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Abstract

Despite recent development in producing chemical medicines, associated side effects have led to increased
use of medicinal plants and natural compounds. Soil salinity, especially in arid and semi-arid regions, is a
serious threat to global agriculture. Nowadays, efforts have been made to find benchmarks that can
effectively select salt-tolerant or salt-resistant genotypes. In this regard, the use of computer software to
predict the indices can help us for screening the most tolerant ecotypes. The objectives of the present study
were to determine the best indicators of salinity tolerance using intelligent and regression models for
eighteen commercial ecotypes of mint. The seedlings were planted in plastic pots and arranged in a split
factorial experiment in a randomized complete block design with four replicates. The treatments consisted
of four levels of salinity (0, 2.5, 5 and 7.5 dS m™), two levels of harvesting time, and 18 ecotypes. The
plants were grown until the flowering stage and then harvested. There was a significant difference between
ecotypes in terms of calculated indices at all three levels of salinity. Indicators such as TOL, MP, GMP,
YSI, STI and HM showed a significant positive correlation with YS and YP at all three levels of salinity.
The cluster analysis divided the ecotypes into three distinct groups based on the calculated indices at all
levels of salinity. The principal component analysis revealed that the YP, YS, TOL, MP, GMP, YSI STI
and HM were more suitable among others salt stress indices. The sensitivity analysis at 2.5 dS m’ sallnlty
level showed that the HM, STI, YSI, YI, SSI and MP indices were of higher importance than the others. At
5 dS m? salinity Ievel the HM, STI YSI, YI, GMP and MP indices showed the highest importance
whereas at 7.5 dS m™ salinity level, the STI, YSI, YI, GMP and YP indices indicated the highest
importance. In general, the results suggest that ANNwm_p) model (R? = 0.999) is the best model to predict at
all salinity levels. E13, E14, E15, E16 and E18 ecotypes are the most salt tolerant ecotypes which can be
used for the future breeding program.
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Abbreviations: YP: Yield in stress condition; YS: Yield in non-stress condition; TOL:
Stress tolerance; MP: Mean productivity; GMP: Geometric mean productivity; SSI: Stress
susceptibility index; YI: Yield index; YSI: Yield stability index; STI: Stress tolerance index; HM:
Harmonic mean; ANFIS: Adaptive neuro fuzzy inference system; ANN: Artificial neural network;
MLP: Multllayer perceptron; RBF: Radial basis function; GA: Genetic algorithm; OLS Ordinary least
squares; PCR: Principal component regression; PLS: Partial least squares; R* Coefficient of
determination; VAF: Value account for; MAPE: Mean absolute percentage error; RMSE: Root mean
square error; RPD: Relative percent difference.
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Introduction

According to the World Health Organization,
medicinal plants are used by a large number
of people, especially in developing countries
(Bridge, 2016). Currently, 80% of the people
in these countries use medicinal plant
products to meet their medicine needs
(Sukanya et al., 2009).

Mint (Mentha spicata L.) originally has
been used as a medicinal herb to relieve
stomach  ache andchest pains. The
economic importance of mints is also
evident; mint oil and its constituents and
derivatives are used as flavoring agents
throughout  the  world in  food,
pharmaceutical, herbal, perfumery, and
flavoring industries (Brahmi et al., 2017).
Plants from this genus can be found in
multiple and diverse environments, but most
Mentha plants grows best in wet
environments, moist soils and partial shade
(Salehi et al., 2018). Different genera of this
plant are widely cultivated in diverse areas
of Iran such as Mazandaran, Gilan, Gorgan,
Hazmazgan and southern Fars, Semnan,
Kurdistan and Arak (Mozaffarian, 2008).

The genus mentha is one of the
important members of the family
Lamiaceae, a vast group of aromatic herbs
of notable economic values due to its
valuable essential oil. Recent data, based
on morphological, cytological and genetic
characteristics, have shown that genus
Mentha can be classified into 42 species,
15 hybrids and hundreds of subspecies,
varieties and cultivars (Tucker 2007; Salehi
et al.,, 2018). Most Mentha species are
perennial and fast-growing, extending their
growth through a network of runners,
contain essential oils, and are widely
cultivated as industrial crops for essential
oil production (Kumar et al., 2011).

Mint is also widely used in food and
flavours as well as pharmaceutical and
cosmetic industries. Approximately 10,000
tonnes of natural menthol and 2,000 tonnes
of synthetic menthol are annually used by
the pharmaceutical, cosmetic and cigarette
industries across the globe (Yaseen et al.,

2000; Annicchiarico, 2002; Lal, 2007,
2012). The plant is a rich source of
essential oils that have a major nutritional
and medicinal value, for example it has
been used as an anti-inflammatory, anti-
bacterial and digestive aid in traditional
and modern medicine (Khalvandi et al.,
2019; Mohkami et al., 2014).

Soil and water salinity are among the
most important environmental factors
limiting plants growth and production
worldwide, especially in arid and semi-arid
regions (Kachout et al., 2009). Currently,
millions of hectares of agricultural land in
the world are facing problems due to
salinity (Dagar and Minhas, 2016). Salty
lands are generated by the accumulation of
soluble solutes such as chlorine, sulfate,
bicarbonate, and sometimes nitrate, in
particular sodium, calcium, magnesium
and rarely potassium in non-saline soils
(Shannon, 1997). In addition to cations,
anions seem to also contribute to salinity,
while sodium chloride and sodium sulfate
play significant role in causing damage to
plants due to their high solubility (Keutgen
and Pawelzik, 2009).

