
29 June 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Machine learning for cardiology

Published version:

DOI:10.23736/S2724-5683.21.05709-4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1796298 since 2023-04-12T19:30:25Z



 

 
Author’s copy (preprint) of Arfat Y, Mittone G, Esposito R, Cantalupo B, De Ferrari GM, Aldinucci 
M. A review of machine learning for cardiology. Minerva Cardiol Angiol 2021 Aug 02. DOI: 
10.23736/S2724-5683.21.05709-4 
 

A Review of Machine Learning for Cardiology 
  
        
Yasir ARFAT1*, Gianluca MITTONE1, Roberto ESPOSITO1, Barbara CANTALUPO1, Gaetano M. 
DE FERRARI2,3, Marco ALDINUCCI1         
 
1 Computer Science Department, University of Turin, Turin, Italy;  
2 Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della 
Scienza, Turin, Italy;  
3 Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy. 
* Corresponding author: Yasir ARFAT, Computer Science Department, University of Turin, Turin, 
Italy. e-mail: yasir.arfat@unito.it  
 

Abstract 
 
This paper reviews recent cardiology literature and reports how Artificial Intelligence Tools 
(specifically, Machine Learning techniques) are being used by physicians in the field. Each 
technique is introduced with enough details to allow the understanding of how it works and its intent, 
but without delving into details that do not add immediate benefits and require expertise in the field. 
We specifically focus on the principal Machine Learning based risk scores used in cardiovascular 
research. After introducing them and summarizing their assumptions and biases, we discuss their 
merits and shortcomings. We report on how frequently they are adopted in the field and suggest why 
this is the case based on our expertise in Machine Learning. We complete the analysis by reviewing 
how corresponding statistical approaches compare with them. Finally, we discuss the main open 
issues in applying Machine Learning tools to cardiology tasks, also drafting possible future 
directions. Despite the growing interest in these tools, we argue that there are many still 
underutilized techniques: while Neural Networks are slowly being incorporated in cardiovascular 
research, other important techniques such as Semi-Supervised Learning and Federated Learning are 
still underutilized. The former would allow practitioners to harness the information contained in 
large datasets that are only partially labeled, while the latter would foster collaboration between 
institutions allowing building larger and better models. 
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1  Introduction 
Recent years have witnessed a Cambrian explosion of tools and techniques able to tackle problems 
that were only solvable by humans up to a few years ago; collectively, we refer to these computer 
science methods as Artificial Intelligence (AI). AI is accumulating astounding successes at a 
breakneck pace in both research and applications: from helping in recovering photos by their 
descriptions1 on devices used by billions of people to providing tools for investigating the depths of 
the visible universe2, AI has never been as capable and popular as today. AI encompasses a vast 
variety of different techniques: intelligent agents3, symbolic and subsymbolic reasonings4, 
planning5, case-based reasoning6, fuzzy systems7, and expert systems8 are just a few of them. Despite 
this diversity, one sub-field in AI single-handedly provided the tools that allowed most of the 
mentioned successes to be achieved: Machine Learning (ML). 
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In this paper, we review some of the recent cardiology literature and report about how ML tools are 
being used by medical doctors and scientists in the complex tasks of understanding and predicting 
patients’ clinical situations. AI, and specifically ML, can provide clinicians powerful tools 
supporting and helping everyday crucial clinical decisions9–11. For this, the exploitation of AI in 
medicine is a research direction actively endorsed by national and European funding bodies. The 
15M€ EU IA “DeepHealth”12 (Deep-Learning and HPC to Boost Biomedical Applications for 
Health, 2019-22) and 6M€ EU RIA “Brainteaser” (BRinging Artificial INTelligencE home for a 
better cAre of amyotrophic lateral sclerosis and multiple SclERosis, 2021-24) projects are just two 
recent examples of multi-disciplinary projects directly addressing the development of novel ML 
tools for AI-assisted diagnosis through medical imaging.  With such a great deal of investments and 
with the renewed interest in the field, there are good chances that AI techniques could become crucial 
tools to assist clinicians to accurately assess all the relevant factors leading to a diagnosis and the 
actions that follow. In this context, physicians will remain central to all decisions but supported by 
tools tailored to ease some of the burdens they face when dealing with the complexity of their work. 
ML encompasses all AI approaches specifically oriented towards building models that improve their 
performances on a given task with experience, that is, data; it is a vast research field able to tackle 
many tasks and including a vast array of techniques. One broad way to categorize such techniques 
is by looking at the kind of supervision the learning algorithm receives with the learning examples. 
The main distinction here is between supervised learning (where all examples are associated with a 
label), unsupervised learning (where none of the examples is associated with a label), and semi-
supervised learning (where only a few of the examples are labeled).  
The topic is addressed from a technical perspective, introducing criteria to compare the different 
techniques, explaining them, and critically reviewing their pros and cons. We describe and review 
the most important risk scores based on ML techniques, allowing the reader to have a comprehensive 
perspective on the AI applications currently available in the cardiovascular (CV) field. We also 
briefly analyze the main statistical approaches, comparing them with ML methods.  
Figure 1 gives an overview of the paper structure, describing in particular Sections 3 and 4, 
summarising the usual process followed by ML practitioners: the data are first preprocessed to 
improve their quality (removing missing values, performing feature selection, …), then the ML 
algorithm is trained on them. The model obtained as output is iteratively refined by searching for 
optimal (hyper) parameters by performing experiments on the training or the validation data. Finally, 
the model is evaluated on the test data and deployed for usage. After that Section 5 deals with 
statistical methods, Section 6 discusses our findings and  Section 7 concludes the paper.  
 

