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Abstract 
Despite recent development in producing chemical medicines, associated side effects have led to increased 
use of medicinal plants and natural compounds. Soil salinity, especially in arid and semi-arid regions, is a 
serious threat to global agriculture. Nowadays, efforts have been made to find benchmarks that can 
effectively select salt-tolerant or salt-resistant genotypes. In this regard, the use of computer software to 
predict the indices can help us for screening the most tolerant ecotypes. The objectives of the present study 
were to determine the best indicators of salinity tolerance using intelligent and regression models for 
eighteen commercial ecotypes of mint. The seedlings were planted in plastic pots and arranged in a split 
factorial experiment in a randomized complete block design with four replicates. The treatments consisted 
of four levels of salinity (0, 2.5, 5 and 7.5 dS m-1), two levels of harvesting time, and 18 ecotypes. The 
plants were grown until the flowering stage and then harvested. There was a significant difference between 
ecotypes in terms of calculated indices at all three levels of salinity. Indicators such as TOL, MP, GMP, 
YSI, STI and HM showed a significant positive correlation with YS and YP at all three levels of salinity. 
The cluster analysis divided the ecotypes into three distinct groups based on the calculated indices at all 
levels of salinity. The principal component analysis revealed that the YP, YS, TOL, MP, GMP, YSI, STI 
and HM were more suitable among others salt stress indices. The sensitivity analysis at 2.5 dS m-1 salinity 
level showed that the HM, STI, YSI, YI, SSI and MP indices were of higher importance than the others. At 
5 dS m-1 salinity level, the HM, STI, YSI, YI, GMP and MP indices showed the highest importance 
whereas at 7.5 dS m-1 salinity level, the STI, YSI, YI, GMP and YP indices indicated the highest 
importance. In general, the results suggest that ANN(MLP) model (R2 = 0.999) is the best model to predict at 
all salinity levels. E13, E14, E15, E16 and E18 ecotypes are the most salt tolerant ecotypes which can be 
used for the future breeding program. 
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Abbreviations: YP: Yield in stress condition; YS: Yield in non-stress condition; TOL: 
Stress tolerance; MP: Mean productivity; GMP: Geometric mean productivity; SSI: Stress 
susceptibility index; YI: Yield index; YSI: Yield stability index; STI: Stress tolerance index; HM: 
Harmonic mean; ANFIS: Adaptive neuro fuzzy inference system; ANN: Artificial neural network; 
MLP: Multilayer perceptron; RBF: Radial basis function; GA: Genetic algorithm; OLS: Ordinary least 
squares; PCR: Principal component regression; PLS: Partial least squares; R2: Coefficient of 
determination; VAF: Value account for; MAPE: Mean absolute percentage error; RMSE: Root mean 
square error; RPD: Relative percent difference. 
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Introduction 
According to the World Health Organization, 

medicinal plants are used by a large number 

of people, especially in developing countries 

(Bridge, 2016). Currently, 80% of the people 

in these countries use medicinal plant 

products to meet their medicine needs 

(Sukanya et al., 2009). 

Mint (Mentha spicata L.) originally has 

been used as a medicinal herb to relieve 

stomach ache and chest pains. The 

economic importance of mints is also 

evident; mint oil and its constituents and 

derivatives are used as flavoring agents 

throughout the world in food, 

pharmaceutical, herbal, perfumery, and 

flavoring industries (Brahmi et al., 2017). 

Plants from this genus can be found in 

multiple and diverse environments, but most 

Mentha plants grows best in wet 

environments, moist soils and partial shade 

(Salehi et al., 2018). Different genera of this 

plant are widely cultivated in diverse areas 

of Iran such as Mazandaran, Gilan, Gorgan, 

Hazmazgan and southern Fars, Semnan, 

Kurdistan and Arak (Mozaffarian, 2008).  

The genus mentha is one of the 

important members of the family 

Lamiaceae, a vast group of aromatic herbs 

of notable economic values due to its 

valuable essential oil. Recent data, based 

on morphological, cytological and genetic 

characteristics, have shown that genus 

Mentha can be classified into 42 species, 

15 hybrids and hundreds of subspecies, 

varieties and cultivars (Tucker 2007; Salehi 

et al., 2018). Most Mentha species are 

perennial and fast-growing, extending their 

growth through a network of runners, 

contain essential oils, and are widely 

cultivated as industrial crops for essential 

oil production (Kumar et al., 2011). 

 Mint is also widely used in food and 

flavours as well as pharmaceutical and 

cosmetic industries. Approximately 10,000 

tonnes of natural menthol and 2,000 tonnes 

of synthetic menthol are annually used by 

the pharmaceutical, cosmetic and cigarette 

industries across the globe (Yaseen et al., 

2000; Annicchiarico, 2002; Lal, 2007, 

2012). The plant is a rich source of 

essential oils that have a major nutritional 

and medicinal value, for example it has 

been used as an anti-inflammatory, anti-

bacterial and digestive aid in traditional 

and modern medicine (Khalvandi et al., 

2019; Mohkami et al., 2014). 

Soil and water salinity are among the 

most important environmental factors 

limiting plants growth and production 

worldwide, especially in arid and semi-arid 

regions (Kachout et al., 2009). Currently, 

millions of hectares of agricultural land in 

the world are facing problems due to 

salinity (Dagar and Minhas, 2016). Salty 

lands are generated by the accumulation of 

soluble solutes such as chlorine, sulfate, 

bicarbonate, and sometimes nitrate, in 

particular sodium, calcium, magnesium 

and rarely potassium in non-saline soils 

(Shannon, 1997). In addition to cations, 

anions seem to also contribute to salinity, 

while sodium chloride and sodium sulfate 

play significant role in causing damage to 

plants due to their high solubility (Keutgen 

and Pawelzik, 2009). 

To date, several efforts have been made 

to find benchmarks that can effectively 

select salt-tolerant or salt-resistant 

genotypes (Ashraf and Wu, 1994). 

However, the probability that the stress-

tolerance genes in a plant are centralized 

and recognized by physiological methods 

is very limited (Flowers, 1997). Therefore, 

yield and yield components sustainability 

and stability under stress conditions are 

still among the main indicators of selection 

for finding tolerant genotypes in many 

breeding programs (Flowers and Yeo, 

1995). Evaluation of plant’s yield is the 

most important indicator for identifying 

compatible genotypes in stressed 

environments (Blum, 2005). There are 

different indices for assessing the stability 

of genotypes under various stress 

conditions (Dhanda et al., 2004). Stress 

tolerance index (STI) is a suitable criterion 

for selecting genotypes to achieve high 

https://en.wikipedia.org/wiki/Mentha_spicata
https://en.wikipedia.org/wiki/Abdominal_pain
https://en.wikipedia.org/wiki/Chest_pain
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performance under stress conditions. This 

index separates the genotypes of high 

performance in stressed and non-stressed 

conditions from other groups (Fernandez, 

1992). The tolerance index (TOL) is 

obtained from the difference in 

performance under stressed and non-stress 

conditions. The higher values indicate 

lower genotype stability in different 

environments. In the stress susceptibility 

index (SSI), its lower values show a greater 

stability of a genotype under stress and 

non-stress conditions (Fischer and Maurer, 

1978). Due to the high correlation between 

tolerance to stress condition and average 

yield in different environments, the Mean 

Productivity Index (MP) can be used as a 

suitable criterion for the selection of 

genotypes (Rosielle and Hamblin, 1981). 