To date, several efforts have been made
to find benchmarks that can effectively
select  salt-tolerant or  salt-resistant
genotypes (Ashraf and Wu, 1994).
However, the probability that the stress-
tolerance genes in a plant are centralized
and recognized by physiological methods
is very limited (Flowers, 1997). Therefore,
yield and yield components sustainability
and stability under stress conditions are
still among the main indicators of selection
for finding tolerant genotypes in many
breeding programs (Flowers and Yeo,
1995). Evaluation of plant’s yield is the
most important indicator for identifying
compatible  genotypes in  stressed
environments (Blum, 2005). There are
different indices for assessing the stability
of genotypes under various  stress
conditions (Dhanda et al., 2004). Stress
tolerance index (STI) is a suitable criterion
for selecting genotypes to achieve high
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performance under stress conditions. This
index separates the genotypes of high
performance in stressed and non-stressed
conditions from other groups (Fernandez,
1992). The tolerance index (TOL) is
obtained from the difference in
performance under stressed and non-stress
conditions. The higher values indicate
lower genotype stability in different
environments. In the stress susceptibility
index (SSI), its lower values show a greater
stability of a genotype under stress and
non-stress conditions (Fischer and Maurer,
1978). Due to the high correlation between
tolerance to stress condition and average
yield in different environments, the Mean
Productivity Index (MP) can be used as a
suitable criterion for the selection of
genotypes (Rosielle and Hamblin, 1981).
Following the rapid advancement of
diverse sciences in the 20" century, non-
analytic nonlinear functions were created in
various engineering processes, requiring their
numerical solution to evolve different
numerical solution structures (Van Gorder,
2017). Genetic algorithms as one of these
structures for the first time around three
decades ago were inspired by natural
structures (Bi et al., 2015). Hosseini et al.
(2016) have stated that a genetic algorithm
model could predict soil mechanical
resistance more precisely than multiple
regression with R? = 0.90 and RMSE = 0.34.
Since, ANN, ANFIS, GA, PLS, OLS and
PCR models have not been used to evaluate
stress tolerance indices to date, also the
interest in studying mint for human beings is
majorly related to its phytosanitary effects.
The aim of this study was the application of
these models as novel approach to determine

TOL=Yp—Ys
_Ys+Yp

GMP = ,/Ys xYp

Ys
1__
SSI = Q
1-Ys
Yp
Ys
YI =—

the best indicators for salinity tolerance using
intelligent and regression models for
commercial mint ecotypes in order to be able
to use them in the future breeding programs.

Materials and methods
The ecotypes were provided from the Gene
Bank of Research Institute of Forests and
Rangelands. The seeds were sown in plastic
pots (25 cm diameter and 30 cm height)
filled with cocopeat (40%) and perlite (60%)
and placed in a glasshouse with a
temperature between 25 and 28 °C, 16/8
day/night photoperiod and relative humidity
of 60% throughout the experiment. The
treatments consisted of four levels of salinity
(0, 25, 5 and 7.5 dS m™), two levels of
harvesting time and 18 ecotypes (Table 1),
which arranged as split factorial experiment
using randomized complete block design
with four replications. The plants were
watered with Hoagland nutrient solution
(Hoagland and Arnon, 1950). Salinity was
imposed 15 days after seed sowing. To
prevent salinity shock to the seedlings 5 and
75 dS m? salinity levels were gradually
applied (Reich et al., 2017), in a way that the
electrical conductivity of the solution
increased stepwise by 2.5 dS m™ to reach 5
and 7.5 dS m™. Moreover, to prevent the
accumulation of solutes in the culture
medium, washing was done in certain
periods.  Eventually, harvesting  was
performed when the plants entered into the
flowering phase. The plants were weighted
and then placed in an oven at 70 °C for 48 h
to determine dry weight using a digital scale.
The eight stress tolerance indices were
calculated using the following equations:

(Hossain et al., 1990) 1)
(Bouslama and Schapaugh, 1984) 2
(Sio-Se Mardeh et al., 2006) 3)
(Fischer and Maure, 1978) 4)
(Gavuzzi et al., 1997) (5)
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Ys
YSI ==
Yp
YsxXYp
Yp?
2(YsxYp)
(Ys+7Yp)

All equations are based on dry matter
yield in stressed (Ys) and non-stressed
(Yp) conditions and average dry matter
yield in stressed (Ys) and non-stressed (Yp)
conditions.

Intelligent methods

Artificial neural network (ANN)

In this study, the network was designed
with 10 nodes in the input layer and 1 node
in the output layer. The best transmission
function was Tansig for the structure of the
neural network (Fig. 1) (Hosseini et al.,
2017). For neural network training,
MATLAB 7.6 utilized the Multi-Layer
Perceptron (MLP) and Radial Basis
Function (RBF) network.

Training processes involved weight
rectification between diverse layers until
minimum difference was achieved between
real and predicted data. Lastly, the best
network structure was carefully chosen
based on minimum root mean square error
(RMSE) and maximum R? (Liu et al.,
2001).

[nput
layer

(Bouslama and Schapaugh, 1984) (6)
(Gavuzzi et al., 1997) @)
(Rosielle and Hamblin, 1981) (8)
Adoptive neuro-fuzzy inference system

(ANFIS)

An additional soft computing technique used
in natural science is neuro-fuzzy modeling
(Iphar et al., 2008; Singh et al., 2007). A
neuro-fuzzy system is, in fact, a neural
network that is functionally equivalent to the
fuzzy inference model. Jang (1993)
suggested a fuzzy logic model named
ANFIS which employs some properties of an
ANN such as learning and parallelism. The
basic structure of an ANFIS model was
given by Padmini et al. (2008) (Fig. 2).

Genetic algorithm (GA)

Genetic algorithms (GA) are mathematical
models of natural genetics where the power
of nature to develop, destroy, improve and
annihilate life is abstracted and used to

explain complex optimization
complications (Fig. 3).

Holland  (1975)  established  this
prevailing technique and it has been

applied in several fields of science.