 
Figure 1 Figure 1. The machine learning process. 
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2 Methodology 
This work is a state-of-the-art review, meaning that its primary goals are to address the current 
knowledge in the field of AI-based cardiological risk scores and offer new perspectives on their 
development. The latest papers were collected reporting reviews and comparisons of current 
methodologies from Google Scholar, covering a wide range of works in computer science and 
cardiology communities. From there, we proceeded backward, exploring the main literature strands 
focusing specifically on supervised learning. This process led to reading 58 recent papers; the most 
influential ones (based on the quality of obtained results, practical applications’ usefulness, and the 
sophistication of the techniques exploited) have been selected, summarized, and described (see 
Section 4).  
As the reader shall see, only supervised techniques are reviewed. While we initially set out to include 
unsupervised and semi-supervised methods in our review, we realized that researchers in the CV 
field are not currently exploiting these techniques. We comment on this aspect in the final discussion 
(see Section 6).  

3 Data handling 
In the supervised learning scenario data comes from a labeled dataset 𝑋 = {(𝑥	! , 𝑦	!)} where 
examples (a.k.a. samples) 𝑥! are associated with labels 𝑦! and are assumed to be i.i.d. (independent 
and identically distributed). This section discusses widespread data preprocessing techniques to 
overcome common issues like outliers, missing values, noisy readings, and many others that often 
affect the learning performance. 

3.1 Features types 
In the medical scenario, the samples 𝑥! usually describe patients’ data and are structured into several 
fields known as features in the ML community. Features can take many forms, but as far as most 
learning algorithms are concerned, they can be subdivided into three different categories13:  

● quantitative: those with a meaningful numerical scale;  
● ordinal: ordered features without a scale;  
● categorical: those without an ordering or scale.  

The feature type is crucial to ML algorithms since not all algorithms can deal with all kinds of 
features, and even when they can, they usually handle them differently. Some feature types are more 
informative than others: quantitative features contain more details than the ordinal ones, and the 
same relationship holds between ordinal and categorical features. The empirical impact of this 
statement is present in many of the papers included in this review: risk scores obtained by reducing 
the number of used features often end up using more quantitative and ordinal features than 
categorical ones14–24.  

3.2 Missing values 
An aspect that is important to discuss further is the handling of missing values. Many different 
approaches exist to deal with this problem, relying on and exploiting different assumptions on the 
meaning of a missing value. In the medical field, the absence of a value can have a significant clinical 
meaning; if some values are not collected, there could be some specific reason25 (e.g., the medical 
treatment prevents data from being collected, or some values are derived from others). In those cases, 
expert intervention is needed to understand how to handle the issue correctly. For some models, like 
Decision Trees, a correct approach to address this issue can be creating a specific value for missing 
data, signifying that data could not be collected, giving more information to the model than the 
simple missing value.  
If data is not missing for a specific reason, imputation can be exploited to guess its value; this is a 
powerful technique capable of enhancing the richness of information in a dataset, but it should be 
carefully handled since it can drastically reduce the data variance. Imputation is frequently exploited 
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in the field14–16,21,26–28, especially employing Monte Carlo or regression methods. Some works 
explicitly targeting the imputation of medical data are also available29,30. 

3.3 Feature selection 
While it is intuitive that the more features are available, the more precise the prediction will be, this 
is not always the case. On the one hand, by adding more features to the training process, the ones 
related to the target will more likely be available to the ML algorithm; but, on the other hand, the 
risk of capturing random regularities grows exponentially with the number of added features. A high 
number of features makes the predictive process also less interpretable. In addition, from a medical 
perspective, it is not useful to introduce multiple features referring to the same medical parameter: 
these will be highly correlated and will not add any relevant information to the process. Feature 
selection is a way to overcome these problems and can be achieved in various ways.  
The most frequently used approach for feature selection that we found in the reviewed literature is 
the forward selection/backward elimination process (as, for instance in papers:14–17,31–34), in which 
the model is trained multiple times using different sets of features. At each iteration, features are 
added/eliminated according to a greedy strategy. Other strategies are available35 each of them 
addressing specific situations. 

3.4 Class imbalances 
A common issue in medical datasets is the balance between the investigated classes of patients36. 
Since ML models try to optimize some kind of misclassification loss, when the classes are very 
imbalanced the algorithm may decide that it is better to simply disregard (or to focus less of its 
efforts on) the minority class since errors on that class do not contribute too much to the classification 
error anyway. This is a problem, and it should be taken into account when working with imbalanced 
datasets (this also holds for other ML tasks like regression and clustering). In this scenario, it is 
appropriate to counter the problem to ensure that the algorithm reaches its full potential in terms of 
generalization capabilities17,20,24,37. There are two standard techniques for achieving this: 
oversampling (duplicate samples from minority class) or undersampling (removal of samples from 
the majority class); while the first approach can lead to some bias if data duplication is not correctly 
applied, the second approach inevitably leads to loss of information. 

3.5 Feature normalization 
One more technique that can be exploited to obtain better performance with some models like K-
Nearest Neighbors, Support Vector Machines (SVMs), Naive Bayes, and Neural Networks (see 
Section 4 for an introduction to these models) is feature normalization. It consists of rescaling all 
the numerical features to have them on the same scale, thus allowing the ML algorithms that exploit 
numerical methods (e.g., gradient descent, distance-based algorithm) to work better way18,19,27,38–40. 
We can apply feature normalization in several ways. In cases where the feature values are all 
positive, one can scale them to the [0,1] range by dividing each value by their maximum; otherwise, 
it is common to scale so that the values have zero mean and unit variance by subtracting the mean 
and dividing the result by the standard deviation of the feature being normalized. 

3.6 Dataset splitting 
After data have been pre-processed to enhance their quality, they should be prepared for the learning 
process. Typically, the whole dataset is divided into two or three different smaller sets. The ML 
names for these sets are: 

● training set: data used to train the models; 
● validation set: data used to tune the hyperparameters of the model;  
● test set: data used to assess the generalization capability of the model. 

