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Abstract

This review provides the fundamental theoretical tools for the development of

a complete wave-function formalism for the study of time-evolution of

chemico-physical systems at finite temperature. The methodology is based on

the non-equilibrium thermo-field dynamics (NE-TFD) representation of quan-

tum mechanics, which is alternative to the commonly used density matrix rep-

resentation. TFD concepts are extended and integrated with the tensor-train

(TT) numerical tools leading to a novel and powerful theoretical and computa-

tional framework for the study of complex quantum dynamical problems. In

addition, NE-TFD techniques are extended to enable the study of dissipative

open systems via a new formulation of the hierarchical equations of motion

(HEOM) fully integrated with TT methodologies. We demonstrate that the

combination of the TFD machinery with computational advantages of TTs

results in a powerful theoretical and computational framework for scrutinizing

dynamics of complex multidimensional electron-vibrational systems. We illus-

trate the validity and the computational advantages of the developed method-

ologies by applying them to the study of quantum coherence effects in the

energy-transfer processes in antenna systems, to the analysis of fingerprints of

vibrational modes in electron-transfer and charge-transfer processes in various

model and realistic multidimensional molecular systems, as well as to simula-

tion of other fundamental models of physical chemistry.
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1 | INTRODUCTION

The accurate simulation of time-dependent molecular processes is a fundamental problem of modern theoretical chem-
istry.1 In the last three decades, new progress in quantum dynamics theory associated with unprecedented development
of numerical methodologies for the representation of multivariate functions2,3 have boosted the application of time-
dependent quantum theory to the study of a variety of phenomena including, among others, multidimensional time-
resolved spectroscopy,4–6 non-equilibrium transport properties of materials,7,8 energy and electron transfer.9–12

The time-dependent Schrödinger equation is the cornerstone of the analysis of non-equilibrium properties of molec-
ular systems, and its solution represents the main obstacle to the understanding of most chemico-physical problems.
From a purely numerical point of view the key issue is that the amount of memory and the number of operations
required to solve the time-dependent Schrödinger equation grow exponentially with the number of degrees of freedom
(DoFs) N, that is, the dependence has the form pN with p>1. This problem, which is rooted in the fundamental laws of
quantum mechanics, and in the mathematical structure of Hilbert spaces on the top of which it is built, cannot be cir-
cumvented. The only possible way for scientists to tackle quantum problems of large dimensionality is to exploit some
inherent simplification or “good approximation” of the many–body interactions. Tensor network approximations of the
wave function are certainly a most promising tool for such a purpose. Multiconfiguration time-dependent Hartree and
its multilayer formulation13–15 as well as the Numerical Density-Matrix Renormalization Group (NDMRG),16 are spe-
cial classes of tensor network based methods.

Both are based on a basis set representation of the molecular wave-function and are capable of handling a large vari-
ety of Hamiltonian operators. However, they become unhandy in high temperature cases, as they require statistical
sampling of the initial conditions, which introduces both theoretical and computational problems.17–20 To circumvent
these problems a very effective formalism can be used, which enables the treatment of finite temperature effects embed-
ded into a pure wave function description known as thermo-field dynamics (TFD).21 Similarity with the finite tempera-
ture approach developed in NDMRG16 will be described in Section 2.

TFD was introduced in the 1970s to provide a finite temperature representation of quantum mechanics within the
wave-function formalism.22 While it had a deep impact on many problems of theoretical physics,23–26 it did not receive
much attention in molecular quantum dynamics: the first applications were reported relatively recently27,28 and their
number increased slowly ever since.29–33

Since in TFD the total number of DoFs is double that of the original system, special attention has to be paid to the
numerical solution of the resulting dynamical problem. The methodology must have favorable scaling properties with
respect to the number of nuclear DoFs.

This review is focused on three fundamental topics. Firstly, in Section 2 we present a theoretical method for the sim-
ulation of time-dependent properties of electron-vibrational systems with many DoFs at finite temperature based on
TFD. Secondly, in Section 3 we show how to take advantage of recently developed techniques based on tensor networks
to solve the resulting dynamical problem.34 In particular we demonstrate that the tensor train (TT) decomposition, also
known as matrix product state (MPS) representation, can provide a robust and efficient numerical framework for the
solution of the TFD Schrödinger Equation.34–36 Applications of the new computational framework are presented and
discussed in Section 4.

Finally, in Section 5 we show how to take advantage of the twin-space formalism, the mathematical structure at the
basis of TFD, to derive a new set of Hierarchical Equations of Motion (HEOM) for the reduced density matrix
completely equivalent to the original methodology proposed by Tanimura and Kubo37 that represents one of the most
advanced theories to study quantum properties of condensed phase systems. A novel TT approach to the solution of the
new HEOMs is also developed, and applications to model chemico-physical processes are presented, clearly showing
the validity and the high computational efficiency of the new methodology.

2 | NON-EQUILIBRIUM THERMO-FIELD DYNAMICS

2.1 | Double space formalism

Before introducing TFD we briefly sketch the fundamental mathematical structure of the so-called “twin-space” formu-
lation of quantum statistical mechanics, also referred to as non-equilibrium thermo-field dynamics (NE-TFD).38 In this
formulation a double Hilbert space is defined, ℒ¼ H� ~H

� �
, where, ~H is the Hilbert space of a fictitious dynamical
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system identical to the original Hilbert space H of the real physical systems.39–41 If m~nif g is an orthonormal basis of
ℒ then

m~njm0~n0h i¼ δmm0δ~n~n0
X
mn

jm~nihm~n j¼ 1:

Further, the identity vector jIi is defined as

j Ii¼
X
m

jm ~mi: ð1Þ

This special vector allows to define a mapping between the dual space of H (i.e., the bra space) and the tilde space,
indeed we have

m Ij i ¼ ~mj i ~m Ij i ¼ mj i:hh ð2Þ

Using these relations it is possible to associate a vector of the ℒ space to each operator A acting in the space H

jAi¼A j Ii: ð3Þ

Similarly, we can define a state vector jρ(t)i = ρ(t) j Ii, where ρ(t) is the density matrix of the system. Accordingly, the
expectation value of A is defined as the scalar product

A tð Þh i¼ A ρ tð Þj i ¼ I Aρ tð Þ Ij i � tr Aρ tð Þð Þ:jhh ð4Þ

The meaning of the above notation can be easily understood using the closure relation

jAi¼A j Ii¼
X
mn

jm~ni m~njAjIh i¼
X
mn

mjAjnh i jm~ni¼
X
mn

Amn jm~ni

whence it is clear that the vector jAi is a linear combination of a basis ofℒ with coefficients given by the matrix elements
Amn. Together with operators acting in the space H it is possible to define a set of operators acting in the space H .
In particular, following Suzuki,39 two operators A and B are weakly equivalent if

A j Ii¼B j Ii ð5Þ

and we write

A’B: ð6Þ

For each Hermitian operator A acting in the space H it is possible to define a tilde operator ~A that is weakly equivalent
to A as

A j Ii¼ ~A
† j Ii!A’ ~A

† ð7Þ

where the dag operator implies the Hermitian conjugation. Consequently, for Hermitian operators

A’ ~A: ð8Þ

The tilde operator can be obtained from the original operators by the so-called tilde conjugation rules40
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ABð Þ� ¼ ~A~B c1Aþ c2Bð Þ� ¼ c*1~Aþ c*2~B ð9Þ

and

c1 nj iþ c2 mj ið Þ� ¼ c*1 ~nj iþ c*2 ~mj i: ð10Þ

If A, B are two operators of the space H and Â¼A� ~A
†
then

ÂB j Ii¼ A� ~A
†

� �
B j Ii¼ AB�B~A

†
� �

j Ii¼ AB�BAð Þ j Ii¼ A,B½ � j Ii ð11Þ

proving the fundamental property of the twin-space formalism

A,B½ � ’ ÂB: ð12Þ

Finally, we notice that the identity vector jIi is invariant under any unitary transformation of the original Hilbert space
basis set jmi.40

Equation (12) allows to rewrite quantum statistical mechanics in a commutator-free way. Indeed, it is easy to dem-
onstrate that the evolution of the vector jρ(t)i is given by the equation (ℏ = 1)

∂

∂t
j ρ tð Þi¼�i H� ~H

� �
j ρ tð Þi¼�iĤ j ρ tð Þi j ρ 0ð Þi¼j ρ0i ð13Þ

where ~H is a Hamiltonian operator identical to the physical Hamiltonian H but acting in the tilde space ~H. The super-
operator Ĥ¼H� ~H acts in the entire ℒ space and is the Liouville operator rewritten as a superoperator in the ℒ space.
We refer the reader to the demonstration reported in the original articles by Schmutz41 and by Suzuki.39 When the ini-
tial condition of the system can be described by a Boltzmann distribution with a certain zero-order Hamiltonian opera-
tor H0 we have

j ρ 0ð Þi¼Z�1
0 e�βH0 j Ii ð14Þ

where Z0 is the partition function and β = 1/kBT, kB being Boltzmann's constant and T is the temperature. It is now
worth comparing the above formulation with the more common double-space theory42 for clarifying similarities and
differences of the two approaches. In double-space theory the notation jmnii = jmihnj is often used to identify a state
of a space that is the direct product of H and its dual.42,43 Once we let the tilde space and the dual space coincide this
approach and the twin formalism seem identical.44 However, in standard double-space formulation what is often
referred to as Liouville superoperator is a mere symbol for a commutator, L = [H, �], which induces a Lie algebra in the
Liouville space. In the twin-formulation outlined above the introduction of the tilde space and of its operators allows to
eliminate all the commutators, overcoming the difficulties inherent in their evaluation, and replace them with the
action of an operator in a Hilbert space. From a mathematical point of view the double vector jIi allows to map the dual
of H into the tilde space ~H. Furthermore, as we shall see in the next section, the twin formulation permits a certain free-
dom (up to the gauge transformation) of the definition of the twin-space counterpart of the Liouville operator, which
can be used to make mathematical formulations more compact and numerical simulations more efficient.