Hidden
layers

Output
layer

Xm o

Fig. 1. A simple multilayer of Artif

7
Yp

icial Neural Network (ANN) configuration
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Layer 1 Layer 2

Layer 3 Layer 4 Layer 5

Fig. 2. Basic adaptive neuro-fuzzy inference system (ANFIS) structure.

population of individuals

Y wammmmmmm——  fitness evaluation of individuals

ranking individuals based on
fitness

creating a new generation and
introducing diversity via mutation
and recombination

Ok

has selection met the required
fitness criteria?

selection

individuals with the required

fitness(es)

Fig. 3. Flowchart of a single population evolutionary genetic algorithm (GA)

Regression methods

Partial least squares regression (PLS),
ordinary least-squares regression (OLS) and
principal components regression (PCR).
PLS, OLS, and PCR are three techniques to
model a response or dependent variable
when there are several predictors or
independent variables existing, and the
predictor variables are extremely correlated
(Hosseini et al., 2017).

Model evaluation

To evaluate the proficiency of models,
several statistical standards such as value
account for (VAF), root mean square error
(RMSE), R? mean absolute percentage
error (MAPE) and relative percent

difference (RPD) (only for PLS, PCR and
OLS) were used as follows:

Var(P(si) — M(si)) 9
B Var(M(si) * 100 ( )

RMSE = z\/{Z[P(Si) _ M(Si)]z} (10)

VAF = [1

n
4 [M(si) — P(si)]?
T IMGsD) — AGDP (11)

P (si), M (si) and A (si) represent the
amounts of predicted, measured and
average dry matter yields and represents
the number of sampling points. VAF (Eq.
(9)) and RMSE (Eg. (10)) indices were
computed to evaluate the proficiency of the
predictive model developed in the study as
employed by Grima and Babuska (1999),

R*=1
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Gokceoglu (2002), and Yilmaz and Yuksek
(2008). If the VAF is 100 and RMSE is 0,
then model proficiency was outstanding.
R? (Eq. (11)) is also commonly used in
intelligent methods to evaluate model
proficiency. Mean absolute percentage
error (MAPE), which is a measure of
accuracy in a fitted series value in
statistics, was also used for comparison of
the prediction proficiency of the models.
MAPE usually represent accuracy as a
percentage (Eq. (12)).
N|Ai —_Pi|
MAPE = =LAl

x 100 (12)

Where Ai represents the actual value
and Pi represents the predicted value. The
achieved values of ME, VAF, RMSE and
MAPE were used to demonstrate
prediction proficiency. Viscarra Rossel et
al. (2009) proposed that relative percent
difference (RPD; Eq. (13)) can be used to
evaluate model proficiency; RPD values
which employed to evaluate the models are
shown in Table 2.

SD

RPD =
RMSEp

(13)

Where SD is standard deviation.

Statistical analysis

The data were separated into a training data
subset (70%) and testing data subset
(30%). Data subsets were used for defining
the proficiency of seven methods; GA,
ANN, ANFIS, PLS, PCR and OLS. Matlab
(MathWorks, Natick, MA) was used to
analyze GA, ANN and ANFIS and
XLSTAT (Add-In-Soft, Paris, France)
were used for PLS, OLS, PCR, cluster
analysis and principal component analysis.

Results

Analysis of variance and correlation

The analysis of variance indicated that
there was a significant difference between
ecotypes based on all studied indices
(Table 1, 2, and 3). Relative percent
difference (RPD) values for evaluating
models is presented in Table 4.

The results also showed that there was a
significant difference between ecotypes in
terms of calculated indices at all salinity
levels. The TOL, MP, GMP, YSI, STI and
HM showed a significant and positive
correlation with both YS and YP at all
salinity levels (Tables 5, 6 and 7).

Table 1. Ecotype number, species, latitude, longitude, altitude and place related to 18 mint ecotypes

Ecotype Species Place Latitude Longitude Altitude
number (\N) (B) (m)
E; longifolia Mazandaran-Hezar Jarib 36°4524" 532806" 389
E, longifolia Fars-Shiraz 29°7447" 5204590" 1491
E, longifolia KordeSta”'Ssri‘ﬁgg:J’ Dolatabad 3550000 47.9999" 2039
E4 longifolia Markazi-Arak 34°1115" 49°3111" 2030
Es longifolia Golestan-Ramyan 365513" 5520655" 780
Es longifolia Tehran 3505229" 5209383" 1940
E; longifolia Zanjan 3604235" 48°0703" 1800
Eg longifolia Semnan-Damghan 3602748" 54-1738" 2300
Eo longifolia llam-Dehloran 325307" 47-0030" 807
Eio pulegium Markazi-Tafresh 34°4703" 49°5800" 1550
Eix pulegium Markazi-Khomein 3303635" 50°0150" 1808
Ei, pulegium South Khorasan-Sarbisheh 3203223" 65°1139" 1817
Eis pulegium Mazandaran 3203703" 51-2590" 1662
Ei4 spicata Isfahan-Najafabad 3201854" 51-4307" 1652
Eis spicata Yazd 3101588" 5403089" 1243
Ei rotundifolia llam-lvan 33.5108" 46°1104" 1142
Ei; mozafariani Hormozgan-Bandar Abbas 27°5014" 56°1805" 1117
Eis piperita Mazandaran-Sari 36°7700" 5320599" 1255
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Table 2. The results of analysis related to yield in stress condition (YP), yield in non-stress condition (YS),
stress tolerance (TOL), mean productivity (MP), geometric mean productivity (GMP and stress
susceptibility index (SSI) indices at different salinity stress levels