In medical literature, these terms are sometimes different: 
● derivation cohort/set corresponds to the training set;  
● no specific cohort/set are identified explicitly for hyperparameters tuning; 
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● validation cohort/set corresponds to the test set. 
Following the three splits schema allows to correctly train, tune and evaluate the ML model without 
compromising the rigorousness of the results. Many of the reviewed paper authors do not use a 
validation set21,27,28,40–46 tuning the hyperparameters of their models on the training set or the test set. 
It is worth emphasizing that using only two splits is not considered a best practice, because one is 
likely to overfit either the training set or (worse) the test set. 

3.7 Dataset size 
The majority of the datasets used in the current studies span from few thousands14–19,47–49 to hundreds 
of thousands of patients20,27,41,46, while it is unusual to find smaller ones24,33,40,43. The general trend 
is to use ever larger and larger datasets over time: this is positive, since the dataset size requirements 
grow with the "complexity" of the concepts to be learned. Conducting an ML study only on a few 
hundred patients would severely limit the scope of possible applications. In this regard, it is worth 
mentioning that, in particular cases, useful knowledge can be extracted from a limited amount of 
data by exploiting a deep knowledge on the specific phenomena to be analyzed19,20,23,44. The data 
sources can be either a local trial31 or a shared resource like a national or international registry14–

16,32.  

3.8 Follow-up time 
A fixed follow-up time for the investigations makes the learning process more effective, resulting 
in less data variance and more interpretable results. It is also possible to incorporate time in the 
predictive process, but this type of analysis is more complex and delicate. Some works exploit this 
technique to obtain survival time predictions or time-to-event analysis; for this kind of analysis, 
statistical techniques are typically more effective than ML ones. For instance, the SHFM risk score32 
is based on the Cox Proportional Hazard Model, explored in section 5, and takes time into account 
for his inference. The most well-known counterpart in ML is DeepHit50, a Deep Neural Network-
based survival analysis tool; its first application to medical data appears now in some preprints. 

3.9 Privacy, security, and features 
Typically, medical datasets include a list of clinical features like age, sex, type of diabetes, etc.; it is 
not unusual to include patients' habits like smoking or drinking. These are all sensitive information 
that shall be manipulated according to privacy policies: many techniques allow handling sensitive 
data without the need to share it or move it physically (e.g., edge computing51 and federated 
learning52). Still, we are currently unaware of any study where such technologies are exploited in 
the CV field. 

4 Machine Learning techniques 
In this section, the most common supervised techniques are introduced. A summary of them is 
shown in Figure 2, and references to relevant literature are provided in Table 1. Table 2 provides a 
list of references organized according to these study objectives. We shall explain the differences 
between different techniques and contextualize their usage in the current literature. To do that, we 
need a few tools to make high-level but grounded claims about the techniques themselves.  
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Figure 2 Machine Learning techniques discussed in this paper.  

 
Specifically, we will need to discuss two essential ML concepts: the “bias/variance decomposition 
of the error” and the “learning bias” of learning algorithms. Since the term “bias” is used with 
slightly different meanings in these two topics, we shall use the “bias” or “bias component of the 
error” to denote the former sense (the one used in the bias/variance decomposition) and always use 
the term “learning bias” for the latter. 
 

 
Figure 3 Examples of (a) bias, (b) variance, (c) noise decomposition, and (d) aggregated bias, variance and 

noise. The red curved line is the true concept to be approximated, the blue line is the average regressor, 
gray lines are individual regressors, and black dots are noisy observations. As can be seen, these three error 

components have a massive effect on approximation performance. 

 
Let us start from the bias/variance decomposition of the error53,54. In a nutshell: the error made, on 
average, by a learning algorithm can always be decomposed into three components: bias, variance, 
and noise (see Figure 3). The bias component of the error measures how much the average decision 
surface differs from the true concept. This difference usually correlates with the concept space size 
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searched by the algorithm: if the algorithm searches between all linear concepts and the true concept 
is a cubic polynomial, then the bias component of the error will be significant. The variance part of 
the error measures how much, on average, a concept learned by the algorithm differs from the 
average concept. The variance component of the error usually correlates inversely with the size of 
the concept space searched by the algorithm: in our previous example, a learning algorithm 
exploring the space of all cubic polynomial will have a larger error variance than that of an algorithm 
searching a linear concept space (having more degree of freedom, it will more easily adapt to 
variations in the dataset, thus producing more diversified results). Noise is just the error component 
due to errors in acquiring the example’s features or labels. 
Bias and variance are usually competing forces, and decreasing one often causes the other to 
increase. Knowing if an algorithm has high/low bias/variance allow one to understand which are the 
best possible actions to improve results and enable to compare algorithms based on how brittle they 
are (how much the variance component of their error is high) and how well they would work when 
combined with other methods (e.g., ensemble techniques). 
The learning bias of an algorithm refers to the heuristic that the learning algorithm adopts to choose 
between different concepts. This broad definition encompasses many details of the algorithm, such 
as the space it searches and how it selects between equally good concepts on the training set. 
Understanding the algorithm’s learning bias is important because it is the key to understand how 
much it is suited for the problem at hand. Indeed the no-free-lunch theorem55 implies that, without 
further assumptions, all learning algorithms are created equal and perform equally (bad/well) on a 
random problem. In other terms, there is no better/best algorithm in absolute terms: an algorithm is 
only as good as the fitness of its learning bias on the problem at hand. 

4.1 Logistic Regression  
Logistic Regression (LR) is a supervised algorithm that can induce models for classification tasks1. 
The main assumption made by the algorithm (i.e., its learning bias) is that the logarithm of the odds 
𝑙𝑜𝑔 ."($%&)

"($%()
/is a linear function of the input 𝑥. The implication, which gives the name to the 

technique, is that the probability of the positive class has the form of the logistic function 𝑓(𝑥) =
)	!

