

UNIVERSITÀ

DEGLI STUDI

DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Development and Validation of a Simplified Score to Predict Early Relapse in Newly Diagnosed Multiple Myeloma in a Pooled Dataset of 2,190 Patients

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1791004 since 2024-06-07T14:55:33Z

Published version:

DOI:10.1158/1078-0432.CCR-21-0134

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

UNIVERSITÀ DEGLI STUDI DI TORINO

This is the author's final version of the contribution published as:

Zaccaria GM, Bertamini L, Petrucci MT, Offidani M, Corradini P, Capra A, Romano A, Liberati AM, Mannina D, de Fabritiis P, Cascavilla N, Ruggeri M, Mina R, Patriarca F, Benevolo G, Belotti A, Gaidano G, Nagler A, Hájek R, Spencer A, Sonneveld P, Musto P, Boccadoro M, Gay F. Development and Validation of a Simplified Score to Predict Early Relapse in Newly Diagnosed Multiple Myeloma in a Pooled Dataset of 2,190 Patients. Clin Cancer Res. 2021 Jul 1;27(13):3695-3703. doi: 10.1158/1078-0432.CCR-21-0134. Epub 2021 Apr 29. PMID: 33926915.

© 2021 American Association for Cancer Research.

The publisher's version is available at: [https://aacrjournals.org/clincancerres/article](https://aacrjournals.org/clincancerres/article-abstract/27/13/3695/671504/Development-and-Validation-of-a-Simplified-Score?redirectedFrom=fulltext)[abstract/27/13/3695/671504/Development-and-Validation-of-a-Simplified-](https://aacrjournals.org/clincancerres/article-abstract/27/13/3695/671504/Development-and-Validation-of-a-Simplified-Score?redirectedFrom=fulltext)[Score?redirectedFrom=fulltext](https://aacrjournals.org/clincancerres/article-abstract/27/13/3695/671504/Development-and-Validation-of-a-Simplified-Score?redirectedFrom=fulltext)

<https://doi.org/10.1158/1078-0432.ccr-21-0134>

When citing, please refer to the published version.

Link to this full text: http://hdl.handle.net/2318/1791004

This full text was downloaded from iris-Aperto:<https://iris.unito.it/>

 $\frac{1}{2}$ 2 *Research article*

3

4 **Developing and Validating a Simplified Score to Predict Early Relapse in** 5 **Newly Diagnosed Multiple Myeloma (S-ERMM): Analysis from a Pooled** 6 **Dataset of 2190 Patients**

- 7 8 **Running title**: S-ERMM: A Simplified Early Relapse in Multiple Myeloma Score
- 9 10

11 Gian Maria Zaccaria^{1,2*}; Luca Bertamini^{1*}; Maria Teresa Petrucci³; Massimo Offidani⁴; Paolo 12 Corradini⁵; Andrea Capra¹; Alessandra Romano⁶; Anna Marina Liberati⁷; Donato Mannina⁸; 13 Paolo de Fabritiis⁹; Nicola Cascavilla¹⁰; Marina Ruggeri¹; Roberto Mina¹; Francesca 14 Patriarca¹¹; Giulia Benevolo¹²; Angelo Belotti¹³; Gianluca Gaidano¹⁴; Arnon Nagler¹⁵; Roman 15 Hájek^{16,17}; Andrew Spencer¹⁸; Pieter Sonneveld¹⁹; Pellegrino Musto^{20,21}; Mario Boccadoro¹; 16 Francesca Gav^{1**}

-
- $\frac{17}{18}$ 18 1. Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della
19 Salute e della Scienza di Torino, Torino, Italy Salute e della Scienza di Torino, Torino, Italy
- 20 2. Hematology and Cell Therapy Unit, IRCCS Istituto Tumori 'Giovanni Paolo II', Bari, Italy
21 3. Hematology. Department of Translational and Precision Medicine. Azienda Ospedaliera
- 21 3. Hematology, Department of Translational and Precision Medicine, Azienda Ospedaliera Policlinico Umberto
22 I, Sapienza University of Rome, Rome, Italy
- 22 I, Sapienza University of Rome, Rome, Italy
23 4. Clinica di Ematologia, AOU Ospedali Riun
- 23 4. Clinica di Ematologia, AOU Ospedali Riuniti di Ancona, Ancona, Italy
24 5. Divisione di Ematologia, Fondazione IRCCS Istituto Nazionale dei T
- 24 5. Divisione di Ematologia, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano; Università degli Studi
25 di Milano, Milano, Italy
- 25 di Milano, Milano, Italy
26 6. Department of Gen 26 6. Department of General Surgery and Medical-Surgical Specialties, Haematology Section, University of 27 Catania, Catania, Italy. 27 Catania, Catania, Italy.
28 7. Università degli Stud
- 28 7. Università degli Studi di Perugia, Azienda Ospedaliera Santa Maria, Terni, Italy
29 8. Division of Hematology, Azienda Ospedaliera Papardo, Messina, Italy
- 29 8. Division of Hematology, Azienda Ospedaliera Papardo, Messina, Italy
20 9. Hematology, St. Eugenio Hospital ASL Roma 2, Tor Vergata University
- 30 9. Hematology, St. Eugenio Hospital ASL Roma 2, Tor Vergata University, Rome, Italy
31 10. Ematologia, Ospedale "Casa Sollievo della Sofferenza" IRCCS, San Giovanni Rotono
- 31 10. Ematologia, Ospedale "Casa Sollievo della Sofferenza" IRCCS, San Giovanni Rotondo, Italy
32 11. Clinica Ematologica e Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli C
- 32 11. Clinica Ematologica e Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC),
33 Dipartimento di Area Medica (DAME), Università di Udine, Udine, Italy
- 33 Dipartimento di Area Medica (DAME), Università di Udine, Udine, Italy
34 12. SC Hematology, AO Città della Salute e della Scienza, Turin, Italy
- 34 12. SC Hematology, AO Città della Salute e della Scienza, Turin, Italy
35 13. Hematology Division, ASST Spedali Civili Brescia, Brescia, Italy
- 35 13. Hematology Division, ASST Spedali Civili Brescia, Brescia, Italy
36 14. Division of Hematology, Department of Translational Medicir
- 36 14. Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, 28100
37 Novara, Italy 37 Novara, Italy
38 15. Hematolo
- 38 15. Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
39 16. Department of Haematooncology, University Hospital Ostrava, Ostrava, C
- 39 16. Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
40 17. Faculty of Medicine. University of Ostrava. Ostrava. Czech Republic
- 40 17. Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
41 18. Alfred Health-Monash University, Melbourne, Australia
- 41 18. Alfred Health-Monash University, Melbourne, Australia
42 19. Department of Hematology, Erasmus MC Cancer Institution
- 42 19. Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
43 20. Department of Emergency and Organ Transplantation. "Aldo Moro" University Schoo
- 43 20. Department of Emergency and Organ Transplantation, "Aldo Moro" University School of Medicine, Bari, 44 Italy
- **44** Italy
45 21. U 45 21. Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, Bari, Italy
- 46
47 47 **These authors equally contributed to this manuscript and share first authorship.*