Stress level (dS. m™) S.0.V YP YS TOL MP GMP SSi
2.5 Block 0.40™ 0.08™ 0.20™ 0.50™ 0.06™ 0.01™
Treatment  20.63"  14.057 148" 1697  16.81" 0.14™
Error 0.13 0.05 0.15 0.05 0.05 0.02
CV (%) 437 3.61 20.36 3.16 3.08 17.34
5 Block 0.07™ 0.02™ 0.15™ 0.08™ 0.01™ 0.008"™
Treatment 21157  10.167  2.677 14987  14.46" 0.043™
Error 0.09 0.01 0.10 0.02 0.02 0.004
CV (%) 3.69 1.94 10.78 2.44 2.18 6.82
75 Block 0.07™ 0.02™ 0.02™ 0.04™ 0.03™ 0.0003™
Treatment  21.157 6.05" 5307 12277  11.09"  0.0026™
Error 0.09 0.05 0.11 0.04 0.04 0.0023
CV (%) 3.69 5.39 7.65 341 3.66 4.86

"and " are non-significant and significant at 1% probability levels, respectively.

Table 3. The results of variance analysis related to yield index (Y1), yield stability index (YSI), stress
tolerance index (STI), harmonic mean (HM) and Ys-Yp indices at different salinity stress levels

Stress level (dS. m™) S.0.V YI YSI STI HM Ys-Yp
25 Block 0.0004 "™ 0.0011"™ 0.0036™ 0.06™ 0.02™
Treatment 0.0081"" 0.19417 0.7997" 16.65" 1.48™

Error 0.0016 0.0007 0.0028 0.04 0.15

CV (%) 5.30 3.62 6.61 3.03 20.36
5 Block 0.001™ 0.0002™ 0.0001™ 0.003™ 0.15™
Treatment 0.005™ 0.1404™ 0.5971" 13.975™7 2.67"

Error 0.001 0.0001 0.0010 0.017 0.10

CV (%) 3.67 1.94 4.57 1.97 10.78
7.5 Block 0.0001™ 0.0003™ 0.001™ 0.03™ 0.02™
Treatment 0.0032™ 0.0836™ 0.350™ 10.06™ 530"

Error 0.0006 0.0006 0.001 0.05 0.11

CV (%) 5.09 5.39 7.93 4.14 7.65

"and " are non-significant and significant at 1% probability levels, respectively.

Table 4. Relative percent difference (RPD) values for evaluating models

RPD Model situation
<10 Very poor models/predictions
10<RPD<14 Poor models/predictions
14<RPD<1.38 Fair models/predictions
18<RPD<2.0 Good models/predictions
20<RPD<25 Very good quantitative models/predictions
RPD > 2.5 Excellent models/predictions

Table 5. Correlation matrix showing relationship between different salt tolerance indices of mint ecotypes
at 2.5 dS. m™ salt stress level

Indices YP YS TOL MP GMP  SSI YI  YSI STl HM
Yield in stress condition (YP) 1

Yield in non-stress condition (YS) 0.97” 1

Stress tolerance (TOL) 073" 056 1

Mean productivity (MP) 0.99™ 0997 066~ 1

Geometric mean productivity (GMP)  0.99™ 0.99™ 0.64™ 0.99™ 1

Stress susceptibility index (SSI) 020 -041 049" -030 -0.31 1

Yield index (Y1) 020 041 -048" 030 031 -099" 1

Yield stability index (YSI) 097" 099™ 056" 0997 099" -041 041 1

Stress tolerance index (STI) 0.98™ 0.99™ 0627 0997 099" -032 032 0997 1
Harmonic mean (HM) 0997 0997 0637 099" 099" -032 032 0997 0997 1

* Significant at p < 0.05.** Significant at p < 0.01.
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Table 6. Correlation matrix showing relationship between different salt tolerance indices of mint ecotypes
at 5 dS. m™ salt stress level

Indices YP YS TOL __MP ___GMP __ SSI YI__ YSI STI_HM
Yield in stress condition (YP) 1
Yield in non-stress condition (YS) 098" 1
Stress tolerance (TOL) 0.91** 0.80** 1
Mean productivity (MP) 099" 099" 087 1
Geometric mean productivity (GMP) 099" 099 08 099 1
Stress susceptibility index (SSI) -0.18 -0.38 0.24 -0.26 -0.28 1
Yield index (Y1) 018 038 024 026 028 099" 1
Yield stability index (YSI) 098" 099 080 099 099  -038 038 1
Stress tolerance index (STI) 098 099 083 099 099  -030 030 099 1
Harmonic mean (HM) 099" 099 084 099 099  -030 030 099 099 1

* Significant at p < 0.05.** Significant at p < 0.01.

Table 7. Correlation matrix showing relationship between different salt tolerance indices of mint ecotypes
at 7.5 dS. m™ salt stress level

Indices YP YS TOL MP GMP  SSI YI  YSI STI HM
Yield in stress condition (YP) 1

Yield in non-stress condition (YS) 097" 1

Stress tolerance (TOL) 096" 0.86" 1

Mean productivity (MP) 0.99” 0.99™ 093" 1

Geometric mean productivity (GMP)  0.99™ 0.99™ 0.92™ 099" 1

Stress susceptibility index (SSI) -0.24 -047" 003 -032 -0.36 1

Yield index (Y1) 024 047" -003 032 036 -0997 1

Yield stability index (YSI) 0977 0997 086~ 0997 0997 -047" 047 1

Stress tolerance index (STI) 0.98™ 0.99™ 0.89” 099™ 0997 -040 040 099" 1
Harmonic mean (HM) 0.98™ 0997 0907 0997 099” -040 040 099" 099" 1

* Significant at p < 0.05.** Significant at p < 0.01.

Therefore, selection was carried out
based on the high values of these indices to
select ecotypes with high performance in

both normal and salt-stress conditions,
such as ecotypes including E13, E14, E15,
E16 and E18 (Tables 8, 9 and 10).