2.2 | Finite-temperature Schrödinger equation

TFD stems from the simple observation that an expectation value in the twin-space formalism can be cast into a wave-
function-like form using the identity
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A tð Þh i¼ IjAρ tð ÞjIh i� IjAρ tð Þ1=2ρ tð Þ1=2jI
D E

¼ Ij~ρ tð Þ1=2Aρ tð Þ1=2jI
D E

¼ ψ tð Þ A ψ tð Þj ijh ð15Þ

where we have used the property of Equation (7), and the state vector

jψ tð Þi¼ ρ tð Þ1=2 j Ii ð16Þ

satisfies the equation45

∂

∂t
jψ tð Þi¼�iĤ jψ tð Þi ð17Þ

with the initial condition

jψ 0ð Þi¼ ρ 0ð Þ1=2 j Ii: ð18Þ

Therefore the use of the twin space allows to recast all quantum statistical mechanics into a wave function theory in a
double Hilbert space ℒ¼ H� ~H

� �
. We notice that the density vector jρ(t)i and the new wave function jψ(t)i obey the

same evolution equation but with different initial conditions.
Let us now consider a system that is prepared at thermal equilibrium at t = 0, that is,

ρ 0ð Þ¼Z�1e�βH ð19Þ

Z being the partition function. We further observe that in most molecular systems the characteristic energy of electronic
states are much higher than those of nuclear (vibrational) states, therefore we can assume that composite electron-
vibrational system at ambient temperature resides in the ground state of the electronic subsystem (A), j0Ai, and pos-
sesses thermal distribution over the DoFs of the vibrational subsystem (B), that is

ρ 0ð Þ¼j 0Aih0A jZ�1
B e�βHB , ð20Þ

HB being the vibrational Hamiltonian, in the ground electronic state, and ZB the corresponding partition function. The
assumption (20) is rooted into Born–Oppenheimer approximation, it has a huge number of applications in molecular
physics and spectroscopy,1 and is the key to the description of molecular aggregates,46–48 electron-vibrational49, and
vibration-rotational50 systems.

If the above assumption holds true, it is possible to show that Equation (17) can be rewritten in the equivalent
form51

∂

∂t
jψ tð Þi¼�i �H jψ tð Þi ð21Þ

in which the new Hamiltonian operator, �H, is defined as

�H¼H� ~hB: ð22Þ

where ~hB is any operator acting in the tilde space of the vibrational subsystem, which can be chosen as an arbitrary
gauge to help solve the mathematical problem. Equation (21) should be solved with the initial condition

jψ 0ð Þi¼j 0Ai j 0B βð Þi ð23Þ
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where, according to Equation (18)

j 0B βð Þi¼ ρB 0ð Þ1=2 j IBi¼Z�1=2
B e�βHB=2

X
k∈B

jk~ki: ð24Þ

in which jki labels the vibrational states of the original Hilbert space and j ~ki the states of the corresponding fictitious tilde
space. Therefore, the solution of the original Liouville - von Neumann equation for ρ(t) with the initial condition (20) is
reduced to the solution of the Schrödinger equation (21) in the extended vector space spanned by the basis
ni� ki� ~ki

�� ����
, where jni labels the electronic basis set of system A, and { jki, j ~kig the physical and tilde vibrational

basis sets, respectively. In this special formulation of TFD theory we have explicitly taken advantage of the separation
of the energy ranges of the electronic and vibrational subsystems (Equation (20)), avoiding the use of tilde variables for
the entire system and employing them only for the thermalized DoFs of subsystem B (cf. Refs. 52 and 53).

The thermal vacuum vector j0B(β)i possesses multiple nonzero components, and its use in practical simulations can
be rather difficult, requiring imaginary time propagation.54–56 However, the key advantage of the present method lies in
the possibility to have a compact analytical representation of the thermal vacuum j0B(β)i.57 Indeed, instead of the solu-
tion of the Schrödinger Equation (21) with the initial condition (23) it is much more practical to introduce a unitary
transformation e�iG in the ki� ~ki

�� ��
subspace obeying the identity

e�iG j 0B~0Bi¼j 0B βð Þi ð25Þ

where j 0B~0Bi is the ground state in the ki� ~ki
�� ��

subspace.
Equation (25) defines what can be called generalized thermal Bogoliubov transformation.58 Its application to Equa-

tion (21) yields the transformed TFD Schrödinger equation

∂

∂t
jψθ tð Þi¼�i �Hθ jψθ tð Þi ð26Þ

where

�Hθ ¼ eiG �He�iG, ð27Þ

jψθ tð Þi¼ eiG jψ tð Þi ð28Þ

and the initial condition

jψθ 0ð Þi¼j 0Ai j 0B~0Bi ð29Þ

corresponds to the global vacuum state. The expectation value of any operator A (acting in the physical, {jni�j ki}, vec-
tor space) can now be rewritten as

A tð Þh i¼ ψθ tð Þ Aθ ψθ tð Þj i with Aθ ¼ eiGAe�iG:
��	

ð30Þ

We underline that the expectation values evaluated via Equations (15) and (30) are identical. The TFD machinery with
thermal Bogoliubov transformation gives an alternative representation of quantum mechanics which is fully equivalent
to the traditional density–matrix representation.

The last step required to complete our theory is to provide an explicit analytical form of the thermal Bogoliubov transfor-
mation and a set of rules to obtain the transformed Hamiltonian operator �Hθ. The explicit form of the transformation 25 is
well known for two cases of notable interest, that is, for ensembles of free bosons and free fermions.21–23,39,59 Extensions
to more general systems can also be obtained although their practical use can be rather cumbersome.51

The problems we wish to tackle in this work require, in most cases, that the physical observable of interest be aver-
aged over a thermalized ensemble of nuclear vibrations which are modeled as harmonic oscillator states, that is HB of
Equations (20) and (24) is
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HB ¼
X
j

ωja
†
j aj, ð31Þ

where a†j (aj) are the creation (annihilation) Bose operators ( aj,a
†
j0

h i
¼ δjj0 ) and ωj are vibrational frequencies. The col-

lection of vibrational DoFs that defines the above Hamiltonian operator includes both high frequency modes typical of
molecular systems, and low frequency “environment”modes. After the seminal work of Caldeira and Leggett on quantum
dissipative systems,60 the importance of this model of the environment in various applications is hardly overestimated.

The operator of the thermal Bogoliubov transformation corresponding to the Hamiltonian of Equation (31) reads22

G¼�i
X
j

θj aj~aj�a†j ~a
†
j

� �
ð32Þ

where

θj ¼ arctanh e�βωj=2
� �

: ð33Þ

Hence, thermal Bogoliubov transformation introduces thermal noise into the physical system by coupling it to the ficti-
tious tilde system through the temperature-dependent mixing parameters θj.

If the Hamiltonian H and the operator ~hB are polynomials in creation-annihilation operators (which is the case in
many real world applications) then the explicit form of �Hθ can be constructed by using the fundamental relations22,53,61

eiGaje
�iG ¼ ajcosh θj

� �
þ~a†j sinh θj

� �
ð34Þ

eiG~aje
�iG ¼ ~ajcosh θj

� �
þa†j sinh θj

� �
ð35Þ

Therefore, the transformed Hamiltonian �Hθ depends on temperature through the parameters θj. Equations (26)–(35)
are the working tools of our new approach to finite temperature quantum dynamics in molecular systems.

