especially on sparse data. However, existing tech-
niques ignore potential non-uniformities in the noise distribution. In this paper,
we proposed a novel noise-adaptive tensor train decomposition (NTTD) technique
that leverages rough information about noise distribution to improve the tensor
decomposition performance. NTTD decomposes each intermediate matrix proba-
bilistically through Bayesian factorization. The noise profiles of tensor and their
alignments are then leveraged to develop a strategy that considers the internal
decomposition error as well as external to obtain a Gibb s sample assignment
data noise best suits the noise profile of a given tensor.

References

1. E. Acar, et al. Multiway Analysis of Epilepsy Tensors. Bioinformatics, pages
10-18, 2007.

2. Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P.
Papotti, M. Stonebraker, N. Tang: Detecting Data Errors: Where are we and
what needs to be done? PVLDB 9(12): 993-1004 (2016)

3. C. A. Andersson and R. Bro. The N-Way Toolbox for Matlab. Chem. and Intel.
Lab. Systems, 52(1):1-4, 2000.

4. B. W. Bader, T. G. Kolda, et al. MATLAB Tensor Toolbox Version 2.5, Available
online, January 2012. URL: http://www.sandia.gov/∼tgkolda/TensorToolbox.

5. B. W. Bader, R.A. Harshman, and T.G. Kolda. Temporal analysis of social net-
works using three-way dedicom. Sandia National Laboratories TR SAND2006-
2161, 2006.

6. R. Balakrishnan, S. Kambhampati: SourceRank: relevance and trust assessment
for deep web sources based on inter-source agreement. WWW 2010: 1055-1056

7. J. Ballani, L. Grasedyck, and M. Kluge, Black box approximation of tensors in
hierarchical Tucker format, Linear Algebra Appl., 438 (2013), pp. 639-657.

8. J. Ballani and L. Grasedyck, A projection method to solve linear systems in
tensor format, Numer. Linear Algebra Appl., 20 (2013), pp. 27-43

9. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. WWW, 1998.

10. S. Chakrabarti, Dynamic personalized pagerank in entity-relation graphs.
WWW 2007.

11. E. C. Chi and T. G. Kolda Making Tensor Factorizations Robust to Non-
Gaussian Noise. tech. report, arXiv: 1010.3043v1, 2010.

12. W. Chu, Z. Ghahramani, Probabilistic Models for Incomplete Multi-dimensional
Arrays. AISTATS 2009.

13. X. Chu, L. F. Ilyas, P. Papotti, Y. Ye: RuleMiner: Data quality rules discovery.
ICDE 2014

14. R. A. Harshman, Foundations of the PARAFAC procedure: Model and condi-
tions for an explanatory multi-mode factor analysis. UCLA Working Papers in
Phonetics, 16:1-84, 1970.

15. F. M. Harper and J. A. Konstan. The MovieLens Datasets: History and Context.
TiiS 5, 4, Article 19, 2015.

16. G. E. Hinton, C. Van. Keeping the neural networks simple by minimizing the
description length of the weights. COLT (pp. 513). (1993)

17. S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for
tensor optimization in the tensor train format, SIAM J. Sci. Comput., 34 (2012),
pp. A683-A713.

18. L. Grasedyck and W. Hackbusch, An introduction to hierarchical (H-) rank and
TT-rank of tensors with examples, Comput. Methods Appl. Math, 3 (2011), pp.
291-304.

19. I. Jeon, E. Papalexakis, U. Kang, and C. Faloutsos. HaTen2: Billionscale tensor
decompositions. ICDE 2015

20. B. Jeon, et al. SCouT: Scalable Coupled Matrix-Tensor Factorization - Algorithm
and Discoveries. ICDE 2016.

21. M. I. Jordan, Z. Ghahramani, T. S. Jaakkola L. K. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37, 183.(1999)

22. U. Kang, et al. Gigatensor: scaling tensor analysis up by 100 times algorithms
and discoveries. KDD 2012

23. P. M. Kroonenberg and J. De Leeuw, Principal component analysis of three-
mode data by means of alternating least squares algorithms, Psychometrika, 45
(1980), pp. 6997.

24. H. Kim and H. Park, Nonnegative matrix factorization based on alternating
nonnegativity constrained least squares and active set method, SIAM J. Matrix
Anal. Appl., vol. 30, no. 2, pages 713-730, 2008

25. M. Kim and K.S. Candan. Efficient Static and Dynamic In-Database Tensor
Decompositions on Chunk-Based Array Stores. CIKM, 2014.

26. A. Cichocki, N. Lee, I. Oseledets, A. H. Phan, Q. Zhao and D. Mandic 2016
Tensor networks for dimensionality reduction and large-scale optimization: part
1 low-rank tensor decompositions Found. Trends Mach. Learn. 9 249429

27. X. Li, K. S. Candan, M. L. Sapino, nTD: Noise Adaptive Tensor Decomposition.
WWW 2017

28. I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011),
pp. 2295-2317.

29. R. Salakhutdinov and A. Mnih, Probabilistic Matrix Factorization. NIPS 07,
pages 1257-1264

30. J. Sun, S. Papadimitriou, and P. S. Yu. Window based tensor analysis on high
dimensional and multi aspect streams. ICDM, pages 1076-1080, 2006.

31. A. Tjandra, S. Sakti, S. Nakamura Compressing Recurrent Neural Network with
Tensor Train, NIPS 2017

32. L. Tucker, Some mathematical notes on three-mode factor analysis. Psychome-
trika, 31:279-311, 1966.

33. L. Xiong, et al. Temporal collaborative filtering with bayesian probabilistic
tensor factorization. SDM 2010.

34. Y. Yang, D. Krompass, V. Tresp Tensor-Train Recurrent Neural Networks for
Video Classification. ICML 2017

35. R. Zafarani, H Liu: Users joining multiple sites: Friendship and popularity vari-
ations across sites. Information Fusion 28: 83-89 (2016)

36. R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech-
nical Report CRG-TR-93-1, Department of Computer Science, University of
Toronto, 1993.

37. http://grouplens.org/datasets/movielens/
38. http://www2.informatik.uni-freiburg.de/cziegler/BX/
39. http://www.public.asu.edu/∼jtang20/datasetcode/ truststudy.htm