Table 8. Mean of yield in stress condition (YP), yield in non-stress condition (YS), stress tolerance (TOL),
mean productivity (MP), geometric mean productivity (GMP, stress susceptibility index (SSI), yield
index (Y1), yield stability index (YSI), stress tolerance index (STI) and harmonic mean (HM) of 18

mint ecotypes at 2.5 dS. m™ salt stress level

GMP  SSI Yl YSI  STI HM Ys-Yp

ggﬁé‘fog?ém Ecotypes  YP YS TOL MP
2 E; 9.46 6.90 257 8.18
3 E, 6.05 432 173 518
3 E; 6.31 439 192 535
3 E, 545 407 138 4.76
2 Es 8.40 6.36 204 7.38
3 Es 570 444 126 5.07
3 E; 6.85 5,06 179 5.95
2 Eq 921 6.62 259 7.92
3 Eo 6.89 523 166 6.06
2 Eo 778 635 142 7.06
3 = 714 590 124 652
3 Ep 735 594 141 6.64
1 Eis 11.65 927 238 10.46
1 Ew 1055 8.28 227 9.42
1 Eys 1147 890 257 10.18
1 Eis 12.17 849 3.68 10.33
2 E,s 833 6.08 226 7.21
1 = 12.38 1052 1.86 11.45

808 115 073 081 091 797 -257
511 121 072 051 036 504 -1.73
526 129 070 052 038 517 -1.92
471 107 075 048 031 466 -1.38
730 103 076 075 074 723 -2.04
503 094 078 052 035 499 -1.26
588 111 074 059 048 582 -1.79
781 119 072 078 084 7.70 -2.59
6.00 101 076 061 050 594 -1.66
703 077 082 075 068 699 -142
649 073 083 069 058 6.46 -1.24
6.60 081 081 070 060 656 -141
10.39 0.87 080 1.09 149 1032 -2.38
935 091 079 097 121 928 -2.27
10.10 0.95 0.78 1.05 141 10.02 -2.57
10.16 128 0.70 1.00 143 1000 -3.68
712 115 073 071 070 7.03 -2.26
1141 064 085 124 180 1137 -1.86

LSD 5% 044 023 042 0.28

027 0.17 0.04 003 0.06 025 042
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Table 9. Mean of yield in stress condition (YP), yield in non-stress condition (YS), stress tolerance (TOL),
mean productivity (MP), geometric mean productivity (GMP, stress susceptibility index (SSl), yield
index (Y1), yield stability index (YSI), stress tolerance index (STI) and harmonic mean (HM) of 18

mint ecotypes at 5 dS. m™ salt stress level

Group no. in

dendrogram Ecotypes YP YS TOL MP GMP SSI Yl YSI STI HM YsYp
2 E: 946 612 335 779 7.60 100 065 0.72 080 741 -3.35
1 E, 6.05 384 220 495 482 104 064 045 032 470 -220
1 Es 6.31 407 223 519 507 101 065 048 036 495 -2.23
1 Es 545 364 182 455 445 095 067 043 027 436 -1.82
1 Es 840 525 315 682 664 107 063 062 061 646 -3.15
1 Es 570 351 219 461 447 110 062 041 028 435 -219
1 E; 6.85 416 268 550 534 112 061 049 039 518 -2.68
2 Es 921 614 307 768 752 095 067 072 078 737 -3.07
1 Eo 6.89 425 263 557 541 109 062 050 041 526 -2.63
1 Eio 778 543 235 6.60 650 086 070 064 058 639 -235
1 En 714 492 222 603 592 089 069 058 048 582 -2.22
1 Eio 735 505 230 620 6.09 089 069 059 051 599 -230
3 Eis 1165 787 378 976 957 093 068 092 127 939 -3.78
2 Ei4 1055 683 373 869 849 101 065 080 100 829 -3.73
3 Eis 1147 719 428 933 908 107 063 084 114 884 -4.28
3 Eis 1217 739 478 978 948 112 061 087 124 919 -4.78
1 Eir 833 498 335 666 644 115 060 059 057 6.24 -3.35
3 Eis 1238 9.00 338 10.69 1055 0.78 0.73 1.06 154 1042 -3.38
LSD 5% 044 016 046 024 021 010 0.03 0.02 0.04 0.18 0.46

Table 10. Mean of yield in stress condition (YP), yield in non-stress condition (YS), stress tolerance (TOL),
mean productivity (MP), geometric mean productivity (GMP, stress susceptibility index (SSI), yield
index (Y1), yield stability index (YSI), stress tolerance index (STI) and harmonic mean (HM) of 18

mint ecotypes at 7.5 dS. m™ salt stress level

Sgr‘]’gfog‘r’ég‘ Ecotypes YP YS TOL MP GMP SSI Yl YSI STI HM YsYp
2 E, 946 442 505 694 645 104 047 052 058 599 -5.05
3 E, 605 2.88 317 446 417 103 048 034 024 390 -3.17
3 Es 631 287 343 459 426 107 046 034 025 395 -3.43
3 E, 545 2.65 2.80 405 380 101 049 031 020 357 -2.80
2 Es 840 408 431 624 586 101 049 048 047 549 -4.31
3 Es 570 272 298 421 394 102 048 032 021 3.68 -2.98
3 E; 6.85 327 358 506 473 102 048 038 031 442 -358
2 Eg 921 449 472 685 643 100 049 053 057 6.04 -4.72
3 E 680 322 367 506 471 104 047 038 031 439 -3.67
3 Ew 778 387 390 582 549 098 050 046 042 517 -3.90
3 En, 714 363 351 538 509 096 051 043 036 481 -3.51
3 E, 735 374 361 555 524 096 051 044 038 495 -3.61
1 E, 1165 578 587 871 820 099 050 068 093 772 -5.87
1 E., 1055 492 564 773 7.0 105 047 058 072 6.70 -5.64
1 Eis 1147 557 589 852 7.99 101 049 066 088 750 -5.89
1 Ei, 1217 544 673 880 813 108 045 064 091 7.51 -6.73
2 E;, 833 431 403 632 599 095 052 051 050 5.68 -4.03
1 E 1238 743 525 976 940 0.83 058 0.84 122 9.05 -5.25