2.3 | Finite-temperature electron-vibrational Hamiltonian

Let us now focus on a special type of the Hamiltonian operator describing a set of coupled electronic states interacting
with a phonon bath

H¼
XM
n¼1

εn nj i nh jþ
X
n≠ m

Vnm nj i mh jþ
Xd
k¼1

ωka
†
kak�

X
kn

gknffiffiffi
2

p nj i nh j a†kþak
� �

: ð36Þ

Here jni labels an electronic state of the system with the energy εn, Vnm are electronic couplings, ωk are the frequencies
of the bath harmonic oscillators, and the parameters gnk determine the strength of the electron–phonon coupling. The
Hamiltonian (36) has a large number of applications, such as the fundamental description of molecular aggregates
properties,46–48 the analysis of molecular processes in the linear vibronic-coupling theory,49,62 electron-transfer and
charge-transfer properties in molecular systems.11,63,64

In what follows we choose the gauge of Equation (22) as

~hB ¼
Xd
k¼1

ωk~a
†
k~ak: ð37Þ

Applying the Bogoliubov transformation to the Hamiltonian operator (36) we obtain the temperature-dependent
operator
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�Hθ ¼ eiG �He�iG ¼
X
n
εn nj i nh jþ

X
n≠m

Vnm nj i mh jþ
X
k

ωk a†kak�~a†k~ak
� �

�
X
kn

gknffiffiffi
2

p akþa†k
� �

cosh θkð Þþ ~akþ ~a†k
� �

sinh θkð Þ
� �

nj i nh j: ð38Þ

In deriving the above expression we used the invariance property22

eiG a†nan� ~a†n~an
� �

e�iG ¼ a†nan�~a†n~an: ð39Þ

The operator �Hθ of Equation (38) consists of two parts: a modified physical Hamiltonian in which the linear coupling
terms are multiplied by cosh(θk) factors, and the vibrational tilde Hamiltonian. The excitation of the tilde vibrations is
caused by the linear coupling terms gknsinh(θk). Since ~hB enters Equation (38) with a negative sign, vibrational excita-
tions in the tilde space correspond to a flow of energy from the physical system to the fictitious tilde system. It is this
type of coupling that accounts for thermal noise. Once the explicit structure of �Hθ has been determined the evaluation
of the expectation value of any observable hA(t)i can be obtained from Equation (30) after the solution of the TFD
Schrödinger Equation (26).

The explicit dependence of the Hamiltonian operator on the temperature through the parameters θk enables a
smooth transition from the low temperature to the high temperature case. At T! 0 the mixing parameters θk become
zero, sinh(θk)! 0, the coupling to the tilde space disappears, and the standard Schrödinger equation is recovered as
expected. For high-frequency modes, θk� 1, sinh(θk)≈ 0, and cosh(θk)≈ 1 even at room temperature. As a rule of
thumb high-frequency modes need not be incorporated into the tilde Hamiltonian. This leads to additional reduction
of the active space and computational savings (see Section 4.3). This a priori selection of the DoFs which need doubling
cannot be used within the standard formulation of the Liouville–von Neumann equation for the density matrix: in that
case the bra and ket spaces have by construction the same dimensionality.

3 | TENSOR TRAINS

3.1 | Basic theory

The solution of the TFD Schrödinger Equation (26) with the Hamiltonian (38) requires efficient numerical methods,
suitable to accurately treat a large number of dynamical variables. Several techniques have been developed which can,
at least in principle, overcome what has been termed the curse of dimensionality.3,15 In our approach the TT decomposi-
tion, the simplest form of Tensor Network, has been adopted. Below we sketch the basic principles of the TT decompo-
sition, and show how it can be applied to solve the thermal Schrödinger equation in twin-formulation. The reader is
referred to the original articles3,35,65 for a detailed analysis of the TT theory.

Let us consider a generic state jψi of a N dimensional quantum system having the form

ψj i ¼
X

i1, i2, … , iN

C i1, …, iNð Þ i1j i i2j i � � � iNj i: ð40Þ

where jiki labels the basis states of the k-th dynamical variable, and the elements C(i1,…, iN) are complex numbers
labeled by N indices. If we truncate the summation of each index ik the elements C(i1,…, iN) represent a tensor of order
N, where the word “order” means nothing but the number of DoFs. The evaluation of Equation (40) requires the com-
putation (and storage) of pN terms, where p is the average size of the one-dimensional basis set that is usually much
larger than 2, becoming therefore prohibitive for large N. Using the TT format, each element C(i1,…, iN) of the tensor C
is approximated as

C i1, …, iNð Þ≈C1 i1ð ÞC2 i2ð Þ � � �CN iNð Þ ð41Þ
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where each Ck(ik) is a rk� 1	 rk complex matrix. In the explicit index notation

C i1, …, iNð Þ¼
X

α0α1 ��� αN
C1 α0, i1,α1ð ÞC2 α1, i2,α2ð Þ � � �CN αN�1, iN ,αNð Þ¼

X
αkf g

YN
k¼1

Ck αk�1, ik,αkð Þ ð42Þ

The matrices Ck are three dimensional arrays, called cores of the TT decomposition. The dimensions rk are called compres-
sion ranks. Since the product of Equation (41) must be a scalar, the constraint α0 = αN = 1 must be imposed. In the
matrix-product state (MPS) language the sizes of the ranks are referred to as bond dimensions. Using the TT decomposi-
tion 41 it is possible, at least in principle, to overcome most of the difficulties caused by the dimensionality of the problem.
Indeed, the wave function is entirely defined by N arrays of dimensions rk� 1	nk	 rk thus requiring a storage dimension
of the order Npr2. The meaning of the term Tensor Train can be easily understood by looking at the graph of Figure 1.

We notice that if all the ranks of the cores are 1, the TT format is equivalent to a Kronecker product. From this point
of view it constitutes the simplest extension of a direct product to entangled systems. The higher the entanglement, that
is the correlation between two or more DoFs, the larger the ranks of the TT cores connecting their respective indices.
Indeed, a fundamental problem of the TT representation is to define the sequence of indices ik, k = 1, …, N with the
minimum rank decomposition of the state vector, and of the operators. We do not aim to tackle this complex mathe-
matical problem, however we can exploit the twin-space formalism to optimize the TT representation of the vec-
tor jψ(t)i.

The algebra of tensor trains has been thoroughly discussed elsewhere and efficient algorithm exists to perform basic
operations such as scalar and matrix–vector products. For completeness here we briefly describe some of the basic oper-
ations, and refer the reader to more technical articles for details.35

The addition of two vectors A and B in TT format

A¼A1 i1ð ÞA2 i2ð Þ � � �AN iNð Þ; B¼B1 i1ð ÞB2 i2ð Þ � � �BN iNð Þ ð43Þ

can be easily implemented by merging the cores as in a direct sum. The cores of the new tensor C = A+B will be

Ck ikð Þ¼
Ak ikð Þ 0

0 Bk ikð Þ

� �
k¼ 2, … ,N�1 ð44Þ

C1 i1ð Þ¼ A1 i1ð Þ B1 i1ð Þð Þ;CN iNð Þ¼
AN iNð Þ
BN iNð Þ

� �
ð45Þ

It follows that if the matrices Ak(ik) and Bk(ik) have ranks rk0 and rk0 0 , respectively, the rank of the core Ck(ik) will be
rk ¼ rk0 þ rk0 0 . This increase in the ranks upon addition is a fundamental problem which is usually addressed by round-
ing the new TT with a prescribed accuracy (see Section 3.2).

Matrix-by-vector multiplication is certainly one of the most important operations in linear algebra. In the many-
dimensional case this operation requires the contraction over a set of indices in the form

A i1, … iNð Þ¼
X

j1, … , jN

X i1, ::, iN ; j1, … jNð ÞB j1, …, jNð Þ: ð46Þ

The tensor X is said to be in TT-format if it is represented as

...C1 C2 C3 Cn− 1 Cn

i 1 i 2 i 3
α1 α2

i N − 1 i N
αN − 2 αN − 1

FIGURE 1 Graphical representation of a tensor train. Each square node represents a core of the TT, and each vertical line represents an

index ik of the tensor. Connecting lines represent the contractions over the indices αk
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X i1, ::, iN ; j1, … jNð Þ¼X1 i1, j1ð ÞX2 i2, j2ð Þ � � �XN iN , jNð Þ ð47Þ

where Xk(ik, jk) are rk� 1	 rk matrices, that is, in the explicit index notation

X i1, ::, iN ; j1, … jNð Þ¼
X

α0α1 … αN

X1 α0, i1, j1,α1ð ÞX2 α1, i2, j2,α2ð Þ � � �XN αN�1, iN , jN ,αNð Þ ð48Þ

If the vector B is in TT format then we have

A i1, … iNð Þ¼
X

j1, … , jN

X1 i1, j1ð Þ � � �XN iN , jNð Þð Þ B1 j1ð Þ � � �BN jNð Þð Þ

¼
X

j1, … , jN

X1 i1, j1ð Þ�B1 j1ð Þð Þ � � � XN iN , jNð Þ�BN jNð Þð Þ

¼A1 i1ð Þ � � �AN iNð Þ ð49Þ

In this operation each core Xk acts separately on the cores Bk of the vector B. We notice that the TT-ranks of the
resulting vector A are the product of ranks of the matrix and of the vector. This latter result severely limits the numbers
of consecutive matrix-by-vector multiplications that can be performed and implies that after a multiplication a TT-
rounding must be performed to avoid rank growth.