Following the rapid advancement of 

diverse sciences in the 20
th
 century, non-

analytic nonlinear functions were created in 

various engineering processes, requiring their 

numerical solution to evolve different 
numerical solution structures (Van Gorder, 

2017). Genetic algorithms as one of these 

structures for the first time around three 

decades ago were inspired by natural 

structures (Bi et al., 2015). Hosseini et al. 

(2016) have stated that a genetic algorithm 

model could predict soil mechanical 

resistance more precisely than multiple 

regression with R
2
 = 0.90 and RMSE = 0.34. 

Since, ANN, ANFIS, GA, PLS, OLS and 

PCR models have not been used to evaluate 

stress tolerance indices to date, also the 

interest in studying mint for human beings is 

majorly related to its phytosanitary effects. 

The aim of this study was the application of 

these models as novel approach to determine 

the best indicators for salinity tolerance using 

intelligent and regression models for 

commercial mint ecotypes in order to be able 

to use them in the future breeding programs. 

Materials and methods 
The ecotypes were provided from the Gene 

Bank of Research Institute of Forests and 

Rangelands. The seeds were sown in plastic 

pots (25 cm diameter and 30 cm height) 

filled with cocopeat (40%) and perlite (60%) 

and placed in a glasshouse with a 

temperature between 25 and 28 °C, 16/8 

day/night photoperiod and relative humidity 

of 60% throughout the experiment. The 

treatments consisted of four levels of salinity 

(0, 2.5, 5 and 7.5 dS m
-1

), two levels of 

harvesting time and 18 ecotypes (Table 1), 

which arranged as split factorial experiment 

using randomized complete block design 

with four replications. The plants were 

watered with Hoagland nutrient solution 

(Hoagland and Arnon, 1950). Salinity was 

imposed 15 days after seed sowing. To 

prevent salinity shock to the seedlings 5 and 

7.5 dS m
-1

 salinity levels were gradually 

applied (Reich et al., 2017), in a way that the 

electrical conductivity of the solution 

increased stepwise by 2.5 dS m
-1

 to reach 5 

and 7.5 dS m
-1

. Moreover, to prevent the 

accumulation of solutes in the culture 

medium, washing was done in certain 

periods. Eventually, harvesting was 

performed when the plants entered into the 

flowering phase. The plants were weighted 

and then placed in an oven at 70 °C for 48 h 

to determine dry weight using a digital scale. 

The eight stress tolerance indices were 

calculated using the following equations: 

𝑇𝑂𝐿 = 𝑌𝑝 − 𝑌𝑠 (Hossain et al., 1990) (1) 

𝑀𝑃 =
𝑌𝑠 + 𝑌𝑝

2
 (Bouslama and Schapaugh, 1984) (2) 

𝐺𝑀𝑃 = √𝑌𝑠 × 𝑌𝑝 (Sio-Se Mardeh et al., 2006) (3) 

𝑆𝑆𝐼 =
1 −

𝑌𝑠
𝑌𝑝

1 −
𝑌𝑠̅̅ ̅

𝑌𝑝̅̅̅̅

 (Fischer and Maure, 1978) (4) 

𝑌𝐼 =
𝑌𝑠

𝑌𝑝
 (Gavuzzi et al., 1997) (5) 
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𝑌𝑆𝐼 =
𝑌𝑠

𝑌𝑝̅̅̅̅
 (Bouslama and Schapaugh, 1984) (6) 

𝑆𝑇𝐼 =
𝑌𝑠 × 𝑌𝑝

𝑌𝑝̅̅̅̅ 2
 (Gavuzzi et al., 1997) (7) 

2(𝑌𝑠 × 𝑌𝑝)

(𝑌𝑠 + 𝑌𝑝)
 (Rosielle and Hamblin, 1981) (8) 

All equations are based on dry matter 

yield in stressed (Ys) and non-stressed 

(Yp) conditions and average dry matter 

yield in stressed (𝑌𝑠̅̅ ̅) and non-stressed (𝑌𝑝̅̅̅̅ ) 

conditions.  

Intelligent methods 

Artificial neural network (ANN) 
In this study, the network was designed 

with 10 nodes in the input layer and 1 node 

in the output layer. The best transmission 

function was Tansig for the structure of the 

neural network (Fig. 1) (Hosseini et al., 

2017). For neural network training, 

MATLAB 7.6 utilized the Multi-Layer 

Perceptron (MLP) and Radial Basis 

Function (RBF) network. 

Training processes involved weight 

rectification between diverse layers until 

minimum difference was achieved between 

real and predicted data. Lastly, the best 

network structure was carefully chosen 

based on minimum root mean square error 

(RMSE) and maximum R
2
 (Liu et al., 

2001). 

Adoptive neuro-fuzzy inference system 
(ANFIS) 

An additional soft computing technique used 

in natural science is neuro-fuzzy modeling 

(Iphar et al., 2008; Singh et al., 2007). A 

neuro-fuzzy system is, in fact, a neural 

network that is functionally equivalent to the 

fuzzy inference model. Jang (1993) 

suggested a fuzzy logic model named 

ANFIS which employs some properties of an 

ANN such as learning and parallelism. The 

basic structure of an ANFIS model was 

given by Padmini et al. (2008) (Fig. 2). 

Genetic algorithm (GA) 

Genetic algorithms (GA) are mathematical 

models of natural genetics where the power 

of nature to develop, destroy, improve and 

annihilate life is abstracted and used to 

explain complex optimization 

complications (Fig. 3). 

Holland (1975) established this 

prevailing technique and it has been 

applied in several fields of science. 

 

 

Fig. 1. A simple multilayer of Artificial Neural Network (ANN) configuration 
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Fig. 2. Basic adaptive neuro-fuzzy inference system (ANFIS) structure. 

  

Fig. 3. Flowchart of a single population evolutionary genetic algorithm (GA) 

Regression methods 

Partial least squares regression (PLS), 

ordinary least-squares regression (OLS) and 

principal components regression (PCR). 