LSD 5% 0.44 031 046 031 031 007 003 004 006 032 046

Cluster and principal component analysis
Cluster analysis was attained by the
similarity matrix based on Euclidean
distance measurement and non-weighted
paired group method using arithmetic
average (UPGMA). The matrix of

similarity was used for the cluster analysis
(average of four replicates per ecotype).
The cluster analysis divided the ecotypes
into three distinct groups based on the
calculated indices at all salinity levels (Fig.
4).
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Fig. 4. Dendrogram based on UPGMA method for tolerance indices (YP: Yield in stress condition; YS:
Yield in non-stress condition; TOL.: Stress tolerance; MP: Mean productivity; GMP: Geometric mean
productivity; SSI: Stress susceptibility index; YI: Yield index; YSI: Yield stability index; STI: Stress
tolerance index; HM: Harmonic mean) in 18 mint ecotypes. A: (at 2.5 dS. m™ salt stress level) B: (at 5
dS. m™ salt stress level) and C: (at 7.5 dS. m™ salt stress level)

The numbers 13, 14, 15, 16 and 18
ecotypes were placed in the first group at
2.5 and 7.5 dS m™" levels. At 5 dS m*
salinity level, numbers 13, 15, 16 and 18
ecotypes were placed in the third group.
The above-mentioned ecotypes had a
higher TOL, MP, GMP, YSI, STl and HM
rate than the others.

Furthermore, the results of principal
component analysis at different salinity
levels showed that the first two principal
components had the highest amount of
relative variance of the total variation in
yield performance and the measured
indices. At all salinity levels, the YP, YS,
TOL, MP, GMP, YSI, STI and HM indices
showed the highest value in the first

component. In addition, in the second
component, the SSI and Y| indices showed
the highest rates. The relative variance for
the first component at 2.5, 5 and 7.5 dS m™
salinity levels were found to be 75.8%,
78.6% and 80.8%, respectively (Table 11).

Besides, in the second component, the
relative variance was 23.7%, 21.2%, and
19%, respectively. The results indicated
that the relative variance of the first
component increased with increasing
salinity level. By contrast, the amount of
the second component decreased with
increasing salinity levels. The Biplot chart
shows the distribution of ecotypes around
the evaluated indicators (Fig. 5).
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Table 11. Principal component analysis based all salinity indices at three salt stress levels
Stress levels
Indices 2.5 (dS. m™ 5(dS. m™) 7.5 (dS. m™)
PC, PC, PC, PC, PC, PC,
Yield in stress condition (YP) 0.987 0.157 0.989 0.147 0.978 0.205
Yield in non-stress condition (YS) 0.997 -0.063 0.997 -0.063 0.999 -0.045
Stress tolerance (TOL) 0.617 0.771 0.835 0.538 0.886 0.457
Mean productivity (MP) 0.998 0.058 0.998 0.061 0.993 0.119
Geometric mean productivity (GMP) 0.999 0.043 0.999 0.039 0.997 0.077
Stress susceptibility index (SSI) -0.355 0.932 -0.319 0.947 -0.433 0.901
Yield index (Y1) 0.356 -0.932 0.320 -0.947 0.433 -0.901
Yield stability index (YSI) 0.997 -0.062 0.997 -0.064 0.999 -0.045
Stress tolerance index (STI) 0.994 0.027 0.995 0.019 0.994 0.036
Harmonic mean (HM) 0.999 0.029 1.000 0.017 0.999 0.035
Relative variance (%) 75.799  23.728 78.527  21.179 80.793  19.005
Cumulative variance (%) 75.799  99.527 78.527  99.706 80.793  99.798
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Fig. 5. The biplot chart based on Yp, Ys and eight salinity indices at three salt stress levels. [YP: Yield in
stress condition; YS: Yield in non-stress condition; TOL.: Stress tolerance; MP: Mean productivity;
GMP: Geometric mean productivity; SSI: Stress susceptibility index; YI: Yield index; YSI: Yield
stability index; STI: Stress tolerance index; HM: Harmonic mean]
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Sensitivity analysis

The results of the sensitivity analysis at
different levels of salinity using ANN is
showed in Figure 6. The network with the
highest RMSE independent input variable
showed the most impact on the model.

To evaluate the sensitivity of the
parameters, YP, TOL, MP, GMP, SSI, Y1,
YSI, STl and HM were considered as the
inputs of the model. The results of the
sensitivity analysis at 2.5 dS m™ salinity
showed that the HM, STI, YSI, Y1, SSI and
MP indices are of higher importance than
the others. It was also observed that with
increasing salinity level, the importance of

Stress level (2.5dS. m?)

indices would change greatly. Therefore, at
the 5 dS m™ salinity level, the HM, STI,
YSI, YI, GMP and MP indices showed the
most importance. The results of the
sensitivity analysis at 7.5 dS m™ salinity
level differed from the lower salinity
levels. Accordingly, the STI, YSI, YI,
GMP and YP indicators were of the highest
importance. Therefore, based on the results
of the sensitivity analysis, the indices with
higher importance were selected and
evaluated as the input parameters in
different models for prediction of dry
matter performance.