&+)	!
 (see Figure 4). Formally: 

𝑙𝑜𝑔 1
𝑃(𝑦 = 1)
𝑃(𝑦 = 0)5

= 𝑤𝑥 

⇒ 𝑙𝑜𝑔 1
𝑃(𝑦 = 1)

1 − 𝑃(𝑦 = 1)5
= 𝑤𝑥 

⇒
𝑃(𝑦 = 1)

1 − 𝑃(𝑦 = 1)
= 𝑒,-	 

⇒ 𝑃(𝑦 = 1) = 𝑒,-	 − 𝑃(𝑦 = 1)𝑒	,-	 

⇒ 𝑃(𝑦 = 1) =
𝑒,-	

1 + 𝑒	,-
	

 
The main benefits of logistic regression are that, being a linear model, it tends to have low variance 
and requires small sample sizes to perform well. For the same reasons, it does not usually work well 
when the relationships to be modeled are not linear (in that case, the higher bias component of the 
error tends to be not compensated enough by the low variance).  
 

 
1Please note that the “regression” part in the name of the technique can be  misleading. The name is 
due to the fact that the main idea is to predict the probability of the classes (which is a numeric value 
which justifies the regression name), but it is then almost always used to solve classification 
problems. 
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Figure 4 The logistic function. 

Among the technologies we found in the papers we reviewed, LR ranks very high in popularity and 
performance. HAS-BLED56 aims to provide a simple score for major bleeding risk in patients with 
atrial fibrillation. In this case, LR has been combined with univariate statistical analysis to iteratively 
select a subset of features highly correlated with the risk of major bleeding. EuroSCORE II57 was 
built exploiting univariate LR, likelihood ratios, and Akaike’s Information Criterion to select a 
subset of features highly correlated with the investigated endpoint (cardiac surgical mortality). These 
features are then inserted in a logistic equation that gives the final predicted mortality. This study is 
an update of the original 1999 EuroSCORE58 and exploits a broad international database of patients. 
More advanced techniques are used in Iung et al.59, where LR is exploited in univariate and 
multivariate fashion and in a hierarchical way to study data heterogeneity across  different medical 
centers. In SPRM60 a multinomial LR is used on a selected set of features (obtained by univariate 
LR, variance, 𝜒.	 analysis, and backward elimination) to directly compare the proportion of 
mortality attributable to two distinct causes: information that other models can hardly provide. 
ScREEN42 exploits LR to do feature selection and the Youden index for establishing cut-offs for 
quantitative variables. Each selected feature was assigned a single risk point, and the total risk of 
collateral events after a Cardiac Resynchronization Therapy is the sum of these points. Many other 
papers exploring this topic exist27,45, but they simply apply the above LR techniques to other 
pathologies to the best of our knowledge. 
 

 

4.2  K-Nearest Neighbors 
Despite its age and simplicity, K-Nearest Neighbors (KNN) is still used in some of the works we 
reviewed. The main idea of the KNN algorithm is to store the dataset in memory and then compute 
the predictions for a new example x by recovering the K examples nearest to x and averaging the 
results (for regression) or deciding the class by a majority vote (for classification). Here the learning 
bias is in the assumption that similar examples (as estimated by the distance measure adopted) 
should have similar labels. From the bias/variance decomposition point of view, this algorithm has 
some flexibility since the K parameter controls the trade-off (the lower is the K parameter, the lower 
is the bias component, and the higher the variance component). In Elsayed et al.40 KNN has been 
used to detect the early risk of coronary artery diseases.  

4.3  Decision Trees 
Decision trees61 (DTs) are tried and tested ML tools that can be easily applied to a wide variety of 
problems and provide very interpretable results. DTs’ flexibility derives from their capability to do 
both classification and regression and their ability to work well with a wide variety of feature kinds 
(numerical, categorical, ordinal, …). As mentioned, DTs are very interpretable models since they 
can be interpreted as a list of nested if-then-else clauses. They are very brittle models, meaning that 
they are low bias, high variance models. They also tend to overfit data unless countermeasures are 
taken; for these reasons, DTs are usually pruned (making the trees smaller, lowering their variance 
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at the expense of a higher bias) and averaged using some form of ensemble algorithm. Pruning 
introduces an additional learning bias, which is to prefer shorter trees over taller ones. 
While DTs are still very popular when used as pieces of an ensemble model (e.g., as components of 
Random Forests (4.4) or used as weak learners in Boosting procedures (4.5)), they are not very 
popular as standalone models. In Furui et al.43  long-time prediction for atrial fibrillation has been 
performed using DTs: the researchers produced a risk stratification system using a classification and 
regression tree, categorizing the patients in low, medium, and high risk. 

4.4  Random Forest 
Random Forest (RF) is an ensemble learning supervised machine learning algorithm. Its flexibility, 
performance, and ease of use make it a very popular choice in many application contexts for 
regression and classification tasks. Ensemble learning encompasses different techniques where 
many models are combined to build a more robust one; in RF, this technique is Bagging62. This 
algorithm creates many copies of a model, each one of them being trained on a different subset of 
the available data and combines them through a simple majority vote or averaging the predictions. 
Bagging’s main strength is the ability to reduce the variance of the combined models, i.e., it works 
best with low-bias, high-variance algorithms63,64. RF builds on these strengths by bagging models 
obtained by a slightly updated version of the DTs learning algorithm that exacerbates these traits of 
DT models. 
Our literature review found that RF appeared second highest in the papers we reviewed, ranging 
from classification tasks26,33,46 to regression tasks. Many authors use RFs to predict all-cause 
mortality, and others apply RF to particular cardiovascular diseases37,46 or for risk assessment of 
heart failure33 and venous thromboembolism22. In some studies, authors claim that the inferred RF 
models are helpful for clinical decisions, allowing to estimate whether a patient is suffering from 
heart failure with preserved ejection fraction or not33, and that their risk score assessment performs 
better than the state-of-the-art ones.22,26,46  