48
49 49 ****Correspondence to:** Dr. Francesca Gay, Myeloma Unit, Division of Hematology, University of Torino, 50 Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, via Genova 3 - 10126 Torino,
51 Italy; tel: +39 0116334279; fax: +39 0116334187 (E-mail: <u>fgay@cittadellasalute.to.it</u>). 51 Italy; tel: +39 0116334279; fax: +39 0116334187 (E-mail: [fgay@cittadellasalute.to.it\)](mailto:fgay@cittadellasalute.to.it).
52 ORCID ID: 0000-0002-8619-412X 52 ORCID ID: 0000-0002-8619-412X 53

54 **Keywords**: multiple myeloma; early relapse; score; prognostic features; clinical trials

55 56

- 57 *Original article*
- 58 **Text word count:** 3873 words
59 **Abstract word count:** 250 wor
- 59 **Abstract word count:** 250 words
-
- 60 **Number of references:** 33 61 **Number of tables and figures:** 2 tables and 3 figures
- 62 **Supplementary data:** 1 Supplementary Appendix and 6 supplementary figures (S1-S6)
- 63 **Supplementary documents:** TRIPOD Checklist Prediction Model Development
- 64

65
66

- 66 **Authorship contributions** 67 Conceptualization: GMZ, LB, MB, FG
68 Resources: all authors
- 68 Resources: all authors
69 Data curation: all autho
- 69 Data curation: all authors
70 Software: GMZ, AC
- 70 Software: GMZ, AC
71 Formal analysis: Gl
- 71 Formal analysis: GMZ, LB, AC, FG
72 Supervision: MB, FG
- 72 Supervision: MB, FG
73 Funding acquisition:
- 73 Funding acquisition: none
74 Validation: all authors
- 74 Validation: all authors
75 Investigation: all autho
- 75 Investigation: all authors
76 Visualization: GMZ, LB, A
- 76 Visualization: GMZ, LB, AC
77 Methodology: GMZ, LB, FG
- 77 Methodology: GMZ, LB, FG
78 Writing-original draft: GM'
- 78 Writing-original draft: GMZ, LB, AC, RM, FG
79 Project administration: none
- 79 Project administration: none
80 Writing-review and editing: a
- 80 Writing-review and editing: all authors
81 All the authors approved the final vers
- 81 All the authors approved the final version of the manuscript and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are
- 82 the work in ensuring that questions related to the accuracy or integrity of any part of the work are
83 appropriately investigated and resolved.
	- appropriately investigated and resolved.
- 84

85
86 86 **Competing interests**

- 87 MTP has received honoraria from and has served on the advisory boards for Celgene, Janssen-Cilag, Amgen, 88 Bristol-Myers Squibb, Takeda, Sanofi, and GSK. Bristol-Myers Squibb, Takeda, Sanofi, and GSK.
- 89 MO has received honoraria from and has served on the advisory boards for Amgen, Bristol-Myers Squibb, 90 Celgene, GSK, Janssen, Sanofi, and Takeda. 90 Celgene, GSK, Janssen, Sanofi, and Takeda.
91 PC has participated as lecturer and/or h
-

91 PC has participated as lecturer and/or has served on the advisory boards for AbbVie, ADC Therapeutics,
92 Amgen, Celgene, Daiichi Sankyo, Gilead, Incyte, Janssen, Jazz Pharmaceuticals, Kite, Kyowa Kirin, Novartis, 92 Amgen, Celgene, Daiichi Sankyo, Gilead, Incyte, Janssen, Jazz Pharmaceuticals, Kite, Kyowa Kirin, Novartis,
93 Roche Sanofi Servier and Takeda.

- 93 Roche, Sanofi, Servier, and Takeda.
94 AML has received personal fees fro 94 AML has received personal fees from Incyte; has received research funding from Novartis, Janssen, AbbVie,
95 Roche, Celgene, Amgen, Bristol-Myers Squibb, Takeda, Incyte, Pfizer, Beigene, Oncopeptides, Verastem,
- 95 Roche, Celgene, Amgen, Bristol-Myers Squibb, Takeda, Incyte, Pfizer, Beigene, Oncopeptides, Verastem, 96 Karyopharm. Archigen. Biopharma. Debiopharm. Morphosys. Fibrogen. and Onconova.
- 96 Karyopharm, Archigen, Biopharma, Debiopharm, Morphosys, Fibrogen, and Onconova. 97 RM has received honoraria from Sanofi, Celgene, Takeda, and Janssen; has served on the advisory boards for
98 Sanofi, Takeda, and Janssen: has received consultancy fees from Janssen.
- 98 Sanofi, Takeda, and Janssen; has received consultancy fees from Janssen.
99 FP has served on the advisory boards for Celgene and Janssen. FP has served on the advisory boards for Celgene and Janssen.
-
- 100 GB has received honoraria from Novartis, Celgene, Amgen, and Takeda.
101 AB has served on the advisory boards for Janssen, Celgene, and Amgen. 101 AB has served on the advisory boards for Janssen, Celgene, and Amgen.
102 GG has served on the advisory boards for AbbVie, Janssen, and AstraZe
- 102 GG has served on the advisory boards for AbbVie, Janssen, and AstraZeneca; has served on speaker's bureaus
103 for AbbVie and Janssen. 103 for AbbVie and Janssen.
104 RH has had a consultant
- 104 RH has had a consultant or advisory relationship with Janssen, Amgen, Celgene, AbbVie, Bristol-Myers Squibb,
105 Novartis, PharmaMar, and Takeda; has received honoraria from Janssen, Amgen, Celgene, Bristol-Myers
- 105 Novartis, PharmaMar, and Takeda; has received honoraria from Janssen, Amgen, Celgene, Bristol-Myers
- 106 Squibb, PharmaMar, and Takeda; has received research funding from Janssen, Amgen, Celgene, Bristol-Myers
107 Squibb, Novartis, and Takeda.
- 107 Squibb, Novartis, and Takeda.
108 AS has received honoraria f
- 108 AS has received honoraria from Celgene, Janssen, Amgen, Takeda, Secura Bio, Specialised Therapeutics
109 Australia AbbVie Servier Haemalogix Sanofi Roche Pfizer and Amgen: has received consultancy fees from
- 109 Australia, AbbVie, Servier, Haemalogix, Sanofi, Roche, Pfizer, and Amgen; has received consultancy fees from 110 Celgene, Janssen, Secura Bio, Specialised Therapeutics Australia, AbbVie, Servier, Haemalogix, Sanofi, Roche,
- 111 Pfizer, and Amgen; has served on the speakers' bureaus for Celgene, Janssen, Takeda, and Amgen; has 112 received grant/research support from Celgene. Ianssen. Amgen. Takeda. Servier. and Haemalogix.
- 112 received grant/research support from Celgene, Janssen, Amgen, Takeda, Servier, and Haemalogix.
113 PS has served on the advisory boards for Amgen, Celgene, Genenta, Janssen, Seattle Genetics, T
- 113 PS has served on the advisory boards for Amgen, Celgene, Genenta, Janssen, Seattle Genetics, Takeda, and Karvopharm. 114 Karyopharm.
115 PM has receive
- 115 PM has received honoraria from and/or served on the scientific advisory boards for Celgene, Janssen, Takeda, 116 Bristol-Myers Squibb, Amgen, Novartis, Gilead, Jazz, Sanofi, AbbVie, and GlaxoSmithKline.
- 116 Bristol-Myers Squibb, Amgen, Novartis, Gilead, Jazz, Sanofi, AbbVie, and GlaxoSmithKline.
- 117 MB has received honoraria from Sanofi, Celgene, Amgen, Janssen, Novartis, Bristol-Myers Squibb, and AbbVie;
118 has served on the advisory boards for Janssen and GSK; has received research funding from Sanofi, Celgene,
- 118 has served on the advisory boards for Janssen and GSK; has received research funding from Sanofi, Celgene,
119 Amgen. Janssen. Novartis. Bristol-Mvers Sauibb. and Mundipharma. 119 Amgen, Janssen, Novartis, Bristol-Myers Squibb, and Mundipharma.
120 FG has received honoraria from Amgen, Celgene, Janssen, Takeda, Br
- 120 FG has received honoraria from Amgen, Celgene, Janssen, Takeda, Bristol-Myers Squibb, AbbVie, and GSK; has
121 served on the advisory boards for Amgen, Celgene, Janssen, Takeda, Bristol-Myers Squibb, AbbVie, GSK,
- 121 served on the advisory boards for Amgen, Celgene, Janssen, Takeda, Bristol-Myers Squibb, AbbVie, GSK, 122 Roche, Adaptive Biotechnologies, Oncopeptides, Bluebird, and Secura Bio.
- 122 Roche, Adaptive Biotechnologies, Oncopeptides, Bluebird, and Secura Bio.
123 The remaining authors declare no competing financial interests.
- The remaining authors declare no competing financial interests.