Stress level (5 dS. m™)

HM
STI
YSI
Yl
SSI
GMP

Input name

Importance

Stress level (7.5 dS. m?)
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Fig. 6. The relative importance of the effective parameters in determining salt-tolerance indices. [YP:
Yield in stress condition; YS: Yield in non-stress condition; TOL: Stress tolerance; MP: Mean
productivity; GMP: Geometric mean productivity; SSI: Stress susceptibility index; YI: Yield index;
YSI: Yield stability index; STI: Stress tolerance index; HM: Harmonic mean]
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Comparing different models In addition, the R* in ANNgsr at
The highest R? at different salinity levels was different salinity levels was 0.95 (Fig. 7).
related to the ANN(wLp) model (Table 12).

Table 12. Performance indices (R?, RMSE, VAF, MAPE, and RPD) for the models evaluated

Salt stress levels (dS. m™)

Model Performance indices
25 5 7.5
Adaptive neuro fuzzy inference system (ANFIS) R? (Coefficient of determination) 0.85 0.88 0.92
VAF (Value account for) 86.96 88.46 9222
MAPE (Mean absolute percentage error)  3.01 2.27 3.09
RMSE (Root mean square error) 111 0.75 0.50
RPD (Relative percent difference) 1.65 2.07 2.44
Artificial neural network guiitayer perceptrony (ANN (mLp)) R? (Coefficient of determination) 0.99 0.99 0.99
VAF (Value account for) 99.90 99.94 99.91
MAPE (Mean absolute percentage error)  0.61 0.55 0.56
RMSE (Root mean square error) 0.07 0.05 0.05
RPD (Relative percent difference) 2340 29.83 24.30
Artificial neural network gagial basis function) (ANN (rer)) R? (Coefficient of determination) 0.95 0.95 0.95
VAF (Value account for) 95.37 95.19 95.32
MAPE (Mean absolute percentage error)  4.86 4.71 5.03
RMSE (Root mean square error) 0.56 0.48 0.37
RPD (Relative percent difference) 3.25 3.16 3.23
Genetic algorithm (GA) R? (Coefficient of determination) 0.86 0.85 0.89
VAF (Value account for) 86.71 86.41 89.40
MAPE (Mean absolute percentage error)  4.76 4.47 7.31
RMSE (Root mean square error) 1.10 1.11 0.58
RPD (Relative percent difference) 1.72 1.71 2.05
Ordinary least squares (OLS) R? (Coefficient of determination) 0.86 0.86 0.91
VAF (Value account for) 87.40 86.51 91.82
MAPE (Mean absolute percentage error)  3.89 3.08 3.49
RMSE (Root mean square error) 1.07 0.82 0.51
RPD (Relative percent difference) 1.75 1.92 2.38
Principal component regression (PCR) R? (Coefficient of determination) 0.87 0.89 0.92
VAF (Value account for) 87.36 89.09 92.28
MAPE (Mean absolute percentage error)  2.96 2.78 3.27
RMSE (Root mean square error) 1.02 0.73 0.50
RPD (Relative percent difference) 1.68 2.09 2.45
Partial least squares (PLS) R? (Coefficient of determination) 0.86 0.88 0.92
VAF (Value account for) 86.97 88.15 9227
MAPE (Mean absolute percentage error)  4.34 3.08 3.55
RMSE (Root mean square error) 1.09 0.76 0.50

RPD (Relative percent difference) 1.72 2.01 2.45
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Fig. 7. Variation of estimated values of dry matter against measured data. [ANFIS: Adaptive neuro fuzzy
inference system; ANN: Artificial neural network; MLP: Multilayer perceptron; RBF: Radial basis
function; GA: Genetic algorithm; OLS: Ordinary least squares; PCR: Principal component
regression; PLS: Partial least squares]
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The lowest R? at 2.5 dS m™ salinity
level was related to the ANFIS model. At 5
and 7.5 dS m™ salinity levels, the lowest R?
was estimated in the GA model. Based on
the assessed models, the highest R? was
found at 7.5 dS m™ salinity level. The
amount of RMSE in all models except the
genetic model showed a decreasing trend
with increasing salinity levels.
Furthermore, in the genetic algorithm
model, the amount of RMSE had a rising
trend at 2.5 to 5 dS m™ salinity levels and
reduced its amount at 7.5 dS m™ salinity

level. The highest amount of VAF was
related to ANNLpy model. The VAF rates
increased in all evaluated models except
for the ANN model with increasing salinity
levels. The highest RPD in the PLS and
PCR models was obtained as 2.45. The
results showed that RPD increases with
increasing salinity level. The lowest MAPE
was found in the ANNgwLpy model. The
ANNrgr), PLS and GA models showed the
highest MAPE. The equations developed
by the models tested at different salinity
levels are given in Table 13.

Table 13. The equations developed by the models tested at different salt stress levels

Stress

level Models Equations
(dS. m?)
25 Partial least squares (PLS) YS =-0.28+0.21xMP-0.51xSSI1+2.17xY 1+2.08xYSI+1.01xST1+0.22xHM

Ordinary least squares (OLS)
Principal component
regression (PCR)

Genetic algorithm (GA)

YS = 0.09-0.51xMP+0.25xSS1+9.93xYS1+0.44xSTI+0.28xHM
YS =6.58+0.93x MP +0.08x SSI -0.06x YSI +2.23x STI +0.63x HM
Ys =0.012 -0.236xMP-0.551xSS1+6.221xYSI-0.751xST1+0.646xHM

5 Partial least squares (PLS)
Ordinary least squares (OLS)
Principal component
regression (PCR)
Genetic algorithm (GA)

YS =-1.70+0.15xMP+0.15XGMP+3.55x Y I+1.74xYSI+0.75%ST1+0.16xHM
YS =-0.09+0.03xMP-0.006xGMP-0.78xY1+10.24xYSI-1.03xST1+0.06xHM

YS =-0.09+7.67xMP-16.24xGMP-0.79xY[+8.76xYSI-1.03xST1+8.75xHM
YS =2.729+2.500xMP-1.382xSS1+4.868xYSI+1.682xSTI-2.532xHM