PLS, OLS, and PCR are three techniques to 

model a response or dependent variable 

when there are several predictors or 

independent variables existing, and the 

predictor variables are extremely correlated 

(Hosseini et al., 2017). 

Model evaluation 

To evaluate the proficiency of models, 

several statistical standards such as value 

account for (VAF), root mean square error 

(RMSE), R
2
, mean absolute percentage 

error (MAPE) and relative percent 

difference (RPD) (only for PLS, PCR and 

OLS) were used as follows: 

𝑉𝐴𝐹 = [1 −
𝑉𝑎𝑟(𝑃(𝑠𝑖) − 𝑀(𝑠𝑖))

𝑉𝑎𝑟(𝑀(𝑠𝑖)
] × 100 (9) 

𝑅𝑀𝑆𝐸 = √{
∑[𝑃(𝑠𝑖) − 𝑀(𝑠𝑖)]2

𝑛
}

2

 (10) 

𝑅2 = 1 −
∑ [𝑀(𝑠𝑖) − 𝑃(𝑠𝑖)]2𝑛
𝑖=1

∑ [𝑀(𝑠𝑖) − 𝐴(𝑠𝑖)]2𝑛
𝑖=1

 (11) 

P (si), M (si) and A (si) represent the 

amounts of predicted, measured and 

average dry matter yields and represents 

the number of sampling points. VAF (Eq. 

(9)) and RMSE (Eq. (10)) indices were 

computed to evaluate the proficiency of the 

predictive model developed in the study as 

employed by Grima and Babuska (1999), 



124 Int. J. Hort. Sci. Technol; Vol. 7, No. 2; June 2020 

Gokceoglu (2002), and Yilmaz and Yuksek 

(2008). If the VAF is 100 and RMSE is 0, 

then model proficiency was outstanding. 

R
2
 (Eq. (11)) is also commonly used in 

intelligent methods to evaluate model 

proficiency. Mean absolute percentage 

error (MAPE), which is a measure of 

accuracy in a fitted series value in 

statistics, was also used for comparison of 

the prediction proficiency of the models. 

MAPE usually represent accuracy as a 

percentage (Eq. (12)). 

𝑀𝐴𝑃𝐸 =
∑ |

𝐴𝑖 − 𝑃𝑖
𝐴𝑖

|𝑁
𝑖

𝑁
× 100 (12) 

Where Ai represents the actual value 

and Pi represents the predicted value. The 

achieved values of ME, VAF, RMSE and 

MAPE were used to demonstrate 

prediction proficiency. Viscarra Rossel et 

al. (2009) proposed that relative percent 

difference (RPD; Eq. (13)) can be used to 

evaluate model proficiency; RPD values 

which employed to evaluate the models are 

shown in Table 2. 

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸𝑝
 (13) 

Where SD is standard deviation. 

Statistical analysis 
The data were separated into a training data 

subset (70%) and testing data subset 

(30%). Data subsets were used for defining 

the proficiency of seven methods; GA, 

ANN, ANFIS, PLS, PCR and OLS. Matlab 

(MathWorks, Natick, MA) was used to 

analyze GA, ANN and ANFIS and 

XLSTAT (Add-In-Soft, Paris, France) 

were used for PLS, OLS, PCR, cluster 

analysis and principal component analysis. 

Results  

Analysis of variance and correlation  

The analysis of variance indicated that 

there was a significant difference between 

ecotypes based on all studied indices 

(Table 1, 2, and 3). Relative percent 

difference (RPD) values for evaluating 

models is presented in Table 4. 

The results also showed that there was a 

significant difference between ecotypes in 

terms of calculated indices at all salinity 

levels. The TOL, MP, GMP, YSI, STI and 

HM showed a significant and positive 

correlation with both YS and YP at all 

salinity levels (Tables 5, 6 and 7). 

Table 1. Ecotype number, species, latitude, longitude, altitude and place related to 18 mint ecotypes 

Ecotype 

number 
Species Place 

Latitude 

(N) 

Longitude 

(E) 

Altitude 

(m) 

E1 longifolia Mazandaran-Hezar Jarib 36◦4524'' 53◦2806'' 389 

E2 longifolia Fars-Shiraz 29◦7447'' 52◦4590'' 1491 

E3 longifolia 
Kordestan-Sanandaj, Dolatabad 

Village 
35◦2000'' 47◦9999'' 2039 

E4 longifolia Markazi-Arak 34◦1115'' 49◦3111'' 2030 

E5 longifolia Golestan-Ramyan 36◦5513'' 55◦0655'' 780 

E6 longifolia Tehran 35◦5229'' 52◦9383'' 1940 

E7 longifolia Zanjan 36◦4235'' 48◦0703'' 1800 

E8 longifolia Semnan-Damghan 36◦2748'' 54◦1738'' 2300 

E9 longifolia Ilam-Dehloran 32◦5307'' 47◦0030'' 807 

E10 pulegium Markazi-Tafresh 34◦4703'' 49◦5800'' 1550 

E11 pulegium Markazi-Khomein 33◦3635'' 50◦0150'' 1808 

E12 pulegium South Khorasan-Sarbisheh 32◦3223'' 65◦1139'' 1817 

E13 pulegium Mazandaran 32◦3703'' 51◦2590'' 1662 

E14 spicata Isfahan-Najafabad 32◦1854'' 51◦4307'' 1652 

E15 spicata Yazd 31◦1588'' 54◦3089'' 1243 

E16 rotundifolia Ilam-Ivan 33◦5108'' 46◦1104'' 1142 

E17 mozafariani Hormozgan-Bandar Abbas 27◦5014'' 56◦1805'' 1117 

E18 piperita Mazandaran-Sari 36◦7700'' 53◦0599'' 1255 
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Table 2. The results of analysis related to yield in stress condition (YP), yield in non-stress condition (YS), 

stress tolerance (TOL), mean productivity (MP), geometric mean productivity (GMP and stress 

susceptibility index (SSI) indices at different salinity stress levels 

Stress level (dS. m
-1

) S.O.V YP YS TOL MP GMP SSI 

2.5 Block 0.40ns 0.08 ns 0.20 ns 0.50 ns 0.06 ns 0.01 ns 
 Treatment 20.63** 14.05** 1.48** 16.97** 16.81** 0.14** 
 Error 0.13 0.05 0.15 0.05 0.05 0.02 

 CV (%) 4.37 3.61 20.36 3.16 3.08 17.34 

5 Block 0.07 ns 0.02 ns 0.15 ns 0.08 ns 0.01 ns 0.008 ns 
 Treatment 21.15** 10.16** 2.67** 14.98** 14.46** 0.043** 
 Error 0.09 0.01 0.10 0.02 0.02 0.004 

 CV (%) 3.69 1.94 10.78 2.44 2.18 6.82 

7.5 Block 0.07 ns 0.02 ns 0.02 ns 0.04 ns 0.03 ns 0.0003 ns 
 Treatment 21.15** 6.05** 5.30** 12.27** 11.09** 0.0026** 
 Error 0.09 0.05 0.11 0.04 0.04 0.0023 

 CV (%) 3.69 5.39 7.65 3.41 3.66 4.86 
ns and **: are non-significant and significant at 1% probability levels, respectively. 