3.2 | Tensor-train rounding

Suppose that the tensor A is in the TT-format

A¼A1 i1ð ÞA2 i2ð Þ � � �AN iNð Þ ð50Þ

with core ranks rk. This tensor can be for example the result of the addition of several tensors and therefore the ranks rk
can be particularly large. To avoid waste of computer memory and time it is desirable to approximate A with a new ten-
sor B in TT format such that

A�Bk kF ≤ ϵ Ak kF ð51Þ

Such a procedure is called rounding. The new tensor B will have ranks rk0 ≤ rk while maintaining the prescribed accu-
racy ϵ. This problem is well known in the theory of TT decomposition and can be elegantly solved performing a
sequence of singular value decompositions (SVD) of each core of the original tensor A retaining only singular values
above a predefined threshold. The reader is referred to the original article for details about the implementation.35

3.3 | Vibronic Hamiltonian operator in tensor-train format

In order to apply TT representation to solve the time-dependent Schrödinger Equation (21) both the state vector and
the Hamiltonian operator have to be represented in TT format. The construction and storage of the Hamiltonian opera-
tor of Equation (36) in TT format can be performed by a sequence of additions of TT matrices followed by a rounding
to keep the ranks to a reasonable value. If M is the number of electronic states and pk is the size of the truncated basis
set for the k-th vibrational DoF the Hamiltonian operator (38) has the matrix form

H¼He� I1 � � � Idþ
X
k

ωk Ie� ���Wk � � � � Idð Þ�
X
kn

gkn Sen� I1 � � �Qk � � � Idð Þ ð52Þ

where He is the electronic Hamiltonian matrix
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He ¼

E1 V12 � � �

V21
. .
.

..

.
EM

0
BB@

1
CCA, ð53Þ

Qk and Wk are the coordinate and energy matrices of mode qk in its energy eigenbasis representation

Qk ¼
1ffiffiffi
2

p
0

ffiffiffi
1

p
�� �ffiffiffi

1
p ffiffiffiffiffiffiffiffiffiffiffiffi

pk�1
p

..

. ffiffiffiffiffiffiffiffiffiffiffiffi
pk�1

p
0

0
BB@

1
CCA; Wk ¼

0

1

..

.
pk�1

0
B@

1
CA, ð54Þ

Ie is a unit matrix of size M	M, Sen is the matrix representation of the jnihnj electronic operator, and Ik are identity
matrices of size (pk	 pk), k = 1, …, d.We now wish to provide a TT approximation, Hε of the Hamiltonian matrix (52)
of the type

Hε i1, … iN ; j1, …, jNð Þ¼H1 i1, j1ð ÞH2 i2, j2ð Þ � � �HN iN , jNð Þ ð55Þ

such that

H�Hεk kF ≤ ε Hk kF : ð56Þ

To this end we observe that each direct product in Equation 52 is a tensor train with all ranks rk = 1, therefore their
sum can be easily obtained using the rules of Equation 44. Since after addition the ranks of TT cores increase it is neces-
sary to perform a TT rounding after each operation. Algorithm 1 describes the pseudocode for obtaining the TT approx-
imation of the vibronic Hamiltonian matrix (52) with a prescribed accuracy ϵ.

3.4 | Application of tensor trains to time-dependent problems

In a time-dependent theory the cores are time-dependent complex matrices which must be determined from the numer-
ical solution of the equations of motion of the system.36,66,67 The simplest possible approach to tackle this problem is to
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use standard integrators of systems of ordinary differential equations (ODEs) combined with the algebra of tensor
trains. Let us assume that the wave function can be represented as

jψ tð Þi¼
X

i1, i2, … , iN

C1 i1; tð ÞC2 i2; tð Þ � � �CN iN ; tð Þ j i1i j i2i � � � j iNi ð57Þ

and that H is the Hamiltonian operator in TT format that controls its evolution. We could use a forward Euler scheme
and obtain the solution of Equation (21) in the form

C i1, …, iN ; tþ τð Þ¼C i1, …, iN ; tð Þ� iτĤC i1, …, iN ; tð ÞþO τ2
� �

: ð58Þ

As described in the preceding section the ranks of the cores of the vector y = HC are obtained by multiplying the ranks
of H and those of C, and the sum C� iτHC results in a further increase of the ranks of the final vector. This scheme
therefore requires an efficient rounding procedure after each time step. Almost always the truncation scheme allows for
an a priori upper bound of the ranks rk. This truncation, however, results in artificial changes of the total energy and of
the norm of wave function under unitary evolution. The so-called Time-Evolving Block Decimation (TEBD) technique,
the Krylov subspace methods68–70 belong to this class of methods. A recent implementation of the second-order
Cranck–Nicholson integrator combined with the Alternating-Minimal-energy solver of linear systems in TT format has
been proposed to control the increase in the ranks of the cores.67

An alternative approach to tackle this problem is to apply the time-dependent variational principle (TDVP) to the
parameterized form of the state given by Equation (57).71 Since TTs of fixed rank form a closed manifold ℳTT

the resulting equations of motion can be written in the form

d
dt

jψ C tð Þð Þi¼�iP̂T C tð Þð ÞH jψ C tð Þð Þi, ð59Þ

where C labels all the cores of the TT representation (57), and P̂T ψ C tð Þð Þð Þ is the orthogonal projection into the tangent
space of ℳTT at jψ(C(t))i. Equation (59) provides an approximate solution of the original equation on the manifold of
TT tensors of fixed rank, ℳTT.

65 This means that the projected evolution gives the best solution with a prescribed upper
bound for the ranks of cores. This strategy is extremely appealing because it avoids, by construction, the growth of the
ranks of the TT solution. The drawback of the methodology is that the accuracy of the solution must be verified a
posteriori. This requires several calculations, with increasing the values of the ranks rk, to be performed, until a global
convergence on a desired observable is reached.

We refer the reader to references,36,72 where the explicit differential equations are derived and their approximation
properties are analyzed, and to Ref. 73 for a discussion of time-dependent TT/MPS approximations in the theoretical
physics literature.

In Sections 4 and 5.3 we employ the TDVP algorithm, and show how to control the behavior of the solution as a
function of the average value of the ranks.

3.5 | Entanglement growth and structure of the tensor train

The TT approximation is effective only if the ranks rk of the cores are small. The structure of the train, that is the
order of the indices of the tensor, can have a deep impact on the growth of the entanglement. A key aspect is that
if two DoFs are highly entangled their indices should be as close as possible in the sequence that defines the TT
representation of the wave function. The most desirable situation would correspond to a systems showing only
nearest neighbor interactions and a structure of the tensor train that reflects the natural form of the Hamiltonian
operator. This latter is dictated by the structure of the problem under examination, but several techniques exist
to map the Hamiltonian of Equations (36) and (38) to chain-like models, thus easing the application of the TT
format.74–76 Yet, it has been recently demonstrated that this mapping might not be necessary at all, and some-
time can even be counterproductive.77 In all the applications presented in Section 4 we have found that ordering
the electronic and vibrational DoFs of the Hamiltonian in Equation (27) with increasing values of their
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frequency ωi provides very good convergence properties of the TT representation, and the mapping to a chain
form is not required.

4 | APPLICATIONS

The TFD-TT approach can be applied to study the time evolution of quantum observables of a wide range of chemico-
physical systems. Below we describe some applications both to the study of model systems as well as to the characteri-
zation of energy and electron transfer problems in realistic many-dimensional molecular systems.

The Hamiltonian operators of all systems considered in this section are particular cases of the Hamiltonian of Equa-
tion (36) and of the thermal Hamiltonian of Equation (38).

4.1 | Model systems

4.1.1 | Spin-boson model

Starting from the general Hamiltonian of Equation 36 we have studied a prototypical spin-boson system9 in which two
degenerate electronic states, j1i and j2i, are coupled to low frequency vibrational modes

H¼ ϵσz�Vσxþ
X
k

ωka
†
kakþσz

X
k

gk a†kþak
� �

ð60Þ

where, as usual, σz = ( j 1ih1j � j 2ih2 j ) and σx = ( j 1ih2j + j 2ih1 j ), 2ϵ is the electronic energy difference between the
two states, V is the electronic coupling, and the constants gk are responsible for the linear coupling between the ensem-
ble of bosons of frequencies ωk and the spin. These parameters can be modeled starting from the so-called spectral den-
sity function, defined as

J ωð Þ¼
X
k

g2kδ ω�ωkð Þ: ð61Þ

In our model the Ohmic spectral density is employed

J ωð Þ¼ π

2
αωe�ω=ωc ð62Þ

with a cut-off frequency ωc = 53 cm�1. The solution of Equation (26) using a basis set representation requires the dis-
cretization of the spectral density over a finite set of frequencies. We have adopted a non-uniform discretization proce-
dure that ensures fast convergence with respect to the number of sampling points in which the frequencies and the
coupling parameters are given by:78

ωk ¼�ωcln 1�kΩ=ωcð Þ; gk ¼ αωkΩ; Ω¼ωc

d
1� e�ωmax=ωc

� �
; k¼ 1, … ,d ð63Þ

In our calculations the spectral density is discretized with d = 200 DoFs in the range (0,5ωc].
Figure 2 shows the population P(t) of the initial upper electronic state at 300 K for the set of parameters reported in

the caption. The TFD-TT results correspond to the full lines, while the blue dots correspond to the numerically exact
populations computed in Ref. 79 via the HEOM methodologies (HEOM is a standard reference for benchmarking high-
temperature simulations). Clearly, the TFD-TT and HEOM populations are in excellent agreement and virtually indis-
tinguishable. The comparison unequivocally demonstrates the validity of the TFD-TT approach for this type of quan-
tum dynamical problems.