124
125 125 **Data Sharing**

- 126 After the publication of this article, data collected for this analysis and related documents will be made
127 available to others upon reasonably justified request, which has to be written and addressed to the attenti
- 127 available to others upon reasonably justified request, which has to be written and addressed to the attention of the corresponding author Dr. Francesca Gay at the following e-mail address: fgay[at]cittadellasalute.to.
- 128 of the corresponding author Dr. Francesca Gay at the following e-mail address: fgay[at]cittadellasalute.to.it.
129 The corresponding author Dr. Francesca Gay is responsible to evaluate and eventually accept or refuse e
- 129 The corresponding author Dr. Francesca Gay is responsible to evaluate and eventually accept or refuse every
130 request to disclose data and their related documents, in compliance with the ethical approval conditions,
- 130 request to disclose data and their related documents, in compliance with the ethical approval conditions, in
131 compliance with applicable laws and regulations, and in conformance with the agreements in place with the
- 131 compliance with applicable laws and regulations, and in conformance with the agreements in place with the
132 involved subjects, the participating institutions, and all the other parties directly or indirectly involved 132 involved subjects, the participating institutions, and all the other parties directly or indirectly involved in the participation, conduct, development, management and evaluation of this analysis.
- 133 participation, conduct, development, management and evaluation of this analysis.
- 134
135

135 **Financial Support**

No funding was provided for this contribution.

137 138 **Acknowledgements**

- 139 GMZ acknowledges the support of European Myeloma Network (EMN) Research Italy. The authors wish to then thank all the study participants and referring clinicians for their valuable contributions.
- thank all the study participants and referring clinicians for their valuable contributions.

Statement of translational relevance

 Despite the huge amount of literature, there is a lack of consensus on how to better predict early relapse (ER) in patients with multiple myeloma (MM). We pooled data from 7 European clinical trials enrolling 2190 patients with newly diagnosed MM from October 2003 to March 2017 to develop the Simplified Early Relapse in Multiple Myeloma (S- ERMM) score. This analysis provided further evidence of the critical role of predicting ER in MM patients, which is strongly associated with poor outcome. The S-ERMM predicted ER by using simple and widely available baseline features. After external validation, the future development of this prognostic index may consider its combination with other static-risk features (genomic abnormalities, circulating tumor cells) and dynamic risk evaluation (response to the therapy such as minimal residual disease) for ER prediction. The identification of high-risk patients with dismal prognosis is the first step towards a better design of therapeutic approaches for this patient subgroup.

Abstract

 Background. Despite the improvement of therapeutic regimens, several multiple myeloma (MM) patients still experience early relapse (ER). This subset of patients currently represents an unmet medical need.

 Methods. We pooled data from 7 European multicenter phase II/III clinical trials enrolling 2190 newly diagnosed (ND)MM patients from 2003 to 2017. Baseline patient evaluation included 14 clinically relevant features. Patients with complete data (n=1218) were split into training (n=844) and validation sets (n=374). In the training set, a univariate (UV) analysis and a multivariate (MV) logistic regression model on ER within 18 months (ER18) were made. The most accurate model was selected on the validation set. We also developed a dynamic version of the score by including response to treatment.

 Results. The Simplified Early Relapse in MM (S-ERMM) score was modeled on 6 features weighted by a score: 5 points for high lactate dehydrogenase or t(4;14); 3 for del17p, 171 abnormal albumin or bone marrow plasma cells $>60\%$; and 2 for λ free-light chain. The S- ERMM identified 3 patient groups with different risks of ER18: Intermediate (Int) vs. Low (OR=2.39, p<0.001) and High vs. Low (OR=5.59, p<0.001). S-ERMM High/Int patients had significantly shorter OS (High vs. Low: HR=3.24, p<0.001; Int vs. Low: HR=1.86, p<0.001) and PFS2 (High vs. Low: HR=2.89, p<0.001; Int vs. Low: HR=1.76, p<0.001) than S-ERMM

- Low. The Dynamic (D)S-ERMM modulated the prognostic power of the S-ERMM.
-
- **Conclusion**. Based on simple, widely available baseline features, the S-ERMM and DS-ERMM properly identified patients with different risks of ER and survival outcomes.
-
-

1. Introduction

 In the past few years, the prognosis of patients with multiple myeloma (MM) has been markedly improved by the introduction of new drugs and better therapeutic strategies both at diagnosis and at relapse (1–4). Traditionally, the maximal benefit in terms of duration of remission has been observed with first-line therapies. With the use of high- dose chemotherapy and autologous stem-cell transplantation (ASCT) combined with novel agents or the adoption of multi-targeted agents including immunomodulatory (IMiD) agents, proteasome inhibitors (PIs) and monoclonal antibodies, the current median progression-free survival (PFS) of newly-diagnosed (ND)MM patients ranged between 41 and 50 months (4,5). Despite this remarkable improvement, still a significant proportion of patients experiences an early relapse (ER), which has been associated with a dismal prognosis. Several studies reported the association of baseline clinical features with ER (6– 12), but there is no clear consensus on what are the most important determinants; as a matter of fact, even patients without well-known high-risk features at baseline may relapse early (7,13). Data published so far mainly come from registries or from retrospective analyses that do not systematically consider updated standard-of-care risk assessments

(e.g. cytogenetics, Revised-International Staging System [R-ISS]) (12).