4.5 Boosting 
Boosting algorithms are particular kinds of ensemble algorithms. Boosting algorithms encompass 
those ensemble techniques that guarantee a decrease in the training error (usually by descending the 
gradient of some loss suffered by the ensemble). These models are very popular since they are 
typically easy to use, have very few parameters, can be applied to both classification and regression 
tasks, and tend not to overfit the data. Several boosting algorithms have proved to be particularly 
popular in our literature review: AdaBoost, LogitBoost, Gradient Boosting, Light Gradient 
Boosting, and eXtreme Gradient Boosting.  
Adaboost65 is the original boosting algorithm, and it can be shown to optimize the exponential loss 
suffered by the ensemble implicitly. LogitBoost66 is a variant of AdaBoost derived by casting 
AdaBoost as a generalized additive model and substituting the cost function with the logistic loss 
∑	! 	𝑙𝑜𝑔(1 + 𝑒/$"0(-")) (where i sums over all examples (𝑥! , 𝑦!)). Gradient Boosting is a variant 
of boosting where the loss function is explicitly optimized via gradient descent, and eXtreme 
Gradient Boosting is a refined version of the Gradient Boosting approach67. 
Recently, AdaBoost has been used to predict all-cause mortality18,47 and report accuracies on-par or 
better than the state-of-the-art based on LR42 and provide clues useful for the clinical decision-
making process. LogitBoost has been instrumental in developing cardiovascular risk predictions17,48, 
outperforming established risk scores such as the Framingham Risk Score and the Segment Stenosis 
Score.  
eXtreme Gradient Boosting has been applied in predicting mortality38,41 and in predicting the risk of 
cardiovascular disease Coronary Artery Calcium Score49. Ye et al.41 introduced a risk assessment 
tool based on this latter technique that provides early prediction of older people's mortality using 
Electronic Health Record. In van Rosendael et al.,68 authors also used eXtreme Gradient Boosting 
to enhance the risk stratification to maximize coronary CTA usage derived from plaque information. 
In all these works, the authors reported that using eXtreme Gradient Boosting their overall accuracy 
improved with respect to the competing approaches. 
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Li34 has applied Light Gradient Boosting to Intensive Care Unit patients on data collected from three 
hospitals. The authors claim that their approach helps make better clinical decisions, and the model 
achieves good performance for predictions. 
Gradient Boosting of DTs has been used with success in several interesting works trying to predict 
mortality24 and heart failures39. The latter work also provides additional information for medical 
staff to understand complications after heart failure. 

4.6  Neural Networks 
Neural Networks (NNs) are connectionist models with roots in cybernetics and the attempt to model 
the human brain69; since then, the models evolved into practical tools with only a faint resemblance 
to the first ones developed. After an exciting start in the ’60s and a resurgence in the ’80s, NNs did 
not progress for almost two decades. For many tasks, they required too much data and computational 
power, and the research focused on simpler models that were easier to train. Thanks to breakthrough 
in the training algorithms, progresses in CPUs and GPUs, the creation of big computational farms70, 
and the advent of internet tools allowing the collection of huge labeled datasets, NNs have seen new 
interest from the research community and are nowadays at the forefront of the research in many 
critical applicative fields. 
NNs are built from basic units called neurons, which can be easily arranged in layers. Layers are 
easy to connect, and the whole network can be trained end-to-end using the Stochastic Gradient 
Descent algorithm71. While a single-layer network can approximate any function to arbitrary 
precision (as implied by the Universal Approximation Theorem72), the real power of these models 
is in the automatic abstractions provided by stacking multiple layers into a Deep Neural Network 
(DNN). Each layer abstracts its inputs providing the following layer with a data representation that 
is easier to work within the context of the task being solved. State-of-the-art NNs models are DNNs 
models and have been shown to provide super-human performances73,74 on many tasks involving 
hard-to-abstract data such as those involved with image and audio processing. 
Shallow NNs have been used to predict mortality due to heart failure20,23 showing performances 
outperforming other learning methods despite being trained on unbalanced datasets in recent 
literature. DNNs have been exploited for predicting the risk of mortality19,75 or heart failure and 
acute heart failure44. The authors of these two works compared DNNs with other ML techniques 
showing performance improvements.  
Another interesting recent application of NNs in this field is to exploit their ability to work with data 
correlated very complicatedly. This is the case of the Deep Cox Mixtures76, in which a NN assists a 
Cox Regression Model (Section 5.1) to fit the hazard ratios of the regression. This work is based on 
a sound statistical and ML background, comprehensively exposed, and offers state-of-the-art 
performance when working with different groups of individuals.  

5 Statistical approaches 
Alongside the ML approaches discussed above, it is worth briefly describing the main statistical 
techniques currently used in the prediction of cardiovascular events since they still cover an essential 
role in the field77,78. As in the previous section, every major technique implied in the field will be 
reviewed and explained, together with a brief comment on the top risk scores that exploit them. 

5.1 The Cox Proportional Hazards Model 
Survival Analysis is a broad branch of statistics that studies how much time it takes for an event to 
occur, or, in the specific case of medical applications, how much time would likely pass before an 
event affects a given individual. Given this brief description of survival analysis, it is clear that its 
tools are well-fit for predicting medical events. In this scenario, the Cox Proportional Hazards (PH) 
Model79 takes a predominant place as being, by far, the most used statistical technique for the 
prediction of cardiovascular events14,15,21,28,31,32,80. 
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The typical analysis of the relation between a single risk factor and an event is carried on by 
evaluating the Instantaneous Hazard Rate 𝜆(𝑡). This measure is defined as the rate at which events 
occur, given the total number of individuals at risk. Formally:  
 

𝜆(𝑡) = 𝑙𝑖𝑚
12→(

𝐸𝑣(𝑡, 𝑡 + 𝛥𝑡)/𝑁(𝑡)
𝛥𝑡

 
  
where 𝐸𝑣(𝑡, 𝑡 + 𝛥𝑡) is the number of events occurring between times 𝑡 and 𝑡 + 𝛥𝑡 and 𝑁(𝑡) is the 
number of individuals at risk at time 𝑡. 
Typically, in medical studies, authors are interested in comparing different populations, each with 
different characteristics, like the assumption (or the lack thereof) of a drug. It is then common to 
model each group’s survival possibilities to assess the effects of the given drug on the population. 
In these cases, it is convenient to model the variations in risk hazards of the different populations by 
mean of the Hazard Ratio (HR), which is the ratio of the two different Instantaneous Hazard Rates:  
 