The convergence properties of the numerical methodology are illustrated by Figure 3 which shows the population
as a function of time for different values of the TT compression ranks. At a low temperature, T = 30 K, the convergence
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is achieved with very low compression ranks, while at higher temperature higher ranks are required. Since the required
TT storage scales quadratically with the average TT rank, this amounts to an increased computational cost of the
calculation.

4.1.2 | Reaction mode spin-boson

One of the key advantages of using a basis set approach is the possibility to describe a large variety of potential energy
surfaces beyond linear electron–phonon couplings. This is important for the description of chemical reactions in which
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FIGURE 2 Population P(t) of the initial electronic state at T = 300 K as a function of time, for different values of α = λ/(2ωc);

(a) λ = 5 cm�1; (b) λ = 20 cm�1 (both with the tunneling amplitude V = 40 cm�1); (c) λ = 20; (d) λ = 80 (both with V = 100 cm�1). Full lines:

TFD-TT calculations. Blue dots: Numerically exact HEOM calculations of Ref. 79
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FIGURE 3 Population P(t) of the initial electronic state as a function of time for different values of the TT compression ranks simulated

for α = (20 cm�1)/(2ωc) and V = 40 cm�1. (a) T = 300 K; (b) T = 30 K
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the surfaces can be highly anharmonic. In the following example the TFD-TT technique is used to study a system with
bilinear couplings between electron and phonons.9 We consider a system of two electronic states coupled to a single
harmonic mode with the frequency Ω which is in turn coupled to a set of harmonic oscillators having Ohmic spectral
density. The corresponding Hamiltonian, often referred to as reaction mode spin-boson,80 can be written as

H¼ ϵσz�Vσx þΩA†Aþ
X
k

ωka
†
kakþg A†þA

� �
σzþ A†þA

� �X
k

λk a†kþak
� �

σz: ð64Þ

where A, ak (A†,a†k ) denote the annihilation (creation) operators for the reaction and bath oscillators respectively, and
the couplings coefficients λk satisfy the relation

J ωð Þ¼
X
k

λ2kδ ω�ωkð Þ¼ π

2
αωe�ω=ωc : ð65Þ

The value of the parameter g determines the strength of the coupling between the high frequency mode and the elec-
tronic subsystem. In this model the phonons “drain” energy from the reaction coordinate and not directly from the spin
system. As in the previous case the continuous spectral density has been discretized using 200 vibrations; and the fre-
quencies ωk and couplings λk are obtained from Equation (63).

In Figure 4 the electronic population P(t) at 30 K and 300 K is shown for two different values of the Kondo parame-
ter α of Equation (65) (see figure caption for the Hamiltonian parameters).

At 30 K and small α the boson bath is not very effective in dissipating energy from the reaction coordinate. In this
regime coherent oscillations of the electronic population persist at long times. When temperature increases to 300 K
the damping is more evident but the oscillations remain underdamped. For larger α, the population at 30 K exhibits
underdamped oscillations, while for 300 K the bath quenches the beatings at around 600 fs. The trend is natural, since
the Kondo parameter controls the coupling of the reaction mode to the harmonic bath. The high-frequency modulation
of the population dynamics is due to coherent vibrations of the reaction mode with a period 2π/Ω≈ 22 fs.
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FIGURE 4 The time evolution of the electronic population P(t), for different values of α = λ/(2ωc) and for a tunneling amplitude

V = 40 cm�1; (a) λ = 20 cm�1, T = 30 K; (b) λ = 20 cm�1, T = 300 K; (c) λ = 80 cm�1, T = 30 K; (d) λ = 80 cm�1, T = 300 K
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4.2 | Energy transfer in supra-molecular assemblies

In the two preceding examples the vibronic couplings are derived from analytical functions which were devised to
mimic mostly the behavior of low frequency vibrations of condensed phase systems. However, in most molecular sys-
tems this description does not hold, indeed, quite often the spectral densities are extremely structured, that is, abso-
lutely not uniform. Providing an accurate description of finite temperature quantum dynamics in these systems can be
a very challenging problem for most methodologies.

In recent works10,81 we have shown how the TFD-TT methodology can be applied to the study exciton dynamics in
the Fenna–Matthews–Olson (FMO) complex, consisting of seven bacteriochlorophylls (BChl) embedded into a protein
matrix. This type of problem can indeed be described by using the general model Hamiltonian of Equation (36).

The exciton part of the FMO Hamiltonian, the site energies εn and electronic couplings Vnm, have been retrieved
from Ref. 82. Vibronic coherences are essentially determined by the distribution of the bath vibrational frequencies and
their coupling constants gkn. For numerical convenience these parameters are assumed to be the same for all BChls
(gkn = gk). Recent theoretical analysis suggest that the use of a “structured” spectral density in the energy transfer pro-
cess can lead to quite pronounced vibronic effects.5,83–85 Therefore, following Schulze et al.,84 we have modeled the
electron–phonon interaction by discretizing the experimental spectral density of Ref. 86 with d = 74 vibrations uni-
formly distributed in the range (2300 cm�1). This way the times corresponding to the frequency ωmin = 2 cm�1 and the
line spacing Δω = (ωmax�ωmin)/d are safely beyond the observed time evolution of the system. We notice that using
this spectral density the overall number of physical and tilde vibrational DoFs is 1038 (14d). We are not aware of any
simulation at finite temperature with such a large number of DoFs.

The parameters gkncosh(θk) and gknsinh(θk) entering the thermal Hamiltonian �Hθ govern the coupling of the elec-
tronic subsystem with physical and tilde bosonic DoFs. Hence, it is tempting to introduce the spectral densities

Jp ωð Þ¼
X
k

gkncosh θkð Þð Þ2δ ω�ωkð Þ, Jt ωð Þ¼
X
k

gknsinh θkð Þð Þ2δ ωþωkð Þ, ð66Þ

which describe the electron-vibrational couplings in the physical (subscript p) and tilde (subscript t) subspace. As tem-
perature goes to zero, Jp(ω)! J(ω) and Jt(ω)! 0. The two spectral densities are reported in Figure 5 at 77 K and 300 K.
The comparison of lower and upper panels of the figure reveals how effective electron-vibrational coupling increases
with temperature, notably for lower-frequency modes.

Figure 6(a) shows the total time-dependent populations pn(t) of seven (n = 1� 7) BChl molecules of the FMO com-
plex (standard numbering of the FMO cofactors is used). The populations are evaluated by Equations (30) and (26) for
A = Aθ = jnihnj so that pn(t) = hA(t)i. The initial excitation is assumed to be localized on site 1. In all panels, p1(t) and
p2(t) exhibit pronounced oscillations, as expected.87,88

At T = 0 K (upper panel) the populations are in perfect agreement with the results obtained by Schulze et al. using
ML-MCTDH.84 At T = 77K (middle panel) p3(t) drops to about 0.6 at t = 1 ps. On the other hand, there is no
pronounced difference in the behaviors of p1(t) and p2(t) at T = 0 and 77 K. In the language of spectral densities of
Equation 66, it means that the contributions of the lower-frequencies vibrational modes (which are strongly
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FIGURE 5 Effective site spectral densities Jp(ω) and Jt(ω)

describing the coupling of the physical and tilde bosonic DoFs with

the electronic subsystem at different temperatures. (a,b) 77 K,

(c,d) 300 K
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temperature-dependent) are quite significant in the dynamics of p3(t) at already 77 K, while are less pronounced in the
dynamics of p1(t) and p2(t).

If temperature increases up to 300 K (lower panel) p3(t) further decreases to 0.3 at t = 1 ps, and the oscillatory com-
ponents of p1(t) and p2(t) are significantly reduced but still visible. Such long-lived beatings at ambient temperature
have not been reported in models employing an approximate spectral density in the Drude–Lorentz form,87 Ohmic
form or Adolphs–Regner (single peak) form.88 The beatings revealed in the present work at T = 300 K are due to the
strongly structured spectral density and frequency-dependent coupling between the electronic subsystem and
the vibrational DoFs.