Table 3. The results of variance analysis related to yield index (YI), yield stability index (YSI), stress 

tolerance index (STI), harmonic mean (HM) and Ys-Yp indices at different salinity stress levels 

Stress level (dS. m
-1

) S.O.V YI YSI STI HM Ys-Yp 

2.5 Block 0.0004 ns 0.0011 ns 0.0036 ns 0.06 ns 0.02 ns 
 Treatment 0.0081** 0.1941** 0.7997** 16.65** 1.48** 
 Error 0.0016 0.0007 0.0028 0.04 0.15 

 CV (%) 5.30 3.62 6.61 3.03 20.36 

5 Block 0.001 ns 0.0002 ns 0.0001 ns 0.003 ns 0.15 ns 
 Treatment 0.005** 0.1404** 0.5971** 13.975** 2.67** 
 Error 0.001 0.0001 0.0010 0.017 0.10 

 CV (%) 3.67 1.94 4.57 1.97 10.78 

7.5 Block 0.0001 ns 0.0003 ns 0.001 ns 0.03 ns 0.02 ns 
 Treatment 0.0032** 0.0836** 0.350** 10.06** 5.30** 
 Error 0.0006 0.0006 0.001 0.05 0.11 

 CV (%) 5.09 5.39 7.93 4.14 7.65 
ns and **: are non-significant and significant at 1% probability levels, respectively. 

Table 4. Relative percent difference (RPD) values for evaluating models 

RPD Model situation 

< 1.0 Very poor models/predictions 
1.0 < RPD < 1.4 Poor models/predictions 
1.4 < RPD < 1.8 Fair models/predictions 
1.8 < RPD < 2.0 Good models/predictions 
2.0 < RPD < 2.5 Very good quantitative models/predictions 

RPD > 2.5 Excellent models/predictions 

Table 5. Correlation matrix showing relationship between different salt tolerance indices of mint ecotypes 

at 2.5 dS. m
-1

 salt stress level 

Indices YP YS TOL MP GMP SSI YI YSI STI HM 

Yield in stress condition (YP) 1          

Yield in non-stress condition (YS) 0.97** 1         

Stress tolerance (TOL) 0.73** 0.56* 1        

Mean productivity (MP) 0.99** 0.99** 0.66** 1       

Geometric mean productivity (GMP) 0.99** 0.99** 0.64** 0.99** 1      

Stress susceptibility index (SSI) -0.20 -0.41 0.49* -0.30 -0.31 1     

Yield index (YI) 0.20 0.41 -0.48* 0.30 0.31 -0.99** 1    

Yield stability index (YSI) 0.97** 0.99** 0.56* 0.99** 0.99** -0.41 0.41 1   

Stress tolerance index (STI) 0.98** 0.99** 0.62** 0.99** 0.99** -0.32 0.32 0.99** 1  

Harmonic mean (HM) 0.99** 0.99** 0.63** 0.99** 0.99** -0.32 0.32 0.99** 0.99** 1 

* Significant at p ≤ 0.05.** Significant at p ≤ 0.01. 
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Table 6. Correlation matrix showing relationship between different salt tolerance indices of mint ecotypes 

at 5 dS. m
-1

 salt stress level 

Indices YP YS TOL MP GMP SSI YI YSI STI HM 

Yield in stress condition (YP) 1          

Yield in non-stress condition (YS) 0.98
**

 1         

Stress tolerance (TOL) 0.91
**

 0.80
**

 1        

Mean productivity (MP) 0.99
**

 0.99
**

 0.87
**

 1       

Geometric mean productivity (GMP) 0.99
**

 0.99
**

 0.86
**

 0.99
**

 1      

Stress susceptibility index (SSI) -0.18 -0.38 0.24 -0.26 -0.28 1     

Yield index (YI) 0.18 0.38 -0.24 0.26 0.28 -0.99
**

 1    

Yield stability index (YSI) 0.98
**

 0.99
**

 0.80
**

 0.99
**

 0.99
**

 -0.38 0.38 1   

Stress tolerance index (STI) 0.98
**

 0.99
**

 0.83
**

 0.99
**

 0.99
**

 -0.30 0.30 0.99
**

 1 
 

Harmonic mean (HM) 0.99
**

 0.99
**

 0.84
**

 0.99
**

 0.99
**

 -0.30 0.30 0.99
**

 0.99
**

 1 

* Significant at p ≤ 0.05.** Significant at p ≤ 0.01. 

Table 7. Correlation matrix showing relationship between different salt tolerance indices of mint ecotypes 

at 7.5 dS. m
-1

 salt stress level 

Indices YP YS TOL MP GMP SSI YI YSI STI HM 

Yield in stress condition (YP) 1          

Yield in non-stress condition (YS) 0.97** 1         

Stress tolerance (TOL) 0.96** 0.86** 1        

Mean productivity (MP) 0.99** 0.99** 0.93** 1       

Geometric mean productivity (GMP) 0.99** 0.99** 0.92** 0.99** 1      

Stress susceptibility index (SSI) -0.24 -0.47* 0.03 -0.32 -0.36 1     

Yield index (YI) 0.24 0.47* -0.03 0.32 0.36 -0.99** 1    

Yield stability index (YSI) 0.97** 0.99** 0.86** 0.99** 0.99** -0.47* 0.47* 1   

Stress tolerance index (STI) 0.98** 0.99** 0.89** 0.99** 0.99** -0.40 0.40 0.99** 1 
 

Harmonic mean (HM) 0.98** 0.99** 0.90** 0.99** 0.99** -0.40 0.40 0.99** 0.99** 1 

* Significant at p ≤ 0.05.** Significant at p ≤ 0.01. 

Therefore, selection was carried out 

based on the high values of these indices to 

select ecotypes with high performance in 

both normal and salt-stress conditions, 

such as ecotypes including E13, E14, E15, 

E16 and E18 (Tables 8, 9 and 10). 