 Unfortunately, a consensus on the appropriate definition of ER is also lacking. So far, it has been defined as relapse within either 12/18 months from the start of induction treatment (10,12) or 12/24 months from transplantation (6–9,11,14,15).

- Indeed, patients with ER have an inferior prognosis, as compared to patients who relapse later and, as such, represent a high-risk group and an unmet medical need (12,14).
- The correct identification of patient risk at baseline is the first step toward a risk-adaptive therapeutic approach. The aim of our analysis was to develop and validate the Simplified Early Relapse in Multiple Myeloma (S-ERMM), a score to predict the risk of ER based on widely available clinical and biological features. Thereafter, the S-ERMM score was re- modulated during the patient clinical course by integrating response to therapy. We also aimed to correlate the S-ERMM with the long-term outcomes overall survival (OS) and PFS2.
-

2 Methods

2.1 Source of data and participants

 Individual patient data from 2190 NDMM patients enrolled in seven multicenter European, open-label, phase II/III clinical trials evaluating novel agent-based therapies from October 2003 to March 2017 were pooled together and analyzed: NCT01093196, NCT01346787, NCT01857115, NCT01190787, NCT00551928, NCT01091831, NCT02203643 (2,3,16–20). Each study was approved by ethics committees or institutional review boards at the respective study sites and was conducted in accordance with the Declaration of Helsinki; all patients provided written informed consent. All patients received new drugs (IMiD agents 221 and/or PIs) as upfront treatment, with or without transplantation. Trial details, treatment schedules and eligibility criteria are reported in Supplementary Tables S1A-B.

2.2 Prognostic factors and outcomes

 Data were retrieved from electronic case-report forms (eCRFs). All the available individual baseline features were analyzed. Age, creatinine levels, albumin, β2-microglobulin (β2m) and monoclonal plasma cells in the bone marrow (BMPCs) were evaluated as continuous features. According to the International Myeloma Working Group recommendations, the

- percentage of BMPCs considered was the highest in case of discrepancy between BM biopsy 230 and BM aspirate (21).
- 231 Free light chain (FLC, λ vs. κ), M-component subtype (IgA vs. others), lactate dehydrogenase (LDH) levels >/≤upper limit of normal (ULN), presence vs. absence of plasmacytomas, presence vs. absence of chromosomal abnormalities (CAs) detected by interphase fluorescence *in situ* hybridization [iFISH; del17p, t(4;14), t(14;16), t(11;14)] were evaluated as categorical values. iFISH analysis was centralized in one laboratory (see the Supplementary Methods). High-risk CAs were defined as the presence of del(17p) 237 and/or $t(4;14)$ and/or $t(14;16)$. (22) The cut-offs for del(17p) and IgH translocation were 10% and 15%, respectively. Baseline R-ISS stage (II/III vs. I) was also included in the prognostic factor evaluation (23). Patients with complete data were then split into training and validation sets. In the validation set, patients treated with more innovative and effective therapies were included. These patients also had a shorter median follow-up.
- Based on the available literature, two cut-offs for ER were evaluated: 18 (ER18) and 24 (ER24) months from diagnosis. In the ER18 analysis, patients who died for reasons other than progressive disease (PD) or who withdrew consent within 18 months were excluded from the analysis because they were not at risk of progression for the entire first 18 months. Patients experiencing PD within 18 months from diagnosis were included in the ER18 population; those not experiencing PD within 18 months were included in the reference population. The reference population was then divided into 2 groups: patients experiencing PD after 18 months from diagnosis at the time of their last follow-up (Late relapse group) and patients who were free from progression at the time of their last follow-up (No PD group).
- Methods for the ER24 analysis were similar, but they included a cut-off of 24 months after diagnosis (see the Supplementary Appendix). The results regarding the best cut-off are reported in the main text of this contribution. For the sake of completeness, the other analyses are included in the Supplementary Appendix.
- OS was calculated from the start of treatment until the date of death or the date the patient was last known to be alive. PFS2 was calculated from the start of treatment until the date of PD after the second line of treatment (second PD) or death (regardless of the cause of death), whichever came first. Other clinical endpoints are detailed in the Supplementary Methods.
-

2.3 Statistical analysis

 From the training set, a univariate analysis (UV) on ER18 as outcome was performed according to chi-square and Kruskal-Wallis tests, as appropriate. Features with p<0.1 were then tested in a multivariate (MV) logistic regression model. We compared 2 MV analyses, one including the R-ISS and the other including individual features defining the R-ISS (LDH, albumin, β2m and CAs). In order to account for potential confounders, each MV analysis was adjusted for age. Subsequently, each MV analysis was identified through a backward selection based on the minimization of the Akaike Information Criterion to identify independent prognostic factors. Continuous parameters were not categorized a priori 271 because this would have negatively affected the power of the analysis. After selecting the best MV model, the optimal cut-offs for the most significant continuous features were re- evaluated by spline function. MV models were used to estimate odds ratio (OR) for ER18 risk, 95% confidence intervals (CIs) and p-values.

 Each model was tested on the validation set by assessing the area under the curve (AUC), in order to select the most accurate model including individual features or features aggregated into the R-ISS.

 Once the most accurate model was selected, three prognostic groups of patients with Low, Intermediate (Int) and High risk of ER were defined by categorizing the linear predictors of the final MV logistic model. Hence, two optimal cut-points were found maximizing the ORs defined by the MV in the training set. A scalar score was thus proportionally assigned to each predictor according to the coefficients of the final MV model. As the linear score, two optimal cut-points were found maximizing the ORs defined by the MV in both the training and validation sets. Thus, we developed the S-ERMM score, which identified three different groups of patients with Low, Int, and High risks of ER18. Other statistical survival analyses are detailed in the Supplementary Methods.

 In order to integrate baseline prognostic evaluation and response to treatment, we developed the Dynamic (D)S-ERMM, a logistic model that included S-ERMM score and 289 achievement of at least a very good partial response $(\geq VGPR)$. Since this score included response, it should not be assessed at baseline, but at a subsequent timepoint after treatment, in order to re-modulate patient risk during therapy (dynamic risk score). We therefore analyzed data from a landmark point, which was set at the median time to achieve ≥VGPR and included only patients who did not relapse before the landmark point. We assessed the role of ≥VGPR and S-ERMM in a MV logistic regression model to predict ER18. The DS-ERMM was modeled on the proportional coefficients obtained from the MV model. To measure the prognostic performances on this sub-cohort, we compared the concordance (C)-index assessed in both models (24).

 Statistical analysis was performed using R (v.3.5.2). We used the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD) criteria to validate our methods (25,26).

3 Results

3.1 Patient characteristics

 Data from 2190 patients were available; 3 patients were excluded because of screening failure.