𝐻𝑅 =
𝜆&(𝑡)
𝜆((𝑡)

 

 
where 𝜆((𝑡)  and 𝜆&(𝑡) are the Instantaneous Hazard Rate for the populations 0 and 1 at time 𝑡. With 
an HR ratio above 1, the events are more likely to occur in population one and vice-versa, with the 
magnitude of HR indicating the difference’s strength. 
The kind of analysis shown before, although helpful, can be applied only to investigate the impact 
of a single risk factor on the survival possibilities of a population. More complex tools are needed 
to assess the simultaneous impact of multiple risk factors. In this context, the Cox PH model finds 
its bases, allowing the assessment of the effects of multiple risk factors on the survival time of a 
population under three assumptions81:  

● the survival capability of an individual is independent of the other individuals in the 
population;  

● the risk factors and the hazard are multiplicatively related (i.e., incrementing one of the risks 
multiplies the hazard);  

● the HR over time is constant. 
These assumptions make the Cox PH model semi-parametric since it assumes the relationship 
between risk factors and hazard but not on the hazard function itself. A conditional argument by Cox 
justifies this approach, but it is not presented here. In general, a Cox PH model can be written as:  
 𝜆(𝑡|𝑋!) = 𝜆((𝑡)𝑒𝑥𝑝(𝑋!𝛽) 
where 𝑋!  is the vector of the risk factor values for the ith individual (usually called covariates in 
this context), 𝛽 is the vector of regression coefficients, and 𝜆((𝑡) is the baseline hazard when all the 
risk factors are zero. The values assessed for every risk factor (𝛽𝑠) impact on the population’s 
survival; positive values of 𝛽 will proportionally increase the hazard risk and vice-versa. Of course, 
it is possible to calculate the HR of two hazard rates calculated with a Cox PH model; it is then 
possible to investigate the survival capabilities of different populations based on multiple risk 
factors. 
 
Heart Failure Survival Score 
One of the most well-known risk scores exploiting a Cox PH model is the Heart Failure Survival 
Score (HFSS)31. The first step for the derivation of this score has been the clinical features selection 
by mean of univariate statistical analysis methods like Kaplan-Meier method82 and log-rank tests83; 
in this way, the researchers successfully reduced the analysis on a set of forty features, against the 
eighty available. The Cox PH model has been applied to these features, but with two additional 
strategies: a stepwise forward-entry/backward-elimination selection, based on the p-value, and best-
subset discovery, based on a 𝜒. test. In this way, a subset of only eleven features has been selected 
as the best trade-off between feature number and predictive power. The HFSS is then defined as the 
absolute value of the sum of the products of the Cox PH model coefficients and the respective risk 
factor value (|𝛽(𝑥( + 𝛽&𝑥&+. . . +𝛽4𝑥4|where 𝑥(, 𝑥&, . . . , 𝑥4 are the actual variable values and 
𝛽(, 𝛽&, . . . , 𝛽4 are the computed coefficients). This risk score achieved good results for its time, but 
it lacked generalization capabilities: performance was limited when applied to other datasets than 
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the one on which it was derived, due to the low number of patients involved in the study and the 
specific requirements that they had to match. A positive aspect of this work, though, is that not only 
one model has been developed: two of them have been derived, one exploiting an invasive medical 
feature (mean PCWP) and the other one not; despite that the two models reached similar 
performance, thus raising the attention on the opportunity of (not) performing invasive procedures. 

Seattle Heart Failure Model 
Another risk score exploiting the Cox PH model is the Seattle Heart Failure Model (SHFM)32. In 
this case, the feature selection has been made by means only of the Cox PH model, with a stepwise 
forward-entry/backward-elimination, partially from the derivation dataset, partially from large 
published trials (for the features not exhaustively described by the derivation cohort). Once the 
model has been derived, the SHFM score is then defined as the sum of the products of the 𝛽-
coefficients with the value of the corresponding parameter (𝑆𝐻𝐹𝑀	𝑠𝑐𝑜𝑟𝑒	 = |𝛽(𝑥( +
𝛽&𝑥&+. . . +𝛽4𝑥4|). The survival value at time 𝑡 for a patient is then defined as 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙(𝑡) =
𝑒	(/52))	($%&'	)*+,-) , where 𝑒	/(52) is the baseline survival (survival at time 𝑡 when all risk factors 
are zero) and 𝜆 the slope/year derived from the dataset. Due to how it is constructed, this risk score 
allows a per-patient analysis, and his reliability is well-documented since it has been tested on five 
different datasets; it is also an example of a score in which some risk factors (like age and sex) have 
been forced into the model, thus merging the statistical approach and the medical knowledge. 

ORBIT 
In ORBIT14 the Cox PH model is used, together with a feature selection step based on the backward 
selection process, to create the best performing model based on a pool of medically relevant risk 
factors for major bleeding. The derivation dataset is large, counting more than ten thousand patients, 
and the missing data were imputed only once through Markov Chain Monte Carlo or regression 
methods. From the full final model, only five risk factors have been retained, the ones with the 
highest 𝜒. statistic, and to each one of them, an integer score is assigned, based on the strength of 
their correlation with major bleeding. The result is a simple risk score, easily computable in a real-
world situation. This risk score is another example of how a limited group of risk factors can be 
exploited to obtain good performance. To assess the technique’s performance, the paper reports an 
evaluation on an external dataset where ORBIT is compared against HAS-BLED84 and ATRIA85. 
The GISSI80 risk score exploits a similar approach, but in this case, there are not predefined integer 
points assigned to each final feature, but a nomogram is provided for bedside application; in this 
way, it is possible also to take into account the value of the risk predictors. 