Table 8. Mean of yield in stress condition (YP), yield in non-stress condition (YS), stress tolerance (TOL), 

mean productivity (MP), geometric mean productivity (GMP, stress susceptibility index (SSI), yield 

index (YI), yield stability index (YSI), stress tolerance index (STI) and harmonic mean (HM) of 18 

mint ecotypes at 2.5 dS. m
-1

 salt stress level 

Group no. in 
dendrogram 

Ecotypes YP YS TOL MP GMP SSI YI YSI STI HM Ys-Yp 

2 E1 9.46 6.90 2.57 8.18 8.08 1.15 0.73 0.81 0.91 7.97 -2.57 
3 E2 6.05 4.32 1.73 5.18 5.11 1.21 0.72 0.51 0.36 5.04 -1.73 
3 E3 6.31 4.39 1.92 5.35 5.26 1.29 0.70 0.52 0.38 5.17 -1.92 
3 E4 5.45 4.07 1.38 4.76 4.71 1.07 0.75 0.48 0.31 4.66 -1.38 
2 E5 8.40 6.36 2.04 7.38 7.30 1.03 0.76 0.75 0.74 7.23 -2.04 
3 E6 5.70 4.44 1.26 5.07 5.03 0.94 0.78 0.52 0.35 4.99 -1.26 
3 E7 6.85 5.06 1.79 5.95 5.88 1.11 0.74 0.59 0.48 5.82 -1.79 
2 E8 9.21 6.62 2.59 7.92 7.81 1.19 0.72 0.78 0.84 7.70 -2.59 
3 E9 6.89 5.23 1.66 6.06 6.00 1.01 0.76 0.61 0.50 5.94 -1.66 
2 E10 7.78 6.35 1.42 7.06 7.03 0.77 0.82 0.75 0.68 6.99 -1.42 
3 E11 7.14 5.90 1.24 6.52 6.49 0.73 0.83 0.69 0.58 6.46 -1.24 
3 E12 7.35 5.94 1.41 6.64 6.60 0.81 0.81 0.70 0.60 6.56 -1.41 
1 E13 11.65 9.27 2.38 10.46 10.39 0.87 0.80 1.09 1.49 10.32 -2.38 
1 E14 10.55 8.28 2.27 9.42 9.35 0.91 0.79 0.97 1.21 9.28 -2.27 
1 E15 11.47 8.90 2.57 10.18 10.10 0.95 0.78 1.05 1.41 10.02 -2.57 
1 E16 12.17 8.49 3.68 10.33 10.16 1.28 0.70 1.00 1.43 10.00 -3.68 
2 E17 8.33 6.08 2.26 7.21 7.12 1.15 0.73 0.71 0.70 7.03 -2.26 
1 E18 12.38 10.52 1.86 11.45 11.41 0.64 0.85 1.24 1.80 11.37 -1.86 

LSD 5% 
 

0.44 0.23 0.42 0.28 0.27 0.17 0.04 0.03 0.06 0.25 0.42 
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Table 9. Mean of yield in stress condition (YP), yield in non-stress condition (YS), stress tolerance (TOL), 

mean productivity (MP), geometric mean productivity (GMP, stress susceptibility index (SSI), yield 

index (YI), yield stability index (YSI), stress tolerance index (STI) and harmonic mean (HM) of 18 

mint ecotypes at 5 dS. m
-1

 salt stress level 

Group no. in 
dendrogram 

Ecotypes YP YS TOL MP GMP SSI YI YSI STI HM Ys-Yp 

2 E1 9.46 6.12 3.35 7.79 7.60 1.00 0.65 0.72 0.80 7.41 -3.35 
1 E2 6.05 3.84 2.20 4.95 4.82 1.04 0.64 0.45 0.32 4.70 -2.20 
1 E3 6.31 4.07 2.23 5.19 5.07 1.01 0.65 0.48 0.36 4.95 -2.23 
1 E4 5.45 3.64 1.82 4.55 4.45 0.95 0.67 0.43 0.27 4.36 -1.82 
1 E5 8.40 5.25 3.15 6.82 6.64 1.07 0.63 0.62 0.61 6.46 -3.15 
1 E6 5.70 3.51 2.19 4.61 4.47 1.10 0.62 0.41 0.28 4.35 -2.19 
1 E7 6.85 4.16 2.68 5.50 5.34 1.12 0.61 0.49 0.39 5.18 -2.68 
2 E8 9.21 6.14 3.07 7.68 7.52 0.95 0.67 0.72 0.78 7.37 -3.07 
1 E9 6.89 4.25 2.63 5.57 5.41 1.09 0.62 0.50 0.41 5.26 -2.63 
1 E10 7.78 5.43 2.35 6.60 6.50 0.86 0.70 0.64 0.58 6.39 -2.35 
1 E11 7.14 4.92 2.22 6.03 5.92 0.89 0.69 0.58 0.48 5.82 -2.22 
1 E12 7.35 5.05 2.30 6.20 6.09 0.89 0.69 0.59 0.51 5.99 -2.30 
3 E13 11.65 7.87 3.78 9.76 9.57 0.93 0.68 0.92 1.27 9.39 -3.78 
2 E14 10.55 6.83 3.73 8.69 8.49 1.01 0.65 0.80 1.00 8.29 -3.73 
3 E15 11.47 7.19 4.28 9.33 9.08 1.07 0.63 0.84 1.14 8.84 -4.28 
3 E16 12.17 7.39 4.78 9.78 9.48 1.12 0.61 0.87 1.24 9.19 -4.78 
1 E17 8.33 4.98 3.35 6.66 6.44 1.15 0.60 0.59 0.57 6.24 -3.35 
3 E18 12.38 9.00 3.38 10.69 10.55 0.78 0.73 1.06 1.54 10.42 -3.38 

LSD 5%  0.44 0.16 0.46 0.24 0.21 0.10 0.03 0.02 0.04 0.18 0.46 

Table 10. Mean of yield in stress condition (YP), yield in non-stress condition (YS), stress tolerance (TOL), 

mean productivity (MP), geometric mean productivity (GMP, stress susceptibility index (SSI), yield 

index (YI), yield stability index (YSI), stress tolerance index (STI) and harmonic mean (HM) of 18 