 In the ER18 analysis, 50 patients died for reasons other than PD and 51 withdrew their consent within 18 months and were excluded; patients eligible for the analyses were 2086. Patients with complete data (n=1218) were then split into training (n=844) and validation (n=374) sets and included in the logistic regression analysis.

 Training set: in the overall population (median follow-up 70 months, interquartile range [IQR]=48-81 months), the median age was 66 years, 73% of patients presented with R-ISS stage II/III, 10% with LDH>ULN; 14% with del(17p), 14% with t(4;14). Patients with 314 BMPCs>60% were 29% and 36% had λ FLC. A total of 312/844 (37%) patients experienced ER18. Patients in the ER18 vs. the reference population were significantly older (p=0.026), had higher β2m (p<0.001) and lower albumin (p<0.001) levels; a higher proportion of patients had LDH>ULN (p=0.001), t(4;14) (p<0.001), R-ISS stage II/III (p<0.001), del17p (p=0.005) and BMPCs>60% (p=0.001; Table 1).

 Validation set: in the overall population (median follow-up 35 months, IQR 29-41), the median age was 57 years, which was significantly lower (p<0.001) than that in the training set. Patients who experienced ER18 were 61/374 (16%). The distribution of baseline features between ER18 and the reference population was similar to that in the training set, except for the absence of significant difference in the proportion of patients with BMPCs>60% and del(17p), although this may be related to the smaller sample size (Table 1).

326 The median time to \geq VGPR was 9 months in the training set and 3 months in the validation set. ≥VGPR at 9 months was achieved in 40% and 81% of patients in the training and validation sets, respectively.

3.2 Best model of ER

 Based on the UV analysis of patients who experienced ER18, 10/14 features were included in the MV analysis: age, FLC, BMPCs, del17p, t(4;14), t(14;16), albumin, β2m, LDH, and R- ISS stage. In the MV analysis incorporating the R-ISS, age, R-ISS II/III vs. I and increased BMPCs increased the risk of ER18. When the MV analysis was performed including single 336 features defining the R-ISS, increased BMPCs, λ FLC, LDH>ULN, presence of del17p, and t(4;14) increased the probability of ER18 (Table 2).

 Each MV model was then tested on the validation set. The AUC was 0.62 (95% CI=0.55- 0.69) for the ER18 model including the R-ISS and 0.66 (95% CI=0.58-0.73) for the ER18 model incorporating individual features. The ER18 model incorporating individual features resulted in the highest AUC (0.66) and was therefore selected to develop the S-ERMM score.

 UV and MV ER24 analyses and the AUC in the validation set are reported in the Supplementary Results and in Table S3.

-
-

3.3 S-ERMM score

348 The ER18 linear index was calculated as $0.047 \times$ BMPCs %/5 + 0.589 \times LDH/ULN (IF 349 LDH>ULN) + $0.459 \times$ del17p (IF present) + $0.705 \times$ t(4;14) (IF present) + $0.293 \times$ FLC (IF λ) - 0.284 × albumin.

 In the training set, the linear score significantly discriminated three patient groups (High, intermediate [Int] and Low risk) with significantly different risks of ER18 (Figure 1).

 BMPC and albumin levels were dichotomized according to the optimal cut-off: high BMPC 354 level if >60% and abnormal albumin level if ≤3.5 or ≥5 (Figure S1).

 The S-ERMM score [\(https://sermm.emnitaly.org/\)](https://sermm.emnitaly.org/) was mathematically consistent with the linear index and was defined including 6 features identified in the MV analysis: 5 points for

 LDH>ULN or the presence of t(4;14); 3 points for the presence of del17p, abnormal 358 albumin and BMPCs>60%; and 2 points for the presence of λ FLC (Figure 1).

The Low-risk group included patients with a total score ≤5 (68% of patients in the training

- set, 29% of whom experienced an ER18); the Int-risk group patients with a total score between 6 and 10 (25% of patients in the training set, 50% of whom with ER18); and the
- 362 High-risk group patients with a total score \geq 11 (7% of patients in the training set, 70% of
- whom with ER18). In the training set, the S-ERMM significantly discriminated three groups
- of patients with different risks of ER18: Int vs. Low (OR=2.39, 95% CI=1.73-3.30, p<0.001)
- and High vs. Low (OR=5.59, 95% CI=3.08-10.16, p<0.001). The S-ERMM was confirmed in the validation set: Int vs. Low (OR=2.27, 95% CI=1.23-4.17, p=0.008) and High vs. Low
- (OR=4.87, 95% CI=2.01-11.76, p=0.001). The impact of the S-ERMM on the ER18 risk was higher than that of each single feature.
- In the DS-ERMM analyses, the training population (n=673) included patients evaluable for
- response at 9 months (median time to ≥VGPR), 162 (24%) of whom experienced ER18. In
- this population, both the S-ERMM and the achievement of ≥VGPR were statistically
- independent predictors of ER in the MV analysis (Figure S2).
- The DS-ERMM score was defined as the S-ERMM score obtained at baseline minus 4 points
- in case of achievement of ≥VGPR. Patients who reached the 9-month cut-off (which was not

 reached by 171 patients, 150 of whom relapsed/died before), were thus reclassified in 376 three groups: the Low-risk group included 250 patients (37%) with a total score ≤ 0 (only 12% of whom experienced an ER18); the Int-risk group included 271 patients (40%) with a total score between 1 and 5 (only 24% of whom with ER18); and the High-risk group 379 included 152 patients (23%) with a total score \geq 6 (45% of whom with ER18). These three groups had different risks of ER18 (Figure S3): Int vs. Low (OR=2.36, 95% CI=1.46-3.80, p<0.001) and High vs. Low (OR=6.34, 95% CI=3.84-10.46, p<0.001). In the validation set, there were no significant differences in terms of risk of ER18 between

- DS-ERMM Int vs. Low, while a trend towards a higher risk was observed in the High vs. Low comparison (OR=2.40; p=0.09; see the Supplementary Results).
- Following the application of the S-ERMM score at baseline and the re-modulation of patient risk at 9 months according to DS-ERMM (for those patients who did not relapse during the first 9 months), 20% of patients in the total population of the training set were classified as High-risk patients, 39% as Int-risk patients, and 41% as Low-risk patients.
-

3.4 Survival analysis

 A landmark analysis with landmark point at 18 months was performed. OS and PFS2 were significantly shorter in the ER18 population than in the reference population and the Late relapse and No relapse populations (Figures S4A-D). Similarly, ER18 patients showed an inferior outcome after relapse (Supplementary Results and Figure S5).