To elucidate how the spectral densities of Figure 5 affects the fraction of BChls that are significantly occupied during
the time evolution of the system, we have computed the inverse participation ratio Π(t), defined as46,89

Π tð Þ¼ 1P
np

2
n tð Þ : ð67Þ

It is easy to show that Π(t) = 1 for a completely localized exciton wavefunction, while Π(t) = Nsite (7 in the present case)
for a perfectly uniform state. Therefore, Π(t) can be considered as an effective length, measuring the spatial extent of
the exciton wave function over the aggregate. Figure 6(b) shows the computed Π(t) for the FMO complex at different
temperatures. At T = 0 K, Π(t) has a strong quantum behavior showing an oscillatory increase for the first 400 fs which
is followed by an oscillatory decrease to a value of 2 at t = 1 ps. This is an indication of the exciton self-trapping. There-
fore, a small number of sites are accessible to the systems during its evolution at T = 0 K, as is also evident from the
population dynamics in Figure 6(a). For T = 77 K, the qualitative behavior of Π(t) remains the same but, the number of
accessible sites increases to 3 at t = 1 ps. At ambient temperature the number of accessible sites increases significantly
and the effective length of the exciton is about 5.5 at t = 1 ps. The effect of a finite temperature is thus not only to pro-
vide a decoherence mechanism but also to increase the number of sites simultaneously accessible for the energy trans-
fer process and to destroy the exciton self-trapping (cf. Ref. 89).

4.3 | Electron-transfer in photosynthetic reaction centers

One of the key advantages of the TFD-TT methodology developed in Section 2 is that it can combine the best of wave-
function and density-matrix approaches into a single theoretical framework. Indeed, in our formulation the tilde space
comprises only thermalized low frequency DoFs, therefore whenever the thermal mixing parameter θ of Equation (33)
falls below a certain threshold the corresponding tilde variable is totally disentangled from the evolution of the physical
system and can be omitted from the dynamical problem (see also Equation (29)).
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FIGURE 6 (a) Time evolution of the electronic populations pn(t) of seven (n = 1� 7) BChl molecules of the FMO complex at different

temperatures indicated in the panels. The initial excitation is localized on site 1. Different colors label different sites as specified in the

legend. (b) Inverse participation ratio Π(t) as a function of time; (�) 300 K, (��) 77 K, (��) 0 K
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The application of TFD-TT to the study of the dynamics of the electron-transfer (ET) between the accessory bacteri-
ochlorophyll (BA) and the bacteriopheophytin (HA) in bacterial reactions centers,11 clearly shows this special feature of
the methodology.

Previous numerical studies have shown that this process can be modeled as a radiationless transition which involves
mainly intramolecular vibrations which carry most of the reorganization energy.19,64 However, quantum dynamical
results were obtained only for models including a reduced space of nuclear vibrational coordinates, and the effect of
finite temperature was not taken into account.19

Following a common approach,90,91 the ET process is described by the Hamiltonian of Equation (36) with only two
states, jAi, j Fi to describe the electronic subsystem. These latter are represented by the direct product of the neutral
and anionic forms of the two isolated molecules, that is, jAi¼jB�

A i jHAi and j Fi¼jBAi jH�
A i . The Hamiltonian (36)

can then be rewritten in the form

H¼ ϵA Aj i Ah jþ εF Fj i Fh jþV Aj i Fh jþH:c:ð Þþ Fj i Fh j
X
k

gk akþa†k
� �

þ
X
k

ωkaka
†
k ð68Þ

where ϵA, ϵF are the electronic energies of the states jAi, jFi respectively, V is their electronic coupling. The linear
vibronic couplings gk can be obtained from the computation of the equilibrium geometry, and of the matrices of normal
modes of vibrations of the two electronic states via well-known relations.92–95 Our model comprises 267 vibrational
modes, and the parameters adopted in here are taken from our previous work.96

Figure 7 shows the temperature-dependent spectral densities defined in Equation (66). As already said, the coupling
with the tilde space is negligible for high frequency modes (ω>2000 cm�1) and not reported. It is immediate to see that
as temperature increases the coupling with the low frequency part of the spectrum increases, while the high frequency
region is left almost unaffected. This observation enables to analyze the relevance of temperature effects for each single
degree of freedom and to reduce the computational costs by a priori removing some of the tilde DoFs from the
Hamiltonian.

In the present case the physical number of DoFs is 267, which should be doubled to 534 upon inclusion of the tilde
space. However, a large fraction of high frequency modes has a negligible vibronic coupling, gksinh(θk), thus it is possible
to reduce the overall number of nuclear DoFs to 400 without any loss in the accuracy of the model.

Figure 8(a) shows the convergence behavior of the TT methodology for different ranks of the cores. For sake of sim-
plicity all cores have the same ranks, although different values are, in principles, allowed. As can be seen, the small
rank approximation provides a good description of the dynamics only for short times. More specifically for r = 10 the
dynamics is accurate up to 60 fs, while for r = 20 the dynamics is in almost quantitative agreement with the exact result
up to 250 fs. Increasing r to 60 provides only slight modifications in the long-time tail of the decay. Indeed, after 800 fs
the discrepancies between the population decay curves with r = 60 and r = 50 have an average relative deviation of
about 5%. In all the calculations a basis set of harmonic oscillator eigenfunctions has been used with maximum quan-
tum number 20 for all the DoFs, which guarantee converged results.11

Figure 8(b) shows the electronic population of the initial state jB�
AHAi as a function of time at different tempera-

tures. Temperature effects are not dramatic, as expected, since most of the vibronic activity is associated with high fre-
quency vibrations. Increasing the temperature from 10 K to 77K results in a very small decrease of the decay rate. This
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effect cannot be described in the framework of the classical ET theory and is very likely due to the highly quantized
nature of the vibrational density of states at very low temperatures. A modest increase in the population decay rate
upon increasing T from 77K to 298K is observed. This effect can be attributed to the increased number of accessible
vibronic states. The overall behavior is similar to what is found in other ET processes where large vibronic couplings
are associated to highly quantized modes.97–99

5 | OPEN SYSTEMS AND HIERARCHICAL EQUATION OF MOTION IN
TWIN-SPACE TENSOR-TRAIN FORMALISM

5.1 | Theoretical formulation

As discussed in the preceding sections the twin-space formulation of the Liouville–von Neuman equation enables the
development of the TFD Schrödinger equation. Furthermore, using this formalism it is possible to define a reduced
state vector analogous to the familiar reduced density matrix. This was first discussed by Arimitsu and Umezawa44

using projection operator techniques and leads to a set of equations which share the same formal structure as the stan-
dard reduced density matrix approaches, but make explicit use of tilde operators. We have recently demonstrated that
this procedure can be used to derive an equation of motion for the reduced density matrix based on the hierarchical
solver technique developed by Tanimura and Kubo.100,101

Here we briefly sketch the main steps of the derivation and refer the reader to the original article12 for further
details. Let us consider a system described by a Hamiltonian operator

H¼HAþHBþV ¼H0þV ð69Þ

where A is the subsystem of interest, B is the “bath,” that is, the irrelevant subsystem, V is their coupling, and
H0 = HA+HB. In twin-space formulation the Liouville super-operator is thus given by

Ĥ¼HAþHBþV � ~HA� ~HB� ~V ¼ ĤAþ ĤBþ V̂ ¼ Ĥ0þ V̂ ð70Þ

where ĤA ¼HA� ~HA and so on.
The HEOM theory by Kubo and Tanimura100 is certainly one of the most important theoretical developments for

the study of open systems. It was originally formulated as a methodology to describe a system interacting with a non-
Markovian Gaussian environment, and has later been extended to treat other types of system–bath interactions.100,102

In its current formulation it has been applied to study the dynamics of a large variety of chemico-physical processes
including energy and electron transfer83,87,103–105 as well as heat transport106 and electron transport.7 The reader can
refer to the recent work by Tanimura4 for a more detailed analysis of the HEOM methodology.

A fundamental assumption of HEOM theory is that the system–bath interaction can be factorized as
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V ¼
X
k

SkQk ð71Þ

where Sk and Qk are system and bath operators respectively. Furthermore, the bath operators are described as a linear
combination of position operators qj of harmonic oscillators

Qk ¼
X
j

gkjqj: ð72Þ

The coupling super-operator is thus given by

V̂ ¼
X
k

SkQk�
X
k

~Sk ~Qk: ð73Þ

Under this conditions it is possible to demonstrate that107,108

j ρA tð Þi I ¼Tþexp �
Z t

0
K̂

2ð Þ
I sð Þds

� �
j ρA 0ð Þi I ð74Þ

where jρA(t)iI is the reduced density matrix of subsystem A obtained by tracing over all the possible states of the “irrele-
vant” subsystem B, and

K̂
2ð Þ
I sð Þ¼

Z s

0
dτ V̂ sð ÞV̂ τð Þ
	 

, ð75Þ

V̂ tð Þ¼ eiĤ0tV̂ e�iĤ0t being the coupling between subsystems A and B in the interaction picture.
Differentiating Equation (74) one obtains109

∂

∂t
j ρA tð Þi I ¼�Tþ

Z t

0
dτ V̂ tð ÞV̂ τð Þ
	 

exp �
Z t

0
K̂

2ð Þ
I sð Þds

� �
j ρA 0ð Þi I : ð76Þ

It is fundamental to note that the variable τ in the integral above ranges over all times, so that, for τ< s the time order-
ing operator mixes V̂ τð Þ with all the terms of the expansion of the exponential operator exp �

R t
0K̂

2ð Þ
I sð Þds

� �
, making it

impossible to obtain an explicit equation for jρA(t)iI. The HEOM method provides a way to disentangle the above equa-
tion in the special case of a Gaussian bath.