mint ecotypes at 7.5 dS. m
-1

 salt stress level 

Group no. in 
dendrogram 

Ecotypes YP YS TOL MP GMP SSI YI YSI STI HM Ys-Yp 

2 E1 9.46 4.42 5.05 6.94 6.45 1.04 0.47 0.52 0.58 5.99 -5.05 
3 E2 6.05 2.88 3.17 4.46 4.17 1.03 0.48 0.34 0.24 3.90 -3.17 
3 E3 6.31 2.87 3.43 4.59 4.26 1.07 0.46 0.34 0.25 3.95 -3.43 
3 E4 5.45 2.65 2.80 4.05 3.80 1.01 0.49 0.31 0.20 3.57 -2.80 
2 E5 8.40 4.08 4.31 6.24 5.86 1.01 0.49 0.48 0.47 5.49 -4.31 
3 E6 5.70 2.72 2.98 4.21 3.94 1.02 0.48 0.32 0.21 3.68 -2.98 
3 E7 6.85 3.27 3.58 5.06 4.73 1.02 0.48 0.38 0.31 4.42 -3.58 
2 E8 9.21 4.49 4.72 6.85 6.43 1.00 0.49 0.53 0.57 6.04 -4.72 
3 E9 6.89 3.22 3.67 5.06 4.71 1.04 0.47 0.38 0.31 4.39 -3.67 
3 E10 7.78 3.87 3.90 5.82 5.49 0.98 0.50 0.46 0.42 5.17 -3.90 
3 E11 7.14 3.63 3.51 5.38 5.09 0.96 0.51 0.43 0.36 4.81 -3.51 
3 E12 7.35 3.74 3.61 5.55 5.24 0.96 0.51 0.44 0.38 4.95 -3.61 
1 E13 11.65 5.78 5.87 8.71 8.20 0.99 0.50 0.68 0.93 7.72 -5.87 
1 E14 10.55 4.92 5.64 7.73 7.20 1.05 0.47 0.58 0.72 6.70 -5.64 
1 E15 11.47 5.57 5.89 8.52 7.99 1.01 0.49 0.66 0.88 7.50 -5.89 
1 E16 12.17 5.44 6.73 8.80 8.13 1.08 0.45 0.64 0.91 7.51 -6.73 
2 E17 8.33 4.31 4.03 6.32 5.99 0.95 0.52 0.51 0.50 5.68 -4.03 
1 E18 12.38 7.13 5.25 9.76 9.40 0.83 0.58 0.84 1.22 9.05 -5.25 

LSD 5%  0.44 0.31 0.46 0.31 0.31 0.07 0.03 0.04 0.06 0.32 0.46 

 
Cluster and principal component analysis 

Cluster analysis was attained by the 

similarity matrix based on Euclidean 

distance measurement and non-weighted 

paired group method using arithmetic 

average (UPGMA). The matrix of 

similarity was used for the cluster analysis 

(average of four replicates per ecotype). 

The cluster analysis divided the ecotypes 

into three distinct groups based on the 

calculated indices at all salinity levels (Fig. 

4).  
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Fig. 4. Dendrogram based on UPGMA method for tolerance indices (YP: Yield in stress condition; YS: 

Yield in non-stress condition; TOL: Stress tolerance; MP: Mean productivity; GMP: Geometric mean 

productivity; SSI: Stress susceptibility index; YI: Yield index; YSI: Yield stability index; STI: Stress 

tolerance index; HM: Harmonic mean) in 18 mint ecotypes. A: (at 2.5 dS. m
-1

 salt stress level) B: (at 5 

dS. m
-1

 salt stress level) and C: (at 7.5 dS. m
-1

 salt stress level) 

The numbers 13, 14, 15, 16 and 18 

ecotypes were placed in the first group at 

2.5 and 7.5 dS m
-1

 levels. At 5 dS m
-1

 

salinity level, numbers 13, 15, 16 and 18 

ecotypes were placed in the third group. 

The above-mentioned ecotypes had a 

higher TOL, MP, GMP, YSI, STI and HM 

rate than the others. 

Furthermore, the results of principal 

component analysis at different salinity 

levels showed that the first two principal 

components had the highest amount of 

relative variance of the total variation in 

yield performance and the measured 

indices. At all salinity levels, the YP, YS, 

TOL, MP, GMP, YSI, STI and HM indices 

showed the highest value in the first 

component. In addition, in the second 

component, the SSI and YI indices showed 

the highest rates. The relative variance for 

the first component at 2.5, 5 and 7.5 dS m
-1

 

salinity levels were found to be 75.8%, 

78.6% and 80.8%, respectively (Table 11). 

Besides, in the second component, the 

relative variance was 23.7%, 21.2%, and 

19%, respectively. The results indicated 

that the relative variance of the first 

component increased with increasing 

salinity level. By contrast, the amount of 

the second component decreased with 

increasing salinity levels. The Biplot chart 

shows the distribution of ecotypes around 

the evaluated indicators (Fig. 5). 
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Table 11. Principal component analysis based all salinity indices at three salt stress levels 

Indices 

  Stress levels   

2.5 (dS. m
-1

) 
 

5 (dS. m
-1

) 
 

7.5 (dS. m
-1

) 

PC1 PC2  
PC1 PC2  

PC1 PC2 

Yield in stress condition (YP) 0.987 0.157 
 

0.989 0.147 
 

0.978 0.205 

Yield in non-stress condition (YS) 0.997 -0.063 
 

0.997 -0.063 
 

0.999 -0.045 

Stress tolerance (TOL) 0.617 0.771 
 

0.835 0.538 
 

0.886 0.457 

Mean productivity (MP) 0.998 0.058 
 

0.998 0.061 
 

0.993 0.119 

Geometric mean productivity (GMP) 0.999 0.043 
 

0.999 0.039 
 

0.997 0.077 

Stress susceptibility index (SSI) -0.355 0.932 
 

-0.319 0.947 
 

-0.433 0.901 

Yield index (YI) 0.356 -0.932 
 

0.320 -0.947 
 

0.433 -0.901 

Yield stability index (YSI) 0.997 -0.062 
 

0.997 -0.064 
 

0.999 -0.045 

Stress tolerance index (STI) 0.994 0.027 
 

0.995 0.019 
 

0.994 0.036 

Harmonic mean (HM) 0.999 0.029 
 

1.000 0.017 
 

0.999 0.035 

Relative variance (%) 75.799 23.728 
 

78.527 21.179 
 

80.793 19.005 

Cumulative variance (%) 75.799 99.527 
 

78.527 99.706 
 

80.793 99.798 

 

  

 

Fig. 5. The biplot chart based on Yp, Ys and eight salinity indices at three salt stress levels. [YP: Yield in 

stress condition; YS: Yield in non-stress condition; TOL: Stress tolerance; MP: Mean productivity; 

GMP: Geometric mean productivity; SSI: Stress susceptibility index; YI: Yield index; YSI: Yield 

stability index; STI: Stress tolerance index; HM: Harmonic mean] 
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Sensitivity analysis 
The results of the sensitivity analysis at 

different levels of salinity using ANN is 

showed in Figure 6. The network with the 

highest RMSE independent input variable 

showed the most impact on the model. 