- The median OS was 31.5 months in patients with S-ERMM High, 59.5 with S-ERMM Int and not reached (NR) with S-ERMM Low. Median PFS2 was 19.8 months in patients with S- ERMM High, 40.0 months with S-ERMM Int and 62.3 months with S-ERMM Low. OS and PFS2 were significantly shorter in S-ERMM Int vs. S-ERMM Low patients (OS, HR=1.86, 95% CI=1.48-2.33; PFS2, HR=1.76, 95% CI=1.45-2.14; both p<0.001) and in S-ERMM High vs. S-ERMM lnt patients (OS, HR=1.74, 95% CI=1.22-2.50, p=0.002; PFS2, HR=1.64, 95% CI=1.18-2.28; p=0.003; Figure 2). The median PFS was 31.6 months in S-ERMM Low, 17.3
- months in S-ERMM Int, and 13.2 months in S-ERMM High patients.
- Subgroup analyses for OS according to first-line treatment confirmed the prognostic role of S-ERMM in ASCT-ineligible patients (Int vs. Low, HR=1.75, 95% CI=1.30-2.35, p<0.001; High vs. Int, HR=1.85, 95% CI=1.10-3.11, p=0.020) and in ASCT-eligible patients (Int vs. Low, HR=1.94, 95% CI=1.36-2.78, p<0.001; High vs. Int, HR=1.81, 95% CI=1.09-3.01, p=0.022) (Figure S6); in PI-treated patients (Int vs. Low, HR=1.73, 95% CI=0.93-3.20, p=0.083; High vs. Int, HR=3.13, 95% CI=1.21-8.08, p=0.018); and in patients treated with IMiD agents (Int vs. Low, HR=1.85, 95% CI=1.45-2.37; p<0.001; High vs. Int, HR=1.64, 95% CI=1.11-2.43, p=0.013).
- According to DS-ERMM, OS and PFS2 were significantly shorter in DS-ERMM Int vs. DS- ERMM Low patients (OS, HR=1.96, 95% CI=1.44-2.66; PFS2, HR=1.86, 95% CI=1.44-2.38; both p<0.001) and in DS-ERMM High vs. DS-ERMM Low patients (OS, HR=3.28, 95% CI=2.37-4.54, p<0.001; PFS2, HR=2.91, 95% CI=2.22-3.82; p<0.001; Figure 3).
-

4 Discussion

 Several studies reported dismal survival outcomes in MM patients experiencing an ER; however, the definition of ER varies from study to study, and consensus is still lacking. Also, the impact of well-known disease-related risk factors (e.g., albumin, β2m, CAs by iFISH and LDH) on the risk of ER has not been thoroughly assessed in NDMM patients. The correct

evaluation of baseline ER risk thus remains an unmet medical need.

 We confirmed ER with an 18-month cut-off as a strong predictor of the long-term outcomes' OS and PFS2 in the context of novel-treatment approaches (e.g., PIs, IMiD agents and ASCT). Our decision of adopting the 18-month cut-off for the definition of ER was also supported by the available literature, in which most of the studies defined ER as both 18 months from diagnosis and 12 months from ASCT (6–10,12,27).

 We developed the S-ERMM score by identifying and integrating 6 features that predicted the risk of ER (presence of t(4;14), del17p, LDH>ULN, BMPCs>60%, abnormal albumin and λ FLC). S-ERMM is a simple tool enabling the identification of 3 patient groups with significantly different risks of ER (Figure 2) and significantly different PFS2 and OS. In 431 particular, S-ERMM High patients had a median OS of 31 months, significantly shorter than that of S-ERMM Int (median 60 months) and S-ERMM Low patients (median NR after 6 years of follow-up).

 Although several studies tried to correlate ER risk with clinical and biological features (6– 9,11,12,14), most of them did not cover all of the recognized MM prognostic factors (23) [e.g. extensive CA analysis (8,9,14) and LDH assessment (10)]. In our series, we included widely available and well-recognized baseline features. The S-ERMM score included albumin levels (which reflect the inflammatory state at diagnosis) (28), high-risk CAs (del17p and t(4;14), associated with a biologically aggressive disease), and high LDH (29) and BMPC levels (associated with tumor burden) (30).

 The majority of analyses published so far on ER in MM are single-center or retrospective studies. To the best of our knowledge, only Bygrave et al. analyzed young ASCT-eligible patients enrolled in a single clinical trial (7). Indeed, in our analysis, data from clinical trials underwent a systematic data assessment, with baseline features assessment, centralized laboratory analyses and uniform evaluation of response and clinical outcomes (31). In this light, the development and validation of the S-ERMM score in a population consisting of both young (transplant-eligible) and elderly (>65 years) patients enrolled in 4 phase II/III clinical trials treated with novel agents from different drug classes with or without ASCT support the application of this score to NDMM patients. On the other hand, this is a selected population of European clinical trials that indeed needs validation in real-life settings.

 Response to therapy is a strong predictor of better OS and PFS2 (15), and the achievement of a deep response (minimal residual disease [MRD] negativity) may abrogate the poor prognosis conferred by high-risk FISH at diagnosis. Therefore, the importance of integrating static (baseline) and dynamic (response) prognostic features led to the incorporation of response to treatment (≥VGPR) into the S-ERMM score. The assessment of the S-ERMM score at the time of diagnosis and the re-modulation of patient risk at 9 months (for those patients who did not relapse during the first 9 months) improved our ability to detect ER patients. In fact, in the initial population of our analysis, only 7% of patients were included in the high-risk group (S-ERMM High), while 68% of patients were included in the S-ERMM Low group (29% of whom had an ER18) and 25% in the S-ERMM Int group (50% of whom had an ER18). Of note, in the DS-ERMM analysis, the Low-risk group included only 37% of patients (with only 12% who had an ER18) and the Int-risk group 40% of patients (with only 24% who had an ER18). Ultimately, using sequentially these two scores in the overall population, 20% of patients were determined to be at High risk, 39% at Int risk, and 41% at Low risk. This improvement in the evaluation of patient risk of ER highlighted the role of the dynamic modulation of patient risk at baseline.

 Unfortunately, in the validation set, there were no significant differences in terms of risk of ER18 between DS-ERMM Int vs. Low, while trends towards a higher risk were observed in the High vs. Low comparison.

Of note, the optimal response (degree and timing) to be incorporated as a dynamic factor

471 should consider the type of patient population and the availability of treatment options:

 these two factors determine the choice of a specific therapy, with different degrees of 473 efficacy and time to best response. In the validation set, the rate of \geq VGPR was definitely higher than in the training set and the median time to response was lower. We presume 475 that the assessment of a deeper response, such as the achievement of MRD negativity, could better discriminate patients in the context of novel, highly effective therapies. Unfortunately, MRD evaluation was not available in most of the trials included in the 478 training set and could not be used as optimal response to recalculate the risk of ER after therapy. Still, our main aim was to identify patients at risk of ER using risk assessment at diagnosis, and the S-ERMM score was prognostic in the context of both older (training set) and more recent (validation set) drug regimens.