PARIS 
PARIS15 is another risk score based on the Cox PH model: differently from the other approaches 
presented above, it exploits data imputation in the derivation process. Employing a multivariate 
normal regression, specific missing values of decisive risk factors have been imputed multiple times 
and, for each set of imputed data, a Cox PH model with backward selection has been fitted to the 
data. These different models are used to obtain a fully calibrated final Cox PH model. From that 
model, the 𝛽-coefficient is used to obtain integer values for the risk factors. This approach has been 
repeated two times, one for the derivation of the major bleeding model and the other for the coronary 
thrombotic event one, allowing physicians to evaluate the risk of these two events through two 
integer risk scores. 

PRECISE-DAPT 
The PRECISE-DAPT16 score exploits the Cox PH model in two flavors, both univariate and 
multivariate, with backward elimination, to assess the potential predictors of major and minor TIMI 
bleeding. The result is an integer risk score computed on five clinical variables. Each variable is 
associated with an integer score based on its value and its 𝛽-coefficient. The paper also offers a 
nomogram for bedside single-patient evaluation. This score has been derived on a broad dataset and 
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validated on two external cohorts. It has also been compared to the PARIS score during the 
evaluation to assess the difference between these two approaches. 

6  Discussion 
Figure 5 reports the histogram of the frequencies with which ML techniques have been used in the 
papers we reviewed. While the figure shows quite a number of different approaches, we observe that 
most of the experimentation happens with ensemble techniques. In fact, 9 techniques (RF, 
AdaBoost, Gradient Boosting, eXtreme Gradient Boosting, Light Gradient Boosting, LogitBoost, 
Gradient Boosting of DTs, Explainable Boosting Machines, and CatBoost) out of 16 are ensemble 
algorithms. It also happens that while Random Forests is the most popular ensemble approach, most 
of the others are some variants of Gradient Boosting. The preference for ensemble learning in 
general, and Boosting, in particular, is highly understandable since Boosting usually gets very 
accurate models without requiring much tuning of the parameters. Also, Boosting naturally 
counterbalances overfitting86 by increasing the “margin” of the classification even when the training 
error stops decreasing.  
If we remove ensemble learning from the picture, we see that Logistic Regression is used almost as 
much as all the remaining approaches cumulatively (14 times versus 17). Again, this technique is 
straightforward to apply and very robust to overfitting so that it can be easily applied to smaller 
datasets. The remaining models (in order of popularity) are SVMs, Naive Bayes, and KNN. SVMs, 
despite being very popular in our sample of papers, never achieve the highest ranking, often being 
outperformed by Logistic Regression. In theory, SVMs should be able to match or outperform 
logistic regression when properly configured and trained. Unfortunately, there is often no 
information22,44 or very little information19,22,33,39 in the papers we reviewed about how SVMs 
are configured (which kernels are used in the experiments and how other hyperparameters have been 
chosen), so it is hard to tell how much effort was devoted to tuning these tools to the problem at 
hand.  
Naive Bayes and KNN are seldom used, and they do not seem to perform well anyway; KNN ranks 
first in one case40, but in that case, the study has only 60 patients and compares it only with one other 
approach (Random Forest). 
Figure 6 reports, for each technique, the number of times it ranked first in the papers where it 
competed. In that figure, we omit to count an algorithm as ranking first if the paper did not compare 
it with other methods (explaining why some of the methods appear with a count of 0 and the sum of 
the counting is shorter than the list of papers we reviewed).  Despite not being a very popular method, 
in the three occasions where NNs are used, they perform best. This is not a surprising result: NNs 
are notoriously hard to train and bring the necessity of selecting many hyperparameters, which 
explains why they are not the preferred choice in many works. However, when they are properly 
configured and when data is abundant, they usually perform very well.  
As mentioned at the beginning of this paper, we focused our work on supervised learning techniques. 
This was a compulsory choice since we could not find any recent paper mentioning unsupervised or 
semi-supervised learning (SSL) techniques. Given the cost and difficulty of labeling large datasets, 
we believe that SSL techniques87 could be a very useful research direction. In semi-supervised 
learning, only a small percentage of the examples are given a label, i.e., one can think to have access 
to two datasets, one small labeled dataset 𝐷6 = {(𝑥! , 𝑦!)} and one large unlabeled dataset. The 
algorithms then exploit the information in 𝐷6 and the structure of the distribution 𝑃(𝑥) inferred from 
𝐷7 either to induce labels for 𝐷7 itself without trying to infer a general labelling rule (this is called 
the transductive setting); or to induce a general rule for labeling future examples (inductive setting). 
It comes without saying that whenever this works well, it introduces huge benefits in terms of 
accuracy of the models and in costs of tools development. However, the applicability of these 
techniques necessitates that the 𝑃(𝑥) distribution has some good structure. Examples of nice 
properties of the 𝑃(𝑥) distribution are:  
 
1. the examples are high-dimensional, but they live on a low-dimensional manifold;  
2. examples are clustered and belonging to the same cluster implies having similar labels;  
3. nearby examples are likely to have similar labels.  
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Whether or not any of these assumptions apply entirely depends on the domain at hand and a good 
research direction could be to study if and in what measure they apply on cardiology prediction 
tasks. 
Working with medical data is difficult. Not only for the magnitude of problem complexities but also 
because, due to privacy concerns, it is not easy for researchers to share the data they collect. This 
causes a fragmentation of the available data that prevents training very complex models such as 
DNNs. In this regard, we believe that the recent advancements in privacy-preserving techniques 
such as (to name just a few) Federated Learning88 and Differential Privacy89 could provide help. In 
a nutshell: Federated Learning allows one to train models locally and to combine them globally 
without ever revealing the local datasets. Differential Privacy gives formal guarantees that the 
contents of a dataset cannot be inferred by exploiting the inferred model. The two methods combined 
allow one to train global models without moving data while also guaranteeing against privacy attacks 
on the inferred global model. 
 