To evaluate the sensitivity of the 

parameters, YP, TOL, MP, GMP, SSI, YI, 

YSI, STI and HM were considered as the 

inputs of the model. The results of the 

sensitivity analysis at 2.5 dS m
-1

 salinity 

showed that the HM, STI, YSI, YI, SSI and 

MP indices are of higher importance than 

the others. It was also observed that with 

increasing salinity level, the importance of 

indices would change greatly. Therefore, at 

the 5 dS m
-1

 salinity level, the HM, STI, 

YSI, YI, GMP and MP indices showed the 

most importance. The results of the 

sensitivity analysis at 7.5 dS m
-1

 salinity 

level differed from the lower salinity 

levels. Accordingly, the STI, YSI, YI, 

GMP and YP indicators were of the highest 

importance. Therefore, based on the results 

of the sensitivity analysis, the indices with 

higher importance were selected and 

evaluated as the input parameters in 

different models for prediction of dry 

matter performance. 

 

 

Fig. 6. The relative importance of the effective parameters in determining salt-tolerance indices. [YP: 

Yield in stress condition; YS: Yield in non-stress condition; TOL: Stress tolerance; MP: Mean 

productivity; GMP: Geometric mean productivity; SSI: Stress susceptibility index; YI: Yield index; 

YSI: Yield stability index; STI: Stress tolerance index; HM: Harmonic mean] 
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Comparing different models 
The highest R

2
 at different salinity levels was 

related to the ANN(MLP) model (Table 12). 

In addition, the R
2
 in ANN(RBF) at 

different salinity levels was 0.95 (Fig. 7). 

Table 12. Performance indices (R
2
, RMSE, VAF, MAPE, and RPD) for the models evaluated 

Model Performance indices 
Salt stress levels (dS. m-1) 

2.5 5 7.5 

Adaptive neuro fuzzy inference system (ANFIS) R2 (Coefficient of determination) 0.85 0.88 0.92 

 
VAF (Value account for) 86.96 88.46 92.22 

 
MAPE (Mean absolute percentage error) 3.01 2.27 3.09 

 
RMSE (Root mean square error) 1.11 0.75 0.50 

 
RPD (Relative percent difference) 1.65 2.07 2.44 

Artificial neural network (Multilayer perceptron) (ANN (MLP)) R2 (Coefficient of determination) 0.99 0.99 0.99 

 
VAF (Value account for) 99.90 99.94 99.91 

 
MAPE (Mean absolute percentage error) 0.61 0.55 0.56 

 
RMSE (Root mean square error) 0.07 0.05 0.05 

 
RPD (Relative percent difference) 23.40 29.83 24.30 

Artificial neural network (Radial basis function) (ANN (RBF)) R2 (Coefficient of determination) 0.95 0.95 0.95 

 
VAF (Value account for) 95.37 95.19 95.32 

 
MAPE (Mean absolute percentage error) 4.86 4.71 5.03 

 
RMSE (Root mean square error) 0.56 0.48 0.37 

 
RPD (Relative percent difference) 3.25 3.16 3.23 

Genetic algorithm (GA) R2 (Coefficient of determination) 0.86 0.85 0.89 

 VAF (Value account for) 86.71 86.41 89.40 

 MAPE (Mean absolute percentage error) 4.76 4.47 7.31 

 RMSE (Root mean square error) 1.10 1.11 0.58 

 RPD (Relative percent difference) 1.72 1.71 2.05 

Ordinary least squares (OLS) R2 (Coefficient of determination) 0.86 0.86 0.91 

 
VAF (Value account for) 87.40 86.51 91.82 

 
MAPE (Mean absolute percentage error) 3.89 3.08 3.49 

 
RMSE (Root mean square error) 1.07 0.82 0.51 

 
RPD (Relative percent difference) 1.75 1.92 2.38 

Principal component regression (PCR) R2 (Coefficient of determination) 0.87 0.89 0.92 

 
VAF (Value account for) 87.36 89.09 92.28 

 
MAPE (Mean absolute percentage error) 2.96 2.78 3.27 

 
RMSE (Root mean square error) 1.02 0.73 0.50 

 
RPD (Relative percent difference) 1.68 2.09 2.45 

Partial least squares (PLS) R2 (Coefficient of determination) 0.86 0.88 0.92 

 VAF (Value account for) 86.97 88.15 92.27 

 MAPE (Mean absolute percentage error) 4.34 3.08 3.55 

 RMSE (Root mean square error) 1.09 0.76 0.50 

 RPD (Relative percent difference) 1.72 2.01 2.45 
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Fig. 7. Variation of estimated values of dry matter against measured data. [ANFIS: Adaptive neuro fuzzy 

inference system; ANN: Artificial neural network; MLP: Multilayer perceptron; RBF: Radial basis 

function; GA: Genetic algorithm; OLS: Ordinary least squares; PCR: Principal component 

regression; PLS: Partial least squares] 
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The lowest R
2
 at 2.5 dS m

-1
 salinity 

level was related to the ANFIS model. At 5 

and 7.5 dS m
-1 

salinity levels, the lowest R
2
 

was estimated in the GA model. Based on 

the assessed models, the highest R
2
 was 

found at 7.5 dS m
-1

 salinity level. The 

amount of RMSE in all models except the 

genetic model showed a decreasing trend 

with increasing salinity levels. 

Furthermore, in the genetic algorithm 

model, the amount of RMSE had a rising 

trend at 2.5 to 5 dS m
-1

 salinity levels and 

reduced its amount at 7.5 dS m
-1

 salinity 

level. The highest amount of VAF was 

related to ANN(MLP) model. The VAF rates 

increased in all evaluated models except 

for the ANN model with increasing salinity 

levels. The highest RPD in the PLS and 

PCR models was obtained as 2.45. The 

results showed that RPD increases with 

increasing salinity level. The lowest MAPE 

was found in the ANN(MLP) model. The 

ANN(RBF), PLS and GA models showed the 

highest MAPE. The equations developed 

by the models tested at different salinity 

levels are given in Table 13.  