- Our analysis has some limitations. First, the risk classification based on the S-ERMM score was designed to better identify patients at high risk of ER and, as a consequence, was unbalanced, with only a small proportion of patients in the S-ERMM High group. Nevertheless, the risk group stratification improved after the re-modulation of risk assessment by using the DS-ERMM score.
- Another limitation was the low number of patients treated upfront with a combination of PIs and IMiD agents in the training set, since this currently represents a standard of care for both young and elderly patients. Nevertheless, our results were validated in a population who received intensive and effective induction and consolidation therapies including the second-generation PI carfilzomib with or without IMiD agents and ASCT intensification. In this context, the S-ERMM maintained its prognostic role, but the percentage of patients experiencing ER was definitely lower than that reported in the training set.
- In conclusion, we were able to correctly classify a good proportion of patients who experienced early relapse by assessing the S-ERMM score at baseline and re-modulating patient risk at 9 months with the DS-ERMM score. An external validation of the S-ERMM and DS-ERMM scores is warranted, especially in patients treated with combinations of PIs, IMiD agents, and anti-CD38 monoclonal antibodies. Our ability to predict ER could also be improved by the inclusion of other risk features at baseline with known prognostic impact, such as amp(1q21), TP53 mutational status, and circulating plasma cells (27,32,33). Unfortunately, these data were not available for this analysis.
- The correct identification of patient risk at diagnosis and during therapy is an essential step towards a risk-adapted approach, the cure of patients, and the prevention of over- and under-treatment.

5 References

-
- 1. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516– 20.
- 2. Palumbo A, Cavallo F, Gay F, Di Raimondo F, Yehuda DB, Petrucci MT, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371:895–905.
- 3. Gay F, Oliva S, Petrucci MT, Conticello C, Catalano L, Corradini P, et al. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: A randomised, multicentre, phase 3 trial. Lancet Oncol. 2015;16:1617–29.
- 4. Attal M, Lauwers-cances V, Hulin C, Leleu X, Caillot D, Escoffre M, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376:1311–20.
- 5. Durie BGM, Hoering A, Sexton R, Abidi MH, Epstein J, Rajkumar SV, et al. Longer term follow-up of the randomized phase III trial SWOG S0777: bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem . Blood Cancer J. Springer US; 2020;10.
- 6. Kumar S, Mahmood ST, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK, et al. Impact of early relapse after auto-SCT for multiple myeloma. Bone Marrow Transplant. 2008;42:413–20.
- 7. Bygrave C, Pawlyn C, Davies F, Craig Z, Cairns D, Hockaday A, et al. Early relapse after high-dose melphalan autologous stem cell transplant predicts inferior survival and is associated with high disease burden and genetically high-risk disease in multiple myeloma. Br J Haematol. 2020;Epub ahead of print.
- 8. Jimenez-Zepeda VH, Reece DE, Trudel S, Chen C, Tiedemann R, Kukreti V. Early relapse after single auto-SCT for multiple myeloma is a major predictor of survival in the era of novel agents. Bone Marrow Transplant. 2015;50:204–8.
- 9. Ong SY, De Mel S, Chen YX, Ooi MG, Surendran S, Lin A, et al. Early relapse post autologous transplant is a stronger predictor of survival compared with pretreatment patient factors in the novel agent era: Analysis of the Singapore Multiple Myeloma Working Group. Bone Marrow Transplant. 2016;51:933–7.
- 10. Corre J, Montes L, Martin E, Perrot A, Caillot D, Leleu X, et al. Early relapse after autologous transplant for myeloma is associated with poor survival regardless of cytogenetic risk. Haematologica. 2019;105:E480–3.
- 11. Helm-Petersen S, Sørrig R, Klausen TW, Preiss B, Frølund UC, Helleberg C, et al. Early relapsed disease of multiple myeloma following up-front HDM-ASCT: a study based on the Danish Multiple Myeloma Registry in the period 2005 to 2014. Leukemia. 2018;32:2054–7.
- 12. Majithia N, Rajkumar S V, Lacy MQ, Buadi FK, Dispenzieri A, Gertz MA, et al. Early relapse following initial therapy for multiple myeloma predicts poor outcomes in the era of novel agents. Leukemia. 2016;30:2208–13.
- 13. Durie BGM, Jacobson J, Barlogie B, Crowley J. Magnitude of response with myeloma frontline therapy does not predict outcome: Importance of time to progression in Southwest Oncology Group chemotherapy trials. J Clin Oncol. 2004;22:1857–63.
- 14. Kumar SK, Dispenzieri A, Fraser R, Mingwei F, Akpek G, Cornell R, et al. Early relapse after
- autologous hematopoietic cell transplantation remains a poor prognostic factor in multiple myeloma but outcomes have improved over time. Leukemia. 2018;32:986–95.
- 15. Gopalakrishnan S, D'Souza A, Scott E, Fraser R, Davila O, Shah N, et al. Revised International Staging System Is Predictive and Prognostic for Early Relapse (<24 months) after Autologous Transplantation for Newly Diagnosed Multiple Myeloma. Biol Blood Marrow Transplant. Elsevier Inc.; 2019;25:683–8.
- 16. Magarotto V, Bringhen S, Offidani M, Benevolo G, Patriarca F, Mina R, et al. Triplet vs doublet lenalidomide-containing regimens for the treatment of elderly patients with newly diagnosed multiple myeloma. Blood. 2016;127:1102–8.
- 17. Bringhen S, Petrucci MT, Larocca A, Conticello C, Rossi D, Magarotto V, et al. Carfilzomib, cyclophosphamide, and dexamethasone in patients with newly diagnosed multiple myeloma: A multicenter, phase 2 study. Blood. 2014;124:63–9.
- 18. Larocca A, Bringhen S, Petrucci MT, Oliva S, Falcone AP, Caravita T, et al. A phase 2 study of three low-dose intensity subcutaneous bortezomib regimens in elderly frail patients with untreated multiple myeloma. Leukemia. 2016;30:1320–6.
- 19. Palumbo A, Bringhen S, Rossi D, Cavalli M, Larocca A, Ria R, et al. Bortezomib-Melphalan- Prednisone-Thalidomide Followed by Maintenance With Bortezomib-Thalidomide Compared With Bortezomib-Melphalan-Prednisone for Initial Treatment of Multiple Myeloma: A Randomized Controlled Trial. J Clin Oncol. 2010;28:5101–9.
- 20. Gay F, Bertamini L, Zaccaria GM, Aquino S, Spadano A, Siniscalchi A, et al. PREDICTORS OF EARLY RELAPSE IN YOUNG MULTIPLE MYELOMA PATIENTS: INTEGRATED ANALYSIS OF BASELINE FEATURES AND ACHIEVEMENT OF MINIMAL RESIDUAL DISEASE NEGATIVITY. HemaSphere. 2020;4:457 [Abstract #EP999, EHA 2020 25th Congress].
- 21. Caers J, Garderet L, Kortüm KM, O'Dwyer ME, van de Donk NWCJ, Binder M, et al. European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when. Haematologica. 2018;103:1772–84.
- 22. Sonneveld P, Avet-Loiseau H, Lonial S, Usmani S, Siegel D, Anderson KC, et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood. 2016;127:2955–62.
- 23. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J Clin Oncol. 2015;33:2863–9.
- 24. Therneau TM, Watson DA. The concordance statistic and the Cox model. Technical Report #85. Rochester (US-MN): Department of Health Sciences, Mayo Clinic; 2017.
- 25. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Ann Intern Med. American College of Physicians; 2015;162:55–63.
- 26. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration. Ann Intern Med. American College of Physicians; 2015;162:W1–73.
- 27. D'Agostino M, Zaccaria GM, Ziccheddu B, Rustad EH, Genuardi E, Capra A, et al. Early Relapse Risk in Patients with Newly Diagnosed Multiple Myeloma Characterized by Next-generation Sequencing. Clin Cancer Res. Clin Cancer Res; 2020;26:4832–41.
- 28. Greipp PR, San Miguel J, Durie BGM, Crowley JJ, Barlogie B, Bladé J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412–20.
- 29. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase
- level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;115:931–5.
- 30. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538-48.
- 31. Zaccaria GM, Ferrero S, Rosati S, Ghislieri M, Genuardi E, Evangelista A, et al. Applying data warehousing to a phase III clinical trial from the Fondazione Italiana Linfomi (FIL) ensures superior data quality and improved assessment of clinical outcomes. JCO Clin Cancer Informatics. 2019;1–15.
- 32. Schmidt TM, Barwick BG, Joseph N, Heffner LT, Hofmeister CC, Bernal L, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. Springer US; 2019;9:Article number 94.
- 33. Bertamini L, Grasso M, D'Agostino M, Pascarella A, Tosi P, Monaco F, et al. Poor Prognosis of Multiple Myeloma Predicted By High Levels of Circulating Plasma Cells Is Independent from Other High-Risk Features but Is Modulated By the Achievement of Minimal Residual Disease Negativity. Blood. American Society of Hematology; 2020;136:12-13 [Abstract #720, ASH 2020 62nd Meeting].
-
-