Indeed, it is possible to demonstrate that after some easy manipulations the second order cumulant can be written
as (see Ref. 12)

K̂
2ð Þ
I tð Þ¼

X
k

Sk tð Þ� ~Sk tð Þ
� � Z t

0
dt1 Qk tð ÞQk t1ð Þh iSk t1ð Þ�

Z t

0
dt1 Qk t1ð ÞQk tð Þh i~Sk t1ð Þ

� �
, ð77Þ

where S tð Þ,~S tð Þ, and Q(t) are operators in the interaction picture. In the limit of a continuous distribution of bath modes
the correlation function hQk(t1)Qk(t)i can be written as

Qk t1ð ÞQk tð Þh i¼ 1
π

Z ∞

0
dωJk ωð Þ coth βω=2ð Þcos ω t1� tð Þð Þþ isin ω t1� tð Þð Þ½ � ð78Þ

where Jk(ω) is the k-th bath spectral density. Furthermore, if Equation (78) can be represented as series of the form

Qk t1ð ÞQk tð Þh i¼
X∞
j¼1

ckje
�γkjjt�t1j ð79Þ
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where ckj and γkj are complex coefficients, the second order cumulant reduces to

K̂
2ð Þ
I tð Þ¼

X
kj

Ŝk tð Þ
Z t

0
dτe�γkjjt�τjR̂kj τð Þ ð80Þ

in which we have introduced the super-operators

Ŝk tð Þ¼ Sk tð Þ� ~Sk tð Þ
� �

ð81Þ

R̂kj tð Þ¼ ckjSk tð Þ� c*kj~Sk tð Þ: ð82Þ

As a last step of our derivation we define a set of auxiliary state vectors100,110

j ρmA tð Þi¼Tþ
Y
kj

mkj! ckj
�� ��mkj

� ��1=2
i
Z t

0
dt1e

�γk jt�t1jR̂kj τð Þ
� �mkj

exp �
Z t

0
K̂

2ð Þ
I sð Þds

� �
j ρA 0ð Þi I ð83Þ

where m = {mkj} is a set of non-negative integers. Here, the index k labels the number of independent bath spectral
densities Jk(ω), and the index j labels the number of terms in the expansion of Equation (79). It is readily verified that
the vector jρA(t)iI, describing the physical state of our system, corresponds to the auxiliary state vector having all indices
mkj = 0, that is, j ρA tð Þi I ¼j ρ0A tð Þi. The above definition takes into account the scaling factors originally proposed by Shi
and coworkers which improves the numerical stability of the final system of equations.110 HEOM are readily derived
upon repeated differentiation of the jρmi with respect to time. Moving to the Schrödinger representation the set of
equations

∂

∂t
j ρmA i¼� iĤAþ

X
kj

mkjγkj

 !
j ρmA i� i

X
kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkj= j ckj j

q
ckjSk� c*kj~Sk
� �

j ρm�1kj
A i

�i
X
kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkjþ1
� �

j ckj j
q

Sk�~Sk
� �

j ρmþ1kj
A i ð84Þ

is obtained, where m±1kj = (m10,…,mkj±1,…), and the explicit time dependence of the auxiliary vectors has been
dropped. The price to pay for disentangling the time ordering operation of Equation (74) is that HEOM constitutes an
infinite set of first-order ordinary differential equations. Fortunately, using the hierarchy it is possible to devise very
efficient truncation schemes which enable obtaining highly accurate results with a finite system. The reader is referred
to the original articles for the derivation of an optimal truncation scheme.100,111 In the above derivation we have not
considered low-temperature corrections which can be included straightforwardly from a direct application of the origi-
nal approach suggested by Ishizaki and Tanimura.111

To further simplify the structure of the HEOMs we follow Tanimura102 and introduce a set of vectors
jmi = jm10m11…m1Km20…mMKi, and their corresponding boson-like creation-annihilation operators bþkj,b

�
kj

bþkj jmi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkjþ1
� �q

jmþ1kji b�kj jmi¼ ffiffiffiffiffiffiffi
mkj

p jm�1kji bþkjb
�
kj jmi¼mkj jmi ð85Þ

and the auxiliary density vector

j ηi¼
X
m

j ρmA i jmi ð86Þ

and rewrite the hierarchical equations of motion in the compact form
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∂

∂t
j ηi¼ �iĤA�

X
kj

γkjb
þ
kjb

�
kj� i

X
kj

ffiffiffiffiffiffiffiffiffi
j ckj j

q
Sk� ~Sk
� �

b�kj� i
X
kj

ckjSk� c*kj~Sk
� �

ffiffiffiffiffiffiffiffiffi
j ckj j

p bþkj

0
@

1
A j ηi, ð87Þ

with the initial condition given by jη(0)i = j ρA(0)i j 0i.

5.2 | Tensor-train representation of the auxiliary reduced density vector

Tensor train representation can be applied to the density vector jηi in a manner that is similar to that used for
the treatment of the thermal Schrödinger equation. If d is the dimensionality of the original Hilbert space of
our system, that is the number of DoFs of the HA Hamiltonian operator, and if the dissipative environment is
described using M uncorrelated spectral densities Jk(ω) each expanded into K Matstubara terms, the vector jη(t)i
of Equation (86) can be considered as a tensor with N = 2d+KM indices. Therefore, one possible way to repre-
sent jη(t)i in TT format is to employ a product of 2d+MK low rank matrices. For sake of simplicity, in the fol-
lowing only one Matsubara term is considered for each spectral density, K = 1. The generalization to K> 1
requires a slightly more involved notation. If we label with μk(mk) the TT core matrices associated with the ith
spectral density, and with ρ2f� 1(if), (ρ2f ~jf

� �
) the TT core matrices associated with the fth physical (tilde) DoFs, jη(t)i

can be written in TT form as

j η tð Þi¼
X

m1,m2, …
i1~j1 … id,~jd

μ1 m1ð Þ…μM mMð Þρ1 i1ð Þρ2 ~j1
� �

…ρ2d�1 idð Þρ2d ~jd
� �

jm1…mK ; i1~j1… id~jdi: ð88Þ

In the above expression only the component with {mk = 0, k = 1, …, M} is required for the computation of physical
observables, that is

j ρA tð Þi¼ μ1 0ð Þ…μM 0ð Þ
X

i1~j1 … id,~jd

ρ1 i1ð Þρ2 ~j1
� �

… ρ2d�1 idð Þρ2d ~jd
� �

j i1~j1… id~jdi: ð89Þ

The alternation of the indices ik,~jk provides a very convenient scheme for the computation of expectation values of
observables. Indeed, the identity vector can easily be written as a direct product

j Ii¼
X
i1

j i1i j~i1i�
X
i2

j i2i j~i2i� … �
X
id

j idi j~idi ð90Þ

which can be directly translated into the TT format, since, as already mentioned in Section 3.1, the Kronecker product
can be considered a TT in which all the ranks of the cores are 1. From the above expression it is immediate to derive TT
representations of the vectors corresponding to observables using Equation (3). We notice that a different order of the
indices would make the summations not separable increasing the overall computational cost. Finally, the use of tilde
operators allows to easily perform grouping of variables that are strongly correlated.13

5.3 | Application of twin-space TT-HEOM to model systems

The methodology described above has already been successfully applied to the study of spin-boson and exciton-polaron
systems. Here we briefly report on an illustrative application to a charge transfer problem between two identical molec-
ular sites. Both sites are linearly coupled to a set of seven nuclear vibrations. The parameters of the vibronic model are
reported elsewhere12 and have been used to describe the charge-transfer (CT) process in a pentacene dimer.112
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In Figure 9(a) the population dynamics of the two site system is reported for two different values of the bath reorga-
nization energy λ = 300 and 90 cm�1. In both cases the characteristic bath frequency is γ = 53 cm�1. Due to the com-
plexity of the model and to the large number of vibronically active DoFs it is not easy to disentangle the different
contributions to the population dynamics. The initial fast decay of the populations is very likely due to pure excitonic
couplings113 while the small oscillations with periods of about 20 fs, clearly evident at longer times, are caused by the
vibronic activity of several high frequency modes. For λ = 90 cm�1 the CT dynamics is underdamped while an overall
overdamped behavior can be observed for λ = 300 cm�1.