Table 13. The equations developed by the models tested at different salt stress levels 

Stress 

level  

(dS. m-1) 

Models Equations 

2.5 Partial least squares (PLS) YS = -0.28+0.21×MP-0.51×SSI+2.17×YI+2.08×YSI+1.01×STI+0.22×HM 

 Ordinary least squares (OLS) YS = 0.09-0.51×MP+0.25×SSI+9.93×YSI+0.44×STI+0.28×HM 

 
Principal component 

regression (PCR) 
YS = 6.58+0.93× MP +0.08× SSI -0.06× YSI +2.23× STI +0.63× HM 

 Genetic algorithm (GA) Ys = 0.012 -0.236×MP-0.551×SSI+6.221×YSI-0.751×STI+0.646×HM 

5 Partial least squares (PLS) YS = -1.70+0.15×MP+0.15×GMP+3.55×YI+1.74×YSI+0.75×STI+0.16×HM 

 Ordinary least squares (OLS) YS = -0.09+0.03×MP-0.006×GMP-0.78×YI+10.24×YSI-1.03×STI+0.06×HM 

 
Principal component 

regression (PCR) 
YS = -0.09+7.67×MP-16.24×GMP-0.79×YI+8.76×YSI-1.03×STI+8.75×HM 

 Genetic algorithm (GA) YS =2.729+2.500×MP-1.382×SSI+4.868×YSI+1.682×STI-2.532×HM 

7.5 Partial least squares (PLS) YS = 0.53-0.12×YP+0.21×GMP-0.37×YI+6.55×YSI+0.69×STI 

 Ordinary least squares (OLS) YS = 0.41-0.02×YP-0.04×GMP-0.78×YI+9.2×YSI+0.07×STI 

 
Principal component 

regression (PCR) 
YS = 0.41-0.02×YP-0.04×GMP-0.78×YI+9.22×YSI+0.07×STI 

 Genetic algorithm (GA) YS =0.099311+0.632×Yp-1.384×GMP+5.753×YI+2.335×YSI+5.629×STI 

 

Discussion 

Selection of tolerant ecotype based on stress 

tolerance indices is very important in 

agronomy and plant breeding. In our 

experiment, there were significant 

differences between different ecotypes 

based on tolerance indices and this can be 

helpful for screening the most tolerant 

ecotypes. Fernandez (1992), based on the 

response of ecotypes to stress or non-

stressed environments, classified ecotypes 

into four groups. In the group A, genotypes 

were found to have superior performance in 

both conditions. In the group B, the 

genotypes had higher yields only under non-

stress conditions. In the group C, genotypes 

with higher relative yields under stress 

conditions were placed. In the group D, 

genotypes were found to have a low yield 

under normal and stress conditions. This 

means that TOL, MP, GMP, YSI, STI and 

HM indices are suitable for isolating 

ecotypes belonging to group A from B, C 

and D. These results are in agreement with 

those reported by Ravari et al. (2015) and 

Izaddoost et al. (2013). Henfy et al., (2013) 

have found that GMP, MP, HM and STI 

indices are suitable for sorghum genotypes. 

In addition, El-Hendawy et al. (2017) 

showed that the MP and GMP indices are 

desirable for selection of genotypes that 

have high yield under stress and non-stress 

conditions. 

Due to the strong interaction between 

genotype and environment, the selection is 

complicated, especially under unpredictable 

climatic conditions (Romagosa et al, 2013). 

According to Fernandez (1992), it is the best 

to identify group A from other groups, 

because sustainability is higher in genotypes 
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related to this group. Due to the wide variety 

of soil and water quality in mint production 

area, ecotypes should be sought, with 

moderate yields in both saline and normal 

conditions. 

In our experiment, cluster analysis 

divided ecotypes into different groups 

based on stress tolerance indices. Ravari et 

al. (2015) evaluated 41 wheat genotypes 

based on salt tolerance indices and reported 

that cluster analysis based on UMGMA 

method differentiated the genotypes into 

four groups. On the other hand, principal 

component analysis plays a decisive role in 

finding the relationship between stress 

tolerance indices and the studied ecotypes 

and has helped us to determine important 

indices. Hence, our result showed that 

using the first component results, tolerant 

ecotypes will be selected based on high‐
ranking yield performance and tolerance 

indices such as YP, YS, TOL, MP, GMP, 

YSI, STI and HM. In this case, ecotypes 

included E13, E14, E15, E16 and E18 were 

identified as the tolerant ecotypes with 

suitable performance under both non‐stress 

and salt‐stress conditions. Abraha et al. 

(2017) evaluated 144 tef (Eragrostis tef) 

genotypes under drought stress. The results 

of principal component analysis showed 

that the MP, HM, GMP, and STI indices 

were identified as the first factor affecting 

yield in both stress and non-stress 

conditions. 

Sensitivity analysis is one of the 

strategies that are very important for 

finding indicators that influence the rate of 

yield production under stress conditions. 

Since no study has been conducted in this 

area so far, our experiment has acceptable 

performance results under salt‐stress 

conditions. Hence, results of sensitivity 

analysis showed that STI, YSI, and YI 

indices were significant in all three stress 

levels based on their effects on dry matter 

yield under salinity stress conditions. 

Hosseini et al. (2017) used the sensitivity 

analysis to determine the useful parameter 

on the amount of phosphorus. Moreover, 

Naroui Rad et al. (2015) used sensitivity 

analysis to show that flesh diameter and 

fruit length traits have the most sensitivity 

to melon fruit yield.  

Albeit plant science and other fields 

have been using intelligent and regression 

models, this is the first time that multiple 

models have been used to predict 

medicinal plant dry matter and have been 

compared as a group. On the other hand, 

some preceding efforts to use intelligent or 

regression models to predict important 

parameters have been made.  

The results of our experiment with 

different models of artificial intelligence 

and regression showed that the ANN (MLP) 

model was the best method for predicting 

the dry matter yield of mint in salt stress 

conditions. Hosseini et al. (2017) predicted 

the amount of phosphorus by intelligent 

and regression models and found that the 

ANN and PLS models had higher 

predictive power. Khaledian et al. (2017) 

used PLS, OLS and PCR regression 

models to predict soil erosion. They 

showed that the PLS model had more 

efficiency in predicting soil erosion 

compared with the other models. Minasny 

et al. (2001) used the ANN to model soil 

pH and calcium chloride and found that the 

ANN model predicted better than the linear 

model. Hosseini et al. (2016) used particle 

swarm optimization, genetic algorithm and 

multiple regression methods to predict soil 

mechanical resistance and found that the 

intelligent models are better than the 

regression model. 

Conclusion 

Researchers use stress tolerance indicators 

to select the most resistant genotypes. But 

this has not been done with medicinal 

herbs so far. On the other hand, the use of 

intelligence and regression models to 

predict the performance of dry matter of 

mint on the basis of stress tolerance index 

has not been made till now. Therefore, our 

most important goal was to compare 

different models for predicting the dry 



 Assessment of Salinity Indices to Identify Mint Ecotypes using Intelligent and … 135 

matter performance of different mint 

ecotypes based on stress-tolerance indices. 

The results showed that ANN(MLP) model 

with R
2
 = 0.999 was the best model for 

prediction at all salinity levels. The results 

also showed that ecotypes included E13, 

E14, E15, E16 and E18 could be used as 

stress tolerant ecotypes for the future 

breeding programs. Finally, we conclude 

that computer software can be very useful 

in selecting and predicting desired 

physiological indices and this can be 

helpful for future projects in plant breeding 

and physiological programs.  
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