6 Tables

Table 1. Patient characteristics of the overall population, stratified according to the ER18 outcome as training set and validation set

**Patients with complete data only*.

Abbreviations. N, number; y, years; ER, early relapse within 18 months from diagnosis; IQR, interquartile range; β2m, β 2-microglobulin; LDH, lactate dehydrogenase; ULN, upper limit of normal; del17p, deletion 17p; t, translocation; R-ISS, Revised International Staging System; BMPCs, bone marrow plasma cells; FLC, free light chains; M, monoclonal.

Table 2. Univariate (UV) and multivariate (MV) analyses of the baseline features to predict ER18

** Only significant features (p<0.1) in UV analysis and age were included.*

- Excluded before the MV analysis by the Akaike information criterion (AIC).

Abbreviations. ER18, early relapse within 18 months from diagnosis, R-ISS Revised International Staging System; UV, univariate; MV, multivariate; OR, odds ratio; CI, confidence interval; β2m, β 2-microglobulin; LDH, lactate dehydrogenase; ULN, upper limit of normal; del17p, deletion 17p; t, translocation; R-ISS, Revised International Staging System; BMPCs, bone marrow plasma cells; FLC, free light chains; M, monoclonal.

7 Figures: titles and legends

Figure 1. Flowchart of the S-ERMM score construction

Abbreviations. ER, early relapse; features, features; BMPCs, bone marrow plasma cells; LDH, lactate dehydrogenase; ULN, upper limit of normal; del17p, deletion 17p; t, translocation; FLC, free light chains; alb, albumin; Low, low; Int, intermediate; High, high; coeff., coefficient; OR, odds ratio; CI, confidence interval; p, p-value; S-ERMM, Simplified Early Relapse in Multiple Myeloma score.

Figure 2. OS (A) and PFS2 (B) stratified by S-ERMM score

A) OS: S-ERMM Int vs. S-ERMM Low, S-ERMM High vs. S-ERMM Low and S-ERMM High vs. S-ERMM Int. B) PFS2: S-ERMM Int vs. S-ERMM Low, S-ERMM High vs. S-ERMM Low and S-ERMM High vs. S-ERMM Int.

Abbreviations. OS, overall survival; PFS2, progression free survival-2; S-ERMM, Simplified Early Relapse in Multiple Myeloma score; Int, intermediate; HR, hazard ratio; CI, confidence interval; p, p-value.

Figure 3. OS (A) and PFS2 (B) according to the DS-ERMM score

Landmark analysis at 9 months, corresponding to the median time to achieve ≥VGPR. A) OS: DS-ERMM Int vs. DS-ERMM Low, DS-ERMM High vs. DS-ERMM Low, and DS-ERMM High vs. DS-ERMM Int. B) PFS2: DS-ERMM Int vs. DS-ERMM Low, DS-ERMM High vs. DS-ERMM Low and DS-ERMM High vs. DS-ERMM Int.

Abbreviations. OS, overall survival; PFS2, progression-free survival-2; DS-ERMM score, Dynamic Simplified Early Relapse in Multiple Myeloma score; VGPR, very good partial response; Int, intermediate; HR, hazard ratio; CI, confidence interval; p, p-value.

Training Set

The ER score was calculated as $0.047 \times$ BMPCs %/5 + 0.589 \times LDH (IF >ULN) + 0.459 \times del17p (IF present) + 0.705 \times t(4;14) (IF \blacksquare $present$) + 0.293 \times FLC (IF FLC= λ) - 0.284 \times albumin

Int vs. Low $→$ OR=2.51, 95% CI=1.81–3.48, p<0.001 High vs. Low \rightarrow OR=4.59, 95% CI=2.45-8.61, p<0.001

Model selected for the definition of the score: ER18 involving 6/14 fts: **BMPCs , LDH>ULN, del17p, t(4;14), FLC, albumin**

Categorization of continuous variables BMPCs (>60%) and albumin (\geq 3.5 and \leq 5)

 $Int. vs. Low → OR=2.52, 95% CI=1.36-4.68, p=0.003$ High vs. Low -> OR=5.55, 95% CI=2.58–14.22, p<0.001

Int vs. Low → **OR=2.39, 95% CI=1.73–3.30, p<0.001 High vs Low** → **OR=5.59, 95% CI=3.08–10.16, p<0.001**

Validation Set

Int vs Low → **OR=2.27, 95% CI=1.23–4.17, p=0.008 High vs Low** → **OR=4.87, 95% CI=2.01–11.76, p=0.001**

Definition of the S-ERMM score: BMPCs → **Beta Coeff. proportionality: 1.7** → **score: 3 albumin** → **Beta Coeff. proportionality: 1.6** → **score: 3 del17p** → **Beta Coeff. proportionality: 1.8** → **score: 3 t(4;14)** → **Beta Coeff. proportionality: 2.8** → **score: 5 LDH>ULN** → **Beta Coeff. proportionality: 2.7** → **score: 5 FLC** → **Beta Coeff. proportionality: 1.0** → **score: 2**

Figure 1

Number at risk (censored)

S-ERMM: High vs. Low, HR: 3.24 (95% CI: 2.30 - 4.54, p<0.001)

Figure 2

DS-ERMM: Int vs. Low, HR: 1.96 (95% CI: 1.44 - 2.66, p<0.001) DS-ERMM: High vs. Low, HR: 3.28 (95% CI: 2.37 - 4.54, p<0.001) DS-ERMM: High vs. Int, HR: 1.68 (95% CI: 1.27 - 2.22, p<0.001)

Figure 3