75 Partial least squares (PLS)
Ordinary least squares (OLS)
Principal component
regression (PCR)
Genetic algorithm (GA)

YS = 0.53-0.12xYP+0.21XGMP-0.37xY1+6.55xYSI+0.69xST]
YS =0.41-0.02xYP-0.04xGMP-0.78xY1+9.2xYSI+0.07xSTI

YS =0.41-0.02xYP-0.04xGMP-0.78xY+9.22xYSI+0.07xST]I
YS =0.099311+0.632xYp-1.384xGMP+5.753xY1+2.335X Y SI+5.629%STI

Discussion

Selection of tolerant ecotype based on stress
tolerance indices is very important in
agronomy and plant breeding. In our
experiment, there  were  significant
differences between different ecotypes
based on tolerance indices and this can be
helpful for screening the most tolerant
ecotypes. Fernandez (1992), based on the
response of ecotypes to stress or non-
stressed environments, classified ecotypes
into four groups. In the group A, genotypes
were found to have superior performance in
both conditions. In the group B, the
genotypes had higher yields only under non-
stress conditions. In the group C, genotypes
with higher relative yields under stress
conditions were placed. In the group D,
genotypes were found to have a low yield
under normal and stress conditions. This

means that TOL, MP, GMP, YSI, STI and
HM indices are suitable for isolating
ecotypes belonging to group A from B, C
and D. These results are in agreement with
those reported by Ravari et al. (2015) and
Izaddoost et al. (2013). Henfy et al., (2013)
have found that GMP, MP, HM and STI
indices are suitable for sorghum genotypes.
In addition, El-Hendawy et al. (2017)
showed that the MP and GMP indices are
desirable for selection of genotypes that
have high yield under stress and non-stress
conditions.

Due to the strong interaction between
genotype and environment, the selection is
complicated, especially under unpredictable
climatic conditions (Romagosa et al, 2013).
According to Fernandez (1992), it is the best
to identify group A from other groups,
because sustainability is higher in genotypes
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related to this group. Due to the wide variety
of soil and water quality in mint production
area, ecotypes should be sought, with
moderate yields in both saline and normal
conditions.

In our experiment, cluster analysis
divided ecotypes into different groups
based on stress tolerance indices. Ravari et
al. (2015) evaluated 41 wheat genotypes
based on salt tolerance indices and reported
that cluster analysis based on UMGMA
method differentiated the genotypes into
four groups. On the other hand, principal
component analysis plays a decisive role in
finding the relationship between stress
tolerance indices and the studied ecotypes
and has helped us to determine important
indices. Hence, our result showed that
using the first component results, tolerant
ecotypes will be selected based on high-
ranking yield performance and tolerance
indices such as YP, YS, TOL, MP, GMP,
YSI, STI and HM. In this case, ecotypes
included E13, E14, E15, E16 and E18 were
identified as the tolerant ecotypes with
suitable performance under both non-stress
and salt-stress conditions. Abraha et al.
(2017) evaluated 144 tef (Eragrostis tef)
genotypes under drought stress. The results
of principal component analysis showed
that the MP, HM, GMP, and STI indices
were identified as the first factor affecting
yield in both stress and non-stress
conditions.

Sensitivity analysis is one of the
strategies that are very important for
finding indicators that influence the rate of
yield production under stress conditions.
Since no study has been conducted in this
area so far, our experiment has acceptable
performance results under salt-stress
conditions. Hence, results of sensitivity
analysis showed that STI, YSI, and YI
indices were significant in all three stress
levels based on their effects on dry matter
yield under salinity stress conditions.
Hosseini et al. (2017) used the sensitivity
analysis to determine the useful parameter
on the amount of phosphorus. Moreover,

Naroui Rad et al. (2015) used sensitivity
analysis to show that flesh diameter and
fruit length traits have the most sensitivity
to melon fruit yield.

Albeit plant science and other fields
have been using intelligent and regression
models, this is the first time that multiple
models have been wused to predict
medicinal plant dry matter and have been
compared as a group. On the other hand,
some preceding efforts to use intelligent or
regression models to predict important
parameters have been made.

The results of our experiment with
different models of artificial intelligence
and regression showed that the ANN Lp)
model was the best method for predicting
the dry matter yield of mint in salt stress
conditions. Hosseini et al. (2017) predicted
the amount of phosphorus by intelligent
and regression models and found that the
ANN and PLS models had higher
predictive power. Khaledian et al. (2017)
used PLS, OLS and PCR regression
models to predict soil erosion. They
showed that the PLS model had more
efficiency in predicting soil erosion
compared with the other models. Minasny
et al. (2001) used the ANN to model soil
pH and calcium chloride and found that the
ANN model predicted better than the linear
model. Hosseini et al. (2016) used particle
swarm optimization, genetic algorithm and
multiple regression methods to predict soil
mechanical resistance and found that the
intelligent models are better than the
regression model.

Conclusion

Researchers use stress tolerance indicators
to select the most resistant genotypes. But
this has not been done with medicinal
herbs so far. On the other hand, the use of
intelligence and regression models to
predict the performance of dry matter of
mint on the basis of stress tolerance index
has not been made till now. Therefore, our
most important goal was to compare
different models for predicting the dry
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matter performance of different mint
ecotypes based on stress-tolerance indices.
The results showed that ANNwpy model
with R = 0.999 was the best model for
prediction at all salinity levels. The results
also showed that ecotypes included E13,
E14, E15, E16 and E18 could be used as
stress tolerant ecotypes for the future
breeding programs. Finally, we conclude
that computer software can be very useful
in selecting and predicting desired
physiological indices and this can be
helpful for future projects in plant breeding
and physiological programs.
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