Finally, the convergence properties of the numerical methodology are illustrated in Figure 9(b) where the
populations of the two states of the dimer model as a function of time for different values of the TT compression ranks
are compared. Considering the relatively small number of DoFs the ranks necessary to reach a converged dynamics are
considerably large. Figure 9(c) also shows the norm of the state vector as a function of time. As can be readily seen for
very small ranks the norm drastically decreases, by about 20%, after a very short time and even for very large ranks
(r = 115) there is a 1% loss after 800 fs. This behavior can be traced back to the combination of the reduced Liouville
equation with the TDVP solver.114,115 Indeed, this methodology preserves the norm hΨjΨi and the mean value hΨjXj
Ψi during the evolution governed by Equation (87). Both quantities however have no direct physical meaning. In our
formalism the true norm to be preserved during the evolution is 1 ρ0A tð Þ

�� 
¼ trρ0A tð Þ¼ 1

	
. As can be expected this prob-

lem introduces artifacts which can be alleviated by increasing the ranks of the TT cores. However, this easily becomes a
limiting factor since the required TT storage scales quadratically with the TT ranks. Very recently Shi et al.,116 following
the original idea of Heller115 have suggested to correct the norm conservation problem by adding a constraint via an
additional Lagrange multiplier.

6 | FURTHER DEVELOPMENTS

The TFD-TT framework offers ready-to-use methodology for the simulation of quantum dynamics of a broad class
of electron-vibrational systems with many DoFs at finite temperature. The methodology can be applied to various
polyatomic species and molecular aggregates of practical interest. Apart from that, two other directions should be
highlighted. (a) TFD-TT simulations, if converged, provide numerically accurate quantum dynamics. Such simula-
tions can therefore be employed for benchmarking evolutions of selected quantum systems and testing different
approximate quantum/quasiclassical/semiclassical simulation protocols. (b) The TFD-TT methodology is valid,
without any alterations, for time-dependent Hamiltonians. It is thus tempting to apply it to driven systems, to
problems of quantum control, and to simulations of nonlinear femtosecond spectroscopic signals. For example,
Beguši�c and Vaníček have recently combined TFD machinery with the single-trajectory semiclassical thawed
Gaussian approximation, which allowed them to simulate third-order response functions and spectroscopic signals
on the fly.117
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The TFD-TT methodology is not only an efficient suite of algorithms and codes for the simulation of quantum
dynamics. This methodology, in which temperature is incorporated into the Hamiltonian, offers a new paradigm of
the description of molecular species. Any electron-vibrational system specified by the Hamiltonian H, the density
matrix ρ(t), and the initial thermal vibrational distribution ρ(0) is equivalently described by the thermal Hamilto-
nian �Hθ with twice higher number of vibrational modes possessing temperature-dependent electron-vibrational cou-
plings, but characterized by the thermal wave function jψθ(t)i prepared initially in the global electron-vibrational
vacuum state jψθ 0ð Þi¼j 0Ai j 0B~0Bi. Putting differently, the TFD methodology maps the Schrödinger equation driven by
the Hamiltonian H at zero temperature to the TFD Schrödinger equation driven by the thermal Hamiltonian �Hθ at
finite temperature. This analogy is useful for the development of TFD picture of various aspects of quantum dynamics
of molecular systems. For example, one can study semiclassical evolution generated by the TFD-version of the van
Vleck–Gutzwiller and Herman–Kluk propagators, or introduce temperature-dependent Franck–Condon and Huang–
Rhys factors for electron-vibrational transitions. Note also that quantum dynamics driven by the TFD Schrödinger
equation can directly be simulated by the MCTDH methods. This observation uncovers deep interconnection between
the MCTDH and TFD-TT methods, as well as calls for their application to the same systems for comparing numerical
efficiency of the two methods.

As has been noted above, the TFD-TT methodology can readily be generalized to a broader class of
Hamiltonians in which site energies εn, electronic couplings Vnm, and electron-vibrational coupling con-
stants gkn are polynomials in vibrational creation-annihilation operators. For example, a conical inter-
section between the electronic states n and m driven by the vibrational coupling mode j corresponds to
Vnm � ajþa†j . Hence finite-temperature quantum dynamics of a larger number of important for applications molecular
systems can be scrutinized by the TFD-TT machinery. The TFD-TT approach can also be extended to rovibrational sys-
tems, where vibrational subsystem should be considered as fast, while rotational subsystem should be thermalized and
treated as slow.

The present methodology is based on the Born–Oppenheimer approximation of Equation (20), which implies that
the electron-vibrational system is initially prepared in the ground state of the electronic subsystem with thermal distri-
bution over the DoFs of the vibrational subsystem. The extension beyond the Born–Oppenheimer approximation,
which is valid for initially correlated thermal electron-vibrational systems, has been theoretically developed in Ref. 51
and needs to be tested in explicit simulations.

Finally, it looks promising to apply the TFD-TT methodology to study inter-molecular and intra-molecular
vibrational energy redistribution and transfer. These problems, which are conceptually rooted into venerable
Fermi–Pasta–Ulam model, require accurate simulation of quantum dynamics of nonlinearly coupled oscillators
in the electronic ground state. Very recently, the first step in this direction was made in Ref. 118, where the TT
methodology was applied to investigate energy transfer between two localized vibrational modes nonlinearly
(via Fermi-resonance) coupled to the chain of harmonic oscillators. Since high-frequency modes were consid-
ered only, thermal effects were insignificant in that study. The inclusion of low-frequency modes into similar
models and simulation of the ensuing nonlinear multiscale quantum dynamics via TFD-TT methods is currently
under way.

As for the twin-space TT-HEOM formulation the field of application can be potentially very similar to that of the
TFD-TT approach.

7 | CONCLUSION

In this work, we have presented a comprehensive overview of recent theoretical development which enables accurate
finite-temperature quantum dynamical simulations of systems with multiple electronic and nuclear DoFs. The
approach is based on TFD theory and TT decomposition. TFD describes temperature effects by the coupling of the sys-
tem to a fictitious bosonic bath, so that the number of nuclear DoFs is doubled. In a basis-set representation, the time-
dependent TFD wave function is an array of the dimension M	 d2, where M and d are the number of electronic and
vibrational basis DoFs respectively. The density matrix describing the same problem has the dimension of M2	 d2. The
TFD wave function offers, therefore, a more compact way of information storage in comparison with the density matrix,
notably for systems with multiple electronic states. Furthermore, high-frequency modes need not be coupled to the ficti-
tious bosonic bath. This leads to additional reduction of the active space and computational savings. A new time-
dependent TFD Schrödinger equation has been proposed and its numerical solution via TT/MPS representation of the
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vibronic wave function has been discussed in detail. Our approach to the application of TFD has provided a new view
of quantum dynamics at finite temperature, by introducing temperature-renormalized electron-vibrational couplings
and spectral densities. This picture shows explicitly which DoFs are thermalized, and which are not.

The use of TT decomposition enables to handle a large number of variables: the storage of order N tensors in TT/
MPS format scales linearly with N. The results of our numerical simulations of energy and charge transfer processes
clearly show that the methodology is very accurate and robust, and it can be applied to problems with many DoFs at
any temperature. The present approach is based on a basis set representation of the wave function and can in principle
be applied to realistic chemical dynamics problems using computed potential energy surfaces.

In standard wave function methodologies, finite temperature effects are taken into account by averaging the quan-
tity of interest over different initial conditions. Therefore, the distribution of initial conditions must be sampled via
Monte Carlo methods, and for each initial state a separate dynamical problem must be solved. Both these aspects limit
the applications of such methods to large systems at room temperature. Here we have shown that using TFD theory it
is possible to describe finite temperature effects without the need to solve a large number of independent dynamical
problems with different initial conditions. The increased computational cost, due to the doubled number of nuclear
DoFs, can be kept under control by using a TT/MPS representation of the wave function, which is very accurate for the
cases discussed in this article.

TT have revealed to be a very promising approximation of the wave function of vibronic systems, allowing to
describe molecular processes with multiple coupled electronic states. The very simple structure of the tensor network
makes the TT approximation suitable for the development of automatic procedures to optimize the sequence of indices
which provide an optimal entanglement growth, although this latter point is still a subject of active research.

Finally, we have shown that by employing the twin formulation of quantum statistical mechanics it is possible to
extend the use of numerical methods suitable for wave-packet propagation directly to the study of reduced density
matrix evolution in open systems. The proposed approach is based on the twin-space formulation of quantum statistical
mechanics and introduces a significant benefit to the actual numerical calculations of expectation values of dynamical
operators of system variables. A key advantage of the mathematical description of HEOM reported here is that it allows
to fully exploit the TT formalism in the double Hilbert space.
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