 
Figure 5 Number of appearances of Machine Learning techniques in the reviewed literature. Abbreviations: 

Random Forest (RF),Gradient Boosting (GB), Decision Trees (DT), Logistic Regression (LR), Support 
Vector Machine (SVM), Naive Bayes (NB), eXtreme G 
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Figure 6 Number of times each Machine Learning technique ranked first in the reviewed literature. Papers 

where only a single technique was presented are not included. Abbreviations: Random Forest (RF),Gradient 
Boosting (GB), Decision Trees (DT), Logist 

 

7  Conclusions 
AI is a growing force in everyday life, and its usage is slowly but consistently percolating in medical 
professions. In most cases, ML is the main force driving the adoption of AI. In this paper, we 
presented a review of the main applications of ML in recent cardiology literature. We provided an 
introduction of the techniques used most often, reviewed competing statistical techniques, and 
critically reviewed these tools' usage in recent applications and research. We found that in most 
cases, the usage of ML is limited to tools that have been firmly understood for many years. In our 
opinion, newer and more data-hungry approaches are currently under-represented. Indeed, one of 
the problems we outline is the paucity of very large datasets. In fact, the efforts to build such datasets 
are hampered by difficulties in labeling vast amounts of data and privacy concerns that do not allow 
merging datasets acquired by different institutions. We suggested exploiting semi-supervised 
techniques to tackle the labeling problem and combine Federated Learning and Differential Privacy 
to overcome privacy issues.  
Medical data is challenging to collect, usually noisy, and the involved tasks are hard to solve. ML 
can be very useful to ease the burden on physicians, and, in part, it is already helping in that area. 
We hope that, with improvements in data collection and their sharing, better models will be learned; 
physicians will be able to work faster and more accurately, and, ultimately, many lives will be saved.  
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Appendix: A guide to references by topic 
 
Table 1: References by topic 
 

Row References Topic 

1 14,15,16,17,18,19,20,21,22,23,24 Risk scores that reduce the number of used features often 
end up using more quantitative and ordinal features than 
categorical ones. 

2 14,15,16,21,26,27,28  Imputation is a technique that is frequently exploited in the 
field. 

3 14,15,16,17,19,21,23,28,31,32,33,34 Forward selection/backward elimination process for feature 
selection. 

4 17,18,20,24,28,37 Measures to counter the class imbalance problem. 

5 18,19,27,38,39,40 Features normalization techniques 

6 21,27,28,40,41,42,43,44,45,46 Splitting criteria in CV papers 

7 14,15,16,17,18,19,23,32,34,37,42,44,47,48,49 Studies with thousands of patients 

8 20,27,41,46 Studies with hundreds of thousands of patients 

9 24,26,31,33,42,43,40  Studies with smaller datasets 

 
 
 
 
 
 
 
 
 
 
 
 
  



 

 21 

Table 2: Summary of Machine Learning and Statistical techniques found in literature 
 

References Technique Short Summary 

27, 42, 45, 56,57, 

58, 59, 60, 

 

Logistic Regression Very popular ML technique which implements a linear with sound 
theoretical underpinning. Pros: stable, low variance, model. Works 
well even with small datasets. Cons: it is a linear model, will not work 
well when more complex relationships need to be captured. 

40 K-Nearest Neighbors 
(KNN) 

Very simple model with some applications in cardiology literature. A 
new example  is labeled according to the labels of its nearest neighbors 
in the training data. Pros: can be used for both regression and 
classification tasks; easy to interpret; training time is negligible (it 
only needs to save the dataset somewhere); the K parameter allows for 
tuning the bias/variance tradeoff. Cons: performance problems at test 
time due to high usage of memory, and expensive computation when 
the dataset is large; no theoretically sound way to set K, needs to be 
estimated by cross-validation.  

43 Decision Trees Very popular machine learning technique, very widely available in 
free and commercial ML tools. The learnt model is a tree having tests 
on attributes in the internal nodes and label decisions in the leaves. A 
decision can be then explained by looking at the result of each test that 
leads to the leaf used for the decision.  Pros: very flexible tool; it can 
be used for classification and regression; explainable decisions. Cons: 
must be regularized to avoid overfitting; not always state-of-the-art 
accuracy-wise. 

22, 26, 33, 37, 46
 Random Forest Ensemble method that is very widely used in cardiology research. It 

builds a set of decision trees and averages their answers. Pros: the 
averaging of the answers tends to counteract the natural tendency of 
decision trees to overfit the data. Pros: it usually sports very good 
performances with minimal efforts. Cons: the natural interpretability 
of decision trees is hampered by the combination of multiple models.  

17, 18, 24, 34, 38, 

39, 41, 42, 47-49, 

68  

Boosting Ensemble method that guarantees, under mild assumptions, to drive 
training error to zero. Several different techniques goes under this 
name (e.g., AdaBoost, LogitBoost, Light gradient boosting, and 
Extreme gradient boosting). Pros: usually easy to use; very few 
parameters; can be applied to both classification and regression tasks; 
resilient to overfitting. Cons: combining multiple models make the 
decision hard to interpret. 

19, 20, 23, 

44,75,76 
Neural Networks State-of-the-art models for several tasks that deal with raw signals 

(e.g., images and videos). They are not widely used in cardiovascular 
literature. Pros: unparalleled ability to deal with images, sounds and 
videos; they can learn highly non-linear decision surfaces. Cons: hard 
to train; many hyperparameters; on tabular data other techniques are 
usually easier to apply; work best with very large datasets.  

14-16, 21, 28, 31, 

32, 79, 80, 

81,82,83 

Statistical techniques Statistical techniques for the prediction of cardiological events.  
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Table 3: Summary of objectives/goals in different research papers 
 

Research Papers Major Objectives 

17,19,20,22-24,26,33,38,41,44,45,47,48,68 Predict all-cause mortality (ACM) 

20,23,33,39,42,47 Predict heart failure (HF) 

34,43 Improving clinical decision 

37,49 Classify different disease 

27 Predict risk of stroke 

40,48 Predict coronary artery disease 

 
 


